hugetlb.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/module.h>
  8. #include <linux/mm.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/mempolicy.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <asm/page.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/io.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/node.h>
  29. #include "internal.h"
  30. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  31. static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
  32. unsigned long hugepages_treat_as_movable;
  33. static int max_hstate;
  34. unsigned int default_hstate_idx;
  35. struct hstate hstates[HUGE_MAX_HSTATE];
  36. __initdata LIST_HEAD(huge_boot_pages);
  37. /* for command line parsing */
  38. static struct hstate * __initdata parsed_hstate;
  39. static unsigned long __initdata default_hstate_max_huge_pages;
  40. static unsigned long __initdata default_hstate_size;
  41. #define for_each_hstate(h) \
  42. for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
  43. /*
  44. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  45. */
  46. static DEFINE_SPINLOCK(hugetlb_lock);
  47. /*
  48. * Region tracking -- allows tracking of reservations and instantiated pages
  49. * across the pages in a mapping.
  50. *
  51. * The region data structures are protected by a combination of the mmap_sem
  52. * and the hugetlb_instantion_mutex. To access or modify a region the caller
  53. * must either hold the mmap_sem for write, or the mmap_sem for read and
  54. * the hugetlb_instantiation mutex:
  55. *
  56. * down_write(&mm->mmap_sem);
  57. * or
  58. * down_read(&mm->mmap_sem);
  59. * mutex_lock(&hugetlb_instantiation_mutex);
  60. */
  61. struct file_region {
  62. struct list_head link;
  63. long from;
  64. long to;
  65. };
  66. static long region_add(struct list_head *head, long f, long t)
  67. {
  68. struct file_region *rg, *nrg, *trg;
  69. /* Locate the region we are either in or before. */
  70. list_for_each_entry(rg, head, link)
  71. if (f <= rg->to)
  72. break;
  73. /* Round our left edge to the current segment if it encloses us. */
  74. if (f > rg->from)
  75. f = rg->from;
  76. /* Check for and consume any regions we now overlap with. */
  77. nrg = rg;
  78. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  79. if (&rg->link == head)
  80. break;
  81. if (rg->from > t)
  82. break;
  83. /* If this area reaches higher then extend our area to
  84. * include it completely. If this is not the first area
  85. * which we intend to reuse, free it. */
  86. if (rg->to > t)
  87. t = rg->to;
  88. if (rg != nrg) {
  89. list_del(&rg->link);
  90. kfree(rg);
  91. }
  92. }
  93. nrg->from = f;
  94. nrg->to = t;
  95. return 0;
  96. }
  97. static long region_chg(struct list_head *head, long f, long t)
  98. {
  99. struct file_region *rg, *nrg;
  100. long chg = 0;
  101. /* Locate the region we are before or in. */
  102. list_for_each_entry(rg, head, link)
  103. if (f <= rg->to)
  104. break;
  105. /* If we are below the current region then a new region is required.
  106. * Subtle, allocate a new region at the position but make it zero
  107. * size such that we can guarantee to record the reservation. */
  108. if (&rg->link == head || t < rg->from) {
  109. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  110. if (!nrg)
  111. return -ENOMEM;
  112. nrg->from = f;
  113. nrg->to = f;
  114. INIT_LIST_HEAD(&nrg->link);
  115. list_add(&nrg->link, rg->link.prev);
  116. return t - f;
  117. }
  118. /* Round our left edge to the current segment if it encloses us. */
  119. if (f > rg->from)
  120. f = rg->from;
  121. chg = t - f;
  122. /* Check for and consume any regions we now overlap with. */
  123. list_for_each_entry(rg, rg->link.prev, link) {
  124. if (&rg->link == head)
  125. break;
  126. if (rg->from > t)
  127. return chg;
  128. /* We overlap with this area, if it extends futher than
  129. * us then we must extend ourselves. Account for its
  130. * existing reservation. */
  131. if (rg->to > t) {
  132. chg += rg->to - t;
  133. t = rg->to;
  134. }
  135. chg -= rg->to - rg->from;
  136. }
  137. return chg;
  138. }
  139. static long region_truncate(struct list_head *head, long end)
  140. {
  141. struct file_region *rg, *trg;
  142. long chg = 0;
  143. /* Locate the region we are either in or before. */
  144. list_for_each_entry(rg, head, link)
  145. if (end <= rg->to)
  146. break;
  147. if (&rg->link == head)
  148. return 0;
  149. /* If we are in the middle of a region then adjust it. */
  150. if (end > rg->from) {
  151. chg = rg->to - end;
  152. rg->to = end;
  153. rg = list_entry(rg->link.next, typeof(*rg), link);
  154. }
  155. /* Drop any remaining regions. */
  156. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  157. if (&rg->link == head)
  158. break;
  159. chg += rg->to - rg->from;
  160. list_del(&rg->link);
  161. kfree(rg);
  162. }
  163. return chg;
  164. }
  165. static long region_count(struct list_head *head, long f, long t)
  166. {
  167. struct file_region *rg;
  168. long chg = 0;
  169. /* Locate each segment we overlap with, and count that overlap. */
  170. list_for_each_entry(rg, head, link) {
  171. int seg_from;
  172. int seg_to;
  173. if (rg->to <= f)
  174. continue;
  175. if (rg->from >= t)
  176. break;
  177. seg_from = max(rg->from, f);
  178. seg_to = min(rg->to, t);
  179. chg += seg_to - seg_from;
  180. }
  181. return chg;
  182. }
  183. /*
  184. * Convert the address within this vma to the page offset within
  185. * the mapping, in pagecache page units; huge pages here.
  186. */
  187. static pgoff_t vma_hugecache_offset(struct hstate *h,
  188. struct vm_area_struct *vma, unsigned long address)
  189. {
  190. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  191. (vma->vm_pgoff >> huge_page_order(h));
  192. }
  193. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  194. unsigned long address)
  195. {
  196. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  197. }
  198. /*
  199. * Return the size of the pages allocated when backing a VMA. In the majority
  200. * cases this will be same size as used by the page table entries.
  201. */
  202. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  203. {
  204. struct hstate *hstate;
  205. if (!is_vm_hugetlb_page(vma))
  206. return PAGE_SIZE;
  207. hstate = hstate_vma(vma);
  208. return 1UL << (hstate->order + PAGE_SHIFT);
  209. }
  210. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  211. /*
  212. * Return the page size being used by the MMU to back a VMA. In the majority
  213. * of cases, the page size used by the kernel matches the MMU size. On
  214. * architectures where it differs, an architecture-specific version of this
  215. * function is required.
  216. */
  217. #ifndef vma_mmu_pagesize
  218. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  219. {
  220. return vma_kernel_pagesize(vma);
  221. }
  222. #endif
  223. /*
  224. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  225. * bits of the reservation map pointer, which are always clear due to
  226. * alignment.
  227. */
  228. #define HPAGE_RESV_OWNER (1UL << 0)
  229. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  230. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  231. /*
  232. * These helpers are used to track how many pages are reserved for
  233. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  234. * is guaranteed to have their future faults succeed.
  235. *
  236. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  237. * the reserve counters are updated with the hugetlb_lock held. It is safe
  238. * to reset the VMA at fork() time as it is not in use yet and there is no
  239. * chance of the global counters getting corrupted as a result of the values.
  240. *
  241. * The private mapping reservation is represented in a subtly different
  242. * manner to a shared mapping. A shared mapping has a region map associated
  243. * with the underlying file, this region map represents the backing file
  244. * pages which have ever had a reservation assigned which this persists even
  245. * after the page is instantiated. A private mapping has a region map
  246. * associated with the original mmap which is attached to all VMAs which
  247. * reference it, this region map represents those offsets which have consumed
  248. * reservation ie. where pages have been instantiated.
  249. */
  250. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  251. {
  252. return (unsigned long)vma->vm_private_data;
  253. }
  254. static void set_vma_private_data(struct vm_area_struct *vma,
  255. unsigned long value)
  256. {
  257. vma->vm_private_data = (void *)value;
  258. }
  259. struct resv_map {
  260. struct kref refs;
  261. struct list_head regions;
  262. };
  263. static struct resv_map *resv_map_alloc(void)
  264. {
  265. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  266. if (!resv_map)
  267. return NULL;
  268. kref_init(&resv_map->refs);
  269. INIT_LIST_HEAD(&resv_map->regions);
  270. return resv_map;
  271. }
  272. static void resv_map_release(struct kref *ref)
  273. {
  274. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  275. /* Clear out any active regions before we release the map. */
  276. region_truncate(&resv_map->regions, 0);
  277. kfree(resv_map);
  278. }
  279. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  280. {
  281. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  282. if (!(vma->vm_flags & VM_MAYSHARE))
  283. return (struct resv_map *)(get_vma_private_data(vma) &
  284. ~HPAGE_RESV_MASK);
  285. return NULL;
  286. }
  287. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  288. {
  289. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  290. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  291. set_vma_private_data(vma, (get_vma_private_data(vma) &
  292. HPAGE_RESV_MASK) | (unsigned long)map);
  293. }
  294. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  295. {
  296. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  297. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  298. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  299. }
  300. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  301. {
  302. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  303. return (get_vma_private_data(vma) & flag) != 0;
  304. }
  305. /* Decrement the reserved pages in the hugepage pool by one */
  306. static void decrement_hugepage_resv_vma(struct hstate *h,
  307. struct vm_area_struct *vma)
  308. {
  309. if (vma->vm_flags & VM_NORESERVE)
  310. return;
  311. if (vma->vm_flags & VM_MAYSHARE) {
  312. /* Shared mappings always use reserves */
  313. h->resv_huge_pages--;
  314. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  315. /*
  316. * Only the process that called mmap() has reserves for
  317. * private mappings.
