ll_rw_blk.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. /*
  33. * for max sense size
  34. */
  35. #include <scsi/scsi_cmnd.h>
  36. static void blk_unplug_work(struct work_struct *work);
  37. static void blk_unplug_timeout(unsigned long data);
  38. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  39. static void init_request_from_bio(struct request *req, struct bio *bio);
  40. static int __make_request(struct request_queue *q, struct bio *bio);
  41. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  42. static void blk_recalc_rq_segments(struct request *rq);
  43. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  44. struct bio *bio);
  45. /*
  46. * For the allocated request tables
  47. */
  48. static struct kmem_cache *request_cachep;
  49. /*
  50. * For queue allocation
  51. */
  52. static struct kmem_cache *requestq_cachep;
  53. /*
  54. * For io context allocations
  55. */
  56. static struct kmem_cache *iocontext_cachep;
  57. /*
  58. * Controlling structure to kblockd
  59. */
  60. static struct workqueue_struct *kblockd_workqueue;
  61. unsigned long blk_max_low_pfn, blk_max_pfn;
  62. EXPORT_SYMBOL(blk_max_low_pfn);
  63. EXPORT_SYMBOL(blk_max_pfn);
  64. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  65. /* Amount of time in which a process may batch requests */
  66. #define BLK_BATCH_TIME (HZ/50UL)
  67. /* Number of requests a "batching" process may submit */
  68. #define BLK_BATCH_REQ 32
  69. /*
  70. * Return the threshold (number of used requests) at which the queue is
  71. * considered to be congested. It include a little hysteresis to keep the
  72. * context switch rate down.
  73. */
  74. static inline int queue_congestion_on_threshold(struct request_queue *q)
  75. {
  76. return q->nr_congestion_on;
  77. }
  78. /*
  79. * The threshold at which a queue is considered to be uncongested
  80. */
  81. static inline int queue_congestion_off_threshold(struct request_queue *q)
  82. {
  83. return q->nr_congestion_off;
  84. }
  85. static void blk_queue_congestion_threshold(struct request_queue *q)
  86. {
  87. int nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  89. if (nr > q->nr_requests)
  90. nr = q->nr_requests;
  91. q->nr_congestion_on = nr;
  92. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  93. if (nr < 1)
  94. nr = 1;
  95. q->nr_congestion_off = nr;
  96. }
  97. /**
  98. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  99. * @bdev: device
  100. *
  101. * Locates the passed device's request queue and returns the address of its
  102. * backing_dev_info
  103. *
  104. * Will return NULL if the request queue cannot be located.
  105. */
  106. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  107. {
  108. struct backing_dev_info *ret = NULL;
  109. struct request_queue *q = bdev_get_queue(bdev);
  110. if (q)
  111. ret = &q->backing_dev_info;
  112. return ret;
  113. }
  114. EXPORT_SYMBOL(blk_get_backing_dev_info);
  115. /**
  116. * blk_queue_prep_rq - set a prepare_request function for queue
  117. * @q: queue
  118. * @pfn: prepare_request function
  119. *
  120. * It's possible for a queue to register a prepare_request callback which
  121. * is invoked before the request is handed to the request_fn. The goal of
  122. * the function is to prepare a request for I/O, it can be used to build a
  123. * cdb from the request data for instance.
  124. *
  125. */
  126. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  127. {
  128. q->prep_rq_fn = pfn;
  129. }
  130. EXPORT_SYMBOL(blk_queue_prep_rq);
  131. /**
  132. * blk_queue_merge_bvec - set a merge_bvec function for queue
  133. * @q: queue
  134. * @mbfn: merge_bvec_fn
  135. *
  136. * Usually queues have static limitations on the max sectors or segments that
  137. * we can put in a request. Stacking drivers may have some settings that
  138. * are dynamic, and thus we have to query the queue whether it is ok to
  139. * add a new bio_vec to a bio at a given offset or not. If the block device
  140. * has such limitations, it needs to register a merge_bvec_fn to control
  141. * the size of bio's sent to it. Note that a block device *must* allow a
  142. * single page to be added to an empty bio. The block device driver may want
  143. * to use the bio_split() function to deal with these bio's. By default
  144. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  145. * honored.
  146. */
  147. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  148. {
  149. q->merge_bvec_fn = mbfn;
  150. }
  151. EXPORT_SYMBOL(blk_queue_merge_bvec);
  152. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  153. {
  154. q->softirq_done_fn = fn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_softirq_done);
  157. /**
  158. * blk_queue_make_request - define an alternate make_request function for a device
  159. * @q: the request queue for the device to be affected
  160. * @mfn: the alternate make_request function
  161. *
  162. * Description:
  163. * The normal way for &struct bios to be passed to a device
  164. * driver is for them to be collected into requests on a request
  165. * queue, and then to allow the device driver to select requests
  166. * off that queue when it is ready. This works well for many block
  167. * devices. However some block devices (typically virtual devices
  168. * such as md or lvm) do not benefit from the processing on the
  169. * request queue, and are served best by having the requests passed
  170. * directly to them. This can be achieved by providing a function
  171. * to blk_queue_make_request().
  172. *
  173. * Caveat:
  174. * The driver that does this *must* be able to deal appropriately
  175. * with buffers in "highmemory". This can be accomplished by either calling
  176. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  177. * blk_queue_bounce() to create a buffer in normal memory.
  178. **/
  179. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  180. {
  181. /*
  182. * set defaults
  183. */
  184. q->nr_requests = BLKDEV_MAX_RQ;
  185. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  186. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  187. q->make_request_fn = mfn;
  188. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  189. q->backing_dev_info.state = 0;
  190. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  191. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  192. blk_queue_hardsect_size(q, 512);
  193. blk_queue_dma_alignment(q, 511);
  194. blk_queue_congestion_threshold(q);
  195. q->nr_batching = BLK_BATCH_REQ;
  196. q->unplug_thresh = 4; /* hmm */
  197. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  198. if (q->unplug_delay == 0)
  199. q->unplug_delay = 1;
  200. INIT_WORK(&q->unplug_work, blk_unplug_work);
  201. q->unplug_timer.function = blk_unplug_timeout;
  202. q->unplug_timer.data = (unsigned long)q;
  203. /*
  204. * by default assume old behaviour and bounce for any highmem page
  205. */
  206. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  207. }
  208. EXPORT_SYMBOL(blk_queue_make_request);
  209. static void rq_init(struct request_queue *q, struct request *rq)
  210. {
  211. INIT_LIST_HEAD(&rq->queuelist);
  212. INIT_LIST_HEAD(&rq->donelist);
  213. rq->errors = 0;
  214. rq->bio = rq->biotail = NULL;
  215. INIT_HLIST_NODE(&rq->hash);
  216. RB_CLEAR_NODE(&rq->rb_node);
  217. rq->ioprio = 0;
  218. rq->buffer = NULL;
  219. rq->ref_count = 1;
  220. rq->q = q;
  221. rq->special = NULL;
  222. rq->data_len = 0;
  223. rq->data = NULL;
  224. rq->nr_phys_segments = 0;
  225. rq->sense = NULL;
  226. rq->end_io = NULL;
  227. rq->end_io_data = NULL;
  228. rq->completion_data = NULL;
  229. rq->next_rq = NULL;
  230. }
  231. /**
  232. * blk_queue_ordered - does this queue support ordered writes
  233. * @q: the request queue
  234. * @ordered: one of QUEUE_ORDERED_*
  235. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  236. *
  237. * Description:
  238. * For journalled file systems, doing ordered writes on a commit
  239. * block instead of explicitly doing wait_on_buffer (which is bad
  240. * for performance) can be a big win. Block drivers supporting this
  241. * feature should call this function and indicate so.
  242. *
  243. **/
  244. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  245. prepare_flush_fn *prepare_flush_fn)
  246. {
  247. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  248. prepare_flush_fn == NULL) {
  249. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  250. return -EINVAL;
  251. }
  252. if (ordered != QUEUE_ORDERED_NONE &&
  253. ordered != QUEUE_ORDERED_DRAIN &&
  254. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  255. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  256. ordered != QUEUE_ORDERED_TAG &&
  257. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  258. ordered != QUEUE_ORDERED_TAG_FUA) {
  259. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  260. return -EINVAL;
  261. }
  262. q->ordered = ordered;
  263. q->next_ordered = ordered;
  264. q->prepare_flush_fn = prepare_flush_fn;
  265. return 0;
  266. }
  267. EXPORT_SYMBOL(blk_queue_ordered);
  268. /*
  269. * Cache flushing for ordered writes handling
  270. */
  271. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  272. {
  273. if (!q->ordseq)
  274. return 0;
  275. return 1 << ffz(q->ordseq);
  276. }
  277. unsigned blk_ordered_req_seq(struct request *rq)
  278. {
  279. struct request_queue *q = rq->q;
  280. BUG_ON(q->ordseq == 0);
  281. if (rq == &q->pre_flush_rq)
  282. return QUEUE_ORDSEQ_PREFLUSH;
  283. if (rq == &q->bar_rq)
  284. return QUEUE_ORDSEQ_BAR;
  285. if (rq == &q->post_flush_rq)
  286. return QUEUE_ORDSEQ_POSTFLUSH;
  287. /*
  288. * !fs requests don't need to follow barrier ordering. Always
  289. * put them at the front. This fixes the following deadlock.
  290. *
  291. * http://thread.gmane.org/gmane.linux.kernel/537473
  292. */
  293. if (!blk_fs_request(rq))
  294. return QUEUE_ORDSEQ_DRAIN;
  295. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  296. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  297. return QUEUE_ORDSEQ_DRAIN;
  298. else
  299. return QUEUE_ORDSEQ_DONE;
  300. }
  301. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  302. {
  303. struct request *rq;
  304. int uptodate;
  305. if (error && !q->orderr)
  306. q->orderr = error;
  307. BUG_ON(q->ordseq & seq);
  308. q->ordseq |= seq;
  309. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  310. return;
  311. /*
  312. * Okay, sequence complete.
  313. */
  314. uptodate = 1;
  315. if (q->orderr)
  316. uptodate = q->orderr;
  317. q->ordseq = 0;
  318. rq = q->orig_bar_rq;
  319. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  320. end_that_request_last(rq, uptodate);
  321. }
  322. static void pre_flush_end_io(struct request *rq, int error)
  323. {
  324. elv_completed_request(rq->q, rq);
  325. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  326. }
  327. static void bar_end_io(struct request *rq, int error)
  328. {
  329. elv_completed_request(rq->q, rq);
  330. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  331. }
  332. static void post_flush_end_io(struct request *rq, int error)
  333. {
  334. elv_completed_request(rq->q, rq);
  335. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  336. }
  337. static void queue_flush(struct request_queue *q, unsigned which)
  338. {
  339. struct request *rq;
  340. rq_end_io_fn *end_io;
  341. if (which == QUEUE_ORDERED_PREFLUSH) {
  342. rq = &q->pre_flush_rq;
  343. end_io = pre_flush_end_io;
  344. } else {
  345. rq = &q->post_flush_rq;
  346. end_io = post_flush_end_io;
  347. }
  348. rq->cmd_flags = REQ_HARDBARRIER;
  349. rq_init(q, rq);
  350. rq->elevator_private = NULL;
  351. rq->elevator_private2 = NULL;
  352. rq->rq_disk = q->bar_rq.rq_disk;
  353. rq->end_io = end_io;
  354. q->prepare_flush_fn(q, rq);
  355. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  356. }
  357. static inline struct request *start_ordered(struct request_queue *q,
  358. struct request *rq)
  359. {
  360. q->orderr = 0;
  361. q->ordered = q->next_ordered;
  362. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  363. /*
  364. * Prep proxy barrier request.
  365. */
  366. blkdev_dequeue_request(rq);
  367. q->orig_bar_rq = rq;
  368. rq = &q->bar_rq;
  369. rq->cmd_flags = 0;
  370. rq_init(q, rq);
  371. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  372. rq->cmd_flags |= REQ_RW;
  373. if (q->ordered & QUEUE_ORDERED_FUA)
  374. rq->cmd_flags |= REQ_FUA;
  375. rq->elevator_private = NULL;
  376. rq->elevator_private2 = NULL;
  377. init_request_from_bio(rq, q->orig_bar_rq->bio);
  378. rq->end_io = bar_end_io;
  379. /*
  380. * Queue ordered sequence. As we stack them at the head, we
  381. * need to queue in reverse order. Note that we rely on that
  382. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  383. * request gets inbetween ordered sequence. If this request is
  384. * an empty barrier, we don't need to do a postflush ever since
  385. * there will be no data written between the pre and post flush.
  386. * Hence a single flush will suffice.
  387. */
  388. if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
  389. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  390. else
  391. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  392. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  393. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  394. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  395. rq = &q->pre_flush_rq;
  396. } else
  397. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  398. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  399. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  400. else
  401. rq = NULL;
  402. return rq;
  403. }
  404. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  405. {
  406. struct request *rq = *rqp;
  407. const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  408. if (!q->ordseq) {
  409. if (!is_barrier)
  410. return 1;
  411. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  412. *rqp = start_ordered(q, rq);
  413. return 1;
  414. } else {
  415. /*
  416. * This can happen when the queue switches to
  417. * ORDERED_NONE while this request is on it.
  418. */
  419. blkdev_dequeue_request(rq);
  420. end_that_request_first(rq, -EOPNOTSUPP,
  421. rq->hard_nr_sectors);
  422. end_that_request_last(rq, -EOPNOTSUPP);
  423. *rqp = NULL;
  424. return 0;
  425. }
  426. }
  427. /*
  428. * Ordered sequence in progress
  429. */
  430. /* Special requests are not subject to ordering rules. */
  431. if (!blk_fs_request(rq) &&
  432. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  433. return 1;
  434. if (q->ordered & QUEUE_ORDERED_TAG) {
  435. /* Ordered by tag. Blocking the next barrier is enough. */
  436. if (is_barrier && rq != &q->bar_rq)
  437. *rqp = NULL;
  438. } else {
  439. /* Ordered by draining. Wait for turn. */
  440. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  441. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  442. *rqp = NULL;
  443. }
  444. return 1;
  445. }
  446. static void req_bio_endio(struct request *rq, struct bio *bio,
  447. unsigned int nbytes, int error)
  448. {
  449. struct request_queue *q = rq->q;
  450. if (&q->bar_rq != rq) {
  451. if (error)
  452. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  453. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  454. error = -EIO;
  455. if (unlikely(nbytes > bio->bi_size)) {
  456. printk("%s: want %u bytes done, only %u left\n",
  457. __FUNCTION__, nbytes, bio->bi_size);
  458. nbytes = bio->bi_size;
  459. }
  460. bio->bi_size -= nbytes;
  461. bio->bi_sector += (nbytes >> 9);
  462. if (bio->bi_size == 0)
  463. bio_endio(bio, error);
  464. } else {
  465. /*
  466. * Okay, this is the barrier request in progress, just
  467. * record the error;
  468. */
  469. if (error && !q->orderr)
  470. q->orderr = error;
  471. }
  472. }
  473. /**
  474. * blk_queue_bounce_limit - set bounce buffer limit for queue
  475. * @q: the request queue for the device
  476. * @dma_addr: bus address limit
  477. *
  478. * Description:
  479. * Different hardware can have different requirements as to what pages
  480. * it can do I/O directly to. A low level driver can call
  481. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  482. * buffers for doing I/O to pages residing above @page.
  483. **/
  484. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  485. {
  486. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  487. int dma = 0;
  488. q->bounce_gfp = GFP_NOIO;
  489. #if BITS_PER_LONG == 64
  490. /* Assume anything <= 4GB can be handled by IOMMU.
