dma.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. /*
  2. * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corporation
  3. *
  4. * Provide default implementations of the DMA mapping callbacks for
  5. * directly mapped busses.
  6. */
  7. #include <linux/device.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dma-debug.h>
  10. #include <linux/gfp.h>
  11. #include <linux/memblock.h>
  12. #include <linux/export.h>
  13. #include <linux/pci.h>
  14. #include <asm/vio.h>
  15. #include <asm/bug.h>
  16. #include <asm/abs_addr.h>
  17. #include <asm/machdep.h>
  18. /*
  19. * Generic direct DMA implementation
  20. *
  21. * This implementation supports a per-device offset that can be applied if
  22. * the address at which memory is visible to devices is not 0. Platform code
  23. * can set archdata.dma_data to an unsigned long holding the offset. By
  24. * default the offset is PCI_DRAM_OFFSET.
  25. */
  26. void *dma_direct_alloc_coherent(struct device *dev, size_t size,
  27. dma_addr_t *dma_handle, gfp_t flag,
  28. struct dma_attrs *attrs)
  29. {
  30. void *ret;
  31. #ifdef CONFIG_NOT_COHERENT_CACHE
  32. ret = __dma_alloc_coherent(dev, size, dma_handle, flag);
  33. if (ret == NULL)
  34. return NULL;
  35. *dma_handle += get_dma_offset(dev);
  36. return ret;
  37. #else
  38. struct page *page;
  39. int node = dev_to_node(dev);
  40. /* ignore region specifiers */
  41. flag &= ~(__GFP_HIGHMEM);
  42. page = alloc_pages_node(node, flag, get_order(size));
  43. if (page == NULL)
  44. return NULL;
  45. ret = page_address(page);
  46. memset(ret, 0, size);
  47. *dma_handle = virt_to_abs(ret) + get_dma_offset(dev);
  48. return ret;
  49. #endif
  50. }
  51. void dma_direct_free_coherent(struct device *dev, size_t size,
  52. void *vaddr, dma_addr_t dma_handle,
  53. struct dma_attrs *attrs)
  54. {
  55. #ifdef CONFIG_NOT_COHERENT_CACHE
  56. __dma_free_coherent(size, vaddr);
  57. #else
  58. free_pages((unsigned long)vaddr, get_order(size));
  59. #endif
  60. }
  61. static int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl,
  62. int nents, enum dma_data_direction direction,
  63. struct dma_attrs *attrs)
  64. {
  65. struct scatterlist *sg;
  66. int i;
  67. for_each_sg(sgl, sg, nents, i) {
  68. sg->dma_address = sg_phys(sg) + get_dma_offset(dev);
  69. sg->dma_length = sg->length;
  70. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  71. }
  72. return nents;
  73. }
  74. static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sg,
  75. int nents, enum dma_data_direction direction,
  76. struct dma_attrs *attrs)
  77. {
  78. }
  79. static int dma_direct_dma_supported(struct device *dev, u64 mask)
  80. {
  81. #ifdef CONFIG_PPC64
  82. /* Could be improved so platforms can set the limit in case
  83. * they have limited DMA windows
  84. */
  85. return mask >= get_dma_offset(dev) + (memblock_end_of_DRAM() - 1);
  86. #else
  87. return 1;
  88. #endif
  89. }
  90. static u64 dma_direct_get_required_mask(struct device *dev)
  91. {
  92. u64 end, mask;
  93. end = memblock_end_of_DRAM() + get_dma_offset(dev);
  94. mask = 1ULL << (fls64(end) - 1);
  95. mask += mask - 1;
  96. return mask;
  97. }
  98. static inline dma_addr_t dma_direct_map_page(struct device *dev,
  99. struct page *page,
  100. unsigned long offset,
  101. size_t size,
  102. enum dma_data_direction dir,
  103. struct dma_attrs *attrs)
  104. {
  105. BUG_ON(dir == DMA_NONE);
  106. __dma_sync_page(page, offset, size, dir);
