perfmon.c 169 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872
  1. /*
  2. * This file implements the perfmon-2 subsystem which is used
  3. * to program the IA-64 Performance Monitoring Unit (PMU).
  4. *
  5. * The initial version of perfmon.c was written by
  6. * Ganesh Venkitachalam, IBM Corp.
  7. *
  8. * Then it was modified for perfmon-1.x by Stephane Eranian and
  9. * David Mosberger, Hewlett Packard Co.
  10. *
  11. * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12. * by Stephane Eranian, Hewlett Packard Co.
  13. *
  14. * Copyright (C) 1999-2005 Hewlett Packard Co
  15. * Stephane Eranian <eranian@hpl.hp.com>
  16. * David Mosberger-Tang <davidm@hpl.hp.com>
  17. *
  18. * More information about perfmon available at:
  19. * http://www.hpl.hp.com/research/linux/perfmon
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/sched.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/proc_fs.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/init.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/mm.h>
  30. #include <linux/sysctl.h>
  31. #include <linux/list.h>
  32. #include <linux/file.h>
  33. #include <linux/poll.h>
  34. #include <linux/vfs.h>
  35. #include <linux/smp.h>
  36. #include <linux/pagemap.h>
  37. #include <linux/mount.h>
  38. #include <linux/bitops.h>
  39. #include <linux/capability.h>
  40. #include <linux/rcupdate.h>
  41. #include <linux/completion.h>
  42. #include <asm/errno.h>
  43. #include <asm/intrinsics.h>
  44. #include <asm/page.h>
  45. #include <asm/perfmon.h>
  46. #include <asm/processor.h>
  47. #include <asm/signal.h>
  48. #include <asm/system.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/delay.h>
  51. #ifdef CONFIG_PERFMON
  52. /*
  53. * perfmon context state
  54. */
  55. #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
  56. #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
  57. #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
  58. #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
  59. #define PFM_INVALID_ACTIVATION (~0UL)
  60. #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
  61. #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
  62. /*
  63. * depth of message queue
  64. */
  65. #define PFM_MAX_MSGS 32
  66. #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  67. /*
  68. * type of a PMU register (bitmask).
  69. * bitmask structure:
  70. * bit0 : register implemented
  71. * bit1 : end marker
  72. * bit2-3 : reserved
  73. * bit4 : pmc has pmc.pm
  74. * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
  75. * bit6-7 : register type
  76. * bit8-31: reserved
  77. */
  78. #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
  79. #define PFM_REG_IMPL 0x1 /* register implemented */
  80. #define PFM_REG_END 0x2 /* end marker */
  81. #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  82. #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  83. #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  84. #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
  85. #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  86. #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  87. #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  88. #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
  89. /* i assumed unsigned */
  90. #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
  91. #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
  92. /* XXX: these assume that register i is implemented */
  93. #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  94. #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
  95. #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
  96. #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
  97. #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
  98. #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
  99. #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
  100. #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
  101. #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
  102. #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
  103. #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
  104. #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
  105. #define PFM_CTX_TASK(h) (h)->ctx_task
  106. #define PMU_PMC_OI 5 /* position of pmc.oi bit */
  107. /* XXX: does not support more than 64 PMDs */
  108. #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
  109. #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
  110. #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
  111. #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
  112. #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
  113. #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
  114. #define PFM_CODE_RR 0 /* requesting code range restriction */
  115. #define PFM_DATA_RR 1 /* requestion data range restriction */
  116. #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
  117. #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
  118. #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
  119. #define RDEP(x) (1UL<<(x))
  120. /*
  121. * context protection macros
  122. * in SMP:
  123. * - we need to protect against CPU concurrency (spin_lock)
  124. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  125. * in UP:
  126. * - we need to protect against PMU overflow interrupts (local_irq_disable)
  127. *
  128. * spin_lock_irqsave()/spin_unlock_irqrestore():
  129. * in SMP: local_irq_disable + spin_lock
  130. * in UP : local_irq_disable
  131. *
  132. * spin_lock()/spin_lock():
  133. * in UP : removed automatically
  134. * in SMP: protect against context accesses from other CPU. interrupts
  135. * are not masked. This is useful for the PMU interrupt handler
  136. * because we know we will not get PMU concurrency in that code.
  137. */
  138. #define PROTECT_CTX(c, f) \
  139. do { \
  140. DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
  141. spin_lock_irqsave(&(c)->ctx_lock, f); \
  142. DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
  143. } while(0)
  144. #define UNPROTECT_CTX(c, f) \
  145. do { \
  146. DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
  147. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  148. } while(0)
  149. #define PROTECT_CTX_NOPRINT(c, f) \
  150. do { \
  151. spin_lock_irqsave(&(c)->ctx_lock, f); \
  152. } while(0)
  153. #define UNPROTECT_CTX_NOPRINT(c, f) \
  154. do { \
  155. spin_unlock_irqrestore(&(c)->ctx_lock, f); \
  156. } while(0)
  157. #define PROTECT_CTX_NOIRQ(c) \
  158. do { \
  159. spin_lock(&(c)->ctx_lock); \
  160. } while(0)
  161. #define UNPROTECT_CTX_NOIRQ(c) \
  162. do { \
  163. spin_unlock(&(c)->ctx_lock); \
  164. } while(0)
  165. #ifdef CONFIG_SMP
  166. #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
  167. #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
  168. #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
  169. #else /* !CONFIG_SMP */
  170. #define SET_ACTIVATION(t) do {} while(0)
  171. #define GET_ACTIVATION(t) do {} while(0)
  172. #define INC_ACTIVATION(t) do {} while(0)
  173. #endif /* CONFIG_SMP */
  174. #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
  175. #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
  176. #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
