i8254.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. * Authors:
  28. * Sheng Yang <sheng.yang@intel.com>
  29. * Based on QEMU and Xen.
  30. */
  31. #include <linux/kvm_host.h>
  32. #include "irq.h"
  33. #include "i8254.h"
  34. #ifndef CONFIG_X86_64
  35. #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  36. #else
  37. #define mod_64(x, y) ((x) % (y))
  38. #endif
  39. #define RW_STATE_LSB 1
  40. #define RW_STATE_MSB 2
  41. #define RW_STATE_WORD0 3
  42. #define RW_STATE_WORD1 4
  43. /* Compute with 96 bit intermediate result: (a*b)/c */
  44. static u64 muldiv64(u64 a, u32 b, u32 c)
  45. {
  46. union {
  47. u64 ll;
  48. struct {
  49. u32 low, high;
  50. } l;
  51. } u, res;
  52. u64 rl, rh;
  53. u.ll = a;
  54. rl = (u64)u.l.low * (u64)b;
  55. rh = (u64)u.l.high * (u64)b;
  56. rh += (rl >> 32);
  57. res.l.high = div64_u64(rh, c);
  58. res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  59. return res.ll;
  60. }
  61. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  62. {
  63. struct kvm_kpit_channel_state *c =
  64. &kvm->arch.vpit->pit_state.channels[channel];
  65. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  66. switch (c->mode) {
  67. default:
  68. case 0:
  69. case 4:
  70. /* XXX: just disable/enable counting */
  71. break;
  72. case 1:
  73. case 2:
  74. case 3:
  75. case 5:
  76. /* Restart counting on rising edge. */
  77. if (c->gate < val)
  78. c->count_load_time = ktime_get();
  79. break;
  80. }
  81. c->gate = val;
  82. }
  83. static int pit_get_gate(struct kvm *kvm, int channel)
  84. {
  85. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  86. return kvm->arch.vpit->pit_state.channels[channel].gate;
  87. }
  88. static s64 __kpit_elapsed(struct kvm *kvm)
  89. {
  90. s64 elapsed;
  91. ktime_t remaining;
  92. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  93. remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
  94. if (ktime_to_ns(remaining) < 0)
  95. remaining = ktime_set(0, 0);
  96. elapsed = ps->pit_timer.period;
  97. if (ktime_to_ns(remaining) <= ps->pit_timer.period)
  98. elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
  99. return elapsed;
  100. }
  101. static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
  102. int channel)
  103. {
  104. if (channel == 0)
  105. return __kpit_elapsed(kvm);
  106. return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  107. }
  108. static int pit_get_count(struct kvm *kvm, int channel)
  109. {
  110. struct kvm_kpit_channel_state *c =
  111. &kvm->arch.vpit->pit_state.channels[channel];
  112. s64 d, t;
  113. int counter;
  114. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  115. t = kpit_elapsed(kvm, c, channel);
  116. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  117. switch (c->mode) {
  118. case 0:
  119. case 1:
  120. case 4:
  121. case 5:
  122. counter = (c->count - d) & 0xffff;
  123. break;
  124. case 3:
  125. /* XXX: may be incorrect for odd counts */
  126. counter = c->count - (mod_64((2 * d), c->count));
  127. break;
  128. default:
  129. counter = c->count - mod_64(d, c->count);
  130. break;
  131. }
  132. return counter;
  133. }
  134. static int pit_get_out(struct kvm *kvm, int channel)
  135. {
  136. struct kvm_kpit_channel_state *c =
  137. &kvm->arch.vpit->pit_state.channels[channel];
  138. s64 d, t;
  139. int out;
  140. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  141. t = kpit_elapsed(kvm, c, channel);
  142. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  143. switch (c->mode) {
  144. default:
  145. case 0:
  146. out = (d >= c->count);
  147. break;
  148. case 1:
  149. out = (d < c->count);
  150. break;
  151. case 2:
  152. out = ((mod_64(d, c->count) == 0) && (d != 0));
  153. break;
  154. case 3:
  155. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  156. break;
  157. case 4:
  158. case 5:
  159. out = (d == c->count);
  160. break;
  161. }
  162. return out;
  163. }
  164. static void pit_latch_count(struct kvm *kvm, int channel)
  165. {
  166. struct kvm_kpit_channel_state *c =
  167. &kvm->arch.vpit->pit_state.channels[channel];
  168. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  169. if (!c->count_latched) {
  170. c->latched_count = pit_get_count(kvm, channel);
  171. c->count_latched = c->rw_mode;
  172. }
  173. }
  174. static void pit_latch_status(struct kvm *kvm, int channel)
  175. {
  176. struct kvm_kpit_channel_state *c =
  177. &kvm->arch.vpit->pit_state.channels[channel];
  178. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  179. if (!c->status_latched) {
  180. /* TODO: Return NULL COUNT (bit 6). */