  491. Actually some IOMMUs can handle everything, but I don't
  492. know of a way to test this here. */
  493. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  494. dma = 1;
  495. q->bounce_pfn = max_low_pfn;
  496. #else
  497. if (bounce_pfn < blk_max_low_pfn)
  498. dma = 1;
  499. q->bounce_pfn = bounce_pfn;
  500. #endif
  501. if (dma) {
  502. init_emergency_isa_pool();
  503. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  504. q->bounce_pfn = bounce_pfn;
  505. }
  506. }
  507. EXPORT_SYMBOL(blk_queue_bounce_limit);
  508. /**
  509. * blk_queue_max_sectors - set max sectors for a request for this queue
  510. * @q: the request queue for the device
  511. * @max_sectors: max sectors in the usual 512b unit
  512. *
  513. * Description:
  514. * Enables a low level driver to set an upper limit on the size of
  515. * received requests.
  516. **/
  517. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  518. {
  519. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  520. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  521. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  522. }
  523. if (BLK_DEF_MAX_SECTORS > max_sectors)
  524. q->max_hw_sectors = q->max_sectors = max_sectors;
  525. else {
  526. q->max_sectors = BLK_DEF_MAX_SECTORS;
  527. q->max_hw_sectors = max_sectors;
  528. }
  529. }
  530. EXPORT_SYMBOL(blk_queue_max_sectors);
  531. /**
  532. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  533. * @q: the request queue for the device
  534. * @max_segments: max number of segments
  535. *
  536. * Description:
  537. * Enables a low level driver to set an upper limit on the number of
  538. * physical data segments in a request. This would be the largest sized
  539. * scatter list the driver could handle.
  540. **/
  541. void blk_queue_max_phys_segments(struct request_queue *q,
  542. unsigned short max_segments)
  543. {
  544. if (!max_segments) {
  545. max_segments = 1;
  546. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  547. }
  548. q->max_phys_segments = max_segments;
  549. }
  550. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  551. /**
  552. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  553. * @q: the request queue for the device
  554. * @max_segments: max number of segments
  555. *
  556. * Description:
  557. * Enables a low level driver to set an upper limit on the number of
  558. * hw data segments in a request. This would be the largest number of
  559. * address/length pairs the host adapter can actually give as once
  560. * to the device.
  561. **/
  562. void blk_queue_max_hw_segments(struct request_queue *q,
  563. unsigned short max_segments)
  564. {
  565. if (!max_segments) {
  566. max_segments = 1;
  567. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  568. }
  569. q->max_hw_segments = max_segments;
  570. }
  571. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  572. /**
  573. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  574. * @q: the request queue for the device
  575. * @max_size: max size of segment in bytes
  576. *
  577. * Description:
  578. * Enables a low level driver to set an upper limit on the size of a
  579. * coalesced segment
  580. **/
  581. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  582. {
  583. if (max_size < PAGE_CACHE_SIZE) {
  584. max_size = PAGE_CACHE_SIZE;
  585. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  586. }
  587. q->max_segment_size = max_size;
  588. }
  589. EXPORT_SYMBOL(blk_queue_max_segment_size);
  590. /**
  591. * blk_queue_hardsect_size - set hardware sector size for the queue
  592. * @q: the request queue for the device
  593. * @size: the hardware sector size, in bytes
  594. *
  595. * Description:
  596. * This should typically be set to the lowest possible sector size
  597. * that the hardware can operate on (possible without reverting to
  598. * even internal read-modify-write operations). Usually the default
  599. * of 512 covers most hardware.
  600. **/
  601. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  602. {
  603. q->hardsect_size = size;
  604. }
  605. EXPORT_SYMBOL(blk_queue_hardsect_size);
  606. /*
  607. * Returns the minimum that is _not_ zero, unless both are zero.
  608. */
  609. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  610. /**
  611. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  612. * @t: the stacking driver (top)
  613. * @b: the underlying device (bottom)
  614. **/
  615. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  616. {
  617. /* zero is "infinity" */
  618. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  619. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  620. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  621. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  622. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  623. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  624. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  625. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  626. }
  627. EXPORT_SYMBOL(blk_queue_stack_limits);
  628. /**
  629. * blk_queue_segment_boundary - set boundary rules for segment merging
  630. * @q: the request queue for the device
  631. * @mask: the memory boundary mask
  632. **/
  633. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  634. {
  635. if (mask < PAGE_CACHE_SIZE - 1) {
  636. mask = PAGE_CACHE_SIZE - 1;
  637. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  638. }
  639. q->seg_boundary_mask = mask;
  640. }
  641. EXPORT_SYMBOL(blk_queue_segment_boundary);
  642. /**
  643. * blk_queue_dma_alignment - set dma length and memory alignment
  644. * @q: the request queue for the device
  645. * @mask: alignment mask
  646. *
  647. * description:
  648. * set required memory and length aligment for direct dma transactions.
  649. * this is used when buiding direct io requests for the queue.
  650. *
  651. **/
  652. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  653. {
  654. q->dma_alignment = mask;
  655. }
  656. EXPORT_SYMBOL(blk_queue_dma_alignment);
  657. /**
  658. * blk_queue_find_tag - find a request by its tag and queue
  659. * @q: The request queue for the device
  660. * @tag: The tag of the request
  661. *
  662. * Notes:
  663. * Should be used when a device returns a tag and you want to match
  664. * it with a request.
  665. *
  666. * no locks need be held.
  667. **/
  668. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  669. {
  670. return blk_map_queue_find_tag(q->queue_tags, tag);
  671. }
  672. EXPORT_SYMBOL(blk_queue_find_tag);
  673. /**
  674. * __blk_free_tags - release a given set of tag maintenance info
  675. * @bqt: the tag map to free
  676. *
  677. * Tries to free the specified @bqt@. Returns true if it was
  678. * actually freed and false if there are still references using it
  679. */
  680. static int __blk_free_tags(struct blk_queue_tag *bqt)
  681. {
  682. int retval;
  683. retval = atomic_dec_and_test(&bqt->refcnt);
  684. if (retval) {
  685. BUG_ON(bqt->busy);
  686. BUG_ON(!list_empty(&bqt->busy_list));
  687. kfree(bqt->tag_index);
  688. bqt->tag_index = NULL;
  689. kfree(bqt->tag_map);
  690. bqt->tag_map = NULL;
  691. kfree(bqt);
  692. }
  693. return retval;
  694. }
  695. /**
  696. * __blk_queue_free_tags - release tag maintenance info
  697. * @q: the request queue for the device
  698. *
  699. * Notes:
  700. * blk_cleanup_queue() will take care of calling this function, if tagging
  701. * has been used. So there's no need to call this directly.
  702. **/
  703. static void __blk_queue_free_tags(struct request_queue *q)
  704. {
  705. struct blk_queue_tag *bqt = q->queue_tags;
  706. if (!bqt)
  707. return;
  708. __blk_free_tags(bqt);
  709. q->queue_tags = NULL;
  710. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  711. }
  712. /**
  713. * blk_free_tags - release a given set of tag maintenance info
  714. * @bqt: the tag map to free
  715. *
  716. * For externally managed @bqt@ frees the map. Callers of this
  717. * function must guarantee to have released all the queues that
  718. * might have been using this tag map.
  719. */
  720. void blk_free_tags(struct blk_queue_tag *bqt)
  721. {
  722. if (unlikely(!__blk_free_tags(bqt)))
  723. BUG();
  724. }
  725. EXPORT_SYMBOL(blk_free_tags);
  726. /**
  727. * blk_queue_free_tags - release tag maintenance info
  728. * @q: the request queue for the device
  729. *
  730. * Notes:
  731. * This is used to disabled tagged queuing to a device, yet leave
  732. * queue in function.
  733. **/
  734. void blk_queue_free_tags(struct request_queue *q)
  735. {
  736. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  737. }
  738. EXPORT_SYMBOL(blk_queue_free_tags);
  739. static int
  740. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  741. {
  742. struct request **tag_index;
  743. unsigned long *tag_map;
  744. int nr_ulongs;
  745. if (q && depth > q->nr_requests * 2) {
  746. depth = q->nr_requests * 2;
  747. printk(KERN_ERR "%s: adjusted depth to %d\n",
  748. __FUNCTION__, depth);
  749. }
  750. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  751. if (!tag_index)
  752. goto fail;
  753. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  754. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  755. if (!tag_map)
  756. goto fail;
  757. tags->real_max_depth = depth;
  758. tags->max_depth = depth;
  759. tags->tag_index = tag_index;
  760. tags->tag_map = tag_map;
  761. return 0;
  762. fail:
  763. kfree(tag_index);
  764. return -ENOMEM;
  765. }
  766. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  767. int depth)
  768. {
  769. struct blk_queue_tag *tags;
  770. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  771. if (!tags)
  772. goto fail;
  773. if (init_tag_map(q, tags, depth))
  774. goto fail;
  775. INIT_LIST_HEAD(&tags->busy_list);
  776. tags->busy = 0;
  777. atomic_set(&tags->refcnt, 1);
  778. return tags;
  779. fail:
  780. kfree(tags);
  781. return NULL;
  782. }
  783. /**
  784. * blk_init_tags - initialize the tag info for an external tag map
  785. * @depth: the maximum queue depth supported
  786. * @tags: the tag to use
  787. **/
  788. struct blk_queue_tag *blk_init_tags(int depth)
  789. {
  790. return __blk_queue_init_tags(NULL, depth);
  791. }
  792. EXPORT_SYMBOL(blk_init_tags);
  793. /**
  794. * blk_queue_init_tags - initialize the queue tag info
  795. * @q: the request queue for the device
  796. * @depth: the maximum queue depth supported
  797. * @tags: the tag to use
  798. **/
  799. int blk_queue_init_tags(struct request_queue *q, int depth,
  800. struct blk_queue_tag *tags)
  801. {
  802. int rc;
  803. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  804. if (!tags && !q->queue_tags) {
  805. tags = __blk_queue_init_tags(q, depth);
  806. if (!tags)
  807. goto fail;
  808. } else if (q->queue_tags) {
  809. if ((rc = blk_queue_resize_tags(q, depth)))
  810. return rc;
  811. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  812. return 0;
  813. } else
  814. atomic_inc(&tags->refcnt);
  815. /*
  816. * assign it, all done
  817. */
  818. q->queue_tags = tags;
  819. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  820. return 0;
  821. fail:
  822. kfree(tags);
  823. return -ENOMEM;
  824. }
  825. EXPORT_SYMBOL(blk_queue_init_tags);
  826. /**
  827. * blk_queue_resize_tags - change the queueing depth
  828. * @q: the request queue for the device
  829. * @new_depth: the new max command queueing depth
  830. *
  831. * Notes:
  832. * Must be called with the queue lock held.
  833. **/
  834. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  835. {
  836. struct blk_queue_tag *bqt = q->queue_tags;
  837. struct request **tag_index;
  838. unsigned long *tag_map;
  839. int max_depth, nr_ulongs;
  840. if (!bqt)
  841. return -ENXIO;
  842. /*
  843. * if we already have large enough real_max_depth. just
  844. * adjust max_depth. *NOTE* as requests with tag value
  845. * between new_depth and real_max_depth can be in-flight, tag
  846. * map can not be shrunk blindly here.
  847. */
  848. if (new_depth <= bqt->real_max_depth) {
  849. bqt->max_depth = new_depth;
  850. return 0;
  851. }
  852. /*
  853. * Currently cannot replace a shared tag map with a new
  854. * one, so error out if this is the case
  855. */
  856. if (atomic_read(&bqt->refcnt) != 1)
  857. return -EBUSY;
  858. /*
  859. * save the old state info, so we can copy it back
  860. */
  861. tag_index = bqt->tag_index;
  862. tag_map = bqt->tag_map;
  863. max_depth = bqt->real_max_depth;
  864. if (init_tag_map(q, bqt, new_depth))
  865. return -ENOMEM;
  866. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  867. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  868. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  869. kfree(tag_index);
  870. kfree(tag_map);
  871. return 0;
  872. }
  873. EXPORT_SYMBOL(blk_queue_resize_tags);
  874. /**
  875. * blk_queue_end_tag - end tag operations for a request
  876. * @q: the request queue for the device
  877. * @rq: the request that has completed
  878. *
  879. * Description:
  880. * Typically called when end_that_request_first() returns 0, meaning
  881. * all transfers have been done for a request. It's important to call
  882. * this function before end_that_request_last(), as that will put the
  883. * request back on the free list thus corrupting the internal tag list.
  884. *
  885. * Notes:
  886. * queue lock must be held.
  887. **/
  888. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  889. {
  890. struct blk_queue_tag *bqt = q->queue_tags;
  891. int tag = rq->tag;
  892. BUG_ON(tag == -1);
  893. if (unlikely(tag >= bqt->real_max_depth))
  894. /*
  895. * This can happen after tag depth has been reduced.
  896. * FIXME: how about a warning or info message here?
  897. */
  898. return;
  899. list_del_init(&rq->queuelist);
  900. rq->cmd_flags &= ~REQ_QUEUED;
  901. rq->tag = -1;
  902. if (unlikely(bqt->tag_index[tag] == NULL))
  903. printk(KERN_ERR "%s: tag %d is missing\n",
  904. __FUNCTION__, tag);
  905. bqt->tag_index[tag] = NULL;
  906. /*
  907. * We use test_and_clear_bit's memory ordering properties here.
  908. * The tag_map bit acts as a lock for tag_index[bit], so we need
  909. * a barrer before clearing the bit (precisely: release semantics).
  910. * Could use clear_bit_unlock when it is merged.
  911. */
  912. if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
  913. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  914. __FUNCTION__, tag);
  915. return;
  916. }
  917. bqt->busy--;
  918. }
  919. EXPORT_SYMBOL(blk_queue_end_tag);
  920. /**
  921. * blk_queue_start_tag - find a free tag and assign it
  922. * @q: the request queue for the device
  923. * @rq: the block request that needs tagging
  924. *
  925. * Description:
  926. * This can either be used as a stand-alone helper, or possibly be
  927. * assigned as the queue &prep_rq_fn (in which case &struct request
  928. * automagically gets a tag assigned). Note that this function
  929. * assumes that any type of request can be queued! if this is not
  930. * true for your device, you must check the request type before
  931. * calling this function. The request will also be removed from
  932. * the request queue, so it's the drivers responsibility to readd
  933. * it if it should need to be restarted for some reason.
  934. *
  935. * Notes:
  936. * queue lock must be held.
  937. **/
  938. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  939. {
  940. struct blk_queue_tag *bqt = q->queue_tags;
  941. int tag;
  942. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  943. printk(KERN_ERR
  944. "%s: request %p for device [%s] already tagged %d",
  945. __FUNCTION__, rq,
  946. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  947. BUG();
  948. }
  949. /*
  950. * Protect against shared tag maps, as we may not have exclusive
  951. * access to the tag map.
  952. */
  953. do {
  954. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  955. if (tag >= bqt->max_depth)
  956. return 1;
  957. } while (test_and_set_bit(tag, bqt->tag_map));
  958. /*
  959. * We rely on test_and_set_bit providing lock memory ordering semantics
  960. * (could use test_and_set_bit_lock when it is merged).