  177. #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
  178. #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
  179. #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
  180. /*
  181. * cmp0 must be the value of pmc0
  182. */
  183. #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
  184. #define PFMFS_MAGIC 0xa0b4d889
  185. /*
  186. * debugging
  187. */
  188. #define PFM_DEBUGGING 1
  189. #ifdef PFM_DEBUGGING
  190. #define DPRINT(a) \
  191. do { \
  192. if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
  193. } while (0)
  194. #define DPRINT_ovfl(a) \
  195. do { \
  196. if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
  197. } while (0)
  198. #endif
  199. /*
  200. * 64-bit software counter structure
  201. *
  202. * the next_reset_type is applied to the next call to pfm_reset_regs()
  203. */
  204. typedef struct {
  205. unsigned long val; /* virtual 64bit counter value */
  206. unsigned long lval; /* last reset value */
  207. unsigned long long_reset; /* reset value on sampling overflow */
  208. unsigned long short_reset; /* reset value on overflow */
  209. unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
  210. unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
  211. unsigned long seed; /* seed for random-number generator */
  212. unsigned long mask; /* mask for random-number generator */
  213. unsigned int flags; /* notify/do not notify */
  214. unsigned long eventid; /* overflow event identifier */
  215. } pfm_counter_t;
  216. /*
  217. * context flags
  218. */
  219. typedef struct {
  220. unsigned int block:1; /* when 1, task will blocked on user notifications */
  221. unsigned int system:1; /* do system wide monitoring */
  222. unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
  223. unsigned int is_sampling:1; /* true if using a custom format */
  224. unsigned int excl_idle:1; /* exclude idle task in system wide session */
  225. unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
  226. unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
  227. unsigned int no_msg:1; /* no message sent on overflow */
  228. unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
  229. unsigned int reserved:22;
  230. } pfm_context_flags_t;
  231. #define PFM_TRAP_REASON_NONE 0x0 /* default value */
  232. #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
  233. #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
  234. /*
  235. * perfmon context: encapsulates all the state of a monitoring session
  236. */
  237. typedef struct pfm_context {
  238. spinlock_t ctx_lock; /* context protection */
  239. pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
  240. unsigned int ctx_state; /* state: active/inactive (no bitfield) */
  241. struct task_struct *ctx_task; /* task to which context is attached */
  242. unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
  243. struct completion ctx_restart_done; /* use for blocking notification mode */
  244. unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
  245. unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
  246. unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
  247. unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
  248. unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
  249. unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
  250. unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
  251. unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
  252. unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
  253. unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
  254. unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
  255. pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
  256. unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
  257. unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
  258. u64 ctx_saved_psr_up; /* only contains psr.up value */
  259. unsigned long ctx_last_activation; /* context last activation number for last_cpu */
  260. unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
  261. unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
  262. int ctx_fd; /* file descriptor used my this context */
  263. pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
  264. pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
  265. void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
  266. unsigned long ctx_smpl_size; /* size of sampling buffer */
  267. void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
  268. wait_queue_head_t ctx_msgq_wait;
  269. pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
  270. int ctx_msgq_head;
  271. int ctx_msgq_tail;
  272. struct fasync_struct *ctx_async_queue;
  273. wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
  274. } pfm_context_t;
  275. /*
  276. * magic number used to verify that structure is really
  277. * a perfmon context
  278. */
  279. #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
  280. #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
  281. #ifdef CONFIG_SMP
  282. #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
  283. #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
  284. #else
  285. #define SET_LAST_CPU(ctx, v) do {} while(0)
  286. #define GET_LAST_CPU(ctx) do {} while(0)
  287. #endif
  288. #define ctx_fl_block ctx_flags.block
  289. #define ctx_fl_system ctx_flags.system
  290. #define ctx_fl_using_dbreg ctx_flags.using_dbreg
  291. #define ctx_fl_is_sampling ctx_flags.is_sampling
  292. #define ctx_fl_excl_idle ctx_flags.excl_idle
  293. #define ctx_fl_going_zombie ctx_flags.going_zombie
  294. #define ctx_fl_trap_reason ctx_flags.trap_reason
  295. #define ctx_fl_no_msg ctx_flags.no_msg
  296. #define ctx_fl_can_restart ctx_flags.can_restart
  297. #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
  298. #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
  299. /*
  300. * global information about all sessions
  301. * mostly used to synchronize between system wide and per-process
  302. */
  303. typedef struct {
  304. spinlock_t pfs_lock; /* lock the structure */
  305. unsigned int pfs_task_sessions; /* number of per task sessions */
  306. unsigned int pfs_sys_sessions; /* number of per system wide sessions */
  307. unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
  308. unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
  309. struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
  310. } pfm_session_t;
  311. /*
  312. * information about a PMC or PMD.
  313. * dep_pmd[]: a bitmask of dependent PMD registers
  314. * dep_pmc[]: a bitmask of dependent PMC registers
  315. */
  316. typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
  317. typedef struct {
  318. unsigned int type;
  319. int pm_pos;
  320. unsigned long default_value; /* power-on default value */
  321. unsigned long reserved_mask; /* bitmask of reserved bits */
  322. pfm_reg_check_t read_check;
  323. pfm_reg_check_t write_check;
  324. unsigned long dep_pmd[4];
  325. unsigned long dep_pmc[4];
  326. } pfm_reg_desc_t;
  327. /* assume cnum is a valid monitor */
  328. #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
  329. /*
  330. * This structure is initialized at boot time and contains
  331. * a description of the PMU main characteristics.