  318. */
  319. h->resv_huge_pages--;
  320. }
  321. }
  322. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  323. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  324. {
  325. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  326. if (!(vma->vm_flags & VM_MAYSHARE))
  327. vma->vm_private_data = (void *)0;
  328. }
  329. /* Returns true if the VMA has associated reserve pages */
  330. static int vma_has_reserves(struct vm_area_struct *vma)
  331. {
  332. if (vma->vm_flags & VM_MAYSHARE)
  333. return 1;
  334. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  335. return 1;
  336. return 0;
  337. }
  338. static void clear_gigantic_page(struct page *page,
  339. unsigned long addr, unsigned long sz)
  340. {
  341. int i;
  342. struct page *p = page;
  343. might_sleep();
  344. for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
  345. cond_resched();
  346. clear_user_highpage(p, addr + i * PAGE_SIZE);
  347. }
  348. }
  349. static void clear_huge_page(struct page *page,
  350. unsigned long addr, unsigned long sz)
  351. {
  352. int i;
  353. if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
  354. clear_gigantic_page(page, addr, sz);
  355. return;
  356. }
  357. might_sleep();
  358. for (i = 0; i < sz/PAGE_SIZE; i++) {
  359. cond_resched();
  360. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  361. }
  362. }
  363. static void copy_gigantic_page(struct page *dst, struct page *src,
  364. unsigned long addr, struct vm_area_struct *vma)
  365. {
  366. int i;
  367. struct hstate *h = hstate_vma(vma);
  368. struct page *dst_base = dst;
  369. struct page *src_base = src;
  370. might_sleep();
  371. for (i = 0; i < pages_per_huge_page(h); ) {
  372. cond_resched();
  373. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  374. i++;
  375. dst = mem_map_next(dst, dst_base, i);
  376. src = mem_map_next(src, src_base, i);
  377. }
  378. }
  379. static void copy_huge_page(struct page *dst, struct page *src,
  380. unsigned long addr, struct vm_area_struct *vma)
  381. {
  382. int i;
  383. struct hstate *h = hstate_vma(vma);
  384. if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  385. copy_gigantic_page(dst, src, addr, vma);
  386. return;
  387. }
  388. might_sleep();
  389. for (i = 0; i < pages_per_huge_page(h); i++) {
  390. cond_resched();
  391. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  392. }
  393. }
  394. static void enqueue_huge_page(struct hstate *h, struct page *page)
  395. {
  396. int nid = page_to_nid(page);
  397. list_add(&page->lru, &h->hugepage_freelists[nid]);
  398. h->free_huge_pages++;
  399. h->free_huge_pages_node[nid]++;
  400. }
  401. static struct page *dequeue_huge_page_vma(struct hstate *h,
  402. struct vm_area_struct *vma,
  403. unsigned long address, int avoid_reserve)
  404. {
  405. int nid;
  406. struct page *page = NULL;
  407. struct mempolicy *mpol;
  408. nodemask_t *nodemask;
  409. struct zonelist *zonelist;
  410. struct zone *zone;
  411. struct zoneref *z;
  412. get_mems_allowed();
  413. zonelist = huge_zonelist(vma, address,
  414. htlb_alloc_mask, &mpol, &nodemask);
  415. /*
  416. * A child process with MAP_PRIVATE mappings created by their parent
  417. * have no page reserves. This check ensures that reservations are
  418. * not "stolen". The child may still get SIGKILLed
  419. */
  420. if (!vma_has_reserves(vma) &&
  421. h->free_huge_pages - h->resv_huge_pages == 0)
  422. goto err;
  423. /* If reserves cannot be used, ensure enough pages are in the pool */
  424. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  425. goto err;;
  426. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  427. MAX_NR_ZONES - 1, nodemask) {
  428. nid = zone_to_nid(zone);
  429. if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
  430. !list_empty(&h->hugepage_freelists[nid])) {
  431. page = list_entry(h->hugepage_freelists[nid].next,
  432. struct page, lru);
  433. list_del(&page->lru);
  434. h->free_huge_pages--;
  435. h->free_huge_pages_node[nid]--;
  436. if (!avoid_reserve)
  437. decrement_hugepage_resv_vma(h, vma);
  438. break;
  439. }
  440. }
  441. err:
  442. mpol_cond_put(mpol);
  443. put_mems_allowed();
  444. return page;
  445. }
  446. static void update_and_free_page(struct hstate *h, struct page *page)
  447. {
  448. int i;
  449. VM_BUG_ON(h->order >= MAX_ORDER);
  450. h->nr_huge_pages--;
  451. h->nr_huge_pages_node[page_to_nid(page)]--;
  452. for (i = 0; i < pages_per_huge_page(h); i++) {
  453. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  454. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  455. 1 << PG_private | 1<< PG_writeback);
  456. }
  457. set_compound_page_dtor(page, NULL);
  458. set_page_refcounted(page);
  459. arch_release_hugepage(page);
  460. __free_pages(page, huge_page_order(h));
  461. }
  462. struct hstate *size_to_hstate(unsigned long size)
  463. {
  464. struct hstate *h;
  465. for_each_hstate(h) {
  466. if (huge_page_size(h) == size)
  467. return h;
  468. }
  469. return NULL;
  470. }
  471. static void free_huge_page(struct page *page)
  472. {
  473. /*
  474. * Can't pass hstate in here because it is called from the
  475. * compound page destructor.
  476. */
  477. struct hstate *h = page_hstate(page);
  478. int nid = page_to_nid(page);
  479. struct address_space *mapping;
  480. mapping = (struct address_space *) page_private(page);
  481. set_page_private(page, 0);
  482. page->mapping = NULL;
  483. BUG_ON(page_count(page));
  484. BUG_ON(page_mapcount(page));
  485. INIT_LIST_HEAD(&page->lru);
  486. spin_lock(&hugetlb_lock);
  487. if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
  488. update_and_free_page(h, page);
  489. h->surplus_huge_pages--;
  490. h->surplus_huge_pages_node[nid]--;
  491. } else {
  492. enqueue_huge_page(h, page);
  493. }
  494. spin_unlock(&hugetlb_lock);
  495. if (mapping)
  496. hugetlb_put_quota(mapping, 1);
  497. }
  498. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  499. {
  500. set_compound_page_dtor(page, free_huge_page);
  501. spin_lock(&hugetlb_lock);
  502. h->nr_huge_pages++;
  503. h->nr_huge_pages_node[nid]++;
  504. spin_unlock(&hugetlb_lock);
  505. put_page(page); /* free it into the hugepage allocator */
  506. }
  507. static void prep_compound_gigantic_page(struct page *page, unsigned long order)
  508. {
  509. int i;
  510. int nr_pages = 1 << order;
  511. struct page *p = page + 1;
  512. /* we rely on prep_new_huge_page to set the destructor */
  513. set_compound_order(page, order);
  514. __SetPageHead(page);
  515. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  516. __SetPageTail(p);
  517. p->first_page = page;
  518. }
  519. }
  520. int PageHuge(struct page *page)
  521. {
  522. compound_page_dtor *dtor;
  523. if (!PageCompound(page))
  524. return 0;
  525. page = compound_head(page);
  526. dtor = get_compound_page_dtor(page);
  527. return dtor == free_huge_page;
  528. }
  529. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  530. {
  531. struct page *page;
  532. if (h->order >= MAX_ORDER)
  533. return NULL;
  534. page = alloc_pages_exact_node(nid,
  535. htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
  536. __GFP_REPEAT|__GFP_NOWARN,
  537. huge_page_order(h));
  538. if (page) {
  539. if (arch_prepare_hugepage(page)) {
  540. __free_pages(page, huge_page_order(h));
  541. return NULL;
  542. }
  543. prep_new_huge_page(h, page, nid);
  544. }
  545. return page;
  546. }
  547. /*
  548. * common helper functions for hstate_next_node_to_{alloc|free}.
  549. * We may have allocated or freed a huge page based on a different
  550. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  551. * be outside of *nodes_allowed. Ensure that we use an allowed
  552. * node for alloc or free.
  553. */
  554. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  555. {
  556. nid = next_node(nid, *nodes_allowed);
  557. if (nid == MAX_NUMNODES)
  558. nid = first_node(*nodes_allowed);
  559. VM_BUG_ON(nid >= MAX_NUMNODES);
  560. return nid;
  561. }
  562. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  563. {
  564. if (!node_isset(nid, *nodes_allowed))
  565. nid = next_node_allowed(nid, nodes_allowed);
  566. return nid;
  567. }
  568. /*
  569. * returns the previously saved node ["this node"] from which to
  570. * allocate a persistent huge page for the pool and advance the
  571. * next node from which to allocate, handling wrap at end of node
  572. * mask.
  573. */
  574. static int hstate_next_node_to_alloc(struct hstate *h,
  575. nodemask_t *nodes_allowed)
  576. {
  577. int nid;
  578. VM_BUG_ON(!nodes_allowed);
  579. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  580. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  581. return nid;
  582. }
  583. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  584. {
  585. struct page *page;
  586. int start_nid;
  587. int next_nid;
  588. int ret = 0;
  589. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  590. next_nid = start_nid;
  591. do {
  592. page = alloc_fresh_huge_page_node(h, next_nid);
  593. if (page) {
  594. ret = 1;
  595. break;
  596. }
  597. next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  598. } while (next_nid != start_nid);
  599. if (ret)
  600. count_vm_event(HTLB_BUDDY_PGALLOC);
  601. else
  602. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  603. return ret;
  604. }
  605. /*
  606. * helper for free_pool_huge_page() - return the previously saved
  607. * node ["this node"] from which to free a huge page. Advance the
  608. * next node id whether or not we find a free huge page to free so
  609. * that the next attempt to free addresses the next node.
  610. */
  611. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  612. {
  613. int nid;
  614. VM_BUG_ON(!nodes_allowed);
  615. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  616. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  617. return nid;
  618. }
  619. /*
  620. * Free huge page from pool from next node to free.
  621. * Attempt to keep persistent huge pages more or less
  622. * balanced over allowed nodes.
  623. * Called with hugetlb_lock locked.
  624. */
  625. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  626. bool acct_surplus)
  627. {
  628. int start_nid;
  629. int next_nid;
  630. int ret = 0;
  631. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  632. next_nid = start_nid;
  633. do {
  634. /*
  635. * If we're returning unused surplus pages, only examine
  636. * nodes with surplus pages.
  637. */
  638. if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
  639. !list_empty(&h->hugepage_freelists[next_nid])) {
  640. struct page *page =
  641. list_entry(h->hugepage_freelists[next_nid].next,
  642. struct page, lru);
  643. list_del(&page->lru);
  644. h->free_huge_pages--;
  645. h->free_huge_pages_node[next_nid]--;
  646. if (acct_surplus) {
  647. h->surplus_huge_pages--;
  648. h->surplus_huge_pages_node[next_nid]--;
  649. }
  650. update_and_free_page(h, page);
  651. ret = 1;
  652. break;
  653. }
  654. next_nid = hstate_next_node_to_free(h, nodes_allowed);
  655. } while (next_nid != start_nid);
  656. return ret;
  657. }
  658. static struct page *alloc_buddy_huge_page(struct hstate *h,
  659. struct vm_area_struct *vma, unsigned long address)
  660. {
  661. struct page *page;
  662. unsigned int nid;
  663. if (h->order >= MAX_ORDER)
  664. return NULL;
  665. /*
  666. * Assume we will successfully allocate the surplus page to
  667. * prevent racing processes from causing the surplus to exceed
  668. * overcommit
  669. *
  670. * This however introduces a different race, where a process B
  671. * tries to grow the static hugepage pool while alloc_pages() is
  672. * called by process A. B will only examine the per-node
  673. * counters in determining if surplus huge pages can be
  674. * converted to normal huge pages in adjust_pool_surplus(). A
  675. * won't be able to increment the per-node counter, until the
  676. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  677. * no more huge pages can be converted from surplus to normal
  678. * state (and doesn't try to convert again). Thus, we have a
  679. * case where a surplus huge page exists, the pool is grown, and
  680. * the surplus huge page still exists after, even though it
  681. * should just have been converted to a normal huge page. This
  682. * does not leak memory, though, as the hugepage will be freed
  683. * once it is out of use. It also does not allow the counters to
  684. * go out of whack in adjust_pool_surplus() as we don't modify
  685. * the node values until we've gotten the hugepage and only the
  686. * per-node value is checked there.