  961. */
  962. rq->cmd_flags |= REQ_QUEUED;
  963. rq->tag = tag;
  964. bqt->tag_index[tag] = rq;
  965. blkdev_dequeue_request(rq);
  966. list_add(&rq->queuelist, &bqt->busy_list);
  967. bqt->busy++;
  968. return 0;
  969. }
  970. EXPORT_SYMBOL(blk_queue_start_tag);
  971. /**
  972. * blk_queue_invalidate_tags - invalidate all pending tags
  973. * @q: the request queue for the device
  974. *
  975. * Description:
  976. * Hardware conditions may dictate a need to stop all pending requests.
  977. * In this case, we will safely clear the block side of the tag queue and
  978. * readd all requests to the request queue in the right order.
  979. *
  980. * Notes:
  981. * queue lock must be held.
  982. **/
  983. void blk_queue_invalidate_tags(struct request_queue *q)
  984. {
  985. struct blk_queue_tag *bqt = q->queue_tags;
  986. struct list_head *tmp, *n;
  987. struct request *rq;
  988. list_for_each_safe(tmp, n, &bqt->busy_list) {
  989. rq = list_entry_rq(tmp);
  990. if (rq->tag == -1) {
  991. printk(KERN_ERR
  992. "%s: bad tag found on list\n", __FUNCTION__);
  993. list_del_init(&rq->queuelist);
  994. rq->cmd_flags &= ~REQ_QUEUED;
  995. } else
  996. blk_queue_end_tag(q, rq);
  997. rq->cmd_flags &= ~REQ_STARTED;
  998. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  999. }
  1000. }
  1001. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1002. void blk_dump_rq_flags(struct request *rq, char *msg)
  1003. {
  1004. int bit;
  1005. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1006. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1007. rq->cmd_flags);
  1008. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1009. rq->nr_sectors,
  1010. rq->current_nr_sectors);
  1011. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1012. if (blk_pc_request(rq)) {
  1013. printk("cdb: ");
  1014. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1015. printk("%02x ", rq->cmd[bit]);
  1016. printk("\n");
  1017. }
  1018. }
  1019. EXPORT_SYMBOL(blk_dump_rq_flags);
  1020. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1021. {
  1022. struct request rq;
  1023. struct bio *nxt = bio->bi_next;
  1024. rq.q = q;
  1025. rq.bio = rq.biotail = bio;
  1026. bio->bi_next = NULL;
  1027. blk_recalc_rq_segments(&rq);
  1028. bio->bi_next = nxt;
  1029. bio->bi_phys_segments = rq.nr_phys_segments;
  1030. bio->bi_hw_segments = rq.nr_hw_segments;
  1031. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1032. }
  1033. EXPORT_SYMBOL(blk_recount_segments);
  1034. static void blk_recalc_rq_segments(struct request *rq)
  1035. {
  1036. int nr_phys_segs;
  1037. int nr_hw_segs;
  1038. unsigned int phys_size;
  1039. unsigned int hw_size;
  1040. struct bio_vec *bv, *bvprv = NULL;
  1041. int seg_size;
  1042. int hw_seg_size;
  1043. int cluster;
  1044. struct req_iterator iter;
  1045. int high, highprv = 1;
  1046. struct request_queue *q = rq->q;
  1047. if (!rq->bio)
  1048. return;
  1049. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1050. hw_seg_size = seg_size = 0;
  1051. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1052. rq_for_each_segment(bv, rq, iter) {
  1053. /*
  1054. * the trick here is making sure that a high page is never
  1055. * considered part of another segment, since that might
  1056. * change with the bounce page.
  1057. */
  1058. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1059. if (high || highprv)
  1060. goto new_hw_segment;
  1061. if (cluster) {
  1062. if (seg_size + bv->bv_len > q->max_segment_size)
  1063. goto new_segment;
  1064. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1065. goto new_segment;
  1066. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1067. goto new_segment;
  1068. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1069. goto new_hw_segment;
  1070. seg_size += bv->bv_len;
  1071. hw_seg_size += bv->bv_len;
  1072. bvprv = bv;
  1073. continue;
  1074. }
  1075. new_segment:
  1076. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1077. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1078. hw_seg_size += bv->bv_len;
  1079. else {
  1080. new_hw_segment:
  1081. if (nr_hw_segs == 1 &&
  1082. hw_seg_size > rq->bio->bi_hw_front_size)
  1083. rq->bio->bi_hw_front_size = hw_seg_size;
  1084. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1085. nr_hw_segs++;
  1086. }
  1087. nr_phys_segs++;
  1088. bvprv = bv;
  1089. seg_size = bv->bv_len;
  1090. highprv = high;
  1091. }
  1092. if (nr_hw_segs == 1 &&
  1093. hw_seg_size > rq->bio->bi_hw_front_size)
  1094. rq->bio->bi_hw_front_size = hw_seg_size;
  1095. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1096. rq->biotail->bi_hw_back_size = hw_seg_size;
  1097. rq->nr_phys_segments = nr_phys_segs;
  1098. rq->nr_hw_segments = nr_hw_segs;
  1099. }
  1100. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1101. struct bio *nxt)
  1102. {
  1103. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1104. return 0;
  1105. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1106. return 0;
  1107. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1108. return 0;
  1109. /*
  1110. * bio and nxt are contigous in memory, check if the queue allows
  1111. * these two to be merged into one
  1112. */
  1113. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1114. return 1;
  1115. return 0;
  1116. }
  1117. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1118. struct bio *nxt)
  1119. {
  1120. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1121. blk_recount_segments(q, bio);
  1122. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1123. blk_recount_segments(q, nxt);
  1124. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1125. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1126. return 0;
  1127. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1128. return 0;
  1129. return 1;
  1130. }
  1131. /*
  1132. * map a request to scatterlist, return number of sg entries setup. Caller
  1133. * must make sure sg can hold rq->nr_phys_segments entries
  1134. */
  1135. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1136. struct scatterlist *sg)
  1137. {
  1138. struct bio_vec *bvec, *bvprv;
  1139. struct req_iterator iter;
  1140. int nsegs, cluster;
  1141. nsegs = 0;
  1142. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1143. /*
  1144. * for each bio in rq
  1145. */
  1146. bvprv = NULL;
  1147. rq_for_each_segment(bvec, rq, iter) {
  1148. int nbytes = bvec->bv_len;
  1149. if (bvprv && cluster) {
  1150. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1151. goto new_segment;
  1152. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1153. goto new_segment;
  1154. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1155. goto new_segment;
  1156. sg[nsegs - 1].length += nbytes;
  1157. } else {
  1158. new_segment:
  1159. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1160. sg[nsegs].page = bvec->bv_page;
  1161. sg[nsegs].length = nbytes;
  1162. sg[nsegs].offset = bvec->bv_offset;
  1163. nsegs++;
  1164. }
  1165. bvprv = bvec;
  1166. } /* segments in rq */
  1167. return nsegs;
  1168. }
  1169. EXPORT_SYMBOL(blk_rq_map_sg);
  1170. /*
  1171. * the standard queue merge functions, can be overridden with device
  1172. * specific ones if so desired
  1173. */
  1174. static inline int ll_new_mergeable(struct request_queue *q,
  1175. struct request *req,
  1176. struct bio *bio)
  1177. {
  1178. int nr_phys_segs = bio_phys_segments(q, bio);
  1179. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1180. req->cmd_flags |= REQ_NOMERGE;
  1181. if (req == q->last_merge)
  1182. q->last_merge = NULL;
  1183. return 0;
  1184. }
  1185. /*
  1186. * A hw segment is just getting larger, bump just the phys
  1187. * counter.
  1188. */
  1189. req->nr_phys_segments += nr_phys_segs;
  1190. return 1;
  1191. }
  1192. static inline int ll_new_hw_segment(struct request_queue *q,
  1193. struct request *req,
  1194. struct bio *bio)
  1195. {
  1196. int nr_hw_segs = bio_hw_segments(q, bio);
  1197. int nr_phys_segs = bio_phys_segments(q, bio);
  1198. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1199. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1200. req->cmd_flags |= REQ_NOMERGE;
  1201. if (req == q->last_merge)
  1202. q->last_merge = NULL;
  1203. return 0;
  1204. }
  1205. /*
  1206. * This will form the start of a new hw segment. Bump both
  1207. * counters.
  1208. */
  1209. req->nr_hw_segments += nr_hw_segs;
  1210. req->nr_phys_segments += nr_phys_segs;
  1211. return 1;
  1212. }
  1213. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1214. struct bio *bio)
  1215. {
  1216. unsigned short max_sectors;
  1217. int len;
  1218. if (unlikely(blk_pc_request(req)))
  1219. max_sectors = q->max_hw_sectors;
  1220. else
  1221. max_sectors = q->max_sectors;
  1222. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1223. req->cmd_flags |= REQ_NOMERGE;
  1224. if (req == q->last_merge)
  1225. q->last_merge = NULL;
  1226. return 0;
  1227. }
  1228. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1229. blk_recount_segments(q, req->biotail);
  1230. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1231. blk_recount_segments(q, bio);
  1232. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1233. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1234. !BIOVEC_VIRT_OVERSIZE(len)) {
  1235. int mergeable = ll_new_mergeable(q, req, bio);
  1236. if (mergeable) {
  1237. if (req->nr_hw_segments == 1)
  1238. req->bio->bi_hw_front_size = len;
  1239. if (bio->bi_hw_segments == 1)
  1240. bio->bi_hw_back_size = len;
  1241. }
  1242. return mergeable;
  1243. }
  1244. return ll_new_hw_segment(q, req, bio);
  1245. }
  1246. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1247. struct bio *bio)
  1248. {
  1249. unsigned short max_sectors;
  1250. int len;
  1251. if (unlikely(blk_pc_request(req)))
  1252. max_sectors = q->max_hw_sectors;
  1253. else
  1254. max_sectors = q->max_sectors;
  1255. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1256. req->cmd_flags |= REQ_NOMERGE;
  1257. if (req == q->last_merge)
  1258. q->last_merge = NULL;
  1259. return 0;
  1260. }
  1261. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1262. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1263. blk_recount_segments(q, bio);
  1264. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1265. blk_recount_segments(q, req->bio);
  1266. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1267. !BIOVEC_VIRT_OVERSIZE(len)) {
  1268. int mergeable = ll_new_mergeable(q, req, bio);
  1269. if (mergeable) {
  1270. if (bio->bi_hw_segments == 1)
  1271. bio->bi_hw_front_size = len;
  1272. if (req->nr_hw_segments == 1)
  1273. req->biotail->bi_hw_back_size = len;
  1274. }
  1275. return mergeable;
  1276. }
  1277. return ll_new_hw_segment(q, req, bio);
  1278. }
  1279. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1280. struct request *next)
  1281. {
  1282. int total_phys_segments;
  1283. int total_hw_segments;
  1284. /*
  1285. * First check if the either of the requests are re-queued
  1286. * requests. Can't merge them if they are.
  1287. */
  1288. if (req->special || next->special)
  1289. return 0;
  1290. /*
  1291. * Will it become too large?
  1292. */
  1293. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1294. return 0;
  1295. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1296. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1297. total_phys_segments--;
  1298. if (total_phys_segments > q->max_phys_segments)
  1299. return 0;
  1300. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1301. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1302. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1303. /*
  1304. * propagate the combined length to the end of the requests
  1305. */
  1306. if (req->nr_hw_segments == 1)
  1307. req->bio->bi_hw_front_size = len;
  1308. if (next->nr_hw_segments == 1)
  1309. next->biotail->bi_hw_back_size = len;
  1310. total_hw_segments--;
  1311. }
  1312. if (total_hw_segments > q->max_hw_segments)
  1313. return 0;
  1314. /* Merge is OK... */
  1315. req->nr_phys_segments = total_phys_segments;
  1316. req->nr_hw_segments = total_hw_segments;
  1317. return 1;
  1318. }
  1319. /*
  1320. * "plug" the device if there are no outstanding requests: this will
  1321. * force the transfer to start only after we have put all the requests
  1322. * on the list.
  1323. *
  1324. * This is called with interrupts off and no requests on the queue and
  1325. * with the queue lock held.
  1326. */
  1327. void blk_plug_device(struct request_queue *q)
  1328. {
  1329. WARN_ON(!irqs_disabled());
  1330. /*
  1331. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1332. * which will restart the queueing
  1333. */
  1334. if (blk_queue_stopped(q))
  1335. return;
  1336. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1337. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1338. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1339. }
  1340. }
  1341. EXPORT_SYMBOL(blk_plug_device);
  1342. /*
  1343. * remove the queue from the plugged list, if present. called with
  1344. * queue lock held and interrupts disabled.
  1345. */
  1346. int blk_remove_plug(struct request_queue *q)
  1347. {
  1348. WARN_ON(!irqs_disabled());
  1349. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1350. return 0;
  1351. del_timer(&q->unplug_timer);
  1352. return 1;
  1353. }
  1354. EXPORT_SYMBOL(blk_remove_plug);
  1355. /*
  1356. * remove the plug and let it rip..
  1357. */
  1358. void __generic_unplug_device(struct request_queue *q)
  1359. {
  1360. if (unlikely(blk_queue_stopped(q)))
  1361. return;
  1362. if (!blk_remove_plug(q))
  1363. return;
  1364. q->request_fn(q);
  1365. }
  1366. EXPORT_SYMBOL(__generic_unplug_device);
  1367. /**
  1368. * generic_unplug_device - fire a request queue
  1369. * @q: The &struct request_queue in question
  1370. *
  1371. * Description:
  1372. * Linux uses plugging to build bigger requests queues before letting
  1373. * the device have at them. If a queue is plugged, the I/O scheduler
  1374. * is still adding and merging requests on the queue. Once the queue
  1375. * gets unplugged, the request_fn defined for the queue is invoked and
  1376. * transfers started.
  1377. **/
  1378. void generic_unplug_device(struct request_queue *q)
  1379. {
  1380. spin_lock_irq(q->queue_lock);
  1381. __generic_unplug_device(q);
  1382. spin_unlock_irq(q->queue_lock);
  1383. }
  1384. EXPORT_SYMBOL(generic_unplug_device);
  1385. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1386. struct page *page)
  1387. {
  1388. struct request_queue *q = bdi->unplug_io_data;
  1389. /*
  1390. * devices don't necessarily have an ->unplug_fn defined
  1391. */
  1392. if (q->unplug_fn) {
  1393. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1394. q->rq.count[READ] + q->rq.count[WRITE]);
  1395. q->unplug_fn(q);
  1396. }
  1397. }
  1398. static void blk_unplug_work(struct work_struct *work)
  1399. {
  1400. struct request_queue *q =
  1401. container_of(work, struct request_queue, unplug_work);
  1402. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1403. q->rq.count[READ] + q->rq.count[WRITE]);
  1404. q->unplug_fn(q);
  1405. }
  1406. static void blk_unplug_timeout(unsigned long data)
  1407. {
  1408. struct request_queue *q = (struct request_queue *)data;
  1409. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1410. q->rq.count[READ] + q->rq.count[WRITE]);
  1411. kblockd_schedule_work(&q->unplug_work);
  1412. }
  1413. /**
  1414. * blk_start_queue - restart a previously stopped queue
  1415. * @q: The &struct request_queue in question
  1416. *
  1417. * Description:
  1418. * blk_start_queue() will clear the stop flag on the queue, and call
  1419. * the request_fn for the queue if it was in a stopped state when
  1420. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1421. **/
  1422. void blk_start_queue(struct request_queue *q)
  1423. {
  1424. WARN_ON(!irqs_disabled());
  1425. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1426. /*
  1427. * one level of recursion is ok and is much faster than kicking
  1428. * the unplug handling
  1429. */
  1430. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1431. q->request_fn(q);
  1432. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1433. } else {
  1434. blk_plug_device(q);
  1435. kblockd_schedule_work(&q->unplug_work);
  1436. }
  1437. }
  1438. EXPORT_SYMBOL(blk_start_queue);
  1439. /**
  1440. * blk_stop_queue - stop a queue
  1441. * @q: The &struct request_queue in question
  1442. *
  1443. * Description:
  1444. * The Linux block layer assumes that a block driver will consume all
  1445. * entries on the request queue when the request_fn strategy is called.