  332. *
  333. * If the probe function is defined, detection is based
  334. * on its return value:
  335. * - 0 means recognized PMU
  336. * - anything else means not supported
  337. * When the probe function is not defined, then the pmu_family field
  338. * is used and it must match the host CPU family such that:
  339. * - cpu->family & config->pmu_family != 0
  340. */
  341. typedef struct {
  342. unsigned long ovfl_val; /* overflow value for counters */
  343. pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
  344. pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
  345. unsigned int num_pmcs; /* number of PMCS: computed at init time */
  346. unsigned int num_pmds; /* number of PMDS: computed at init time */
  347. unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
  348. unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
  349. char *pmu_name; /* PMU family name */
  350. unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
  351. unsigned int flags; /* pmu specific flags */
  352. unsigned int num_ibrs; /* number of IBRS: computed at init time */
  353. unsigned int num_dbrs; /* number of DBRS: computed at init time */
  354. unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
  355. int (*probe)(void); /* customized probe routine */
  356. unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
  357. } pmu_config_t;
  358. /*
  359. * PMU specific flags
  360. */
  361. #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
  362. /*
  363. * debug register related type definitions
  364. */
  365. typedef struct {
  366. unsigned long ibr_mask:56;
  367. unsigned long ibr_plm:4;
  368. unsigned long ibr_ig:3;
  369. unsigned long ibr_x:1;
  370. } ibr_mask_reg_t;
  371. typedef struct {
  372. unsigned long dbr_mask:56;
  373. unsigned long dbr_plm:4;
  374. unsigned long dbr_ig:2;
  375. unsigned long dbr_w:1;
  376. unsigned long dbr_r:1;
  377. } dbr_mask_reg_t;
  378. typedef union {
  379. unsigned long val;
  380. ibr_mask_reg_t ibr;
  381. dbr_mask_reg_t dbr;
  382. } dbreg_t;
  383. /*
  384. * perfmon command descriptions
  385. */
  386. typedef struct {
  387. int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  388. char *cmd_name;
  389. int cmd_flags;
  390. unsigned int cmd_narg;
  391. size_t cmd_argsize;
  392. int (*cmd_getsize)(void *arg, size_t *sz);
  393. } pfm_cmd_desc_t;
  394. #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
  395. #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
  396. #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
  397. #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
  398. #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
  399. #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
  400. #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
  401. #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
  402. #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
  403. #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
  404. typedef struct {
  405. unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
  406. unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
  407. unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
  408. unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
  409. unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
  410. unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
  411. unsigned long pfm_smpl_handler_calls;
  412. unsigned long pfm_smpl_handler_cycles;
  413. char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
  414. } pfm_stats_t;
  415. /*
  416. * perfmon internal variables
  417. */
  418. static pfm_stats_t pfm_stats[NR_CPUS];
  419. static pfm_session_t pfm_sessions; /* global sessions information */
  420. static DEFINE_SPINLOCK(pfm_alt_install_check);
  421. static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
  422. static struct proc_dir_entry *perfmon_dir;
  423. static pfm_uuid_t pfm_null_uuid = {0,};
  424. static spinlock_t pfm_buffer_fmt_lock;
  425. static LIST_HEAD(pfm_buffer_fmt_list);
  426. static pmu_config_t *pmu_conf;
  427. /* sysctl() controls */
  428. pfm_sysctl_t pfm_sysctl;
  429. EXPORT_SYMBOL(pfm_sysctl);
  430. static ctl_table pfm_ctl_table[]={
  431. {
  432. .ctl_name = CTL_UNNUMBERED,
  433. .procname = "debug",
  434. .data = &pfm_sysctl.debug,
  435. .maxlen = sizeof(int),
  436. .mode = 0666,
  437. .proc_handler = &proc_dointvec,
  438. },
  439. {
  440. .ctl_name = CTL_UNNUMBERED,
  441. .procname = "debug_ovfl",
  442. .data = &pfm_sysctl.debug_ovfl,
  443. .maxlen = sizeof(int),
  444. .mode = 0666,
  445. .proc_handler = &proc_dointvec,
  446. },
  447. {
  448. .ctl_name = CTL_UNNUMBERED,
  449. .procname = "fastctxsw",
  450. .data = &pfm_sysctl.fastctxsw,
  451. .maxlen = sizeof(int),
  452. .mode = 0600,
  453. .proc_handler = &proc_dointvec,
  454. },
  455. {
  456. .ctl_name = CTL_UNNUMBERED,
  457. .procname = "expert_mode",
  458. .data = &pfm_sysctl.expert_mode,
  459. .maxlen = sizeof(int),
  460. .mode = 0600,
  461. .proc_handler = &proc_dointvec,
  462. },
  463. {}
  464. };
  465. static ctl_table pfm_sysctl_dir[] = {
  466. {
  467. .ctl_name = CTL_UNNUMBERED,
  468. .procname = "perfmon",
  469. .mode = 0755,
  470. .child = pfm_ctl_table,
  471. },
  472. {}
  473. };
  474. static ctl_table pfm_sysctl_root[] = {
  475. {
  476. .ctl_name = CTL_KERN,
  477. .procname = "kernel",
  478. .mode = 0755,
  479. .child = pfm_sysctl_dir,
  480. },
  481. {}
  482. };
  483. static struct ctl_table_header *pfm_sysctl_header;
  484. static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  485. #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
  486. #define pfm_get_cpu_data(a,b) per_cpu(a, b)
  487. static inline void
  488. pfm_put_task(struct task_struct *task)
  489. {
  490. if (task != current) put_task_struct(task);
  491. }
  492. static inline void
  493. pfm_set_task_notify(struct task_struct *task)
  494. {
  495. struct thread_info *info;
  496. info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
  497. set_bit(TIF_PERFMON_WORK, &info->flags);
  498. }
  499. static inline void
  500. pfm_clear_task_notify(void)
  501. {
  502. clear_thread_flag(TIF_PERFMON_WORK);
  503. }
  504. static inline void
  505. pfm_reserve_page(unsigned long a)
  506. {
  507. SetPageReserved(vmalloc_to_page((void *)a));
  508. }
  509. static inline void
  510. pfm_unreserve_page(unsigned long a)
  511. {
  512. ClearPageReserved(vmalloc_to_page((void*)a));
  513. }
  514. static inline unsigned long
  515. pfm_protect_ctx_ctxsw(pfm_context_t *x)
  516. {
  517. spin_lock(&(x)->ctx_lock);
  518. return 0UL;
  519. }
  520. static inline void
  521. pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
  522. {
  523. spin_unlock(&(x)->ctx_lock);
  524. }
  525. static inline unsigned int
  526. pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
  527. {
  528. return do_munmap(mm, addr, len);