  687. */
  688. spin_lock(&hugetlb_lock);
  689. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  690. spin_unlock(&hugetlb_lock);
  691. return NULL;
  692. } else {
  693. h->nr_huge_pages++;
  694. h->surplus_huge_pages++;
  695. }
  696. spin_unlock(&hugetlb_lock);
  697. page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
  698. __GFP_REPEAT|__GFP_NOWARN,
  699. huge_page_order(h));
  700. if (page && arch_prepare_hugepage(page)) {
  701. __free_pages(page, huge_page_order(h));
  702. return NULL;
  703. }
  704. spin_lock(&hugetlb_lock);
  705. if (page) {
  706. /*
  707. * This page is now managed by the hugetlb allocator and has
  708. * no users -- drop the buddy allocator's reference.
  709. */
  710. put_page_testzero(page);
  711. VM_BUG_ON(page_count(page));
  712. nid = page_to_nid(page);
  713. set_compound_page_dtor(page, free_huge_page);
  714. /*
  715. * We incremented the global counters already
  716. */
  717. h->nr_huge_pages_node[nid]++;
  718. h->surplus_huge_pages_node[nid]++;
  719. __count_vm_event(HTLB_BUDDY_PGALLOC);
  720. } else {
  721. h->nr_huge_pages--;
  722. h->surplus_huge_pages--;
  723. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  724. }
  725. spin_unlock(&hugetlb_lock);
  726. return page;
  727. }
  728. /*
  729. * Increase the hugetlb pool such that it can accomodate a reservation
  730. * of size 'delta'.
  731. */
  732. static int gather_surplus_pages(struct hstate *h, int delta)
  733. {
  734. struct list_head surplus_list;
  735. struct page *page, *tmp;
  736. int ret, i;
  737. int needed, allocated;
  738. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  739. if (needed <= 0) {
  740. h->resv_huge_pages += delta;
  741. return 0;
  742. }
  743. allocated = 0;
  744. INIT_LIST_HEAD(&surplus_list);
  745. ret = -ENOMEM;
  746. retry:
  747. spin_unlock(&hugetlb_lock);
  748. for (i = 0; i < needed; i++) {
  749. page = alloc_buddy_huge_page(h, NULL, 0);
  750. if (!page) {
  751. /*
  752. * We were not able to allocate enough pages to
  753. * satisfy the entire reservation so we free what
  754. * we've allocated so far.
  755. */
  756. spin_lock(&hugetlb_lock);
  757. needed = 0;
  758. goto free;
  759. }
  760. list_add(&page->lru, &surplus_list);
  761. }
  762. allocated += needed;
  763. /*
  764. * After retaking hugetlb_lock, we need to recalculate 'needed'
  765. * because either resv_huge_pages or free_huge_pages may have changed.
  766. */
  767. spin_lock(&hugetlb_lock);
  768. needed = (h->resv_huge_pages + delta) -
  769. (h->free_huge_pages + allocated);
  770. if (needed > 0)
  771. goto retry;
  772. /*
  773. * The surplus_list now contains _at_least_ the number of extra pages
  774. * needed to accomodate the reservation. Add the appropriate number
  775. * of pages to the hugetlb pool and free the extras back to the buddy
  776. * allocator. Commit the entire reservation here to prevent another
  777. * process from stealing the pages as they are added to the pool but
  778. * before they are reserved.
  779. */
  780. needed += allocated;
  781. h->resv_huge_pages += delta;
  782. ret = 0;
  783. free:
  784. /* Free the needed pages to the hugetlb pool */
  785. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  786. if ((--needed) < 0)
  787. break;
  788. list_del(&page->lru);
  789. enqueue_huge_page(h, page);
  790. }
  791. /* Free unnecessary surplus pages to the buddy allocator */
  792. if (!list_empty(&surplus_list)) {
  793. spin_unlock(&hugetlb_lock);
  794. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  795. list_del(&page->lru);
  796. /*
  797. * The page has a reference count of zero already, so
  798. * call free_huge_page directly instead of using
  799. * put_page. This must be done with hugetlb_lock
  800. * unlocked which is safe because free_huge_page takes
  801. * hugetlb_lock before deciding how to free the page.
  802. */
  803. free_huge_page(page);
  804. }
  805. spin_lock(&hugetlb_lock);
  806. }
  807. return ret;
  808. }
  809. /*
  810. * When releasing a hugetlb pool reservation, any surplus pages that were
  811. * allocated to satisfy the reservation must be explicitly freed if they were
  812. * never used.
  813. * Called with hugetlb_lock held.
  814. */
  815. static void return_unused_surplus_pages(struct hstate *h,
  816. unsigned long unused_resv_pages)
  817. {
  818. unsigned long nr_pages;
  819. /* Uncommit the reservation */
  820. h->resv_huge_pages -= unused_resv_pages;
  821. /* Cannot return gigantic pages currently */
  822. if (h->order >= MAX_ORDER)
  823. return;
  824. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  825. /*
  826. * We want to release as many surplus pages as possible, spread
  827. * evenly across all nodes with memory. Iterate across these nodes
  828. * until we can no longer free unreserved surplus pages. This occurs
  829. * when the nodes with surplus pages have no free pages.
  830. * free_pool_huge_page() will balance the the freed pages across the
  831. * on-line nodes with memory and will handle the hstate accounting.
  832. */
  833. while (nr_pages--) {
  834. if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
  835. break;
  836. }
  837. }
  838. /*
  839. * Determine if the huge page at addr within the vma has an associated
  840. * reservation. Where it does not we will need to logically increase
  841. * reservation and actually increase quota before an allocation can occur.
  842. * Where any new reservation would be required the reservation change is
  843. * prepared, but not committed. Once the page has been quota'd allocated
  844. * an instantiated the change should be committed via vma_commit_reservation.
  845. * No action is required on failure.
  846. */
  847. static long vma_needs_reservation(struct hstate *h,
  848. struct vm_area_struct *vma, unsigned long addr)
  849. {
  850. struct address_space *mapping = vma->vm_file->f_mapping;
  851. struct inode *inode = mapping->host;
  852. if (vma->vm_flags & VM_MAYSHARE) {
  853. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  854. return region_chg(&inode->i_mapping->private_list,
  855. idx, idx + 1);
  856. } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  857. return 1;
  858. } else {
  859. long err;
  860. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  861. struct resv_map *reservations = vma_resv_map(vma);
  862. err = region_chg(&reservations->regions, idx, idx + 1);
  863. if (err < 0)
  864. return err;
  865. return 0;
  866. }
  867. }
  868. static void vma_commit_reservation(struct hstate *h,
  869. struct vm_area_struct *vma, unsigned long addr)
  870. {
  871. struct address_space *mapping = vma->vm_file->f_mapping;
  872. struct inode *inode = mapping->host;
  873. if (vma->vm_flags & VM_MAYSHARE) {
  874. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  875. region_add(&inode->i_mapping->private_list, idx, idx + 1);
  876. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  877. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  878. struct resv_map *reservations = vma_resv_map(vma);
  879. /* Mark this page used in the map. */
  880. region_add(&reservations->regions, idx, idx + 1);
  881. }
  882. }
  883. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  884. unsigned long addr, int avoid_reserve)
  885. {
  886. struct hstate *h = hstate_vma(vma);
  887. struct page *page;
  888. struct address_space *mapping = vma->vm_file->f_mapping;
  889. struct inode *inode = mapping->host;
  890. long chg;
  891. /*
  892. * Processes that did not create the mapping will have no reserves and
  893. * will not have accounted against quota. Check that the quota can be
  894. * made before satisfying the allocation
  895. * MAP_NORESERVE mappings may also need pages and quota allocated
  896. * if no reserve mapping overlaps.
  897. */
  898. chg = vma_needs_reservation(h, vma, addr);
  899. if (chg < 0)
  900. return ERR_PTR(chg);
  901. if (chg)
  902. if (hugetlb_get_quota(inode->i_mapping, chg))
  903. return ERR_PTR(-ENOSPC);
  904. spin_lock(&hugetlb_lock);
  905. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
  906. spin_unlock(&hugetlb_lock);
  907. if (!page) {
  908. page = alloc_buddy_huge_page(h, vma, addr);
  909. if (!page) {
  910. hugetlb_put_quota(inode->i_mapping, chg);
  911. return ERR_PTR(-VM_FAULT_SIGBUS);
  912. }
  913. }
  914. set_page_refcounted(page);
  915. set_page_private(page, (unsigned long) mapping);
  916. vma_commit_reservation(h, vma, addr);
  917. return page;
  918. }
  919. int __weak alloc_bootmem_huge_page(struct hstate *h)
  920. {
  921. struct huge_bootmem_page *m;
  922. int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  923. while (nr_nodes) {
  924. void *addr;
  925. addr = __alloc_bootmem_node_nopanic(
  926. NODE_DATA(hstate_next_node_to_alloc(h,
  927. &node_states[N_HIGH_MEMORY])),
  928. huge_page_size(h), huge_page_size(h), 0);
  929. if (addr) {
  930. /*
  931. * Use the beginning of the huge page to store the
  932. * huge_bootmem_page struct (until gather_bootmem
  933. * puts them into the mem_map).
  934. */
  935. m = addr;
  936. goto found;
  937. }
  938. nr_nodes--;
  939. }
  940. return 0;
  941. found:
  942. BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
  943. /* Put them into a private list first because mem_map is not up yet */
  944. list_add(&m->list, &huge_boot_pages);
  945. m->hstate = h;
  946. return 1;
  947. }
  948. static void prep_compound_huge_page(struct page *page, int order)
  949. {
  950. if (unlikely(order > (MAX_ORDER - 1)))
  951. prep_compound_gigantic_page(page, order);
  952. else
  953. prep_compound_page(page, order);
  954. }
  955. /* Put bootmem huge pages into the standard lists after mem_map is up */
  956. static void __init gather_bootmem_prealloc(void)
  957. {
  958. struct huge_bootmem_page *m;
  959. list_for_each_entry(m, &huge_boot_pages, list) {
  960. struct page *page = virt_to_page(m);
  961. struct hstate *h = m->hstate;
  962. __ClearPageReserved(page);
  963. WARN_ON(page_count(page) != 1);
  964. prep_compound_huge_page(page, h->order);
  965. prep_new_huge_page(h, page, page_to_nid(page));
  966. }
  967. }
  968. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  969. {
  970. unsigned long i;
  971. for (i = 0; i < h->max_huge_pages; ++i) {
  972. if (h->order >= MAX_ORDER) {
  973. if (!alloc_bootmem_huge_page(h))
  974. break;
  975. } else if (!alloc_fresh_huge_page(h,
  976. &node_states[N_HIGH_MEMORY]))
  977. break;
  978. }
  979. h->max_huge_pages = i;
  980. }
  981. static void __init hugetlb_init_hstates(void)
  982. {
  983. struct hstate *h;
  984. for_each_hstate(h) {
  985. /* oversize hugepages were init'ed in early boot */
  986. if (h->order < MAX_ORDER)
  987. hugetlb_hstate_alloc_pages(h);
  988. }
  989. }
  990. static char * __init memfmt(char *buf, unsigned long n)
  991. {
  992. if (n >= (1UL << 30))
  993. sprintf(buf, "%lu GB", n >> 30);
  994. else if (n >= (1UL << 20))
  995. sprintf(buf, "%lu MB", n >> 20);
  996. else
  997. sprintf(buf, "%lu KB", n >> 10);
  998. return buf;
  999. }
  1000. static void __init report_hugepages(void)
  1001. {
  1002. struct hstate *h;
  1003. for_each_hstate(h) {
  1004. char buf[32];
  1005. printk(KERN_INFO "HugeTLB registered %s page size, "
  1006. "pre-allocated %ld pages\n",
  1007. memfmt(buf, huge_page_size(h)),
  1008. h->free_huge_pages);
  1009. }
  1010. }
  1011. #ifdef CONFIG_HIGHMEM
  1012. static void try_to_free_low(struct hstate *h, unsigned long count,
  1013. nodemask_t *nodes_allowed)
  1014. {
  1015. int i;
  1016. if (h->order >= MAX_ORDER)
  1017. return;
  1018. for_each_node_mask(i, *nodes_allowed) {
  1019. struct page *page, *next;
  1020. struct list_head *freel = &h->hugepage_freelists[i];
  1021. list_for_each_entry_safe(page, next, freel, lru) {
  1022. if (count >= h->nr_huge_pages)
  1023. return;
  1024. if (PageHighMem(page))
  1025. continue;
  1026. list_del(&page->lru);
  1027. update_and_free_page(h, page);
  1028. h->free_huge_pages--;
  1029. h->free_huge_pages_node[page_to_nid(page)]--;
  1030. }
  1031. }
  1032. }
  1033. #else
  1034. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1035. nodemask_t *nodes_allowed)
  1036. {
  1037. }
  1038. #endif
  1039. /*
  1040. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1041. * balanced by operating on them in a round-robin fashion.