  1446. * Often this will not happen, because of hardware limitations (queue
  1447. * depth settings). If a device driver gets a 'queue full' response,
  1448. * or if it simply chooses not to queue more I/O at one point, it can
  1449. * call this function to prevent the request_fn from being called until
  1450. * the driver has signalled it's ready to go again. This happens by calling
  1451. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1452. **/
  1453. void blk_stop_queue(struct request_queue *q)
  1454. {
  1455. blk_remove_plug(q);
  1456. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1457. }
  1458. EXPORT_SYMBOL(blk_stop_queue);
  1459. /**
  1460. * blk_sync_queue - cancel any pending callbacks on a queue
  1461. * @q: the queue
  1462. *
  1463. * Description:
  1464. * The block layer may perform asynchronous callback activity
  1465. * on a queue, such as calling the unplug function after a timeout.
  1466. * A block device may call blk_sync_queue to ensure that any
  1467. * such activity is cancelled, thus allowing it to release resources
  1468. * that the callbacks might use. The caller must already have made sure
  1469. * that its ->make_request_fn will not re-add plugging prior to calling
  1470. * this function.
  1471. *
  1472. */
  1473. void blk_sync_queue(struct request_queue *q)
  1474. {
  1475. del_timer_sync(&q->unplug_timer);
  1476. }
  1477. EXPORT_SYMBOL(blk_sync_queue);
  1478. /**
  1479. * blk_run_queue - run a single device queue
  1480. * @q: The queue to run
  1481. */
  1482. void blk_run_queue(struct request_queue *q)
  1483. {
  1484. unsigned long flags;
  1485. spin_lock_irqsave(q->queue_lock, flags);
  1486. blk_remove_plug(q);
  1487. /*
  1488. * Only recurse once to avoid overrunning the stack, let the unplug
  1489. * handling reinvoke the handler shortly if we already got there.
  1490. */
  1491. if (!elv_queue_empty(q)) {
  1492. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1493. q->request_fn(q);
  1494. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1495. } else {
  1496. blk_plug_device(q);
  1497. kblockd_schedule_work(&q->unplug_work);
  1498. }
  1499. }
  1500. spin_unlock_irqrestore(q->queue_lock, flags);
  1501. }
  1502. EXPORT_SYMBOL(blk_run_queue);
  1503. /**
  1504. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1505. * @kobj: the kobj belonging of the request queue to be released
  1506. *
  1507. * Description:
  1508. * blk_cleanup_queue is the pair to blk_init_queue() or
  1509. * blk_queue_make_request(). It should be called when a request queue is
  1510. * being released; typically when a block device is being de-registered.
  1511. * Currently, its primary task it to free all the &struct request
  1512. * structures that were allocated to the queue and the queue itself.
  1513. *
  1514. * Caveat:
  1515. * Hopefully the low level driver will have finished any
  1516. * outstanding requests first...
  1517. **/
  1518. static void blk_release_queue(struct kobject *kobj)
  1519. {
  1520. struct request_queue *q =
  1521. container_of(kobj, struct request_queue, kobj);
  1522. struct request_list *rl = &q->rq;
  1523. blk_sync_queue(q);
  1524. if (rl->rq_pool)
  1525. mempool_destroy(rl->rq_pool);
  1526. if (q->queue_tags)
  1527. __blk_queue_free_tags(q);
  1528. blk_trace_shutdown(q);
  1529. kmem_cache_free(requestq_cachep, q);
  1530. }
  1531. void blk_put_queue(struct request_queue *q)
  1532. {
  1533. kobject_put(&q->kobj);
  1534. }
  1535. EXPORT_SYMBOL(blk_put_queue);
  1536. void blk_cleanup_queue(struct request_queue * q)
  1537. {
  1538. mutex_lock(&q->sysfs_lock);
  1539. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1540. mutex_unlock(&q->sysfs_lock);
  1541. if (q->elevator)
  1542. elevator_exit(q->elevator);
  1543. blk_put_queue(q);
  1544. }
  1545. EXPORT_SYMBOL(blk_cleanup_queue);
  1546. static int blk_init_free_list(struct request_queue *q)
  1547. {
  1548. struct request_list *rl = &q->rq;
  1549. rl->count[READ] = rl->count[WRITE] = 0;
  1550. rl->starved[READ] = rl->starved[WRITE] = 0;
  1551. rl->elvpriv = 0;
  1552. init_waitqueue_head(&rl->wait[READ]);
  1553. init_waitqueue_head(&rl->wait[WRITE]);
  1554. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1555. mempool_free_slab, request_cachep, q->node);
  1556. if (!rl->rq_pool)
  1557. return -ENOMEM;
  1558. return 0;
  1559. }
  1560. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1561. {
  1562. return blk_alloc_queue_node(gfp_mask, -1);
  1563. }
  1564. EXPORT_SYMBOL(blk_alloc_queue);
  1565. static struct kobj_type queue_ktype;
  1566. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1567. {
  1568. struct request_queue *q;
  1569. q = kmem_cache_alloc_node(requestq_cachep,
  1570. gfp_mask | __GFP_ZERO, node_id);
  1571. if (!q)
  1572. return NULL;
  1573. init_timer(&q->unplug_timer);
  1574. kobject_set_name(&q->kobj, "%s", "queue");
  1575. q->kobj.ktype = &queue_ktype;
  1576. kobject_init(&q->kobj);
  1577. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1578. q->backing_dev_info.unplug_io_data = q;
  1579. mutex_init(&q->sysfs_lock);
  1580. return q;
  1581. }
  1582. EXPORT_SYMBOL(blk_alloc_queue_node);
  1583. /**
  1584. * blk_init_queue - prepare a request queue for use with a block device
  1585. * @rfn: The function to be called to process requests that have been
  1586. * placed on the queue.
  1587. * @lock: Request queue spin lock
  1588. *
  1589. * Description:
  1590. * If a block device wishes to use the standard request handling procedures,
  1591. * which sorts requests and coalesces adjacent requests, then it must
  1592. * call blk_init_queue(). The function @rfn will be called when there
  1593. * are requests on the queue that need to be processed. If the device
  1594. * supports plugging, then @rfn may not be called immediately when requests
  1595. * are available on the queue, but may be called at some time later instead.
  1596. * Plugged queues are generally unplugged when a buffer belonging to one
  1597. * of the requests on the queue is needed, or due to memory pressure.
  1598. *
  1599. * @rfn is not required, or even expected, to remove all requests off the
  1600. * queue, but only as many as it can handle at a time. If it does leave
  1601. * requests on the queue, it is responsible for arranging that the requests
  1602. * get dealt with eventually.
  1603. *
  1604. * The queue spin lock must be held while manipulating the requests on the
  1605. * request queue; this lock will be taken also from interrupt context, so irq
  1606. * disabling is needed for it.
  1607. *
  1608. * Function returns a pointer to the initialized request queue, or NULL if
  1609. * it didn't succeed.
  1610. *
  1611. * Note:
  1612. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1613. * when the block device is deactivated (such as at module unload).
  1614. **/
  1615. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1616. {
  1617. return blk_init_queue_node(rfn, lock, -1);
  1618. }
  1619. EXPORT_SYMBOL(blk_init_queue);
  1620. struct request_queue *
  1621. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1622. {
  1623. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1624. if (!q)
  1625. return NULL;
  1626. q->node = node_id;
  1627. if (blk_init_free_list(q)) {
  1628. kmem_cache_free(requestq_cachep, q);
  1629. return NULL;
  1630. }
  1631. /*
  1632. * if caller didn't supply a lock, they get per-queue locking with
  1633. * our embedded lock
  1634. */
  1635. if (!lock) {
  1636. spin_lock_init(&q->__queue_lock);
  1637. lock = &q->__queue_lock;
  1638. }
  1639. q->request_fn = rfn;
  1640. q->prep_rq_fn = NULL;
  1641. q->unplug_fn = generic_unplug_device;
  1642. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1643. q->queue_lock = lock;
  1644. blk_queue_segment_boundary(q, 0xffffffff);
  1645. blk_queue_make_request(q, __make_request);
  1646. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1647. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1648. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1649. q->sg_reserved_size = INT_MAX;
  1650. /*
  1651. * all done
  1652. */
  1653. if (!elevator_init(q, NULL)) {
  1654. blk_queue_congestion_threshold(q);
  1655. return q;
  1656. }
  1657. blk_put_queue(q);
  1658. return NULL;
  1659. }
  1660. EXPORT_SYMBOL(blk_init_queue_node);
  1661. int blk_get_queue(struct request_queue *q)
  1662. {
  1663. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1664. kobject_get(&q->kobj);
  1665. return 0;
  1666. }
  1667. return 1;
  1668. }
  1669. EXPORT_SYMBOL(blk_get_queue);
  1670. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1671. {
  1672. if (rq->cmd_flags & REQ_ELVPRIV)
  1673. elv_put_request(q, rq);
  1674. mempool_free(rq, q->rq.rq_pool);
  1675. }
  1676. static struct request *
  1677. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1678. {
  1679. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1680. if (!rq)
  1681. return NULL;
  1682. /*
  1683. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1684. * see bio.h and blkdev.h
  1685. */
  1686. rq->cmd_flags = rw | REQ_ALLOCED;
  1687. if (priv) {
  1688. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1689. mempool_free(rq, q->rq.rq_pool);
  1690. return NULL;
  1691. }
  1692. rq->cmd_flags |= REQ_ELVPRIV;
  1693. }
  1694. return rq;
  1695. }
  1696. /*
  1697. * ioc_batching returns true if the ioc is a valid batching request and
  1698. * should be given priority access to a request.
  1699. */
  1700. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1701. {
  1702. if (!ioc)
  1703. return 0;
  1704. /*
  1705. * Make sure the process is able to allocate at least 1 request
  1706. * even if the batch times out, otherwise we could theoretically
  1707. * lose wakeups.
  1708. */
  1709. return ioc->nr_batch_requests == q->nr_batching ||
  1710. (ioc->nr_batch_requests > 0
  1711. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1712. }
  1713. /*
  1714. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1715. * will cause the process to be a "batcher" on all queues in the system. This
  1716. * is the behaviour we want though - once it gets a wakeup it should be given
  1717. * a nice run.
  1718. */
  1719. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1720. {
  1721. if (!ioc || ioc_batching(q, ioc))
  1722. return;
  1723. ioc->nr_batch_requests = q->nr_batching;
  1724. ioc->last_waited = jiffies;
  1725. }
  1726. static void __freed_request(struct request_queue *q, int rw)
  1727. {
  1728. struct request_list *rl = &q->rq;
  1729. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1730. blk_clear_queue_congested(q, rw);
  1731. if (rl->count[rw] + 1 <= q->nr_requests) {
  1732. if (waitqueue_active(&rl->wait[rw]))
  1733. wake_up(&rl->wait[rw]);
  1734. blk_clear_queue_full(q, rw);
  1735. }
  1736. }
  1737. /*
  1738. * A request has just been released. Account for it, update the full and
  1739. * congestion status, wake up any waiters. Called under q->queue_lock.
  1740. */
  1741. static void freed_request(struct request_queue *q, int rw, int priv)
  1742. {
  1743. struct request_list *rl = &q->rq;
  1744. rl->count[rw]--;
  1745. if (priv)
  1746. rl->elvpriv--;
  1747. __freed_request(q, rw);
  1748. if (unlikely(rl->starved[rw ^ 1]))
  1749. __freed_request(q, rw ^ 1);
  1750. }
  1751. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1752. /*
  1753. * Get a free request, queue_lock must be held.
  1754. * Returns NULL on failure, with queue_lock held.
  1755. * Returns !NULL on success, with queue_lock *not held*.
  1756. */
  1757. static struct request *get_request(struct request_queue *q, int rw_flags,
  1758. struct bio *bio, gfp_t gfp_mask)
  1759. {
  1760. struct request *rq = NULL;
  1761. struct request_list *rl = &q->rq;
  1762. struct io_context *ioc = NULL;
  1763. const int rw = rw_flags & 0x01;
  1764. int may_queue, priv;
  1765. may_queue = elv_may_queue(q, rw_flags);
  1766. if (may_queue == ELV_MQUEUE_NO)
  1767. goto rq_starved;
  1768. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1769. if (rl->count[rw]+1 >= q->nr_requests) {
  1770. ioc = current_io_context(GFP_ATOMIC, q->node);
  1771. /*
  1772. * The queue will fill after this allocation, so set
  1773. * it as full, and mark this process as "batching".
  1774. * This process will be allowed to complete a batch of
  1775. * requests, others will be blocked.
  1776. */
  1777. if (!blk_queue_full(q, rw)) {
  1778. ioc_set_batching(q, ioc);
  1779. blk_set_queue_full(q, rw);
  1780. } else {
  1781. if (may_queue != ELV_MQUEUE_MUST
  1782. && !ioc_batching(q, ioc)) {
  1783. /*
  1784. * The queue is full and the allocating
  1785. * process is not a "batcher", and not
  1786. * exempted by the IO scheduler
  1787. */
  1788. goto out;
  1789. }
  1790. }
  1791. }
  1792. blk_set_queue_congested(q, rw);
  1793. }
  1794. /*
  1795. * Only allow batching queuers to allocate up to 50% over the defined
  1796. * limit of requests, otherwise we could have thousands of requests
  1797. * allocated with any setting of ->nr_requests
  1798. */
  1799. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1800. goto out;
  1801. rl->count[rw]++;
  1802. rl->starved[rw] = 0;
  1803. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1804. if (priv)
  1805. rl->elvpriv++;
  1806. spin_unlock_irq(q->queue_lock);
  1807. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1808. if (unlikely(!rq)) {
  1809. /*
  1810. * Allocation failed presumably due to memory. Undo anything
  1811. * we might have messed up.
  1812. *
  1813. * Allocating task should really be put onto the front of the
  1814. * wait queue, but this is pretty rare.
  1815. */
  1816. spin_lock_irq(q->queue_lock);
  1817. freed_request(q, rw, priv);
  1818. /*
  1819. * in the very unlikely event that allocation failed and no
  1820. * requests for this direction was pending, mark us starved
  1821. * so that freeing of a request in the other direction will
  1822. * notice us. another possible fix would be to split the
  1823. * rq mempool into READ and WRITE
  1824. */
  1825. rq_starved:
  1826. if (unlikely(rl->count[rw] == 0))
  1827. rl->starved[rw] = 1;
  1828. goto out;
  1829. }
  1830. /*
  1831. * ioc may be NULL here, and ioc_batching will be false. That's
  1832. * OK, if the queue is under the request limit then requests need
  1833. * not count toward the nr_batch_requests limit. There will always
  1834. * be some limit enforced by BLK_BATCH_TIME.
  1835. */
  1836. if (ioc_batching(q, ioc))
  1837. ioc->nr_batch_requests--;
  1838. rq_init(q, rq);
  1839. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1840. out:
  1841. return rq;
  1842. }
  1843. /*
  1844. * No available requests for this queue, unplug the device and wait for some
  1845. * requests to become available.
  1846. *
  1847. * Called with q->queue_lock held, and returns with it unlocked.