  529. }
  530. static inline unsigned long
  531. pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
  532. {
  533. return get_unmapped_area(file, addr, len, pgoff, flags);
  534. }
  535. static int
  536. pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
  537. struct vfsmount *mnt)
  538. {
  539. return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
  540. }
  541. static struct file_system_type pfm_fs_type = {
  542. .name = "pfmfs",
  543. .get_sb = pfmfs_get_sb,
  544. .kill_sb = kill_anon_super,
  545. };
  546. DEFINE_PER_CPU(unsigned long, pfm_syst_info);
  547. DEFINE_PER_CPU(struct task_struct *, pmu_owner);
  548. DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
  549. DEFINE_PER_CPU(unsigned long, pmu_activation_number);
  550. EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
  551. /* forward declaration */
  552. static const struct file_operations pfm_file_ops;
  553. /*
  554. * forward declarations
  555. */
  556. #ifndef CONFIG_SMP
  557. static void pfm_lazy_save_regs (struct task_struct *ta);
  558. #endif
  559. void dump_pmu_state(const char *);
  560. static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  561. #include "perfmon_itanium.h"
  562. #include "perfmon_mckinley.h"
  563. #include "perfmon_montecito.h"
  564. #include "perfmon_generic.h"
  565. static pmu_config_t *pmu_confs[]={
  566. &pmu_conf_mont,
  567. &pmu_conf_mck,
  568. &pmu_conf_ita,
  569. &pmu_conf_gen, /* must be last */
  570. NULL
  571. };
  572. static int pfm_end_notify_user(pfm_context_t *ctx);
  573. static inline void
  574. pfm_clear_psr_pp(void)
  575. {
  576. ia64_rsm(IA64_PSR_PP);
  577. ia64_srlz_i();
  578. }
  579. static inline void
  580. pfm_set_psr_pp(void)
  581. {
  582. ia64_ssm(IA64_PSR_PP);
  583. ia64_srlz_i();
  584. }
  585. static inline void
  586. pfm_clear_psr_up(void)
  587. {
  588. ia64_rsm(IA64_PSR_UP);
  589. ia64_srlz_i();
  590. }
  591. static inline void
  592. pfm_set_psr_up(void)
  593. {
  594. ia64_ssm(IA64_PSR_UP);
  595. ia64_srlz_i();
  596. }
  597. static inline unsigned long
  598. pfm_get_psr(void)
  599. {
  600. unsigned long tmp;
  601. tmp = ia64_getreg(_IA64_REG_PSR);
  602. ia64_srlz_i();
  603. return tmp;
  604. }
  605. static inline void
  606. pfm_set_psr_l(unsigned long val)
  607. {
  608. ia64_setreg(_IA64_REG_PSR_L, val);
  609. ia64_srlz_i();
  610. }
  611. static inline void
  612. pfm_freeze_pmu(void)
  613. {
  614. ia64_set_pmc(0,1UL);
  615. ia64_srlz_d();
  616. }
  617. static inline void
  618. pfm_unfreeze_pmu(void)
  619. {
  620. ia64_set_pmc(0,0UL);
  621. ia64_srlz_d();
  622. }
  623. static inline void
  624. pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
  625. {
  626. int i;
  627. for (i=0; i < nibrs; i++) {
  628. ia64_set_ibr(i, ibrs[i]);
  629. ia64_dv_serialize_instruction();
  630. }
  631. ia64_srlz_i();
  632. }
  633. static inline void
  634. pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
  635. {
  636. int i;
  637. for (i=0; i < ndbrs; i++) {
  638. ia64_set_dbr(i, dbrs[i]);
  639. ia64_dv_serialize_data();
  640. }
  641. ia64_srlz_d();
  642. }
  643. /*
  644. * PMD[i] must be a counter. no check is made
  645. */
  646. static inline unsigned long
  647. pfm_read_soft_counter(pfm_context_t *ctx, int i)
  648. {
  649. return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
  650. }
  651. /*
  652. * PMD[i] must be a counter. no check is made
  653. */
  654. static inline void
  655. pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
  656. {
  657. unsigned long ovfl_val = pmu_conf->ovfl_val;
  658. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  659. /*
  660. * writing to unimplemented part is ignore, so we do not need to
  661. * mask off top part
  662. */
  663. ia64_set_pmd(i, val & ovfl_val);
  664. }
  665. static pfm_msg_t *
  666. pfm_get_new_msg(pfm_context_t *ctx)
  667. {
  668. int idx, next;
  669. next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
  670. DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  671. if (next == ctx->ctx_msgq_head) return NULL;
  672. idx = ctx->ctx_msgq_tail;
  673. ctx->ctx_msgq_tail = next;
  674. DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
  675. return ctx->ctx_msgq+idx;
  676. }
  677. static pfm_msg_t *
  678. pfm_get_next_msg(pfm_context_t *ctx)
  679. {
  680. pfm_msg_t *msg;
  681. DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  682. if (PFM_CTXQ_EMPTY(ctx)) return NULL;
  683. /*
  684. * get oldest message
  685. */
  686. msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
  687. /*
  688. * and move forward
  689. */
  690. ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
  691. DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
  692. return msg;
  693. }
  694. static void
  695. pfm_reset_msgq(pfm_context_t *ctx)
  696. {
  697. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  698. DPRINT(("ctx=%p msgq reset\n", ctx));
  699. }
  700. static void *
  701. pfm_rvmalloc(unsigned long size)
  702. {
  703. void *mem;
  704. unsigned long addr;
  705. size = PAGE_ALIGN(size);
  706. mem = vmalloc(size);
  707. if (mem) {
  708. //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
  709. memset(mem, 0, size);
  710. addr = (unsigned long)mem;
  711. while (size > 0) {
  712. pfm_reserve_page(addr);
  713. addr+=PAGE_SIZE;
  714. size-=PAGE_SIZE;
  715. }
  716. }
  717. return mem;
  718. }
  719. static void
  720. pfm_rvfree(void *mem, unsigned long size)
  721. {
  722. unsigned long addr;
  723. if (mem) {
  724. DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
  725. addr = (unsigned long) mem;
  726. while ((long) size > 0) {
  727. pfm_unreserve_page(addr);
  728. addr+=PAGE_SIZE;
  729. size-=PAGE_SIZE;
  730. }
  731. vfree(mem);
  732. }
  733. return;
  734. }
  735. static pfm_context_t *
  736. pfm_context_alloc(void)
  737. {
  738. pfm_context_t *ctx;
  739. /*
  740. * allocate context descriptor
  741. * must be able to free with interrupts disabled
  742. */
  743. ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
  744. if (ctx) {
  745. DPRINT(("alloc ctx @%p\n", ctx));
  746. }
  747. return ctx;
  748. }
  749. static void
  750. pfm_context_free(pfm_context_t *ctx)
  751. {
  752. if (ctx) {
  753. DPRINT(("free ctx @%p\n", ctx));
  754. kfree(ctx);
  755. }
  756. }
  757. static void
  758. pfm_mask_monitoring(struct task_struct *task)
  759. {
  760. pfm_context_t *ctx = PFM_GET_CTX(task);
  761. unsigned long mask, val, ovfl_mask;
  762. int i;
  763. DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
  764. ovfl_mask = pmu_conf->ovfl_val;
  765. /*
  766. * monitoring can only be masked as a result of a valid
  767. * counter overflow. In UP, it means that the PMU still
  768. * has an owner. Note that the owner can be different
  769. * from the current task. However the PMU state belongs
  770. * to the owner.