  1042. * Returns 1 if an adjustment was made.
  1043. */
  1044. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1045. int delta)
  1046. {
  1047. int start_nid, next_nid;
  1048. int ret = 0;
  1049. VM_BUG_ON(delta != -1 && delta != 1);
  1050. if (delta < 0)
  1051. start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
  1052. else
  1053. start_nid = hstate_next_node_to_free(h, nodes_allowed);
  1054. next_nid = start_nid;
  1055. do {
  1056. int nid = next_nid;
  1057. if (delta < 0) {
  1058. /*
  1059. * To shrink on this node, there must be a surplus page
  1060. */
  1061. if (!h->surplus_huge_pages_node[nid]) {
  1062. next_nid = hstate_next_node_to_alloc(h,
  1063. nodes_allowed);
  1064. continue;
  1065. }
  1066. }
  1067. if (delta > 0) {
  1068. /*
  1069. * Surplus cannot exceed the total number of pages
  1070. */
  1071. if (h->surplus_huge_pages_node[nid] >=
  1072. h->nr_huge_pages_node[nid]) {
  1073. next_nid = hstate_next_node_to_free(h,
  1074. nodes_allowed);
  1075. continue;
  1076. }
  1077. }
  1078. h->surplus_huge_pages += delta;
  1079. h->surplus_huge_pages_node[nid] += delta;
  1080. ret = 1;
  1081. break;
  1082. } while (next_nid != start_nid);
  1083. return ret;
  1084. }
  1085. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1086. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1087. nodemask_t *nodes_allowed)
  1088. {
  1089. unsigned long min_count, ret;
  1090. if (h->order >= MAX_ORDER)
  1091. return h->max_huge_pages;
  1092. /*
  1093. * Increase the pool size
  1094. * First take pages out of surplus state. Then make up the
  1095. * remaining difference by allocating fresh huge pages.
  1096. *
  1097. * We might race with alloc_buddy_huge_page() here and be unable
  1098. * to convert a surplus huge page to a normal huge page. That is
  1099. * not critical, though, it just means the overall size of the
  1100. * pool might be one hugepage larger than it needs to be, but
  1101. * within all the constraints specified by the sysctls.
  1102. */
  1103. spin_lock(&hugetlb_lock);
  1104. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1105. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1106. break;
  1107. }
  1108. while (count > persistent_huge_pages(h)) {
  1109. /*
  1110. * If this allocation races such that we no longer need the
  1111. * page, free_huge_page will handle it by freeing the page
  1112. * and reducing the surplus.
  1113. */
  1114. spin_unlock(&hugetlb_lock);
  1115. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1116. spin_lock(&hugetlb_lock);
  1117. if (!ret)
  1118. goto out;
  1119. /* Bail for signals. Probably ctrl-c from user */
  1120. if (signal_pending(current))
  1121. goto out;
  1122. }
  1123. /*
  1124. * Decrease the pool size
  1125. * First return free pages to the buddy allocator (being careful
  1126. * to keep enough around to satisfy reservations). Then place
  1127. * pages into surplus state as needed so the pool will shrink
  1128. * to the desired size as pages become free.
  1129. *
  1130. * By placing pages into the surplus state independent of the
  1131. * overcommit value, we are allowing the surplus pool size to
  1132. * exceed overcommit. There are few sane options here. Since
  1133. * alloc_buddy_huge_page() is checking the global counter,
  1134. * though, we'll note that we're not allowed to exceed surplus
  1135. * and won't grow the pool anywhere else. Not until one of the
  1136. * sysctls are changed, or the surplus pages go out of use.
  1137. */
  1138. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1139. min_count = max(count, min_count);
  1140. try_to_free_low(h, min_count, nodes_allowed);
  1141. while (min_count < persistent_huge_pages(h)) {
  1142. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1143. break;
  1144. }
  1145. while (count < persistent_huge_pages(h)) {
  1146. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1147. break;
  1148. }
  1149. out:
  1150. ret = persistent_huge_pages(h);
  1151. spin_unlock(&hugetlb_lock);
  1152. return ret;
  1153. }
  1154. #define HSTATE_ATTR_RO(_name) \
  1155. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1156. #define HSTATE_ATTR(_name) \
  1157. static struct kobj_attribute _name##_attr = \
  1158. __ATTR(_name, 0644, _name##_show, _name##_store)
  1159. static struct kobject *hugepages_kobj;
  1160. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1161. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1162. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1163. {
  1164. int i;
  1165. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1166. if (hstate_kobjs[i] == kobj) {
  1167. if (nidp)
  1168. *nidp = NUMA_NO_NODE;
  1169. return &hstates[i];
  1170. }
  1171. return kobj_to_node_hstate(kobj, nidp);
  1172. }
  1173. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1174. struct kobj_attribute *attr, char *buf)
  1175. {
  1176. struct hstate *h;
  1177. unsigned long nr_huge_pages;
  1178. int nid;
  1179. h = kobj_to_hstate(kobj, &nid);
  1180. if (nid == NUMA_NO_NODE)
  1181. nr_huge_pages = h->nr_huge_pages;
  1182. else
  1183. nr_huge_pages = h->nr_huge_pages_node[nid];
  1184. return sprintf(buf, "%lu\n", nr_huge_pages);
  1185. }
  1186. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  1187. struct kobject *kobj, struct kobj_attribute *attr,
  1188. const char *buf, size_t len)
  1189. {
  1190. int err;
  1191. int nid;
  1192. unsigned long count;
  1193. struct hstate *h;
  1194. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  1195. err = strict_strtoul(buf, 10, &count);
  1196. if (err)
  1197. return 0;
  1198. h = kobj_to_hstate(kobj, &nid);
  1199. if (nid == NUMA_NO_NODE) {
  1200. /*
  1201. * global hstate attribute
  1202. */
  1203. if (!(obey_mempolicy &&
  1204. init_nodemask_of_mempolicy(nodes_allowed))) {
  1205. NODEMASK_FREE(nodes_allowed);
  1206. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1207. }
  1208. } else if (nodes_allowed) {
  1209. /*
  1210. * per node hstate attribute: adjust count to global,
  1211. * but restrict alloc/free to the specified node.
  1212. */
  1213. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  1214. init_nodemask_of_node(nodes_allowed, nid);
  1215. } else
  1216. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1217. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  1218. if (nodes_allowed != &node_states[N_HIGH_MEMORY])
  1219. NODEMASK_FREE(nodes_allowed);
  1220. return len;
  1221. }
  1222. static ssize_t nr_hugepages_show(struct kobject *kobj,
  1223. struct kobj_attribute *attr, char *buf)
  1224. {
  1225. return nr_hugepages_show_common(kobj, attr, buf);
  1226. }
  1227. static ssize_t nr_hugepages_store(struct kobject *kobj,
  1228. struct kobj_attribute *attr, const char *buf, size_t len)
  1229. {
  1230. return nr_hugepages_store_common(false, kobj, attr, buf, len);
  1231. }
  1232. HSTATE_ATTR(nr_hugepages);
  1233. #ifdef CONFIG_NUMA
  1234. /*
  1235. * hstate attribute for optionally mempolicy-based constraint on persistent
  1236. * huge page alloc/free.
  1237. */
  1238. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  1239. struct kobj_attribute *attr, char *buf)
  1240. {
  1241. return nr_hugepages_show_common(kobj, attr, buf);
  1242. }
  1243. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  1244. struct kobj_attribute *attr, const char *buf, size_t len)
  1245. {
  1246. return nr_hugepages_store_common(true, kobj, attr, buf, len);
  1247. }
  1248. HSTATE_ATTR(nr_hugepages_mempolicy);
  1249. #endif
  1250. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  1251. struct kobj_attribute *attr, char *buf)
  1252. {
  1253. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1254. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  1255. }
  1256. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  1257. struct kobj_attribute *attr, const char *buf, size_t count)
  1258. {
  1259. int err;
  1260. unsigned long input;
  1261. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1262. err = strict_strtoul(buf, 10, &input);
  1263. if (err)
  1264. return 0;
  1265. spin_lock(&hugetlb_lock);
  1266. h->nr_overcommit_huge_pages = input;
  1267. spin_unlock(&hugetlb_lock);
  1268. return count;
  1269. }
  1270. HSTATE_ATTR(nr_overcommit_hugepages);
  1271. static ssize_t free_hugepages_show(struct kobject *kobj,
  1272. struct kobj_attribute *attr, char *buf)
  1273. {
  1274. struct hstate *h;
  1275. unsigned long free_huge_pages;
  1276. int nid;
  1277. h = kobj_to_hstate(kobj, &nid);
  1278. if (nid == NUMA_NO_NODE)
  1279. free_huge_pages = h->free_huge_pages;
  1280. else
  1281. free_huge_pages = h->free_huge_pages_node[nid];
  1282. return sprintf(buf, "%lu\n", free_huge_pages);
  1283. }
  1284. HSTATE_ATTR_RO(free_hugepages);
  1285. static ssize_t resv_hugepages_show(struct kobject *kobj,
  1286. struct kobj_attribute *attr, char *buf)
  1287. {
  1288. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1289. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  1290. }
  1291. HSTATE_ATTR_RO(resv_hugepages);
  1292. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  1293. struct kobj_attribute *attr, char *buf)
  1294. {
  1295. struct hstate *h;
  1296. unsigned long surplus_huge_pages;
  1297. int nid;
  1298. h = kobj_to_hstate(kobj, &nid);
  1299. if (nid == NUMA_NO_NODE)
  1300. surplus_huge_pages = h->surplus_huge_pages;
  1301. else
  1302. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  1303. return sprintf(buf, "%lu\n", surplus_huge_pages);
  1304. }
  1305. HSTATE_ATTR_RO(surplus_hugepages);
  1306. static struct attribute *hstate_attrs[] = {
  1307. &nr_hugepages_attr.attr,
  1308. &nr_overcommit_hugepages_attr.attr,
  1309. &free_hugepages_attr.attr,
  1310. &resv_hugepages_attr.attr,
  1311. &surplus_hugepages_attr.attr,
  1312. #ifdef CONFIG_NUMA
  1313. &nr_hugepages_mempolicy_attr.attr,
  1314. #endif
  1315. NULL,
  1316. };
  1317. static struct attribute_group hstate_attr_group = {
  1318. .attrs = hstate_attrs,
  1319. };
  1320. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  1321. struct kobject **hstate_kobjs,
  1322. struct attribute_group *hstate_attr_group)
  1323. {
  1324. int retval;
  1325. int hi = h - hstates;
  1326. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  1327. if (!hstate_kobjs[hi])
  1328. return -ENOMEM;
  1329. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  1330. if (retval)
  1331. kobject_put(hstate_kobjs[hi]);
  1332. return retval;
  1333. }
  1334. static void __init hugetlb_sysfs_init(void)
  1335. {
  1336. struct hstate *h;
  1337. int err;
  1338. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  1339. if (!hugepages_kobj)
  1340. return;
  1341. for_each_hstate(h) {
  1342. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  1343. hstate_kobjs, &hstate_attr_group);
  1344. if (err)
  1345. printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
  1346. h->name);
  1347. }
  1348. }
  1349. #ifdef CONFIG_NUMA
  1350. /*
  1351. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  1352. * with node sysdevs in node_devices[] using a parallel array. The array
  1353. * index of a node sysdev or _hstate == node id.