  1848. */
  1849. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1850. struct bio *bio)
  1851. {
  1852. const int rw = rw_flags & 0x01;
  1853. struct request *rq;
  1854. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1855. while (!rq) {
  1856. DEFINE_WAIT(wait);
  1857. struct request_list *rl = &q->rq;
  1858. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1859. TASK_UNINTERRUPTIBLE);
  1860. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1861. if (!rq) {
  1862. struct io_context *ioc;
  1863. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1864. __generic_unplug_device(q);
  1865. spin_unlock_irq(q->queue_lock);
  1866. io_schedule();
  1867. /*
  1868. * After sleeping, we become a "batching" process and
  1869. * will be able to allocate at least one request, and
  1870. * up to a big batch of them for a small period time.
  1871. * See ioc_batching, ioc_set_batching
  1872. */
  1873. ioc = current_io_context(GFP_NOIO, q->node);
  1874. ioc_set_batching(q, ioc);
  1875. spin_lock_irq(q->queue_lock);
  1876. }
  1877. finish_wait(&rl->wait[rw], &wait);
  1878. }
  1879. return rq;
  1880. }
  1881. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1882. {
  1883. struct request *rq;
  1884. BUG_ON(rw != READ && rw != WRITE);
  1885. spin_lock_irq(q->queue_lock);
  1886. if (gfp_mask & __GFP_WAIT) {
  1887. rq = get_request_wait(q, rw, NULL);
  1888. } else {
  1889. rq = get_request(q, rw, NULL, gfp_mask);
  1890. if (!rq)
  1891. spin_unlock_irq(q->queue_lock);
  1892. }
  1893. /* q->queue_lock is unlocked at this point */
  1894. return rq;
  1895. }
  1896. EXPORT_SYMBOL(blk_get_request);
  1897. /**
  1898. * blk_start_queueing - initiate dispatch of requests to device
  1899. * @q: request queue to kick into gear
  1900. *
  1901. * This is basically a helper to remove the need to know whether a queue
  1902. * is plugged or not if someone just wants to initiate dispatch of requests
  1903. * for this queue.
  1904. *
  1905. * The queue lock must be held with interrupts disabled.
  1906. */
  1907. void blk_start_queueing(struct request_queue *q)
  1908. {
  1909. if (!blk_queue_plugged(q))
  1910. q->request_fn(q);
  1911. else
  1912. __generic_unplug_device(q);
  1913. }
  1914. EXPORT_SYMBOL(blk_start_queueing);
  1915. /**
  1916. * blk_requeue_request - put a request back on queue
  1917. * @q: request queue where request should be inserted
  1918. * @rq: request to be inserted
  1919. *
  1920. * Description:
  1921. * Drivers often keep queueing requests until the hardware cannot accept
  1922. * more, when that condition happens we need to put the request back
  1923. * on the queue. Must be called with queue lock held.
  1924. */
  1925. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1926. {
  1927. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1928. if (blk_rq_tagged(rq))
  1929. blk_queue_end_tag(q, rq);
  1930. elv_requeue_request(q, rq);
  1931. }
  1932. EXPORT_SYMBOL(blk_requeue_request);
  1933. /**
  1934. * blk_insert_request - insert a special request in to a request queue
  1935. * @q: request queue where request should be inserted
  1936. * @rq: request to be inserted
  1937. * @at_head: insert request at head or tail of queue
  1938. * @data: private data
  1939. *
  1940. * Description:
  1941. * Many block devices need to execute commands asynchronously, so they don't
  1942. * block the whole kernel from preemption during request execution. This is
  1943. * accomplished normally by inserting aritficial requests tagged as
  1944. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1945. * scheduled for actual execution by the request queue.
  1946. *
  1947. * We have the option of inserting the head or the tail of the queue.
  1948. * Typically we use the tail for new ioctls and so forth. We use the head
  1949. * of the queue for things like a QUEUE_FULL message from a device, or a
  1950. * host that is unable to accept a particular command.
  1951. */
  1952. void blk_insert_request(struct request_queue *q, struct request *rq,
  1953. int at_head, void *data)
  1954. {
  1955. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1956. unsigned long flags;
  1957. /*
  1958. * tell I/O scheduler that this isn't a regular read/write (ie it
  1959. * must not attempt merges on this) and that it acts as a soft
  1960. * barrier
  1961. */
  1962. rq->cmd_type = REQ_TYPE_SPECIAL;
  1963. rq->cmd_flags |= REQ_SOFTBARRIER;
  1964. rq->special = data;
  1965. spin_lock_irqsave(q->queue_lock, flags);
  1966. /*
  1967. * If command is tagged, release the tag
  1968. */
  1969. if (blk_rq_tagged(rq))
  1970. blk_queue_end_tag(q, rq);
  1971. drive_stat_acct(rq, rq->nr_sectors, 1);
  1972. __elv_add_request(q, rq, where, 0);
  1973. blk_start_queueing(q);
  1974. spin_unlock_irqrestore(q->queue_lock, flags);
  1975. }
  1976. EXPORT_SYMBOL(blk_insert_request);
  1977. static int __blk_rq_unmap_user(struct bio *bio)
  1978. {
  1979. int ret = 0;
  1980. if (bio) {
  1981. if (bio_flagged(bio, BIO_USER_MAPPED))
  1982. bio_unmap_user(bio);
  1983. else
  1984. ret = bio_uncopy_user(bio);
  1985. }
  1986. return ret;
  1987. }
  1988. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  1989. struct bio *bio)
  1990. {
  1991. if (!rq->bio)
  1992. blk_rq_bio_prep(q, rq, bio);
  1993. else if (!ll_back_merge_fn(q, rq, bio))
  1994. return -EINVAL;
  1995. else {
  1996. rq->biotail->bi_next = bio;
  1997. rq->biotail = bio;
  1998. rq->data_len += bio->bi_size;
  1999. }
  2000. return 0;
  2001. }
  2002. EXPORT_SYMBOL(blk_rq_append_bio);
  2003. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2004. void __user *ubuf, unsigned int len)
  2005. {
  2006. unsigned long uaddr;
  2007. struct bio *bio, *orig_bio;
  2008. int reading, ret;
  2009. reading = rq_data_dir(rq) == READ;
  2010. /*
  2011. * if alignment requirement is satisfied, map in user pages for
  2012. * direct dma. else, set up kernel bounce buffers
  2013. */
  2014. uaddr = (unsigned long) ubuf;
  2015. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2016. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2017. else
  2018. bio = bio_copy_user(q, uaddr, len, reading);
  2019. if (IS_ERR(bio))
  2020. return PTR_ERR(bio);
  2021. orig_bio = bio;
  2022. blk_queue_bounce(q, &bio);
  2023. /*
  2024. * We link the bounce buffer in and could have to traverse it
  2025. * later so we have to get a ref to prevent it from being freed
  2026. */
  2027. bio_get(bio);
  2028. ret = blk_rq_append_bio(q, rq, bio);
  2029. if (!ret)
  2030. return bio->bi_size;
  2031. /* if it was boucned we must call the end io function */
  2032. bio_endio(bio, 0);
  2033. __blk_rq_unmap_user(orig_bio);
  2034. bio_put(bio);
  2035. return ret;
  2036. }
  2037. /**
  2038. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2039. * @q: request queue where request should be inserted
  2040. * @rq: request structure to fill
  2041. * @ubuf: the user buffer
  2042. * @len: length of user data
  2043. *
  2044. * Description:
  2045. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2046. * a kernel bounce buffer is used.
  2047. *
  2048. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2049. * still in process context.
  2050. *
  2051. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2052. * before being submitted to the device, as pages mapped may be out of
  2053. * reach. It's the callers responsibility to make sure this happens. The
  2054. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2055. * unmapping.
  2056. */
  2057. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2058. void __user *ubuf, unsigned long len)
  2059. {
  2060. unsigned long bytes_read = 0;
  2061. struct bio *bio = NULL;
  2062. int ret;
  2063. if (len > (q->max_hw_sectors << 9))
  2064. return -EINVAL;
  2065. if (!len || !ubuf)
  2066. return -EINVAL;
  2067. while (bytes_read != len) {
  2068. unsigned long map_len, end, start;
  2069. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2070. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2071. >> PAGE_SHIFT;
  2072. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2073. /*
  2074. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2075. * pages. If this happens we just lower the requested
  2076. * mapping len by a page so that we can fit
  2077. */
  2078. if (end - start > BIO_MAX_PAGES)
  2079. map_len -= PAGE_SIZE;
  2080. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2081. if (ret < 0)
  2082. goto unmap_rq;
  2083. if (!bio)
  2084. bio = rq->bio;
  2085. bytes_read += ret;
  2086. ubuf += ret;
  2087. }
  2088. rq->buffer = rq->data = NULL;
  2089. return 0;
  2090. unmap_rq:
  2091. blk_rq_unmap_user(bio);
  2092. return ret;
  2093. }
  2094. EXPORT_SYMBOL(blk_rq_map_user);
  2095. /**
  2096. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2097. * @q: request queue where request should be inserted
  2098. * @rq: request to map data to
  2099. * @iov: pointer to the iovec
  2100. * @iov_count: number of elements in the iovec
  2101. * @len: I/O byte count
  2102. *
  2103. * Description:
  2104. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2105. * a kernel bounce buffer is used.
  2106. *
  2107. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2108. * still in process context.
  2109. *
  2110. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2111. * before being submitted to the device, as pages mapped may be out of
  2112. * reach. It's the callers responsibility to make sure this happens. The
  2113. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2114. * unmapping.
  2115. */
  2116. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2117. struct sg_iovec *iov, int iov_count, unsigned int len)
  2118. {
  2119. struct bio *bio;
  2120. if (!iov || iov_count <= 0)
  2121. return -EINVAL;
  2122. /* we don't allow misaligned data like bio_map_user() does. If the
  2123. * user is using sg, they're expected to know the alignment constraints
  2124. * and respect them accordingly */
  2125. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2126. if (IS_ERR(bio))
  2127. return PTR_ERR(bio);
  2128. if (bio->bi_size != len) {
  2129. bio_endio(bio, 0);
  2130. bio_unmap_user(bio);
  2131. return -EINVAL;
  2132. }
  2133. bio_get(bio);
  2134. blk_rq_bio_prep(q, rq, bio);
  2135. rq->buffer = rq->data = NULL;
  2136. return 0;
  2137. }
  2138. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2139. /**
  2140. * blk_rq_unmap_user - unmap a request with user data
  2141. * @bio: start of bio list
  2142. *
  2143. * Description:
  2144. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2145. * supply the original rq->bio from the blk_rq_map_user() return, since
  2146. * the io completion may have changed rq->bio.
  2147. */
  2148. int blk_rq_unmap_user(struct bio *bio)
  2149. {
  2150. struct bio *mapped_bio;
  2151. int ret = 0, ret2;
  2152. while (bio) {
  2153. mapped_bio = bio;
  2154. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2155. mapped_bio = bio->bi_private;
  2156. ret2 = __blk_rq_unmap_user(mapped_bio);
  2157. if (ret2 && !ret)
  2158. ret = ret2;
  2159. mapped_bio = bio;
  2160. bio = bio->bi_next;
  2161. bio_put(mapped_bio);
  2162. }
  2163. return ret;
  2164. }
  2165. EXPORT_SYMBOL(blk_rq_unmap_user);
  2166. /**
  2167. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2168. * @q: request queue where request should be inserted
  2169. * @rq: request to fill
  2170. * @kbuf: the kernel buffer
  2171. * @len: length of user data
  2172. * @gfp_mask: memory allocation flags
  2173. */
  2174. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2175. unsigned int len, gfp_t gfp_mask)
  2176. {
  2177. struct bio *bio;
  2178. if (len > (q->max_hw_sectors << 9))
  2179. return -EINVAL;
  2180. if (!len || !kbuf)
  2181. return -EINVAL;
  2182. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2183. if (IS_ERR(bio))
  2184. return PTR_ERR(bio);
  2185. if (rq_data_dir(rq) == WRITE)
  2186. bio->bi_rw |= (1 << BIO_RW);
  2187. blk_rq_bio_prep(q, rq, bio);
  2188. blk_queue_bounce(q, &rq->bio);
  2189. rq->buffer = rq->data = NULL;
  2190. return 0;
  2191. }
  2192. EXPORT_SYMBOL(blk_rq_map_kern);
  2193. /**
  2194. * blk_execute_rq_nowait - insert a request into queue for execution
  2195. * @q: queue to insert the request in
  2196. * @bd_disk: matching gendisk
  2197. * @rq: request to insert
  2198. * @at_head: insert request at head or tail of queue
  2199. * @done: I/O completion handler
  2200. *
  2201. * Description:
  2202. * Insert a fully prepared request at the back of the io scheduler queue
  2203. * for execution. Don't wait for completion.
  2204. */
  2205. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2206. struct request *rq, int at_head,
  2207. rq_end_io_fn *done)
  2208. {
  2209. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2210. rq->rq_disk = bd_disk;
  2211. rq->cmd_flags |= REQ_NOMERGE;
  2212. rq->end_io = done;
  2213. WARN_ON(irqs_disabled());
  2214. spin_lock_irq(q->queue_lock);
  2215. __elv_add_request(q, rq, where, 1);
  2216. __generic_unplug_device(q);
  2217. spin_unlock_irq(q->queue_lock);
  2218. }
  2219. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2220. /**
  2221. * blk_execute_rq - insert a request into queue for execution
  2222. * @q: queue to insert the request in
  2223. * @bd_disk: matching gendisk
  2224. * @rq: request to insert
  2225. * @at_head: insert request at head or tail of queue
  2226. *
  2227. * Description:
  2228. * Insert a fully prepared request at the back of the io scheduler queue
  2229. * for execution and wait for completion.
  2230. */
  2231. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2232. struct request *rq, int at_head)
  2233. {
  2234. DECLARE_COMPLETION_ONSTACK(wait);
  2235. char sense[SCSI_SENSE_BUFFERSIZE];
  2236. int err = 0;
  2237. /*
  2238. * we need an extra reference to the request, so we can look at
  2239. * it after io completion
  2240. */
  2241. rq->ref_count++;
  2242. if (!rq->sense) {
  2243. memset(sense, 0, sizeof(sense));
  2244. rq->sense = sense;
  2245. rq->sense_len = 0;
  2246. }
  2247. rq->end_io_data = &wait;
  2248. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2249. wait_for_completion(&wait);
  2250. if (rq->errors)
  2251. err = -EIO;
  2252. return err;
  2253. }
  2254. EXPORT_SYMBOL(blk_execute_rq);
  2255. static void bio_end_empty_barrier(struct bio *bio, int err)
  2256. {
  2257. if (err)
  2258. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2259. complete(bio->bi_private);
  2260. }
  2261. /**
  2262. * blkdev_issue_flush - queue a flush
  2263. * @bdev: blockdev to issue flush for
  2264. * @error_sector: error sector
  2265. *
  2266. * Description:
  2267. * Issue a flush for the block device in question. Caller can supply
  2268. * room for storing the error offset in case of a flush error, if they
  2269. * wish to. Caller must run wait_for_completion() on its own.