  771. * In SMP, a valid overflow only happens when task is
  772. * current. Therefore if we come here, we know that
  773. * the PMU state belongs to the current task, therefore
  774. * we can access the live registers.
  775. *
  776. * So in both cases, the live register contains the owner's
  777. * state. We can ONLY touch the PMU registers and NOT the PSR.
  778. *
  779. * As a consequence to this call, the ctx->th_pmds[] array
  780. * contains stale information which must be ignored
  781. * when context is reloaded AND monitoring is active (see
  782. * pfm_restart).
  783. */
  784. mask = ctx->ctx_used_pmds[0];
  785. for (i = 0; mask; i++, mask>>=1) {
  786. /* skip non used pmds */
  787. if ((mask & 0x1) == 0) continue;
  788. val = ia64_get_pmd(i);
  789. if (PMD_IS_COUNTING(i)) {
  790. /*
  791. * we rebuild the full 64 bit value of the counter
  792. */
  793. ctx->ctx_pmds[i].val += (val & ovfl_mask);
  794. } else {
  795. ctx->ctx_pmds[i].val = val;
  796. }
  797. DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  798. i,
  799. ctx->ctx_pmds[i].val,
  800. val & ovfl_mask));
  801. }
  802. /*
  803. * mask monitoring by setting the privilege level to 0
  804. * we cannot use psr.pp/psr.up for this, it is controlled by
  805. * the user
  806. *
  807. * if task is current, modify actual registers, otherwise modify
  808. * thread save state, i.e., what will be restored in pfm_load_regs()
  809. */
  810. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  811. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  812. if ((mask & 0x1) == 0UL) continue;
  813. ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
  814. ctx->th_pmcs[i] &= ~0xfUL;
  815. DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
  816. }
  817. /*
  818. * make all of this visible
  819. */
  820. ia64_srlz_d();
  821. }
  822. /*
  823. * must always be done with task == current
  824. *
  825. * context must be in MASKED state when calling
  826. */
  827. static void
  828. pfm_restore_monitoring(struct task_struct *task)
  829. {
  830. pfm_context_t *ctx = PFM_GET_CTX(task);
  831. unsigned long mask, ovfl_mask;
  832. unsigned long psr, val;
  833. int i, is_system;
  834. is_system = ctx->ctx_fl_system;
  835. ovfl_mask = pmu_conf->ovfl_val;
  836. if (task != current) {
  837. printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
  838. return;
  839. }
  840. if (ctx->ctx_state != PFM_CTX_MASKED) {
  841. printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
  842. task->pid, current->pid, ctx->ctx_state);
  843. return;
  844. }
  845. psr = pfm_get_psr();
  846. /*
  847. * monitoring is masked via the PMC.
  848. * As we restore their value, we do not want each counter to
  849. * restart right away. We stop monitoring using the PSR,
  850. * restore the PMC (and PMD) and then re-establish the psr
  851. * as it was. Note that there can be no pending overflow at
  852. * this point, because monitoring was MASKED.
  853. *
  854. * system-wide session are pinned and self-monitoring
  855. */
  856. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  857. /* disable dcr pp */
  858. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  859. pfm_clear_psr_pp();
  860. } else {
  861. pfm_clear_psr_up();
  862. }
  863. /*
  864. * first, we restore the PMD
  865. */
  866. mask = ctx->ctx_used_pmds[0];
  867. for (i = 0; mask; i++, mask>>=1) {
  868. /* skip non used pmds */
  869. if ((mask & 0x1) == 0) continue;
  870. if (PMD_IS_COUNTING(i)) {
  871. /*
  872. * we split the 64bit value according to
  873. * counter width
  874. */
  875. val = ctx->ctx_pmds[i].val & ovfl_mask;
  876. ctx->ctx_pmds[i].val &= ~ovfl_mask;
  877. } else {
  878. val = ctx->ctx_pmds[i].val;
  879. }
  880. ia64_set_pmd(i, val);
  881. DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
  882. i,
  883. ctx->ctx_pmds[i].val,
  884. val));
  885. }
  886. /*
  887. * restore the PMCs
  888. */
  889. mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
  890. for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
  891. if ((mask & 0x1) == 0UL) continue;
  892. ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
  893. ia64_set_pmc(i, ctx->th_pmcs[i]);
  894. DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
  895. }
  896. ia64_srlz_d();
  897. /*
  898. * must restore DBR/IBR because could be modified while masked
  899. * XXX: need to optimize
  900. */
  901. if (ctx->ctx_fl_using_dbreg) {
  902. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  903. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  904. }
  905. /*
  906. * now restore PSR
  907. */
  908. if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
  909. /* enable dcr pp */
  910. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  911. ia64_srlz_i();
  912. }
  913. pfm_set_psr_l(psr);
  914. }
  915. static inline void
  916. pfm_save_pmds(unsigned long *pmds, unsigned long mask)
  917. {
  918. int i;
  919. ia64_srlz_d();
  920. for (i=0; mask; i++, mask>>=1) {
  921. if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
  922. }
  923. }
  924. /*
  925. * reload from thread state (used for ctxw only)
  926. */
  927. static inline void
  928. pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
  929. {
  930. int i;
  931. unsigned long val, ovfl_val = pmu_conf->ovfl_val;
  932. for (i=0; mask; i++, mask>>=1) {
  933. if ((mask & 0x1) == 0) continue;
  934. val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
  935. ia64_set_pmd(i, val);
  936. }
  937. ia64_srlz_d();
  938. }
  939. /*
  940. * propagate PMD from context to thread-state
  941. */
  942. static inline void
  943. pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
  944. {
  945. unsigned long ovfl_val = pmu_conf->ovfl_val;
  946. unsigned long mask = ctx->ctx_all_pmds[0];
  947. unsigned long val;
  948. int i;
  949. DPRINT(("mask=0x%lx\n", mask));
  950. for (i=0; mask; i++, mask>>=1) {
  951. val = ctx->ctx_pmds[i].val;
  952. /*
  953. * We break up the 64 bit value into 2 pieces
  954. * the lower bits go to the machine state in the
  955. * thread (will be reloaded on ctxsw in).