  1354. * This is here to avoid any static dependency of the node sysdev driver, in
  1355. * the base kernel, on the hugetlb module.
  1356. */
  1357. struct node_hstate {
  1358. struct kobject *hugepages_kobj;
  1359. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1360. };
  1361. struct node_hstate node_hstates[MAX_NUMNODES];
  1362. /*
  1363. * A subset of global hstate attributes for node sysdevs
  1364. */
  1365. static struct attribute *per_node_hstate_attrs[] = {
  1366. &nr_hugepages_attr.attr,
  1367. &free_hugepages_attr.attr,
  1368. &surplus_hugepages_attr.attr,
  1369. NULL,
  1370. };
  1371. static struct attribute_group per_node_hstate_attr_group = {
  1372. .attrs = per_node_hstate_attrs,
  1373. };
  1374. /*
  1375. * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
  1376. * Returns node id via non-NULL nidp.
  1377. */
  1378. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1379. {
  1380. int nid;
  1381. for (nid = 0; nid < nr_node_ids; nid++) {
  1382. struct node_hstate *nhs = &node_hstates[nid];
  1383. int i;
  1384. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1385. if (nhs->hstate_kobjs[i] == kobj) {
  1386. if (nidp)
  1387. *nidp = nid;
  1388. return &hstates[i];
  1389. }
  1390. }
  1391. BUG();
  1392. return NULL;
  1393. }
  1394. /*
  1395. * Unregister hstate attributes from a single node sysdev.
  1396. * No-op if no hstate attributes attached.
  1397. */
  1398. void hugetlb_unregister_node(struct node *node)
  1399. {
  1400. struct hstate *h;
  1401. struct node_hstate *nhs = &node_hstates[node->sysdev.id];
  1402. if (!nhs->hugepages_kobj)
  1403. return; /* no hstate attributes */
  1404. for_each_hstate(h)
  1405. if (nhs->hstate_kobjs[h - hstates]) {
  1406. kobject_put(nhs->hstate_kobjs[h - hstates]);
  1407. nhs->hstate_kobjs[h - hstates] = NULL;
  1408. }
  1409. kobject_put(nhs->hugepages_kobj);
  1410. nhs->hugepages_kobj = NULL;
  1411. }
  1412. /*
  1413. * hugetlb module exit: unregister hstate attributes from node sysdevs
  1414. * that have them.
  1415. */
  1416. static void hugetlb_unregister_all_nodes(void)
  1417. {
  1418. int nid;
  1419. /*
  1420. * disable node sysdev registrations.
  1421. */
  1422. register_hugetlbfs_with_node(NULL, NULL);
  1423. /*
  1424. * remove hstate attributes from any nodes that have them.
  1425. */
  1426. for (nid = 0; nid < nr_node_ids; nid++)
  1427. hugetlb_unregister_node(&node_devices[nid]);
  1428. }
  1429. /*
  1430. * Register hstate attributes for a single node sysdev.
  1431. * No-op if attributes already registered.
  1432. */
  1433. void hugetlb_register_node(struct node *node)
  1434. {
  1435. struct hstate *h;
  1436. struct node_hstate *nhs = &node_hstates[node->sysdev.id];
  1437. int err;
  1438. if (nhs->hugepages_kobj)
  1439. return; /* already allocated */
  1440. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  1441. &node->sysdev.kobj);
  1442. if (!nhs->hugepages_kobj)
  1443. return;
  1444. for_each_hstate(h) {
  1445. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  1446. nhs->hstate_kobjs,
  1447. &per_node_hstate_attr_group);
  1448. if (err) {
  1449. printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
  1450. " for node %d\n",
  1451. h->name, node->sysdev.id);
  1452. hugetlb_unregister_node(node);
  1453. break;
  1454. }
  1455. }
  1456. }
  1457. /*
  1458. * hugetlb init time: register hstate attributes for all registered node
  1459. * sysdevs of nodes that have memory. All on-line nodes should have
  1460. * registered their associated sysdev by this time.
  1461. */
  1462. static void hugetlb_register_all_nodes(void)
  1463. {
  1464. int nid;
  1465. for_each_node_state(nid, N_HIGH_MEMORY) {
  1466. struct node *node = &node_devices[nid];
  1467. if (node->sysdev.id == nid)
  1468. hugetlb_register_node(node);
  1469. }
  1470. /*
  1471. * Let the node sysdev driver know we're here so it can
  1472. * [un]register hstate attributes on node hotplug.
  1473. */
  1474. register_hugetlbfs_with_node(hugetlb_register_node,
  1475. hugetlb_unregister_node);
  1476. }
  1477. #else /* !CONFIG_NUMA */
  1478. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1479. {
  1480. BUG();
  1481. if (nidp)
  1482. *nidp = -1;
  1483. return NULL;
  1484. }
  1485. static void hugetlb_unregister_all_nodes(void) { }
  1486. static void hugetlb_register_all_nodes(void) { }
  1487. #endif
  1488. static void __exit hugetlb_exit(void)
  1489. {
  1490. struct hstate *h;
  1491. hugetlb_unregister_all_nodes();
  1492. for_each_hstate(h) {
  1493. kobject_put(hstate_kobjs[h - hstates]);
  1494. }
  1495. kobject_put(hugepages_kobj);
  1496. }
  1497. module_exit(hugetlb_exit);
  1498. static int __init hugetlb_init(void)
  1499. {
  1500. /* Some platform decide whether they support huge pages at boot
  1501. * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
  1502. * there is no such support
  1503. */
  1504. if (HPAGE_SHIFT == 0)
  1505. return 0;
  1506. if (!size_to_hstate(default_hstate_size)) {
  1507. default_hstate_size = HPAGE_SIZE;
  1508. if (!size_to_hstate(default_hstate_size))
  1509. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  1510. }
  1511. default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
  1512. if (default_hstate_max_huge_pages)
  1513. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  1514. hugetlb_init_hstates();
  1515. gather_bootmem_prealloc();
  1516. report_hugepages();
  1517. hugetlb_sysfs_init();
  1518. hugetlb_register_all_nodes();
  1519. return 0;
  1520. }
  1521. module_init(hugetlb_init);
  1522. /* Should be called on processing a hugepagesz=... option */
  1523. void __init hugetlb_add_hstate(unsigned order)
  1524. {
  1525. struct hstate *h;
  1526. unsigned long i;
  1527. if (size_to_hstate(PAGE_SIZE << order)) {
  1528. printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
  1529. return;
  1530. }
  1531. BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
  1532. BUG_ON(order == 0);
  1533. h = &hstates[max_hstate++];
  1534. h->order = order;
  1535. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  1536. h->nr_huge_pages = 0;
  1537. h->free_huge_pages = 0;
  1538. for (i = 0; i < MAX_NUMNODES; ++i)
  1539. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  1540. h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
  1541. h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
  1542. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  1543. huge_page_size(h)/1024);
  1544. parsed_hstate = h;
  1545. }
  1546. static int __init hugetlb_nrpages_setup(char *s)
  1547. {
  1548. unsigned long *mhp;
  1549. static unsigned long *last_mhp;
  1550. /*
  1551. * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
  1552. * so this hugepages= parameter goes to the "default hstate".
  1553. */
  1554. if (!max_hstate)
  1555. mhp = &default_hstate_max_huge_pages;
  1556. else
  1557. mhp = &parsed_hstate->max_huge_pages;
  1558. if (mhp == last_mhp) {
  1559. printk(KERN_WARNING "hugepages= specified twice without "
  1560. "interleaving hugepagesz=, ignoring\n");
  1561. return 1;
  1562. }
  1563. if (sscanf(s, "%lu", mhp) <= 0)
  1564. *mhp = 0;
  1565. /*
  1566. * Global state is always initialized later in hugetlb_init.
  1567. * But we need to allocate >= MAX_ORDER hstates here early to still
  1568. * use the bootmem allocator.