  107. return page_to_phys(page) + offset + get_dma_offset(dev);
  108. }
  109. static inline void dma_direct_unmap_page(struct device *dev,
  110. dma_addr_t dma_address,
  111. size_t size,
  112. enum dma_data_direction direction,
  113. struct dma_attrs *attrs)
  114. {
  115. }
  116. #ifdef CONFIG_NOT_COHERENT_CACHE
  117. static inline void dma_direct_sync_sg(struct device *dev,
  118. struct scatterlist *sgl, int nents,
  119. enum dma_data_direction direction)
  120. {
  121. struct scatterlist *sg;
  122. int i;
  123. for_each_sg(sgl, sg, nents, i)
  124. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  125. }
  126. static inline void dma_direct_sync_single(struct device *dev,
  127. dma_addr_t dma_handle, size_t size,
  128. enum dma_data_direction direction)
  129. {
  130. __dma_sync(bus_to_virt(dma_handle), size, direction);
  131. }
  132. #endif
  133. struct dma_map_ops dma_direct_ops = {
  134. .alloc = dma_direct_alloc_coherent,
  135. .free = dma_direct_free_coherent,
  136. .map_sg = dma_direct_map_sg,
  137. .unmap_sg = dma_direct_unmap_sg,
  138. .dma_supported = dma_direct_dma_supported,
  139. .map_page = dma_direct_map_page,
  140. .unmap_page = dma_direct_unmap_page,
  141. .get_required_mask = dma_direct_get_required_mask,
  142. #ifdef CONFIG_NOT_COHERENT_CACHE
  143. .sync_single_for_cpu = dma_direct_sync_single,
  144. .sync_single_for_device = dma_direct_sync_single,
  145. .sync_sg_for_cpu = dma_direct_sync_sg,
  146. .sync_sg_for_device = dma_direct_sync_sg,
  147. #endif
  148. };
  149. EXPORT_SYMBOL(dma_direct_ops);
  150. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  151. int dma_set_mask(struct device *dev, u64 dma_mask)
  152. {
  153. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  154. if (ppc_md.dma_set_mask)
  155. return ppc_md.dma_set_mask(dev, dma_mask);
  156. if ((dma_ops != NULL) && (dma_ops->set_dma_mask != NULL))
  157. return dma_ops->set_dma_mask(dev, dma_mask);
  158. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  159. return -EIO;
  160. *dev->dma_mask = dma_mask;
  161. return 0;
  162. }
  163. EXPORT_SYMBOL(dma_set_mask);
  164. u64 dma_get_required_mask(struct device *dev)
  165. {
  166. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  167. if (ppc_md.dma_get_required_mask)
  168. return ppc_md.dma_get_required_mask(dev);
  169. if (unlikely(dma_ops == NULL))
  170. return 0;
  171. if (dma_ops->get_required_mask)
  172. return dma_ops->get_required_mask(dev);
  173. return DMA_BIT_MASK(8 * sizeof(dma_addr_t));
  174. }
  175. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  176. static int __init dma_init(void)
  177. {
  178. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  179. #ifdef CONFIG_PCI
  180. dma_debug_add_bus(&pci_bus_type);
  181. #endif
  182. #ifdef CONFIG_IBMVIO
  183. dma_debug_add_bus(&vio_bus_type);
  184. #endif
  185. return 0;
  186. }
  187. fs_initcall(dma_init);
  188. int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  189. void *cpu_addr, dma_addr_t handle, size_t size)
  190. {
  191. unsigned long pfn;
  192. #ifdef CONFIG_NOT_COHERENT_CACHE
  193. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  194. pfn = __dma_get_coherent_pfn((unsigned long)cpu_addr);
  195. #else
  196. pfn = page_to_pfn(virt_to_page(cpu_addr));
  197. #endif
  198. return remap_pfn_range(vma, vma->vm_start,
  199. pfn + vma->vm_pgoff,
  200. vma->vm_end - vma->vm_start,
  201. vma->vm_page_prot);
  202. }
  203. EXPORT_SYMBOL_GPL(dma_mmap_coherent);