  956. * The upper part stays in the soft-counter.
  957. */
  958. if (PMD_IS_COUNTING(i)) {
  959. ctx->ctx_pmds[i].val = val & ~ovfl_val;
  960. val &= ovfl_val;
  961. }
  962. ctx->th_pmds[i] = val;
  963. DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
  964. i,
  965. ctx->th_pmds[i],
  966. ctx->ctx_pmds[i].val));
  967. }
  968. }
  969. /*
  970. * propagate PMC from context to thread-state
  971. */
  972. static inline void
  973. pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
  974. {
  975. unsigned long mask = ctx->ctx_all_pmcs[0];
  976. int i;
  977. DPRINT(("mask=0x%lx\n", mask));
  978. for (i=0; mask; i++, mask>>=1) {
  979. /* masking 0 with ovfl_val yields 0 */
  980. ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
  981. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
  982. }
  983. }
  984. static inline void
  985. pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
  986. {
  987. int i;
  988. for (i=0; mask; i++, mask>>=1) {
  989. if ((mask & 0x1) == 0) continue;
  990. ia64_set_pmc(i, pmcs[i]);
  991. }
  992. ia64_srlz_d();
  993. }
  994. static inline int
  995. pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
  996. {
  997. return memcmp(a, b, sizeof(pfm_uuid_t));
  998. }
  999. static inline int
  1000. pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
  1001. {
  1002. int ret = 0;
  1003. if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
  1004. return ret;
  1005. }
  1006. static inline int
  1007. pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
  1008. {
  1009. int ret = 0;
  1010. if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
  1011. return ret;
  1012. }
  1013. static inline int
  1014. pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
  1015. int cpu, void *arg)
  1016. {
  1017. int ret = 0;
  1018. if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
  1019. return ret;
  1020. }
  1021. static inline int
  1022. pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
  1023. int cpu, void *arg)
  1024. {
  1025. int ret = 0;
  1026. if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
  1027. return ret;
  1028. }
  1029. static inline int
  1030. pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1031. {
  1032. int ret = 0;
  1033. if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
  1034. return ret;
  1035. }
  1036. static inline int
  1037. pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
  1038. {
  1039. int ret = 0;
  1040. if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
  1041. return ret;
  1042. }
  1043. static pfm_buffer_fmt_t *
  1044. __pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1045. {
  1046. struct list_head * pos;
  1047. pfm_buffer_fmt_t * entry;
  1048. list_for_each(pos, &pfm_buffer_fmt_list) {
  1049. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  1050. if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
  1051. return entry;
  1052. }
  1053. return NULL;
  1054. }
  1055. /*
  1056. * find a buffer format based on its uuid
  1057. */
  1058. static pfm_buffer_fmt_t *
  1059. pfm_find_buffer_fmt(pfm_uuid_t uuid)
  1060. {
  1061. pfm_buffer_fmt_t * fmt;
  1062. spin_lock(&pfm_buffer_fmt_lock);
  1063. fmt = __pfm_find_buffer_fmt(uuid);
  1064. spin_unlock(&pfm_buffer_fmt_lock);
  1065. return fmt;
  1066. }
  1067. int
  1068. pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
  1069. {
  1070. int ret = 0;
  1071. /* some sanity checks */
  1072. if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
  1073. /* we need at least a handler */
  1074. if (fmt->fmt_handler == NULL) return -EINVAL;
  1075. /*
  1076. * XXX: need check validity of fmt_arg_size
  1077. */
  1078. spin_lock(&pfm_buffer_fmt_lock);
  1079. if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
  1080. printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
  1081. ret = -EBUSY;
  1082. goto out;
  1083. }
  1084. list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
  1085. printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
  1086. out:
  1087. spin_unlock(&pfm_buffer_fmt_lock);
  1088. return ret;
  1089. }
  1090. EXPORT_SYMBOL(pfm_register_buffer_fmt);
  1091. int
  1092. pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
  1093. {
  1094. pfm_buffer_fmt_t *fmt;
  1095. int ret = 0;
  1096. spin_lock(&pfm_buffer_fmt_lock);
  1097. fmt = __pfm_find_buffer_fmt(uuid);
  1098. if (!fmt) {
  1099. printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
  1100. ret = -EINVAL;
  1101. goto out;
  1102. }
  1103. list_del_init(&fmt->fmt_list);
  1104. printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
  1105. out:
  1106. spin_unlock(&pfm_buffer_fmt_lock);
  1107. return ret;
  1108. }
  1109. EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
  1110. extern void update_pal_halt_status(int);
  1111. static int
  1112. pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
  1113. {
  1114. unsigned long flags;
  1115. /*
  1116. * validity checks on cpu_mask have been done upstream
  1117. */
  1118. LOCK_PFS(flags);
  1119. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1120. pfm_sessions.pfs_sys_sessions,
  1121. pfm_sessions.pfs_task_sessions,
  1122. pfm_sessions.pfs_sys_use_dbregs,
  1123. is_syswide,
  1124. cpu));
  1125. if (is_syswide) {
  1126. /*
  1127. * cannot mix system wide and per-task sessions
  1128. */
  1129. if (pfm_sessions.pfs_task_sessions > 0UL) {
  1130. DPRINT(("system wide not possible, %u conflicting task_sessions\n",
  1131. pfm_sessions.pfs_task_sessions));
  1132. goto abort;
  1133. }
  1134. if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
  1135. DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
  1136. pfm_sessions.pfs_sys_session[cpu] = task;
  1137. pfm_sessions.pfs_sys_sessions++ ;
  1138. } else {
  1139. if (pfm_sessions.pfs_sys_sessions) goto abort;
  1140. pfm_sessions.pfs_task_sessions++;
  1141. }
  1142. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1143. pfm_sessions.pfs_sys_sessions,
  1144. pfm_sessions.pfs_task_sessions,
  1145. pfm_sessions.pfs_sys_use_dbregs,
  1146. is_syswide,
  1147. cpu));
  1148. /*
  1149. * disable default_idle() to go to PAL_HALT
  1150. */
  1151. update_pal_halt_status(0);
  1152. UNLOCK_PFS(flags);
  1153. return 0;
  1154. error_conflict:
  1155. DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
  1156. pfm_sessions.pfs_sys_session[cpu]->pid,
  1157. cpu));
  1158. abort:
  1159. UNLOCK_PFS(flags);
  1160. return -EBUSY;
  1161. }
  1162. static int
  1163. pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
  1164. {
  1165. unsigned long flags;
  1166. /*
  1167. * validity checks on cpu_mask have been done upstream
  1168. */
  1169. LOCK_PFS(flags);
  1170. DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1171. pfm_sessions.pfs_sys_sessions,
  1172. pfm_sessions.pfs_task_sessions,
  1173. pfm_sessions.pfs_sys_use_dbregs,
  1174. is_syswide,
  1175. cpu));
  1176. if (is_syswide) {
  1177. pfm_sessions.pfs_sys_session[cpu] = NULL;
  1178. /*
  1179. * would not work with perfmon+more than one bit in cpu_mask
  1180. */
  1181. if (ctx && ctx->ctx_fl_using_dbreg) {
  1182. if (pfm_sessions.pfs_sys_use_dbregs == 0) {
  1183. printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
  1184. } else {
  1185. pfm_sessions.pfs_sys_use_dbregs--;
  1186. }
  1187. }
  1188. pfm_sessions.pfs_sys_sessions--;
  1189. } else {
  1190. pfm_sessions.pfs_task_sessions--;
  1191. }
  1192. DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
  1193. pfm_sessions.pfs_sys_sessions,
  1194. pfm_sessions.pfs_task_sessions,
  1195. pfm_sessions.pfs_sys_use_dbregs,
  1196. is_syswide,
  1197. cpu));
  1198. /*
  1199. * if possible, enable default_idle() to go into PAL_HALT
  1200. */
  1201. if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
  1202. update_pal_halt_status(1);
  1203. UNLOCK_PFS(flags);
  1204. return 0;
  1205. }
  1206. /*
  1207. * removes virtual mapping of the sampling buffer.