  1569. */
  1570. if (max_hstate && parsed_hstate->order >= MAX_ORDER)
  1571. hugetlb_hstate_alloc_pages(parsed_hstate);
  1572. last_mhp = mhp;
  1573. return 1;
  1574. }
  1575. __setup("hugepages=", hugetlb_nrpages_setup);
  1576. static int __init hugetlb_default_setup(char *s)
  1577. {
  1578. default_hstate_size = memparse(s, &s);
  1579. return 1;
  1580. }
  1581. __setup("default_hugepagesz=", hugetlb_default_setup);
  1582. static unsigned int cpuset_mems_nr(unsigned int *array)
  1583. {
  1584. int node;
  1585. unsigned int nr = 0;
  1586. for_each_node_mask(node, cpuset_current_mems_allowed)
  1587. nr += array[node];
  1588. return nr;
  1589. }
  1590. #ifdef CONFIG_SYSCTL
  1591. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  1592. struct ctl_table *table, int write,
  1593. void __user *buffer, size_t *length, loff_t *ppos)
  1594. {
  1595. struct hstate *h = &default_hstate;
  1596. unsigned long tmp;
  1597. if (!write)
  1598. tmp = h->max_huge_pages;
  1599. table->data = &tmp;
  1600. table->maxlen = sizeof(unsigned long);
  1601. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1602. if (write) {
  1603. NODEMASK_ALLOC(nodemask_t, nodes_allowed,
  1604. GFP_KERNEL | __GFP_NORETRY);
  1605. if (!(obey_mempolicy &&
  1606. init_nodemask_of_mempolicy(nodes_allowed))) {
  1607. NODEMASK_FREE(nodes_allowed);
  1608. nodes_allowed = &node_states[N_HIGH_MEMORY];
  1609. }
  1610. h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
  1611. if (nodes_allowed != &node_states[N_HIGH_MEMORY])
  1612. NODEMASK_FREE(nodes_allowed);
  1613. }
  1614. return 0;
  1615. }
  1616. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  1617. void __user *buffer, size_t *length, loff_t *ppos)
  1618. {
  1619. return hugetlb_sysctl_handler_common(false, table, write,
  1620. buffer, length, ppos);
  1621. }
  1622. #ifdef CONFIG_NUMA
  1623. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  1624. void __user *buffer, size_t *length, loff_t *ppos)
  1625. {
  1626. return hugetlb_sysctl_handler_common(true, table, write,
  1627. buffer, length, ppos);
  1628. }
  1629. #endif /* CONFIG_NUMA */
  1630. int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
  1631. void __user *buffer,
  1632. size_t *length, loff_t *ppos)
  1633. {
  1634. proc_dointvec(table, write, buffer, length, ppos);
  1635. if (hugepages_treat_as_movable)
  1636. htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
  1637. else
  1638. htlb_alloc_mask = GFP_HIGHUSER;
  1639. return 0;
  1640. }
  1641. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  1642. void __user *buffer,
  1643. size_t *length, loff_t *ppos)
  1644. {
  1645. struct hstate *h = &default_hstate;
  1646. unsigned long tmp;
  1647. if (!write)
  1648. tmp = h->nr_overcommit_huge_pages;
  1649. table->data = &tmp;
  1650. table->maxlen = sizeof(unsigned long);
  1651. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1652. if (write) {
  1653. spin_lock(&hugetlb_lock);
  1654. h->nr_overcommit_huge_pages = tmp;
  1655. spin_unlock(&hugetlb_lock);
  1656. }
  1657. return 0;
  1658. }
  1659. #endif /* CONFIG_SYSCTL */
  1660. void hugetlb_report_meminfo(struct seq_file *m)
  1661. {
  1662. struct hstate *h = &default_hstate;
  1663. seq_printf(m,
  1664. "HugePages_Total: %5lu\n"
  1665. "HugePages_Free: %5lu\n"
  1666. "HugePages_Rsvd: %5lu\n"
  1667. "HugePages_Surp: %5lu\n"
  1668. "Hugepagesize: %8lu kB\n",
  1669. h->nr_huge_pages,
  1670. h->free_huge_pages,
  1671. h->resv_huge_pages,
  1672. h->surplus_huge_pages,
  1673. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1674. }
  1675. int hugetlb_report_node_meminfo(int nid, char *buf)
  1676. {
  1677. struct hstate *h = &default_hstate;
  1678. return sprintf(buf,
  1679. "Node %d HugePages_Total: %5u\n"
  1680. "Node %d HugePages_Free: %5u\n"
  1681. "Node %d HugePages_Surp: %5u\n",
  1682. nid, h->nr_huge_pages_node[nid],
  1683. nid, h->free_huge_pages_node[nid],
  1684. nid, h->surplus_huge_pages_node[nid]);
  1685. }
  1686. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  1687. unsigned long hugetlb_total_pages(void)
  1688. {
  1689. struct hstate *h = &default_hstate;
  1690. return h->nr_huge_pages * pages_per_huge_page(h);
  1691. }
  1692. static int hugetlb_acct_memory(struct hstate *h, long delta)
  1693. {
  1694. int ret = -ENOMEM;
  1695. spin_lock(&hugetlb_lock);
  1696. /*
  1697. * When cpuset is configured, it breaks the strict hugetlb page
  1698. * reservation as the accounting is done on a global variable. Such
  1699. * reservation is completely rubbish in the presence of cpuset because
  1700. * the reservation is not checked against page availability for the
  1701. * current cpuset. Application can still potentially OOM'ed by kernel
  1702. * with lack of free htlb page in cpuset that the task is in.
  1703. * Attempt to enforce strict accounting with cpuset is almost
  1704. * impossible (or too ugly) because cpuset is too fluid that
  1705. * task or memory node can be dynamically moved between cpusets.
  1706. *
  1707. * The change of semantics for shared hugetlb mapping with cpuset is
  1708. * undesirable. However, in order to preserve some of the semantics,
  1709. * we fall back to check against current free page availability as
  1710. * a best attempt and hopefully to minimize the impact of changing
  1711. * semantics that cpuset has.
  1712. */
  1713. if (delta > 0) {
  1714. if (gather_surplus_pages(h, delta) < 0)
  1715. goto out;
  1716. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  1717. return_unused_surplus_pages(h, delta);
  1718. goto out;
  1719. }
  1720. }
  1721. ret = 0;
  1722. if (delta < 0)
  1723. return_unused_surplus_pages(h, (unsigned long) -delta);
  1724. out:
  1725. spin_unlock(&hugetlb_lock);
  1726. return ret;
  1727. }
  1728. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  1729. {
  1730. struct resv_map *reservations = vma_resv_map(vma);
  1731. /*
  1732. * This new VMA should share its siblings reservation map if present.
  1733. * The VMA will only ever have a valid reservation map pointer where
  1734. * it is being copied for another still existing VMA. As that VMA
  1735. * has a reference to the reservation map it cannot dissappear until
  1736. * after this open call completes. It is therefore safe to take a
  1737. * new reference here without additional locking.
  1738. */
  1739. if (reservations)
  1740. kref_get(&reservations->refs);
  1741. }
  1742. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  1743. {
  1744. struct hstate *h = hstate_vma(vma);
  1745. struct resv_map *reservations = vma_resv_map(vma);
  1746. unsigned long reserve;
  1747. unsigned long start;
  1748. unsigned long end;
  1749. if (reservations) {
  1750. start = vma_hugecache_offset(h, vma, vma->vm_start);
  1751. end = vma_hugecache_offset(h, vma, vma->vm_end);
  1752. reserve = (end - start) -
  1753. region_count(&reservations->regions, start, end);
  1754. kref_put(&reservations->refs, resv_map_release);
  1755. if (reserve) {
  1756. hugetlb_acct_memory(h, -reserve);
  1757. hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
  1758. }
  1759. }
  1760. }
  1761. /*
  1762. * We cannot handle pagefaults against hugetlb pages at all. They cause
  1763. * handle_mm_fault() to try to instantiate regular-sized pages in the
  1764. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  1765. * this far.
  1766. */
  1767. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1768. {
  1769. BUG();
  1770. return 0;
  1771. }
  1772. const struct vm_operations_struct hugetlb_vm_ops = {
  1773. .fault = hugetlb_vm_op_fault,
  1774. .open = hugetlb_vm_op_open,
  1775. .close = hugetlb_vm_op_close,
  1776. };
  1777. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  1778. int writable)
  1779. {
  1780. pte_t entry;
  1781. if (writable) {
  1782. entry =
  1783. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  1784. } else {
  1785. entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  1786. }
  1787. entry = pte_mkyoung(entry);
  1788. entry = pte_mkhuge(entry);
  1789. return entry;
  1790. }
  1791. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  1792. unsigned long address, pte_t *ptep)
  1793. {
  1794. pte_t entry;
  1795. entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
  1796. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
  1797. update_mmu_cache(vma, address, ptep);
  1798. }
  1799. }
  1800. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  1801. struct vm_area_struct *vma)
  1802. {
  1803. pte_t *src_pte, *dst_pte, entry;
  1804. struct page *ptepage;
  1805. unsigned long addr;
  1806. int cow;
  1807. struct hstate *h = hstate_vma(vma);
  1808. unsigned long sz = huge_page_size(h);
  1809. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  1810. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  1811. src_pte = huge_pte_offset(src, addr);
  1812. if (!src_pte)
  1813. continue;
  1814. dst_pte = huge_pte_alloc(dst, addr, sz);
  1815. if (!dst_pte)
  1816. goto nomem;
  1817. /* If the pagetables are shared don't copy or take references */
  1818. if (dst_pte == src_pte)
  1819. continue;
  1820. spin_lock(&dst->page_table_lock);
  1821. spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
  1822. if (!huge_pte_none(huge_ptep_get(src_pte))) {
  1823. if (cow)
  1824. huge_ptep_set_wrprotect(src, addr, src_pte);
  1825. entry = huge_ptep_get(src_pte);
  1826. ptepage = pte_page(entry);
  1827. get_page(ptepage);
  1828. page_dup_rmap(ptepage);
  1829. set_huge_pte_at(dst, addr, dst_pte, entry);
  1830. }
  1831. spin_unlock(&src->page_table_lock);
  1832. spin_unlock(&dst->page_table_lock);
  1833. }
  1834. return 0;
  1835. nomem:
  1836. return -ENOMEM;
  1837. }
  1838. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  1839. {
  1840. swp_entry_t swp;
  1841. if (huge_pte_none(pte) || pte_present(pte))
  1842. return 0;
  1843. swp = pte_to_swp_entry(pte);
  1844. if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
  1845. return 1;
  1846. } else
  1847. return 0;
  1848. }
  1849. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  1850. unsigned long end, struct page *ref_page)
  1851. {
  1852. struct mm_struct *mm = vma->vm_mm;
  1853. unsigned long address;
  1854. pte_t *ptep;
  1855. pte_t pte;
  1856. struct page *page;
  1857. struct page *tmp;
  1858. struct hstate *h = hstate_vma(vma);
  1859. unsigned long sz = huge_page_size(h);
  1860. /*
  1861. * A page gathering list, protected by per file i_mmap_lock. The
  1862. * lock is used to avoid list corruption from multiple unmapping
  1863. * of the same page since we are using page->lru.
  1864. */
  1865. LIST_HEAD(page_list);
  1866. WARN_ON(!is_vm_hugetlb_page(vma));
  1867. BUG_ON(start & ~huge_page_mask(h));
  1868. BUG_ON(end & ~huge_page_mask(h));
  1869. mmu_notifier_invalidate_range_start(mm, start, end);
  1870. spin_lock(&mm->page_table_lock);
  1871. for (address = start; address < end; address += sz) {
  1872. ptep = huge_pte_offset(mm, address);
  1873. if (!ptep)
  1874. continue;
  1875. if (huge_pmd_unshare(mm, &address, ptep))
  1876. continue;
  1877. /*
  1878. * If a reference page is supplied, it is because a specific
  1879. * page is being unmapped, not a range. Ensure the page we
  1880. * are about to unmap is the actual page of interest.