  181. c->status = ((pit_get_out(kvm, channel) << 7) |
  182. (c->rw_mode << 4) |
  183. (c->mode << 1) |
  184. c->bcd);
  185. c->status_latched = 1;
  186. }
  187. }
  188. static int __pit_timer_fn(struct kvm_kpit_state *ps)
  189. {
  190. struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
  191. struct kvm_kpit_timer *pt = &ps->pit_timer;
  192. if (!atomic_inc_and_test(&pt->pending))
  193. set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
  194. if (!pt->reinject)
  195. atomic_set(&pt->pending, 1);
  196. if (vcpu0 && waitqueue_active(&vcpu0->wq))
  197. wake_up_interruptible(&vcpu0->wq);
  198. hrtimer_add_expires_ns(&pt->timer, pt->period);
  199. return (pt->period == 0 ? 0 : 1);
  200. }
  201. int pit_has_pending_timer(struct kvm_vcpu *vcpu)
  202. {
  203. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  204. if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
  205. return atomic_read(&pit->pit_state.pit_timer.pending);
  206. return 0;
  207. }
  208. static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
  209. {
  210. struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
  211. irq_ack_notifier);
  212. spin_lock(&ps->inject_lock);
  213. if (atomic_dec_return(&ps->pit_timer.pending) < 0)
  214. atomic_inc(&ps->pit_timer.pending);
  215. ps->irq_ack = 1;
  216. spin_unlock(&ps->inject_lock);
  217. }
  218. static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
  219. {
  220. struct kvm_kpit_state *ps;
  221. int restart_timer = 0;
  222. ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
  223. restart_timer = __pit_timer_fn(ps);
  224. if (restart_timer)
  225. return HRTIMER_RESTART;
  226. else
  227. return HRTIMER_NORESTART;
  228. }
  229. void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
  230. {
  231. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  232. struct hrtimer *timer;
  233. if (vcpu->vcpu_id != 0 || !pit)
  234. return;
  235. timer = &pit->pit_state.pit_timer.timer;
  236. if (hrtimer_cancel(timer))
  237. hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
  238. }
  239. static void destroy_pit_timer(struct kvm_kpit_timer *pt)
  240. {
  241. pr_debug("pit: execute del timer!\n");
  242. hrtimer_cancel(&pt->timer);
  243. }
  244. static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
  245. {
  246. struct kvm_kpit_timer *pt = &ps->pit_timer;
  247. s64 interval;
  248. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  249. pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
  250. /* TODO The new value only affected after the retriggered */
  251. hrtimer_cancel(&pt->timer);
  252. pt->period = (is_period == 0) ? 0 : interval;
  253. pt->timer.function = pit_timer_fn;
  254. atomic_set(&pt->pending, 0);
  255. ps->irq_ack = 1;
  256. hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
  257. HRTIMER_MODE_ABS);
  258. }
  259. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  260. {
  261. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  262. WARN_ON(!mutex_is_locked(&ps->lock));
  263. pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
  264. /*
  265. * Though spec said the state of 8254 is undefined after power-up,
  266. * seems some tricky OS like Windows XP depends on IRQ0 interrupt
  267. * when booting up.
  268. * So here setting initialize rate for it, and not a specific number
  269. */
  270. if (val == 0)
  271. val = 0x10000;
  272. ps->channels[channel].count = val;
  273. if (channel != 0) {
  274. ps->channels[channel].count_load_time = ktime_get();
  275. return;
  276. }
  277. /* Two types of timer
  278. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  279. switch (ps->channels[0].mode) {
  280. case 1:
  281. /* FIXME: enhance mode 4 precision */
  282. case 4:
  283. create_pit_timer(ps, val, 0);
  284. break;
  285. case 2:
  286. case 3:
  287. create_pit_timer(ps, val, 1);
  288. break;
  289. default:
  290. destroy_pit_timer(&ps->pit_timer);
  291. }
  292. }
  293. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
  294. {
  295. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  296. pit_load_count(kvm, channel, val);
  297. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  298. }
  299. static void pit_ioport_write(struct kvm_io_device *this,
  300. gpa_t addr, int len, const void *data)
  301. {
  302. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  303. struct kvm_kpit_state *pit_state = &pit->pit_state;
  304. struct kvm *kvm = pit->kvm;
  305. int channel, access;
  306. struct kvm_kpit_channel_state *s;
  307. u32 val = *(u32 *) data;
  308. val &= 0xff;
  309. addr &= KVM_PIT_CHANNEL_MASK;
  310. mutex_lock(&pit_state->lock);