  1208. * IMPORTANT: cannot be called with interrupts disable, e.g. inside
  1209. * a PROTECT_CTX() section.
  1210. */
  1211. static int
  1212. pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
  1213. {
  1214. int r;
  1215. /* sanity checks */
  1216. if (task->mm == NULL || size == 0UL || vaddr == NULL) {
  1217. printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
  1218. return -EINVAL;
  1219. }
  1220. DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
  1221. /*
  1222. * does the actual unmapping
  1223. */
  1224. down_write(&task->mm->mmap_sem);
  1225. DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
  1226. r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
  1227. up_write(&task->mm->mmap_sem);
  1228. if (r !=0) {
  1229. printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
  1230. }
  1231. DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
  1232. return 0;
  1233. }
  1234. /*
  1235. * free actual physical storage used by sampling buffer
  1236. */
  1237. #if 0
  1238. static int
  1239. pfm_free_smpl_buffer(pfm_context_t *ctx)
  1240. {
  1241. pfm_buffer_fmt_t *fmt;
  1242. if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
  1243. /*
  1244. * we won't use the buffer format anymore
  1245. */
  1246. fmt = ctx->ctx_buf_fmt;
  1247. DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
  1248. ctx->ctx_smpl_hdr,
  1249. ctx->ctx_smpl_size,
  1250. ctx->ctx_smpl_vaddr));
  1251. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1252. /*
  1253. * free the buffer
  1254. */
  1255. pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
  1256. ctx->ctx_smpl_hdr = NULL;
  1257. ctx->ctx_smpl_size = 0UL;
  1258. return 0;
  1259. invalid_free:
  1260. printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
  1261. return -EINVAL;
  1262. }
  1263. #endif
  1264. static inline void
  1265. pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
  1266. {
  1267. if (fmt == NULL) return;
  1268. pfm_buf_fmt_exit(fmt, current, NULL, NULL);
  1269. }
  1270. /*
  1271. * pfmfs should _never_ be mounted by userland - too much of security hassle,
  1272. * no real gain from having the whole whorehouse mounted. So we don't need
  1273. * any operations on the root directory. However, we need a non-trivial
  1274. * d_name - pfm: will go nicely and kill the special-casing in procfs.
  1275. */
  1276. static struct vfsmount *pfmfs_mnt;
  1277. static int __init
  1278. init_pfm_fs(void)
  1279. {
  1280. int err = register_filesystem(&pfm_fs_type);
  1281. if (!err) {
  1282. pfmfs_mnt = kern_mount(&pfm_fs_type);
  1283. err = PTR_ERR(pfmfs_mnt);
  1284. if (IS_ERR(pfmfs_mnt))
  1285. unregister_filesystem(&pfm_fs_type);
  1286. else
  1287. err = 0;
  1288. }
  1289. return err;
  1290. }
  1291. static ssize_t
  1292. pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
  1293. {
  1294. pfm_context_t *ctx;
  1295. pfm_msg_t *msg;
  1296. ssize_t ret;
  1297. unsigned long flags;
  1298. DECLARE_WAITQUEUE(wait, current);
  1299. if (PFM_IS_FILE(filp) == 0) {
  1300. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
  1301. return -EINVAL;
  1302. }
  1303. ctx = (pfm_context_t *)filp->private_data;
  1304. if (ctx == NULL) {
  1305. printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
  1306. return -EINVAL;
  1307. }
  1308. /*
  1309. * check even when there is no message
  1310. */
  1311. if (size < sizeof(pfm_msg_t)) {
  1312. DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
  1313. return -EINVAL;
  1314. }
  1315. PROTECT_CTX(ctx, flags);
  1316. /*
  1317. * put ourselves on the wait queue
  1318. */
  1319. add_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1320. for(;;) {
  1321. /*
  1322. * check wait queue
  1323. */
  1324. set_current_state(TASK_INTERRUPTIBLE);
  1325. DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
  1326. ret = 0;
  1327. if(PFM_CTXQ_EMPTY(ctx) == 0) break;
  1328. UNPROTECT_CTX(ctx, flags);
  1329. /*
  1330. * check non-blocking read
  1331. */
  1332. ret = -EAGAIN;
  1333. if(filp->f_flags & O_NONBLOCK) break;
  1334. /*
  1335. * check pending signals
  1336. */
  1337. if(signal_pending(current)) {
  1338. ret = -EINTR;
  1339. break;
  1340. }
  1341. /*
  1342. * no message, so wait
  1343. */
  1344. schedule();
  1345. PROTECT_CTX(ctx, flags);
  1346. }
  1347. DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
  1348. set_current_state(TASK_RUNNING);
  1349. remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
  1350. if (ret < 0) goto abort;
  1351. ret = -EINVAL;
  1352. msg = pfm_get_next_msg(ctx);
  1353. if (msg == NULL) {
  1354. printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
  1355. goto abort_locked;
  1356. }
  1357. DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
  1358. ret = -EFAULT;
  1359. if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
  1360. abort_locked:
  1361. UNPROTECT_CTX(ctx, flags);
  1362. abort:
  1363. return ret;
  1364. }
  1365. static ssize_t
  1366. pfm_write(struct file *file, const char __user *ubuf,
  1367. size_t size, loff_t *ppos)
  1368. {
  1369. DPRINT(("pfm_write called\n"));
  1370. return -EINVAL;
  1371. }
  1372. static unsigned int
  1373. pfm_poll(struct file *filp, poll_table * wait)
  1374. {
  1375. pfm_context_t *ctx;