  2270. */
  2271. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2272. {
  2273. DECLARE_COMPLETION_ONSTACK(wait);
  2274. struct request_queue *q;
  2275. struct bio *bio;
  2276. int ret;
  2277. if (bdev->bd_disk == NULL)
  2278. return -ENXIO;
  2279. q = bdev_get_queue(bdev);
  2280. if (!q)
  2281. return -ENXIO;
  2282. bio = bio_alloc(GFP_KERNEL, 0);
  2283. if (!bio)
  2284. return -ENOMEM;
  2285. bio->bi_end_io = bio_end_empty_barrier;
  2286. bio->bi_private = &wait;
  2287. bio->bi_bdev = bdev;
  2288. submit_bio(1 << BIO_RW_BARRIER, bio);
  2289. wait_for_completion(&wait);
  2290. /*
  2291. * The driver must store the error location in ->bi_sector, if
  2292. * it supports it. For non-stacked drivers, this should be copied
  2293. * from rq->sector.
  2294. */
  2295. if (error_sector)
  2296. *error_sector = bio->bi_sector;
  2297. ret = 0;
  2298. if (!bio_flagged(bio, BIO_UPTODATE))
  2299. ret = -EIO;
  2300. bio_put(bio);
  2301. return ret;
  2302. }
  2303. EXPORT_SYMBOL(blkdev_issue_flush);
  2304. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2305. {
  2306. int rw = rq_data_dir(rq);
  2307. if (!blk_fs_request(rq) || !rq->rq_disk)
  2308. return;
  2309. if (!new_io) {
  2310. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2311. } else {
  2312. disk_round_stats(rq->rq_disk);
  2313. rq->rq_disk->in_flight++;
  2314. }
  2315. }
  2316. /*
  2317. * add-request adds a request to the linked list.
  2318. * queue lock is held and interrupts disabled, as we muck with the
  2319. * request queue list.
  2320. */
  2321. static inline void add_request(struct request_queue * q, struct request * req)
  2322. {
  2323. drive_stat_acct(req, req->nr_sectors, 1);
  2324. /*
  2325. * elevator indicated where it wants this request to be
  2326. * inserted at elevator_merge time
  2327. */
  2328. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2329. }
  2330. /*
  2331. * disk_round_stats() - Round off the performance stats on a struct
  2332. * disk_stats.
  2333. *
  2334. * The average IO queue length and utilisation statistics are maintained
  2335. * by observing the current state of the queue length and the amount of
  2336. * time it has been in this state for.
  2337. *
  2338. * Normally, that accounting is done on IO completion, but that can result
  2339. * in more than a second's worth of IO being accounted for within any one
  2340. * second, leading to >100% utilisation. To deal with that, we call this
  2341. * function to do a round-off before returning the results when reading
  2342. * /proc/diskstats. This accounts immediately for all queue usage up to
  2343. * the current jiffies and restarts the counters again.
  2344. */
  2345. void disk_round_stats(struct gendisk *disk)
  2346. {
  2347. unsigned long now = jiffies;
  2348. if (now == disk->stamp)
  2349. return;
  2350. if (disk->in_flight) {
  2351. __disk_stat_add(disk, time_in_queue,
  2352. disk->in_flight * (now - disk->stamp));
  2353. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2354. }
  2355. disk->stamp = now;
  2356. }
  2357. EXPORT_SYMBOL_GPL(disk_round_stats);
  2358. /*
  2359. * queue lock must be held
  2360. */
  2361. void __blk_put_request(struct request_queue *q, struct request *req)
  2362. {
  2363. if (unlikely(!q))
  2364. return;
  2365. if (unlikely(--req->ref_count))
  2366. return;
  2367. elv_completed_request(q, req);
  2368. /*
  2369. * Request may not have originated from ll_rw_blk. if not,
  2370. * it didn't come out of our reserved rq pools
  2371. */
  2372. if (req->cmd_flags & REQ_ALLOCED) {
  2373. int rw = rq_data_dir(req);
  2374. int priv = req->cmd_flags & REQ_ELVPRIV;
  2375. BUG_ON(!list_empty(&req->queuelist));
  2376. BUG_ON(!hlist_unhashed(&req->hash));
  2377. blk_free_request(q, req);
  2378. freed_request(q, rw, priv);
  2379. }
  2380. }
  2381. EXPORT_SYMBOL_GPL(__blk_put_request);
  2382. void blk_put_request(struct request *req)
  2383. {
  2384. unsigned long flags;
  2385. struct request_queue *q = req->q;
  2386. /*
  2387. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2388. * following if (q) test.
  2389. */
  2390. if (q) {
  2391. spin_lock_irqsave(q->queue_lock, flags);
  2392. __blk_put_request(q, req);
  2393. spin_unlock_irqrestore(q->queue_lock, flags);
  2394. }
  2395. }
  2396. EXPORT_SYMBOL(blk_put_request);
  2397. /**
  2398. * blk_end_sync_rq - executes a completion event on a request
  2399. * @rq: request to complete
  2400. * @error: end io status of the request
  2401. */
  2402. void blk_end_sync_rq(struct request *rq, int error)
  2403. {
  2404. struct completion *waiting = rq->end_io_data;
  2405. rq->end_io_data = NULL;
  2406. __blk_put_request(rq->q, rq);
  2407. /*
  2408. * complete last, if this is a stack request the process (and thus
  2409. * the rq pointer) could be invalid right after this complete()
  2410. */
  2411. complete(waiting);
  2412. }
  2413. EXPORT_SYMBOL(blk_end_sync_rq);
  2414. /*
  2415. * Has to be called with the request spinlock acquired
  2416. */
  2417. static int attempt_merge(struct request_queue *q, struct request *req,
  2418. struct request *next)
  2419. {
  2420. if (!rq_mergeable(req) || !rq_mergeable(next))
  2421. return 0;
  2422. /*
  2423. * not contiguous
  2424. */
  2425. if (req->sector + req->nr_sectors != next->sector)
  2426. return 0;
  2427. if (rq_data_dir(req) != rq_data_dir(next)
  2428. || req->rq_disk != next->rq_disk
  2429. || next->special)
  2430. return 0;
  2431. /*
  2432. * If we are allowed to merge, then append bio list
  2433. * from next to rq and release next. merge_requests_fn
  2434. * will have updated segment counts, update sector
  2435. * counts here.
  2436. */
  2437. if (!ll_merge_requests_fn(q, req, next))
  2438. return 0;
  2439. /*
  2440. * At this point we have either done a back merge
  2441. * or front merge. We need the smaller start_time of
  2442. * the merged requests to be the current request
  2443. * for accounting purposes.
  2444. */
  2445. if (time_after(req->start_time, next->start_time))
  2446. req->start_time = next->start_time;
  2447. req->biotail->bi_next = next->bio;
  2448. req->biotail = next->biotail;
  2449. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2450. elv_merge_requests(q, req, next);
  2451. if (req->rq_disk) {
  2452. disk_round_stats(req->rq_disk);
  2453. req->rq_disk->in_flight--;
  2454. }
  2455. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2456. __blk_put_request(q, next);
  2457. return 1;
  2458. }
  2459. static inline int attempt_back_merge(struct request_queue *q,
  2460. struct request *rq)
  2461. {
  2462. struct request *next = elv_latter_request(q, rq);
  2463. if (next)
  2464. return attempt_merge(q, rq, next);
  2465. return 0;
  2466. }
  2467. static inline int attempt_front_merge(struct request_queue *q,
  2468. struct request *rq)
  2469. {
  2470. struct request *prev = elv_former_request(q, rq);
  2471. if (prev)
  2472. return attempt_merge(q, prev, rq);
  2473. return 0;
  2474. }
  2475. static void init_request_from_bio(struct request *req, struct bio *bio)
  2476. {
  2477. req->cmd_type = REQ_TYPE_FS;
  2478. /*
  2479. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2480. */
  2481. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2482. req->cmd_flags |= REQ_FAILFAST;
  2483. /*
  2484. * REQ_BARRIER implies no merging, but lets make it explicit
  2485. */
  2486. if (unlikely(bio_barrier(bio)))
  2487. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2488. if (bio_sync(bio))
  2489. req->cmd_flags |= REQ_RW_SYNC;
  2490. if (bio_rw_meta(bio))
  2491. req->cmd_flags |= REQ_RW_META;
  2492. req->errors = 0;
  2493. req->hard_sector = req->sector = bio->bi_sector;
  2494. req->ioprio = bio_prio(bio);
  2495. req->start_time = jiffies;
  2496. blk_rq_bio_prep(req->q, req, bio);
  2497. }
  2498. static int __make_request(struct request_queue *q, struct bio *bio)
  2499. {
  2500. struct request *req;
  2501. int el_ret, nr_sectors, barrier, err;
  2502. const unsigned short prio = bio_prio(bio);
  2503. const int sync = bio_sync(bio);
  2504. int rw_flags;
  2505. nr_sectors = bio_sectors(bio);
  2506. /*
  2507. * low level driver can indicate that it wants pages above a
  2508. * certain limit bounced to low memory (ie for highmem, or even
  2509. * ISA dma in theory)
  2510. */
  2511. blk_queue_bounce(q, &bio);
  2512. barrier = bio_barrier(bio);
  2513. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2514. err = -EOPNOTSUPP;
  2515. goto end_io;
  2516. }
  2517. spin_lock_irq(q->queue_lock);
  2518. if (unlikely(barrier) || elv_queue_empty(q))
  2519. goto get_rq;
  2520. el_ret = elv_merge(q, &req, bio);
  2521. switch (el_ret) {
  2522. case ELEVATOR_BACK_MERGE:
  2523. BUG_ON(!rq_mergeable(req));
  2524. if (!ll_back_merge_fn(q, req, bio))
  2525. break;
  2526. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2527. req->biotail->bi_next = bio;
  2528. req->biotail = bio;
  2529. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2530. req->ioprio = ioprio_best(req->ioprio, prio);
  2531. drive_stat_acct(req, nr_sectors, 0);
  2532. if (!attempt_back_merge(q, req))
  2533. elv_merged_request(q, req, el_ret);
  2534. goto out;
  2535. case ELEVATOR_FRONT_MERGE:
  2536. BUG_ON(!rq_mergeable(req));
  2537. if (!ll_front_merge_fn(q, req, bio))
  2538. break;
  2539. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2540. bio->bi_next = req->bio;
  2541. req->bio = bio;
  2542. /*
  2543. * may not be valid. if the low level driver said
  2544. * it didn't need a bounce buffer then it better
  2545. * not touch req->buffer either...
  2546. */
  2547. req->buffer = bio_data(bio);
  2548. req->current_nr_sectors = bio_cur_sectors(bio);
  2549. req->hard_cur_sectors = req->current_nr_sectors;
  2550. req->sector = req->hard_sector = bio->bi_sector;
  2551. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2552. req->ioprio = ioprio_best(req->ioprio, prio);
  2553. drive_stat_acct(req, nr_sectors, 0);
  2554. if (!attempt_front_merge(q, req))
  2555. elv_merged_request(q, req, el_ret);
  2556. goto out;
  2557. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2558. default:
  2559. ;
  2560. }
  2561. get_rq:
  2562. /*
  2563. * This sync check and mask will be re-done in init_request_from_bio(),
  2564. * but we need to set it earlier to expose the sync flag to the
  2565. * rq allocator and io schedulers.
  2566. */
  2567. rw_flags = bio_data_dir(bio);
  2568. if (sync)
  2569. rw_flags |= REQ_RW_SYNC;
  2570. /*
  2571. * Grab a free request. This is might sleep but can not fail.
  2572. * Returns with the queue unlocked.
  2573. */
  2574. req = get_request_wait(q, rw_flags, bio);
  2575. /*
  2576. * After dropping the lock and possibly sleeping here, our request
  2577. * may now be mergeable after it had proven unmergeable (above).
  2578. * We don't worry about that case for efficiency. It won't happen
  2579. * often, and the elevators are able to handle it.
  2580. */
  2581. init_request_from_bio(req, bio);
  2582. spin_lock_irq(q->queue_lock);
  2583. if (elv_queue_empty(q))
  2584. blk_plug_device(q);
  2585. add_request(q, req);
  2586. out:
  2587. if (sync)
  2588. __generic_unplug_device(q);
  2589. spin_unlock_irq(q->queue_lock);
  2590. return 0;
  2591. end_io:
  2592. bio_endio(bio, err);
  2593. return 0;
  2594. }
  2595. /*
  2596. * If bio->bi_dev is a partition, remap the location
  2597. */
  2598. static inline void blk_partition_remap(struct bio *bio)
  2599. {
  2600. struct block_device *bdev = bio->bi_bdev;
  2601. if (bio_sectors(bio) && bdev != bdev->bd_contains) {
  2602. struct hd_struct *p = bdev->bd_part;
  2603. const int rw = bio_data_dir(bio);
  2604. p->sectors[rw] += bio_sectors(bio);
  2605. p->ios[rw]++;
  2606. bio->bi_sector += p->start_sect;
  2607. bio->bi_bdev = bdev->bd_contains;
  2608. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2609. bdev->bd_dev, bio->bi_sector,
  2610. bio->bi_sector - p->start_sect);
  2611. }
  2612. }
  2613. static void handle_bad_sector(struct bio *bio)
  2614. {
  2615. char b[BDEVNAME_SIZE];
  2616. printk(KERN_INFO "attempt to access beyond end of device\n");
  2617. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2618. bdevname(bio->bi_bdev, b),
  2619. bio->bi_rw,
  2620. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2621. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2622. set_bit(BIO_EOF, &bio->bi_flags);
  2623. }
  2624. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2625. static DECLARE_FAULT_ATTR(fail_make_request);
  2626. static int __init setup_fail_make_request(char *str)
  2627. {
  2628. return setup_fault_attr(&fail_make_request, str);
  2629. }
  2630. __setup("fail_make_request=", setup_fail_make_request);
  2631. static int should_fail_request(struct bio *bio)
  2632. {
  2633. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2634. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2635. return should_fail(&fail_make_request, bio->bi_size);
  2636. return 0;
  2637. }
  2638. static int __init fail_make_request_debugfs(void)
  2639. {
  2640. return init_fault_attr_dentries(&fail_make_request,
  2641. "fail_make_request");
  2642. }
  2643. late_initcall(fail_make_request_debugfs);
  2644. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2645. static inline int should_fail_request(struct bio *bio)
  2646. {
  2647. return 0;
  2648. }
  2649. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2650. /*
  2651. * Check whether this bio extends beyond the end of the device.
  2652. */
  2653. static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
  2654. {
  2655. sector_t maxsector;
  2656. if (!nr_sectors)
  2657. return 0;
  2658. /* Test device or partition size, when known. */
  2659. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2660. if (maxsector) {
  2661. sector_t sector = bio->bi_sector;
  2662. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2663. /*
  2664. * This may well happen - the kernel calls bread()
  2665. * without checking the size of the device, e.g., when
  2666. * mounting a device.
  2667. */
  2668. handle_bad_sector(bio);
  2669. return 1;
  2670. }
  2671. }
  2672. return 0;
  2673. }
  2674. /**
  2675. * generic_make_request: hand a buffer to its device driver for I/O
  2676. * @bio: The bio describing the location in memory and on the device.
  2677. *
  2678. * generic_make_request() is used to make I/O requests of block
  2679. * devices. It is passed a &struct bio, which describes the I/O that needs
  2680. * to be done.
  2681. *
  2682. * generic_make_request() does not return any status. The
  2683. * success/failure status of the request, along with notification of
  2684. * completion, is delivered asynchronously through the bio->bi_end_io
  2685. * function described (one day) else where.
  2686. *
  2687. * The caller of generic_make_request must make sure that bi_io_vec
  2688. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2689. * set to describe the device address, and the
  2690. * bi_end_io and optionally bi_private are set to describe how
  2691. * completion notification should be signaled.