  311. if (val != 0)
  312. pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
  313. (unsigned int)addr, len, val);
  314. if (addr == 3) {
  315. channel = val >> 6;
  316. if (channel == 3) {
  317. /* Read-Back Command. */
  318. for (channel = 0; channel < 3; channel++) {
  319. s = &pit_state->channels[channel];
  320. if (val & (2 << channel)) {
  321. if (!(val & 0x20))
  322. pit_latch_count(kvm, channel);
  323. if (!(val & 0x10))
  324. pit_latch_status(kvm, channel);
  325. }
  326. }
  327. } else {
  328. /* Select Counter <channel>. */
  329. s = &pit_state->channels[channel];
  330. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  331. if (access == 0) {
  332. pit_latch_count(kvm, channel);
  333. } else {
  334. s->rw_mode = access;
  335. s->read_state = access;
  336. s->write_state = access;
  337. s->mode = (val >> 1) & 7;
  338. if (s->mode > 5)
  339. s->mode -= 4;
  340. s->bcd = val & 1;
  341. }
  342. }
  343. } else {
  344. /* Write Count. */
  345. s = &pit_state->channels[addr];
  346. switch (s->write_state) {
  347. default:
  348. case RW_STATE_LSB:
  349. pit_load_count(kvm, addr, val);
  350. break;
  351. case RW_STATE_MSB:
  352. pit_load_count(kvm, addr, val << 8);
  353. break;
  354. case RW_STATE_WORD0:
  355. s->write_latch = val;
  356. s->write_state = RW_STATE_WORD1;
  357. break;
  358. case RW_STATE_WORD1:
  359. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  360. s->write_state = RW_STATE_WORD0;
  361. break;
  362. }
  363. }
  364. mutex_unlock(&pit_state->lock);
  365. }
  366. static void pit_ioport_read(struct kvm_io_device *this,
  367. gpa_t addr, int len, void *data)
  368. {
  369. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  370. struct kvm_kpit_state *pit_state = &pit->pit_state;
  371. struct kvm *kvm = pit->kvm;
  372. int ret, count;
  373. struct kvm_kpit_channel_state *s;
  374. addr &= KVM_PIT_CHANNEL_MASK;
  375. s = &pit_state->channels[addr];
  376. mutex_lock(&pit_state->lock);
  377. if (s->status_latched) {
  378. s->status_latched = 0;
  379. ret = s->status;
  380. } else if (s->count_latched) {
  381. switch (s->count_latched) {
  382. default:
  383. case RW_STATE_LSB:
  384. ret = s->latched_count & 0xff;
  385. s->count_latched = 0;
  386. break;
  387. case RW_STATE_MSB:
  388. ret = s->latched_count >> 8;
  389. s->count_latched = 0;
  390. break;
  391. case RW_STATE_WORD0:
  392. ret = s->latched_count & 0xff;
  393. s->count_latched = RW_STATE_MSB;
  394. break;
  395. }
  396. } else {
  397. switch (s->read_state) {
  398. default:
  399. case RW_STATE_LSB:
  400. count = pit_get_count(kvm, addr);
  401. ret = count & 0xff;
  402. break;
  403. case RW_STATE_MSB:
  404. count = pit_get_count(kvm, addr);
  405. ret = (count >> 8) & 0xff;
  406. break;
  407. case RW_STATE_WORD0:
  408. count = pit_get_count(kvm, addr);
  409. ret = count & 0xff;
  410. s->read_state = RW_STATE_WORD1;
  411. break;
  412. case RW_STATE_WORD1:
  413. count = pit_get_count(kvm, addr);
  414. ret = (count >> 8) & 0xff;
  415. s->read_state = RW_STATE_WORD0;
  416. break;
  417. }
  418. }
  419. if (len > sizeof(ret))
  420. len = sizeof(ret);
  421. memcpy(data, (char *)&ret, len);
  422. mutex_unlock(&pit_state->lock);
  423. }
  424. static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
  425. int len, int is_write)
  426. {
  427. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  428. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  429. }
  430. static void speaker_ioport_write(struct kvm_io_device *this,
  431. gpa_t addr, int len, const void *data)
  432. {
  433. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  434. struct kvm_kpit_state *pit_state = &pit->pit_state;
  435. struct kvm *kvm = pit->kvm;
  436. u32 val = *(u32 *) data;
  437. mutex_lock(&pit_state->lock);
  438. pit_state->speaker_data_on = (val >> 1) & 1;
  439. pit_set_gate(kvm, 2, val & 1);
  440. mutex_unlock(&pit_state->lock);
  441. }
  442. static void speaker_ioport_read(struct kvm_io_device *this,
  443. gpa_t addr, int len, void *data)
  444. {
  445. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  446. struct kvm_kpit_state *pit_state = &pit->pit_state;
  447. struct kvm *kvm = pit->kvm;
  448. unsigned int refresh_clock;
  449. int ret;
  450. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  451. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  452. mutex_lock(&pit_state->lock);
  453. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  454. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  455. if (len > sizeof(ret))
  456. len = sizeof(ret);
  457. memcpy(data, (char *)&ret, len);