  1881. */
  1882. if (ref_page) {
  1883. pte = huge_ptep_get(ptep);
  1884. if (huge_pte_none(pte))
  1885. continue;
  1886. page = pte_page(pte);
  1887. if (page != ref_page)
  1888. continue;
  1889. /*
  1890. * Mark the VMA as having unmapped its page so that
  1891. * future faults in this VMA will fail rather than
  1892. * looking like data was lost
  1893. */
  1894. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  1895. }
  1896. pte = huge_ptep_get_and_clear(mm, address, ptep);
  1897. if (huge_pte_none(pte))
  1898. continue;
  1899. /*
  1900. * HWPoisoned hugepage is already unmapped and dropped reference
  1901. */
  1902. if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
  1903. continue;
  1904. page = pte_page(pte);
  1905. if (pte_dirty(pte))
  1906. set_page_dirty(page);
  1907. list_add(&page->lru, &page_list);
  1908. }
  1909. spin_unlock(&mm->page_table_lock);
  1910. flush_tlb_range(vma, start, end);
  1911. mmu_notifier_invalidate_range_end(mm, start, end);
  1912. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  1913. page_remove_rmap(page);
  1914. list_del(&page->lru);
  1915. put_page(page);
  1916. }
  1917. }
  1918. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  1919. unsigned long end, struct page *ref_page)
  1920. {
  1921. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  1922. __unmap_hugepage_range(vma, start, end, ref_page);
  1923. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  1924. }
  1925. /*
  1926. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  1927. * mappping it owns the reserve page for. The intention is to unmap the page
  1928. * from other VMAs and let the children be SIGKILLed if they are faulting the
  1929. * same region.
  1930. */
  1931. static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  1932. struct page *page, unsigned long address)
  1933. {
  1934. struct hstate *h = hstate_vma(vma);
  1935. struct vm_area_struct *iter_vma;
  1936. struct address_space *mapping;
  1937. struct prio_tree_iter iter;
  1938. pgoff_t pgoff;
  1939. /*
  1940. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  1941. * from page cache lookup which is in HPAGE_SIZE units.
  1942. */
  1943. address = address & huge_page_mask(h);
  1944. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
  1945. + (vma->vm_pgoff >> PAGE_SHIFT);
  1946. mapping = (struct address_space *)page_private(page);
  1947. /*
  1948. * Take the mapping lock for the duration of the table walk. As
  1949. * this mapping should be shared between all the VMAs,
  1950. * __unmap_hugepage_range() is called as the lock is already held
  1951. */
  1952. spin_lock(&mapping->i_mmap_lock);
  1953. vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1954. /* Do not unmap the current VMA */
  1955. if (iter_vma == vma)
  1956. continue;
  1957. /*
  1958. * Unmap the page from other VMAs without their own reserves.
  1959. * They get marked to be SIGKILLed if they fault in these
  1960. * areas. This is because a future no-page fault on this VMA
  1961. * could insert a zeroed page instead of the data existing
  1962. * from the time of fork. This would look like data corruption
  1963. */
  1964. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  1965. __unmap_hugepage_range(iter_vma,
  1966. address, address + huge_page_size(h),
  1967. page);
  1968. }
  1969. spin_unlock(&mapping->i_mmap_lock);
  1970. return 1;
  1971. }
  1972. /*
  1973. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  1974. */
  1975. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  1976. unsigned long address, pte_t *ptep, pte_t pte,
  1977. struct page *pagecache_page)
  1978. {
  1979. struct hstate *h = hstate_vma(vma);
  1980. struct page *old_page, *new_page;
  1981. int avoidcopy;
  1982. int outside_reserve = 0;
  1983. old_page = pte_page(pte);
  1984. retry_avoidcopy:
  1985. /* If no-one else is actually using this page, avoid the copy
  1986. * and just make the page writable */
  1987. avoidcopy = (page_mapcount(old_page) == 1);
  1988. if (avoidcopy) {
  1989. if (!trylock_page(old_page))
  1990. if (PageAnon(old_page))
  1991. page_move_anon_rmap(old_page, vma, address);
  1992. set_huge_ptep_writable(vma, address, ptep);
  1993. return 0;
  1994. }
  1995. /*
  1996. * If the process that created a MAP_PRIVATE mapping is about to
  1997. * perform a COW due to a shared page count, attempt to satisfy
  1998. * the allocation without using the existing reserves. The pagecache
  1999. * page is used to determine if the reserve at this address was
  2000. * consumed or not. If reserves were used, a partial faulted mapping
  2001. * at the time of fork() could consume its reserves on COW instead
  2002. * of the full address range.
  2003. */
  2004. if (!(vma->vm_flags & VM_MAYSHARE) &&
  2005. is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2006. old_page != pagecache_page)
  2007. outside_reserve = 1;
  2008. page_cache_get(old_page);
  2009. /* Drop page_table_lock as buddy allocator may be called */
  2010. spin_unlock(&mm->page_table_lock);
  2011. new_page = alloc_huge_page(vma, address, outside_reserve);
  2012. if (IS_ERR(new_page)) {
  2013. page_cache_release(old_page);
  2014. /*
  2015. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2016. * it is due to references held by a child and an insufficient
  2017. * huge page pool. To guarantee the original mappers
  2018. * reliability, unmap the page from child processes. The child
  2019. * may get SIGKILLed if it later faults.
  2020. */
  2021. if (outside_reserve) {
  2022. BUG_ON(huge_pte_none(pte));
  2023. if (unmap_ref_private(mm, vma, old_page, address)) {
  2024. BUG_ON(page_count(old_page) != 1);
  2025. BUG_ON(huge_pte_none(pte));
  2026. spin_lock(&mm->page_table_lock);
  2027. goto retry_avoidcopy;
  2028. }
  2029. WARN_ON_ONCE(1);
  2030. }
  2031. /* Caller expects lock to be held */
  2032. spin_lock(&mm->page_table_lock);
  2033. return -PTR_ERR(new_page);
  2034. }
  2035. /*
  2036. * When the original hugepage is shared one, it does not have
  2037. * anon_vma prepared.
  2038. */
  2039. if (unlikely(anon_vma_prepare(vma)))
  2040. return VM_FAULT_OOM;
  2041. copy_huge_page(new_page, old_page, address, vma);
  2042. __SetPageUptodate(new_page);
  2043. /*
  2044. * Retake the page_table_lock to check for racing updates
  2045. * before the page tables are altered
  2046. */
  2047. spin_lock(&mm->page_table_lock);
  2048. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2049. if (likely(pte_same(huge_ptep_get(ptep), pte))) {
  2050. /* Break COW */
  2051. huge_ptep_clear_flush(vma, address, ptep);
  2052. set_huge_pte_at(mm, address, ptep,
  2053. make_huge_pte(vma, new_page, 1));
  2054. page_remove_rmap(old_page);
  2055. hugepage_add_anon_rmap(new_page, vma, address);
  2056. /* Make the old page be freed below */
  2057. new_page = old_page;
  2058. }
  2059. page_cache_release(new_page);
  2060. page_cache_release(old_page);
  2061. return 0;
  2062. }
  2063. /* Return the pagecache page at a given address within a VMA */
  2064. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  2065. struct vm_area_struct *vma, unsigned long address)
  2066. {
  2067. struct address_space *mapping;
  2068. pgoff_t idx;
  2069. mapping = vma->vm_file->f_mapping;
  2070. idx = vma_hugecache_offset(h, vma, address);
  2071. return find_lock_page(mapping, idx);
  2072. }
  2073. /*
  2074. * Return whether there is a pagecache page to back given address within VMA.
  2075. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  2076. */
  2077. static bool hugetlbfs_pagecache_present(struct hstate *h,
  2078. struct vm_area_struct *vma, unsigned long address)
  2079. {
  2080. struct address_space *mapping;
  2081. pgoff_t idx;
  2082. struct page *page;
  2083. mapping = vma->vm_file->f_mapping;
  2084. idx = vma_hugecache_offset(h, vma, address);
  2085. page = find_get_page(mapping, idx);
  2086. if (page)
  2087. put_page(page);
  2088. return page != NULL;
  2089. }
  2090. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2091. unsigned long address, pte_t *ptep, unsigned int flags)
  2092. {
  2093. struct hstate *h = hstate_vma(vma);
  2094. int ret = VM_FAULT_SIGBUS;
  2095. pgoff_t idx;
  2096. unsigned long size;
  2097. struct page *page;
  2098. struct address_space *mapping;
  2099. pte_t new_pte;
  2100. /*
  2101. * Currently, we are forced to kill the process in the event the
  2102. * original mapper has unmapped pages from the child due to a failed
  2103. * COW. Warn that such a situation has occured as it may not be obvious
  2104. */
  2105. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  2106. printk(KERN_WARNING
  2107. "PID %d killed due to inadequate hugepage pool\n",
  2108. current->pid);
  2109. return ret;
  2110. }
  2111. mapping = vma->vm_file->f_mapping;
  2112. idx = vma_hugecache_offset(h, vma, address);
  2113. /*
  2114. * Use page lock to guard against racing truncation
  2115. * before we get page_table_lock.
  2116. */
  2117. retry:
  2118. page = find_lock_page(mapping, idx);
  2119. if (!page) {
  2120. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2121. if (idx >= size)
  2122. goto out;
  2123. page = alloc_huge_page(vma, address, 0);
  2124. if (IS_ERR(page)) {
  2125. ret = -PTR_ERR(page);
  2126. goto out;
  2127. }
  2128. clear_huge_page(page, address, huge_page_size(h));
  2129. __SetPageUptodate(page);
  2130. if (vma->vm_flags & VM_MAYSHARE) {
  2131. int err;
  2132. struct inode *inode = mapping->host;
  2133. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  2134. if (err) {
  2135. put_page(page);
  2136. if (err == -EEXIST)
  2137. goto retry;
  2138. goto out;
  2139. }
  2140. spin_lock(&inode->i_lock);
  2141. inode->i_blocks += blocks_per_huge_page(h);
  2142. spin_unlock(&inode->i_lock);
  2143. page_dup_rmap(page);
  2144. } else {
  2145. lock_page(page);
  2146. if (unlikely(anon_vma_prepare(vma))) {
  2147. ret = VM_FAULT_OOM;
  2148. goto backout_unlocked;
  2149. }
  2150. hugepage_add_new_anon_rmap(page, vma, address);
  2151. }
  2152. } else {
  2153. page_dup_rmap(page);
  2154. }
  2155. /*
  2156. * Since memory error handler replaces pte into hwpoison swap entry
  2157. * at the time of error handling, a process which reserved but not have
  2158. * the mapping to the error hugepage does not have hwpoison swap entry.
  2159. * So we need to block accesses from such a process by checking
  2160. * PG_hwpoison bit here.
  2161. */
  2162. if (unlikely(PageHWPoison(page))) {
  2163. ret = VM_FAULT_HWPOISON;
  2164. goto backout_unlocked;
  2165. }
  2166. /*
  2167. * If we are going to COW a private mapping later, we examine the
  2168. * pending reservations for this page now. This will ensure that
  2169. * any allocations necessary to record that reservation occur outside
  2170. * the spinlock.