  2692. *
  2693. * generic_make_request and the drivers it calls may use bi_next if this
  2694. * bio happens to be merged with someone else, and may change bi_dev and
  2695. * bi_sector for remaps as it sees fit. So the values of these fields
  2696. * should NOT be depended on after the call to generic_make_request.
  2697. */
  2698. static inline void __generic_make_request(struct bio *bio)
  2699. {
  2700. struct request_queue *q;
  2701. sector_t old_sector;
  2702. int ret, nr_sectors = bio_sectors(bio);
  2703. dev_t old_dev;
  2704. might_sleep();
  2705. if (bio_check_eod(bio, nr_sectors))
  2706. goto end_io;
  2707. /*
  2708. * Resolve the mapping until finished. (drivers are
  2709. * still free to implement/resolve their own stacking
  2710. * by explicitly returning 0)
  2711. *
  2712. * NOTE: we don't repeat the blk_size check for each new device.
  2713. * Stacking drivers are expected to know what they are doing.
  2714. */
  2715. old_sector = -1;
  2716. old_dev = 0;
  2717. do {
  2718. char b[BDEVNAME_SIZE];
  2719. q = bdev_get_queue(bio->bi_bdev);
  2720. if (!q) {
  2721. printk(KERN_ERR
  2722. "generic_make_request: Trying to access "
  2723. "nonexistent block-device %s (%Lu)\n",
  2724. bdevname(bio->bi_bdev, b),
  2725. (long long) bio->bi_sector);
  2726. end_io:
  2727. bio_endio(bio, -EIO);
  2728. break;
  2729. }
  2730. if (unlikely(nr_sectors > q->max_hw_sectors)) {
  2731. printk("bio too big device %s (%u > %u)\n",
  2732. bdevname(bio->bi_bdev, b),
  2733. bio_sectors(bio),
  2734. q->max_hw_sectors);
  2735. goto end_io;
  2736. }
  2737. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2738. goto end_io;
  2739. if (should_fail_request(bio))
  2740. goto end_io;
  2741. /*
  2742. * If this device has partitions, remap block n
  2743. * of partition p to block n+start(p) of the disk.
  2744. */
  2745. blk_partition_remap(bio);
  2746. if (old_sector != -1)
  2747. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2748. old_sector);
  2749. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2750. old_sector = bio->bi_sector;
  2751. old_dev = bio->bi_bdev->bd_dev;
  2752. if (bio_check_eod(bio, nr_sectors))
  2753. goto end_io;
  2754. ret = q->make_request_fn(q, bio);
  2755. } while (ret);
  2756. }
  2757. /*
  2758. * We only want one ->make_request_fn to be active at a time,
  2759. * else stack usage with stacked devices could be a problem.
  2760. * So use current->bio_{list,tail} to keep a list of requests
  2761. * submited by a make_request_fn function.
  2762. * current->bio_tail is also used as a flag to say if
  2763. * generic_make_request is currently active in this task or not.
  2764. * If it is NULL, then no make_request is active. If it is non-NULL,
  2765. * then a make_request is active, and new requests should be added
  2766. * at the tail
  2767. */
  2768. void generic_make_request(struct bio *bio)
  2769. {
  2770. if (current->bio_tail) {
  2771. /* make_request is active */
  2772. *(current->bio_tail) = bio;
  2773. bio->bi_next = NULL;
  2774. current->bio_tail = &bio->bi_next;
  2775. return;
  2776. }
  2777. /* following loop may be a bit non-obvious, and so deserves some
  2778. * explanation.
  2779. * Before entering the loop, bio->bi_next is NULL (as all callers
  2780. * ensure that) so we have a list with a single bio.
  2781. * We pretend that we have just taken it off a longer list, so
  2782. * we assign bio_list to the next (which is NULL) and bio_tail
  2783. * to &bio_list, thus initialising the bio_list of new bios to be
  2784. * added. __generic_make_request may indeed add some more bios
  2785. * through a recursive call to generic_make_request. If it
  2786. * did, we find a non-NULL value in bio_list and re-enter the loop
  2787. * from the top. In this case we really did just take the bio
  2788. * of the top of the list (no pretending) and so fixup bio_list and
  2789. * bio_tail or bi_next, and call into __generic_make_request again.
  2790. *
  2791. * The loop was structured like this to make only one call to
  2792. * __generic_make_request (which is important as it is large and
  2793. * inlined) and to keep the structure simple.
  2794. */
  2795. BUG_ON(bio->bi_next);
  2796. do {
  2797. current->bio_list = bio->bi_next;
  2798. if (bio->bi_next == NULL)
  2799. current->bio_tail = &current->bio_list;
  2800. else
  2801. bio->bi_next = NULL;
  2802. __generic_make_request(bio);
  2803. bio = current->bio_list;
  2804. } while (bio);
  2805. current->bio_tail = NULL; /* deactivate */
  2806. }
  2807. EXPORT_SYMBOL(generic_make_request);
  2808. /**
  2809. * submit_bio: submit a bio to the block device layer for I/O
  2810. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2811. * @bio: The &struct bio which describes the I/O
  2812. *
  2813. * submit_bio() is very similar in purpose to generic_make_request(), and
  2814. * uses that function to do most of the work. Both are fairly rough
  2815. * interfaces, @bio must be presetup and ready for I/O.
  2816. *
  2817. */
  2818. void submit_bio(int rw, struct bio *bio)
  2819. {
  2820. int count = bio_sectors(bio);
  2821. bio->bi_rw |= rw;
  2822. /*
  2823. * If it's a regular read/write or a barrier with data attached,
  2824. * go through the normal accounting stuff before submission.
  2825. */
  2826. if (!bio_empty_barrier(bio)) {
  2827. BIO_BUG_ON(!bio->bi_size);
  2828. BIO_BUG_ON(!bio->bi_io_vec);
  2829. if (rw & WRITE) {
  2830. count_vm_events(PGPGOUT, count);
  2831. } else {
  2832. task_io_account_read(bio->bi_size);
  2833. count_vm_events(PGPGIN, count);
  2834. }
  2835. if (unlikely(block_dump)) {
  2836. char b[BDEVNAME_SIZE];
  2837. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2838. current->comm, current->pid,
  2839. (rw & WRITE) ? "WRITE" : "READ",
  2840. (unsigned long long)bio->bi_sector,
  2841. bdevname(bio->bi_bdev,b));
  2842. }
  2843. }
  2844. generic_make_request(bio);
  2845. }
  2846. EXPORT_SYMBOL(submit_bio);
  2847. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2848. {
  2849. if (blk_fs_request(rq)) {
  2850. rq->hard_sector += nsect;
  2851. rq->hard_nr_sectors -= nsect;
  2852. /*
  2853. * Move the I/O submission pointers ahead if required.
  2854. */
  2855. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2856. (rq->sector <= rq->hard_sector)) {
  2857. rq->sector = rq->hard_sector;
  2858. rq->nr_sectors = rq->hard_nr_sectors;
  2859. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2860. rq->current_nr_sectors = rq->hard_cur_sectors;
  2861. rq->buffer = bio_data(rq->bio);
  2862. }
  2863. /*
  2864. * if total number of sectors is less than the first segment
  2865. * size, something has gone terribly wrong
  2866. */
  2867. if (rq->nr_sectors < rq->current_nr_sectors) {
  2868. printk("blk: request botched\n");
  2869. rq->nr_sectors = rq->current_nr_sectors;
  2870. }
  2871. }
  2872. }
  2873. static int __end_that_request_first(struct request *req, int uptodate,
  2874. int nr_bytes)
  2875. {
  2876. int total_bytes, bio_nbytes, error, next_idx = 0;
  2877. struct bio *bio;
  2878. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2879. /*
  2880. * extend uptodate bool to allow < 0 value to be direct io error
  2881. */
  2882. error = 0;
  2883. if (end_io_error(uptodate))
  2884. error = !uptodate ? -EIO : uptodate;
  2885. /*
  2886. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2887. * sense key with us all the way through
  2888. */
  2889. if (!blk_pc_request(req))
  2890. req->errors = 0;
  2891. if (!uptodate) {
  2892. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2893. printk("end_request: I/O error, dev %s, sector %llu\n",
  2894. req->rq_disk ? req->rq_disk->disk_name : "?",
  2895. (unsigned long long)req->sector);
  2896. }
  2897. if (blk_fs_request(req) && req->rq_disk) {
  2898. const int rw = rq_data_dir(req);
  2899. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2900. }
  2901. total_bytes = bio_nbytes = 0;
  2902. while ((bio = req->bio) != NULL) {
  2903. int nbytes;
  2904. /*
  2905. * For an empty barrier request, the low level driver must
  2906. * store a potential error location in ->sector. We pass
  2907. * that back up in ->bi_sector.
  2908. */
  2909. if (blk_empty_barrier(req))
  2910. bio->bi_sector = req->sector;
  2911. if (nr_bytes >= bio->bi_size) {
  2912. req->bio = bio->bi_next;
  2913. nbytes = bio->bi_size;
  2914. req_bio_endio(req, bio, nbytes, error);
  2915. next_idx = 0;
  2916. bio_nbytes = 0;
  2917. } else {
  2918. int idx = bio->bi_idx + next_idx;
  2919. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2920. blk_dump_rq_flags(req, "__end_that");
  2921. printk("%s: bio idx %d >= vcnt %d\n",
  2922. __FUNCTION__,
  2923. bio->bi_idx, bio->bi_vcnt);
  2924. break;
  2925. }
  2926. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2927. BIO_BUG_ON(nbytes > bio->bi_size);
  2928. /*
  2929. * not a complete bvec done
  2930. */
  2931. if (unlikely(nbytes > nr_bytes)) {
  2932. bio_nbytes += nr_bytes;
  2933. total_bytes += nr_bytes;
  2934. break;
  2935. }
  2936. /*
  2937. * advance to the next vector
  2938. */
  2939. next_idx++;
  2940. bio_nbytes += nbytes;
  2941. }
  2942. total_bytes += nbytes;
  2943. nr_bytes -= nbytes;
  2944. if ((bio = req->bio)) {
  2945. /*
  2946. * end more in this run, or just return 'not-done'
  2947. */
  2948. if (unlikely(nr_bytes <= 0))
  2949. break;
  2950. }
  2951. }
  2952. /*
  2953. * completely done
  2954. */
  2955. if (!req->bio)
  2956. return 0;
  2957. /*
  2958. * if the request wasn't completed, update state
  2959. */
  2960. if (bio_nbytes) {
  2961. req_bio_endio(req, bio, bio_nbytes, error);
  2962. bio->bi_idx += next_idx;
  2963. bio_iovec(bio)->bv_offset += nr_bytes;
  2964. bio_iovec(bio)->bv_len -= nr_bytes;
  2965. }
  2966. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2967. blk_recalc_rq_segments(req);
  2968. return 1;
  2969. }
  2970. /**
  2971. * end_that_request_first - end I/O on a request
  2972. * @req: the request being processed
  2973. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2974. * @nr_sectors: number of sectors to end I/O on
  2975. *
  2976. * Description:
  2977. * Ends I/O on a number of sectors attached to @req, and sets it up
  2978. * for the next range of segments (if any) in the cluster.
  2979. *
  2980. * Return:
  2981. * 0 - we are done with this request, call end_that_request_last()
  2982. * 1 - still buffers pending for this request
  2983. **/
  2984. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2985. {
  2986. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2987. }
  2988. EXPORT_SYMBOL(end_that_request_first);
  2989. /**
  2990. * end_that_request_chunk - end I/O on a request
  2991. * @req: the request being processed
  2992. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2993. * @nr_bytes: number of bytes to complete
  2994. *
  2995. * Description:
  2996. * Ends I/O on a number of bytes attached to @req, and sets it up
  2997. * for the next range of segments (if any). Like end_that_request_first(),
  2998. * but deals with bytes instead of sectors.
  2999. *
  3000. * Return:
  3001. * 0 - we are done with this request, call end_that_request_last()
  3002. * 1 - still buffers pending for this request
  3003. **/
  3004. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  3005. {
  3006. return __end_that_request_first(req, uptodate, nr_bytes);
  3007. }
  3008. EXPORT_SYMBOL(end_that_request_chunk);
  3009. /*
  3010. * splice the completion data to a local structure and hand off to
  3011. * process_completion_queue() to complete the requests
  3012. */
  3013. static void blk_done_softirq(struct softirq_action *h)
  3014. {
  3015. struct list_head *cpu_list, local_list;
  3016. local_irq_disable();
  3017. cpu_list = &__get_cpu_var(blk_cpu_done);
  3018. list_replace_init(cpu_list, &local_list);
  3019. local_irq_enable();
  3020. while (!list_empty(&local_list)) {
  3021. struct request *rq = list_entry(local_list.next, struct request, donelist);
  3022. list_del_init(&rq->donelist);
  3023. rq->q->softirq_done_fn(rq);
  3024. }
  3025. }
  3026. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  3027. void *hcpu)
  3028. {
  3029. /*
  3030. * If a CPU goes away, splice its entries to the current CPU
  3031. * and trigger a run of the softirq
  3032. */
  3033. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3034. int cpu = (unsigned long) hcpu;
  3035. local_irq_disable();
  3036. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3037. &__get_cpu_var(blk_cpu_done));
  3038. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3039. local_irq_enable();
  3040. }
  3041. return NOTIFY_OK;
  3042. }
  3043. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3044. .notifier_call = blk_cpu_notify,
  3045. };
  3046. /**
  3047. * blk_complete_request - end I/O on a request
  3048. * @req: the request being processed
  3049. *
  3050. * Description:
  3051. * Ends all I/O on a request. It does not handle partial completions,
  3052. * unless the driver actually implements this in its completion callback
  3053. * through requeueing. The actual completion happens out-of-order,
  3054. * through a softirq handler. The user must have registered a completion
  3055. * callback through blk_queue_softirq_done().
  3056. **/
  3057. void blk_complete_request(struct request *req)
  3058. {
  3059. struct list_head *cpu_list;
  3060. unsigned long flags;
  3061. BUG_ON(!req->q->softirq_done_fn);
  3062. local_irq_save(flags);
  3063. cpu_list = &__get_cpu_var(blk_cpu_done);
  3064. list_add_tail(&req->donelist, cpu_list);
  3065. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3066. local_irq_restore(flags);
  3067. }
  3068. EXPORT_SYMBOL(blk_complete_request);
  3069. /*
  3070. * queue lock must be held
  3071. */
  3072. void end_that_request_last(struct request *req, int uptodate)
  3073. {
  3074. struct gendisk *disk = req->rq_disk;
  3075. int error;
  3076. /*
  3077. * extend uptodate bool to allow < 0 value to be direct io error
  3078. */
  3079. error = 0;
  3080. if (end_io_error(uptodate))
  3081. error = !uptodate ? -EIO : uptodate;
  3082. if (unlikely(laptop_mode) && blk_fs_request(req))
  3083. laptop_io_completion();
  3084. /*
  3085. * Account IO completion. bar_rq isn't accounted as a normal
  3086. * IO on queueing nor completion. Accounting the containing
  3087. * request is enough.