  458. mutex_unlock(&pit_state->lock);
  459. }
  460. static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
  461. int len, int is_write)
  462. {
  463. return (addr == KVM_SPEAKER_BASE_ADDRESS);
  464. }
  465. void kvm_pit_reset(struct kvm_pit *pit)
  466. {
  467. int i;
  468. struct kvm_kpit_channel_state *c;
  469. mutex_lock(&pit->pit_state.lock);
  470. for (i = 0; i < 3; i++) {
  471. c = &pit->pit_state.channels[i];
  472. c->mode = 0xff;
  473. c->gate = (i != 2);
  474. pit_load_count(pit->kvm, i, 0);
  475. }
  476. mutex_unlock(&pit->pit_state.lock);
  477. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  478. pit->pit_state.irq_ack = 1;
  479. }
  480. static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
  481. {
  482. struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
  483. if (!mask) {
  484. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  485. pit->pit_state.irq_ack = 1;
  486. }
  487. }
  488. struct kvm_pit *kvm_create_pit(struct kvm *kvm)
  489. {
  490. struct kvm_pit *pit;
  491. struct kvm_kpit_state *pit_state;
  492. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  493. if (!pit)
  494. return NULL;
  495. pit->irq_source_id = kvm_request_irq_source_id(kvm);
  496. if (pit->irq_source_id < 0) {
  497. kfree(pit);
  498. return NULL;
  499. }
  500. mutex_init(&pit->pit_state.lock);
  501. mutex_lock(&pit->pit_state.lock);
  502. spin_lock_init(&pit->pit_state.inject_lock);
  503. /* Initialize PIO device */
  504. pit->dev.read = pit_ioport_read;
  505. pit->dev.write = pit_ioport_write;
  506. pit->dev.in_range = pit_in_range;
  507. pit->dev.private = pit;
  508. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
  509. pit->speaker_dev.read = speaker_ioport_read;
  510. pit->speaker_dev.write = speaker_ioport_write;
  511. pit->speaker_dev.in_range = speaker_in_range;
  512. pit->speaker_dev.private = pit;
  513. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
  514. kvm->arch.vpit = pit;
  515. pit->kvm = kvm;
  516. pit_state = &pit->pit_state;
  517. pit_state->pit = pit;
  518. hrtimer_init(&pit_state->pit_timer.timer,
  519. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  520. pit_state->irq_ack_notifier.gsi = 0;
  521. pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
  522. kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
  523. pit_state->pit_timer.reinject = true;
  524. mutex_unlock(&pit->pit_state.lock);
  525. kvm_pit_reset(pit);
  526. pit->mask_notifier.func = pit_mask_notifer;
  527. kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
  528. return pit;
  529. }
  530. void kvm_free_pit(struct kvm *kvm)
  531. {
  532. struct hrtimer *timer;
  533. if (kvm->arch.vpit) {
  534. kvm_unregister_irq_mask_notifier(kvm, 0,
  535. &kvm->arch.vpit->mask_notifier);
  536. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  537. timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
  538. hrtimer_cancel(timer);
  539. kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
  540. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  541. kfree(kvm->arch.vpit);
  542. }
  543. }
  544. static void __inject_pit_timer_intr(struct kvm *kvm)
  545. {
  546. struct kvm_vcpu *vcpu;
  547. int i;
  548. mutex_lock(&kvm->lock);
  549. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
  550. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
  551. mutex_unlock(&kvm->lock);
  552. /*
  553. * Provides NMI watchdog support via Virtual Wire mode.
  554. * The route is: PIT -> PIC -> LVT0 in NMI mode.
  555. *
  556. * Note: Our Virtual Wire implementation is simplified, only
  557. * propagating PIT interrupts to all VCPUs when they have set
  558. * LVT0 to NMI delivery. Other PIC interrupts are just sent to
  559. * VCPU0, and only if its LVT0 is in EXTINT mode.
  560. */
  561. if (kvm->arch.vapics_in_nmi_mode > 0)
  562. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  563. vcpu = kvm->vcpus[i];
  564. if (vcpu)
  565. kvm_apic_nmi_wd_deliver(vcpu);
  566. }
  567. }
  568. void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
  569. {
  570. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  571. struct kvm *kvm = vcpu->kvm;
  572. struct kvm_kpit_state *ps;
  573. if (vcpu && pit) {
  574. int inject = 0;
  575. ps = &pit->pit_state;
  576. /* Try to inject pending interrupts when
  577. * last one has been acked.
  578. */
  579. spin_lock(&ps->inject_lock);
  580. if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
  581. ps->irq_ack = 0;
  582. inject = 1;
  583. }
  584. spin_unlock(&ps->inject_lock);
  585. if (inject)
  586. __inject_pit_timer_intr(kvm);
  587. }
  588. }