  2171. */
  2172. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
  2173. if (vma_needs_reservation(h, vma, address) < 0) {
  2174. ret = VM_FAULT_OOM;
  2175. goto backout_unlocked;
  2176. }
  2177. spin_lock(&mm->page_table_lock);
  2178. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2179. if (idx >= size)
  2180. goto backout;
  2181. ret = 0;
  2182. if (!huge_pte_none(huge_ptep_get(ptep)))
  2183. goto backout;
  2184. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  2185. && (vma->vm_flags & VM_SHARED)));
  2186. set_huge_pte_at(mm, address, ptep, new_pte);
  2187. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2188. /* Optimization, do the COW without a second fault */
  2189. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
  2190. }
  2191. spin_unlock(&mm->page_table_lock);
  2192. unlock_page(page);
  2193. out:
  2194. return ret;
  2195. backout:
  2196. spin_unlock(&mm->page_table_lock);
  2197. backout_unlocked:
  2198. unlock_page(page);
  2199. put_page(page);
  2200. goto out;
  2201. }
  2202. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2203. unsigned long address, unsigned int flags)
  2204. {
  2205. pte_t *ptep;
  2206. pte_t entry;
  2207. int ret;
  2208. struct page *page = NULL;
  2209. struct page *pagecache_page = NULL;
  2210. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  2211. struct hstate *h = hstate_vma(vma);
  2212. ptep = huge_pte_offset(mm, address);
  2213. if (ptep) {
  2214. entry = huge_ptep_get(ptep);
  2215. if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  2216. return VM_FAULT_HWPOISON;
  2217. }
  2218. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  2219. if (!ptep)
  2220. return VM_FAULT_OOM;
  2221. /*
  2222. * Serialize hugepage allocation and instantiation, so that we don't
  2223. * get spurious allocation failures if two CPUs race to instantiate
  2224. * the same page in the page cache.
  2225. */
  2226. mutex_lock(&hugetlb_instantiation_mutex);
  2227. entry = huge_ptep_get(ptep);
  2228. if (huge_pte_none(entry)) {
  2229. ret = hugetlb_no_page(mm, vma, address, ptep, flags);
  2230. goto out_mutex;
  2231. }
  2232. ret = 0;
  2233. /*
  2234. * If we are going to COW the mapping later, we examine the pending
  2235. * reservations for this page now. This will ensure that any
  2236. * allocations necessary to record that reservation occur outside the
  2237. * spinlock. For private mappings, we also lookup the pagecache
  2238. * page now as it is used to determine if a reservation has been
  2239. * consumed.
  2240. */
  2241. if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
  2242. if (vma_needs_reservation(h, vma, address) < 0) {
  2243. ret = VM_FAULT_OOM;
  2244. goto out_mutex;
  2245. }
  2246. if (!(vma->vm_flags & VM_MAYSHARE))
  2247. pagecache_page = hugetlbfs_pagecache_page(h,
  2248. vma, address);
  2249. }
  2250. if (!pagecache_page) {
  2251. page = pte_page(entry);
  2252. lock_page(page);
  2253. }
  2254. spin_lock(&mm->page_table_lock);
  2255. /* Check for a racing update before calling hugetlb_cow */
  2256. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  2257. goto out_page_table_lock;
  2258. if (flags & FAULT_FLAG_WRITE) {
  2259. if (!pte_write(entry)) {
  2260. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  2261. pagecache_page);
  2262. goto out_page_table_lock;
  2263. }
  2264. entry = pte_mkdirty(entry);
  2265. }
  2266. entry = pte_mkyoung(entry);
  2267. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  2268. flags & FAULT_FLAG_WRITE))
  2269. update_mmu_cache(vma, address, ptep);
  2270. out_page_table_lock:
  2271. spin_unlock(&mm->page_table_lock);
  2272. if (pagecache_page) {
  2273. unlock_page(pagecache_page);
  2274. put_page(pagecache_page);
  2275. } else {
  2276. unlock_page(page);
  2277. }
  2278. out_mutex:
  2279. mutex_unlock(&hugetlb_instantiation_mutex);
  2280. return ret;
  2281. }
  2282. /* Can be overriden by architectures */
  2283. __attribute__((weak)) struct page *
  2284. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2285. pud_t *pud, int write)
  2286. {
  2287. BUG();
  2288. return NULL;
  2289. }
  2290. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2291. struct page **pages, struct vm_area_struct **vmas,
  2292. unsigned long *position, int *length, int i,
  2293. unsigned int flags)
  2294. {
  2295. unsigned long pfn_offset;
  2296. unsigned long vaddr = *position;
  2297. int remainder = *length;
  2298. struct hstate *h = hstate_vma(vma);
  2299. spin_lock(&mm->page_table_lock);
  2300. while (vaddr < vma->vm_end && remainder) {
  2301. pte_t *pte;
  2302. int absent;
  2303. struct page *page;
  2304. /*
  2305. * Some archs (sparc64, sh*) have multiple pte_ts to
  2306. * each hugepage. We have to make sure we get the
  2307. * first, for the page indexing below to work.
  2308. */
  2309. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  2310. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  2311. /*
  2312. * When coredumping, it suits get_dump_page if we just return
  2313. * an error where there's an empty slot with no huge pagecache
  2314. * to back it. This way, we avoid allocating a hugepage, and
  2315. * the sparse dumpfile avoids allocating disk blocks, but its
  2316. * huge holes still show up with zeroes where they need to be.
  2317. */
  2318. if (absent && (flags & FOLL_DUMP) &&
  2319. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  2320. remainder = 0;
  2321. break;
  2322. }
  2323. if (absent ||
  2324. ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
  2325. int ret;
  2326. spin_unlock(&mm->page_table_lock);
  2327. ret = hugetlb_fault(mm, vma, vaddr,
  2328. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  2329. spin_lock(&mm->page_table_lock);
  2330. if (!(ret & VM_FAULT_ERROR))
  2331. continue;
  2332. remainder = 0;
  2333. break;
  2334. }
  2335. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  2336. page = pte_page(huge_ptep_get(pte));
  2337. same_page:
  2338. if (pages) {
  2339. pages[i] = mem_map_offset(page, pfn_offset);
  2340. get_page(pages[i]);
  2341. }
  2342. if (vmas)
  2343. vmas[i] = vma;
  2344. vaddr += PAGE_SIZE;
  2345. ++pfn_offset;
  2346. --remainder;
  2347. ++i;
  2348. if (vaddr < vma->vm_end && remainder &&
  2349. pfn_offset < pages_per_huge_page(h)) {
  2350. /*
  2351. * We use pfn_offset to avoid touching the pageframes
  2352. * of this compound page.
  2353. */
  2354. goto same_page;
  2355. }
  2356. }
  2357. spin_unlock(&mm->page_table_lock);
  2358. *length = remainder;
  2359. *position = vaddr;
  2360. return i ? i : -EFAULT;
  2361. }
  2362. void hugetlb_change_protection(struct vm_area_struct *vma,
  2363. unsigned long address, unsigned long end, pgprot_t newprot)
  2364. {
  2365. struct mm_struct *mm = vma->vm_mm;
  2366. unsigned long start = address;
  2367. pte_t *ptep;
  2368. pte_t pte;
  2369. struct hstate *h = hstate_vma(vma);
  2370. BUG_ON(address >= end);
  2371. flush_cache_range(vma, address, end);
  2372. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  2373. spin_lock(&mm->page_table_lock);
  2374. for (; address < end; address += huge_page_size(h)) {
  2375. ptep = huge_pte_offset(mm, address);
  2376. if (!ptep)
  2377. continue;
  2378. if (huge_pmd_unshare(mm, &address, ptep))
  2379. continue;
  2380. if (!huge_pte_none(huge_ptep_get(ptep))) {
  2381. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2382. pte = pte_mkhuge(pte_modify(pte, newprot));
  2383. set_huge_pte_at(mm, address, ptep, pte);
  2384. }
  2385. }
  2386. spin_unlock(&mm->page_table_lock);
  2387. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  2388. flush_tlb_range(vma, start, end);
  2389. }
  2390. int hugetlb_reserve_pages(struct inode *inode,
  2391. long from, long to,
  2392. struct vm_area_struct *vma,
  2393. int acctflag)
  2394. {
  2395. long ret, chg;
  2396. struct hstate *h = hstate_inode(inode);
  2397. /*
  2398. * Only apply hugepage reservation if asked. At fault time, an
  2399. * attempt will be made for VM_NORESERVE to allocate a page
  2400. * and filesystem quota without using reserves
  2401. */
  2402. if (acctflag & VM_NORESERVE)
  2403. return 0;
  2404. /*
  2405. * Shared mappings base their reservation on the number of pages that
  2406. * are already allocated on behalf of the file. Private mappings need
  2407. * to reserve the full area even if read-only as mprotect() may be
  2408. * called to make the mapping read-write. Assume !vma is a shm mapping
  2409. */
  2410. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2411. chg = region_chg(&inode->i_mapping->private_list, from, to);
  2412. else {
  2413. struct resv_map *resv_map = resv_map_alloc();
  2414. if (!resv_map)
  2415. return -ENOMEM;
  2416. chg = to - from;
  2417. set_vma_resv_map(vma, resv_map);
  2418. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  2419. }
  2420. if (chg < 0)
  2421. return chg;
  2422. /* There must be enough filesystem quota for the mapping */
  2423. if (hugetlb_get_quota(inode->i_mapping, chg))
  2424. return -ENOSPC;
  2425. /*
  2426. * Check enough hugepages are available for the reservation.
  2427. * Hand back the quota if there are not
  2428. */
  2429. ret = hugetlb_acct_memory(h, chg);
  2430. if (ret < 0) {
  2431. hugetlb_put_quota(inode->i_mapping, chg);
  2432. return ret;
  2433. }
  2434. /*
  2435. * Account for the reservations made. Shared mappings record regions
  2436. * that have reservations as they are shared by multiple VMAs.
  2437. * When the last VMA disappears, the region map says how much
  2438. * the reservation was and the page cache tells how much of
  2439. * the reservation was consumed. Private mappings are per-VMA and
  2440. * only the consumed reservations are tracked. When the VMA
  2441. * disappears, the original reservation is the VMA size and the
  2442. * consumed reservations are stored in the map. Hence, nothing
  2443. * else has to be done for private mappings here
  2444. */
  2445. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2446. region_add(&inode->i_mapping->private_list, from, to);
  2447. return 0;
  2448. }
  2449. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  2450. {
  2451. struct hstate *h = hstate_inode(inode);
  2452. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  2453. spin_lock(&inode->i_lock);
  2454. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  2455. spin_unlock(&inode->i_lock);
  2456. hugetlb_put_quota(inode->i_mapping, (chg - freed));
  2457. hugetlb_acct_memory(h, -(chg - freed));
  2458. }
  2459. /*
  2460. * This function is called from memory failure code.
  2461. * Assume the caller holds page lock of the head page.
  2462. */
  2463. void __isolate_hwpoisoned_huge_page(struct page *hpage)
  2464. {
  2465. struct hstate *h = page_hstate(hpage);
  2466. int nid = page_to_nid(hpage);
  2467. spin_lock(&hugetlb_lock);
  2468. list_del(&hpage->lru);
  2469. h->free_huge_pages--;
  2470. h->free_huge_pages_node[nid]--;
  2471. spin_unlock(&hugetlb_lock);
  2472. }