  3088. */
  3089. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3090. unsigned long duration = jiffies - req->start_time;
  3091. const int rw = rq_data_dir(req);
  3092. __disk_stat_inc(disk, ios[rw]);
  3093. __disk_stat_add(disk, ticks[rw], duration);
  3094. disk_round_stats(disk);
  3095. disk->in_flight--;
  3096. }
  3097. if (req->end_io)
  3098. req->end_io(req, error);
  3099. else
  3100. __blk_put_request(req->q, req);
  3101. }
  3102. EXPORT_SYMBOL(end_that_request_last);
  3103. static inline void __end_request(struct request *rq, int uptodate,
  3104. unsigned int nr_bytes, int dequeue)
  3105. {
  3106. if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
  3107. if (dequeue)
  3108. blkdev_dequeue_request(rq);
  3109. add_disk_randomness(rq->rq_disk);
  3110. end_that_request_last(rq, uptodate);
  3111. }
  3112. }
  3113. static unsigned int rq_byte_size(struct request *rq)
  3114. {
  3115. if (blk_fs_request(rq))
  3116. return rq->hard_nr_sectors << 9;
  3117. return rq->data_len;
  3118. }
  3119. /**
  3120. * end_queued_request - end all I/O on a queued request
  3121. * @rq: the request being processed
  3122. * @uptodate: error value or 0/1 uptodate flag
  3123. *
  3124. * Description:
  3125. * Ends all I/O on a request, and removes it from the block layer queues.
  3126. * Not suitable for normal IO completion, unless the driver still has
  3127. * the request attached to the block layer.
  3128. *
  3129. **/
  3130. void end_queued_request(struct request *rq, int uptodate)
  3131. {
  3132. __end_request(rq, uptodate, rq_byte_size(rq), 1);
  3133. }
  3134. EXPORT_SYMBOL(end_queued_request);
  3135. /**
  3136. * end_dequeued_request - end all I/O on a dequeued request
  3137. * @rq: the request being processed
  3138. * @uptodate: error value or 0/1 uptodate flag
  3139. *
  3140. * Description:
  3141. * Ends all I/O on a request. The request must already have been
  3142. * dequeued using blkdev_dequeue_request(), as is normally the case
  3143. * for most drivers.
  3144. *
  3145. **/
  3146. void end_dequeued_request(struct request *rq, int uptodate)
  3147. {
  3148. __end_request(rq, uptodate, rq_byte_size(rq), 0);
  3149. }
  3150. EXPORT_SYMBOL(end_dequeued_request);
  3151. /**
  3152. * end_request - end I/O on the current segment of the request
  3153. * @rq: the request being processed
  3154. * @uptodate: error value or 0/1 uptodate flag
  3155. *
  3156. * Description:
  3157. * Ends I/O on the current segment of a request. If that is the only
  3158. * remaining segment, the request is also completed and freed.
  3159. *
  3160. * This is a remnant of how older block drivers handled IO completions.
  3161. * Modern drivers typically end IO on the full request in one go, unless
  3162. * they have a residual value to account for. For that case this function
  3163. * isn't really useful, unless the residual just happens to be the
  3164. * full current segment. In other words, don't use this function in new
  3165. * code. Either use end_request_completely(), or the
  3166. * end_that_request_chunk() (along with end_that_request_last()) for
  3167. * partial completions.
  3168. *
  3169. **/
  3170. void end_request(struct request *req, int uptodate)
  3171. {
  3172. __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
  3173. }
  3174. EXPORT_SYMBOL(end_request);
  3175. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3176. struct bio *bio)
  3177. {
  3178. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3179. rq->cmd_flags |= (bio->bi_rw & 3);
  3180. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3181. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3182. rq->current_nr_sectors = bio_cur_sectors(bio);
  3183. rq->hard_cur_sectors = rq->current_nr_sectors;
  3184. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3185. rq->buffer = bio_data(bio);
  3186. rq->data_len = bio->bi_size;
  3187. rq->bio = rq->biotail = bio;
  3188. if (bio->bi_bdev)
  3189. rq->rq_disk = bio->bi_bdev->bd_disk;
  3190. }
  3191. int kblockd_schedule_work(struct work_struct *work)
  3192. {
  3193. return queue_work(kblockd_workqueue, work);
  3194. }
  3195. EXPORT_SYMBOL(kblockd_schedule_work);
  3196. void kblockd_flush_work(struct work_struct *work)
  3197. {
  3198. cancel_work_sync(work);
  3199. }
  3200. EXPORT_SYMBOL(kblockd_flush_work);
  3201. int __init blk_dev_init(void)
  3202. {
  3203. int i;
  3204. kblockd_workqueue = create_workqueue("kblockd");
  3205. if (!kblockd_workqueue)
  3206. panic("Failed to create kblockd\n");
  3207. request_cachep = kmem_cache_create("blkdev_requests",
  3208. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3209. requestq_cachep = kmem_cache_create("blkdev_queue",
  3210. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3211. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3212. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3213. for_each_possible_cpu(i)
  3214. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3215. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3216. register_hotcpu_notifier(&blk_cpu_notifier);
  3217. blk_max_low_pfn = max_low_pfn - 1;
  3218. blk_max_pfn = max_pfn - 1;
  3219. return 0;
  3220. }
  3221. /*
  3222. * IO Context helper functions
  3223. */
  3224. void put_io_context(struct io_context *ioc)
  3225. {
  3226. if (ioc == NULL)
  3227. return;
  3228. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3229. if (atomic_dec_and_test(&ioc->refcount)) {
  3230. struct cfq_io_context *cic;
  3231. rcu_read_lock();
  3232. if (ioc->aic && ioc->aic->dtor)
  3233. ioc->aic->dtor(ioc->aic);
  3234. if (ioc->cic_root.rb_node != NULL) {
  3235. struct rb_node *n = rb_first(&ioc->cic_root);
  3236. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3237. cic->dtor(ioc);
  3238. }
  3239. rcu_read_unlock();
  3240. kmem_cache_free(iocontext_cachep, ioc);
  3241. }
  3242. }
  3243. EXPORT_SYMBOL(put_io_context);
  3244. /* Called by the exitting task */
  3245. void exit_io_context(void)
  3246. {
  3247. struct io_context *ioc;
  3248. struct cfq_io_context *cic;
  3249. task_lock(current);
  3250. ioc = current->io_context;
  3251. current->io_context = NULL;
  3252. task_unlock(current);
  3253. ioc->task = NULL;
  3254. if (ioc->aic && ioc->aic->exit)
  3255. ioc->aic->exit(ioc->aic);
  3256. if (ioc->cic_root.rb_node != NULL) {
  3257. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3258. cic->exit(ioc);
  3259. }
  3260. put_io_context(ioc);
  3261. }
  3262. /*
  3263. * If the current task has no IO context then create one and initialise it.
  3264. * Otherwise, return its existing IO context.
  3265. *
  3266. * This returned IO context doesn't have a specifically elevated refcount,
  3267. * but since the current task itself holds a reference, the context can be
  3268. * used in general code, so long as it stays within `current` context.
  3269. */
  3270. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3271. {
  3272. struct task_struct *tsk = current;
  3273. struct io_context *ret;
  3274. ret = tsk->io_context;
  3275. if (likely(ret))
  3276. return ret;
  3277. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3278. if (ret) {
  3279. atomic_set(&ret->refcount, 1);
  3280. ret->task = current;
  3281. ret->ioprio_changed = 0;
  3282. ret->last_waited = jiffies; /* doesn't matter... */
  3283. ret->nr_batch_requests = 0; /* because this is 0 */
  3284. ret->aic = NULL;
  3285. ret->cic_root.rb_node = NULL;
  3286. ret->ioc_data = NULL;
  3287. /* make sure set_task_ioprio() sees the settings above */
  3288. smp_wmb();
  3289. tsk->io_context = ret;
  3290. }
  3291. return ret;
  3292. }
  3293. /*
  3294. * If the current task has no IO context then create one and initialise it.
  3295. * If it does have a context, take a ref on it.
  3296. *
  3297. * This is always called in the context of the task which submitted the I/O.
  3298. */
  3299. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3300. {
  3301. struct io_context *ret;
  3302. ret = current_io_context(gfp_flags, node);
  3303. if (likely(ret))
  3304. atomic_inc(&ret->refcount);
  3305. return ret;
  3306. }
  3307. EXPORT_SYMBOL(get_io_context);
  3308. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3309. {
  3310. struct io_context *src = *psrc;
  3311. struct io_context *dst = *pdst;
  3312. if (src) {
  3313. BUG_ON(atomic_read(&src->refcount) == 0);
  3314. atomic_inc(&src->refcount);
  3315. put_io_context(dst);
  3316. *pdst = src;
  3317. }
  3318. }
  3319. EXPORT_SYMBOL(copy_io_context);
  3320. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3321. {
  3322. struct io_context *temp;
  3323. temp = *ioc1;
  3324. *ioc1 = *ioc2;
  3325. *ioc2 = temp;
  3326. }
  3327. EXPORT_SYMBOL(swap_io_context);
  3328. /*
  3329. * sysfs parts below
  3330. */
  3331. struct queue_sysfs_entry {
  3332. struct attribute attr;
  3333. ssize_t (*show)(struct request_queue *, char *);
  3334. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3335. };
  3336. static ssize_t
  3337. queue_var_show(unsigned int var, char *page)
  3338. {
  3339. return sprintf(page, "%d\n", var);
  3340. }
  3341. static ssize_t
  3342. queue_var_store(unsigned long *var, const char *page, size_t count)
  3343. {
  3344. char *p = (char *) page;
  3345. *var = simple_strtoul(p, &p, 10);
  3346. return count;
  3347. }
  3348. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3349. {
  3350. return queue_var_show(q->nr_requests, (page));
  3351. }
  3352. static ssize_t
  3353. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3354. {
  3355. struct request_list *rl = &q->rq;
  3356. unsigned long nr;
  3357. int ret = queue_var_store(&nr, page, count);
  3358. if (nr < BLKDEV_MIN_RQ)
  3359. nr = BLKDEV_MIN_RQ;
  3360. spin_lock_irq(q->queue_lock);
  3361. q->nr_requests = nr;
  3362. blk_queue_congestion_threshold(q);
  3363. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3364. blk_set_queue_congested(q, READ);
  3365. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3366. blk_clear_queue_congested(q, READ);
  3367. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3368. blk_set_queue_congested(q, WRITE);
  3369. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3370. blk_clear_queue_congested(q, WRITE);
  3371. if (rl->count[READ] >= q->nr_requests) {
  3372. blk_set_queue_full(q, READ);
  3373. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3374. blk_clear_queue_full(q, READ);
  3375. wake_up(&rl->wait[READ]);
  3376. }
  3377. if (rl->count[WRITE] >= q->nr_requests) {
  3378. blk_set_queue_full(q, WRITE);
  3379. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3380. blk_clear_queue_full(q, WRITE);
  3381. wake_up(&rl->wait[WRITE]);
  3382. }
  3383. spin_unlock_irq(q->queue_lock);
  3384. return ret;
  3385. }
  3386. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3387. {
  3388. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3389. return queue_var_show(ra_kb, (page));
  3390. }
  3391. static ssize_t
  3392. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3393. {
  3394. unsigned long ra_kb;
  3395. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3396. spin_lock_irq(q->queue_lock);
  3397. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3398. spin_unlock_irq(q->queue_lock);
  3399. return ret;
  3400. }
  3401. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3402. {
  3403. int max_sectors_kb = q->max_sectors >> 1;
  3404. return queue_var_show(max_sectors_kb, (page));
  3405. }
  3406. static ssize_t
  3407. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3408. {
  3409. unsigned long max_sectors_kb,
  3410. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3411. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3412. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3413. int ra_kb;
  3414. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3415. return -EINVAL;
  3416. /*
  3417. * Take the queue lock to update the readahead and max_sectors
  3418. * values synchronously:
  3419. */
  3420. spin_lock_irq(q->queue_lock);
  3421. /*
  3422. * Trim readahead window as well, if necessary:
  3423. */
  3424. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3425. if (ra_kb > max_sectors_kb)
  3426. q->backing_dev_info.ra_pages =
  3427. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3428. q->max_sectors = max_sectors_kb << 1;
  3429. spin_unlock_irq(q->queue_lock);
  3430. return ret;
  3431. }
  3432. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3433. {
  3434. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3435. return queue_var_show(max_hw_sectors_kb, (page));
  3436. }
  3437. static struct queue_sysfs_entry queue_requests_entry = {
  3438. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3439. .show = queue_requests_show,
  3440. .store = queue_requests_store,
  3441. };
  3442. static struct queue_sysfs_entry queue_ra_entry = {
  3443. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3444. .show = queue_ra_show,
  3445. .store = queue_ra_store,
  3446. };
  3447. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3448. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3449. .show = queue_max_sectors_show,
  3450. .store = queue_max_sectors_store,
  3451. };
  3452. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3453. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3454. .show = queue_max_hw_sectors_show,
  3455. };
  3456. static struct queue_sysfs_entry queue_iosched_entry = {
  3457. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3458. .show = elv_iosched_show,
  3459. .store = elv_iosched_store,
  3460. };
  3461. static struct attribute *default_attrs[] = {
  3462. &queue_requests_entry.attr,
  3463. &queue_ra_entry.attr,
  3464. &queue_max_hw_sectors_entry.attr,
  3465. &queue_max_sectors_entry.attr,
  3466. &queue_iosched_entry.attr,
  3467. NULL,
  3468. };
  3469. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3470. static ssize_t
  3471. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3472. {
  3473. struct queue_sysfs_entry *entry = to_queue(attr);
  3474. struct request_queue *q =
  3475. container_of(kobj, struct request_queue, kobj);
  3476. ssize_t res;
  3477. if (!entry->show)
  3478. return -EIO;
  3479. mutex_lock(&q->sysfs_lock);
  3480. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3481. mutex_unlock(&q->sysfs_lock);
  3482. return -ENOENT;
  3483. }
  3484. res = entry->show(q, page);
  3485. mutex_unlock(&q->sysfs_lock);
  3486. return res;
  3487. }
  3488. static ssize_t
  3489. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3490. const char *page, size_t length)
  3491. {
  3492. struct queue_sysfs_entry *entry = to_queue(attr);
  3493. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3494. ssize_t res;
  3495. if (!entry->store)
  3496. return -EIO;
  3497. mutex_lock(&q->sysfs_lock);
  3498. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3499. mutex_unlock(&q->sysfs_lock);
  3500. return -ENOENT;
  3501. }
  3502. res = entry->store(q, page, length);
  3503. mutex_unlock(&q->sysfs_lock);
  3504. return res;
  3505. }
  3506. static struct sysfs_ops queue_sysfs_ops = {
  3507. .show = queue_attr_show,
  3508. .store = queue_attr_store,
  3509. };
  3510. static struct kobj_type queue_ktype = {
  3511. .sysfs_ops = &queue_sysfs_ops,
  3512. .default_attrs = default_attrs,
  3513. .release = blk_release_queue,
  3514. };
  3515. int blk_register_queue(struct gendisk *disk)
  3516. {
  3517. int ret;
  3518. struct request_queue *q = disk->queue;
  3519. if (!q || !q->request_fn)
  3520. return -ENXIO;
  3521. q->kobj.parent = kobject_get(&disk->kobj);
  3522. ret = kobject_add(&q->kobj);
  3523. if (ret < 0)
  3524. return ret;
  3525. kobject_uevent(&q->kobj, KOBJ_ADD);
  3526. ret = elv_register_queue(q);
  3527. if (ret) {
  3528. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3529. kobject_del(&q->kobj);
  3530. return ret;
  3531. }
  3532. return 0;
  3533. }
  3534. void blk_unregister_queue(struct gendisk *disk)
  3535. {
  3536. struct request_queue *q = disk->queue;
  3537. if (q && q->request_fn) {
  3538. elv_unregister_queue(q);
  3539. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3540. kobject_del(&q->kobj);
  3541. kobject_put(&disk->kobj);
  3542. }
  3543. }