  1376. unsigned long flags;
  1377. unsigned int mask = 0;
  1378. if (PFM_IS_FILE(filp) == 0) {
  1379. printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
  1380. return 0;
  1381. }
  1382. ctx = (pfm_context_t *)filp->private_data;
  1383. if (ctx == NULL) {
  1384. printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
  1385. return 0;
  1386. }
  1387. DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
  1388. poll_wait(filp, &ctx->ctx_msgq_wait, wait);
  1389. PROTECT_CTX(ctx, flags);
  1390. if (PFM_CTXQ_EMPTY(ctx) == 0)
  1391. mask = POLLIN | POLLRDNORM;
  1392. UNPROTECT_CTX(ctx, flags);
  1393. DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
  1394. return mask;
  1395. }
  1396. static int
  1397. pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
  1398. {
  1399. DPRINT(("pfm_ioctl called\n"));
  1400. return -EINVAL;
  1401. }
  1402. /*
  1403. * interrupt cannot be masked when coming here
  1404. */
  1405. static inline int
  1406. pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
  1407. {
  1408. int ret;
  1409. ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
  1410. DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1411. current->pid,
  1412. fd,
  1413. on,
  1414. ctx->ctx_async_queue, ret));
  1415. return ret;
  1416. }
  1417. static int
  1418. pfm_fasync(int fd, struct file *filp, int on)
  1419. {
  1420. pfm_context_t *ctx;
  1421. int ret;
  1422. if (PFM_IS_FILE(filp) == 0) {
  1423. printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
  1424. return -EBADF;
  1425. }
  1426. ctx = (pfm_context_t *)filp->private_data;
  1427. if (ctx == NULL) {
  1428. printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
  1429. return -EBADF;
  1430. }
  1431. /*
  1432. * we cannot mask interrupts during this call because this may
  1433. * may go to sleep if memory is not readily avalaible.
  1434. *
  1435. * We are protected from the conetxt disappearing by the get_fd()/put_fd()
  1436. * done in caller. Serialization of this function is ensured by caller.
  1437. */
  1438. ret = pfm_do_fasync(fd, filp, ctx, on);
  1439. DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
  1440. fd,
  1441. on,
  1442. ctx->ctx_async_queue, ret));
  1443. return ret;
  1444. }
  1445. #ifdef CONFIG_SMP
  1446. /*
  1447. * this function is exclusively called from pfm_close().
  1448. * The context is not protected at that time, nor are interrupts
  1449. * on the remote CPU. That's necessary to avoid deadlocks.
  1450. */
  1451. static void
  1452. pfm_syswide_force_stop(void *info)
  1453. {
  1454. pfm_context_t *ctx = (pfm_context_t *)info;
  1455. struct pt_regs *regs = task_pt_regs(current);
  1456. struct task_struct *owner;
  1457. unsigned long flags;
  1458. int ret;
  1459. if (ctx->ctx_cpu != smp_processor_id()) {
  1460. printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
  1461. ctx->ctx_cpu,
  1462. smp_processor_id());
  1463. return;
  1464. }
  1465. owner = GET_PMU_OWNER();
  1466. if (owner != ctx->ctx_task) {
  1467. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
  1468. smp_processor_id(),
  1469. owner->pid, ctx->ctx_task->pid);
  1470. return;
  1471. }
  1472. if (GET_PMU_CTX() != ctx) {
  1473. printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
  1474. smp_processor_id(),
  1475. GET_PMU_CTX(), ctx);
  1476. return;
  1477. }
  1478. DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
  1479. /*
  1480. * the context is already protected in pfm_close(), we simply
  1481. * need to mask interrupts to avoid a PMU interrupt race on
  1482. * this CPU
  1483. */
  1484. local_irq_save(flags);
  1485. ret = pfm_context_unload(ctx, NULL, 0, regs);
  1486. if (ret) {
  1487. DPRINT(("context_unload returned %d\n", ret));
  1488. }
  1489. /*
  1490. * unmask interrupts, PMU interrupts are now spurious here
  1491. */
  1492. local_irq_restore(flags);
  1493. }
  1494. static void
  1495. pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
  1496. {
  1497. int ret;
  1498. DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
  1499. ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
  1500. DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
  1501. }
  1502. #endif /* CONFIG_SMP */
  1503. /*
  1504. * called for each close(). Partially free resources.
  1505. * When caller is self-monitoring, the context is unloaded.
  1506. */
  1507. static int
  1508. pfm_flush(struct file *filp, fl_owner_t id)
  1509. {
  1510. pfm_context_t *ctx;
  1511. struct task_struct *task;
  1512. struct pt_regs *regs;
  1513. unsigned long flags;
  1514. unsigned long smpl_buf_size = 0UL;
  1515. void *smpl_buf_vaddr = NULL;
  1516. int state, is_system;
  1517. if (PFM_IS_FILE(filp) == 0) {
  1518. DPRINT(("bad magic for\n"));
  1519. return -EBADF;
  1520. }
  1521. ctx = (pfm_context_t *)filp->private_data;
  1522. if (ctx == NULL) {
  1523. printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
  1524. return -EBADF;
  1525. }
  1526. /*
  1527. * remove our file from the async queue, if we use this mode.
  1528. * This can be done without the context being protected. We come
  1529. * here when the context has become unreachable by other tasks.
  1530. *
  1531. * We may still have active monitoring at this point and we may
  1532. * end up in pfm_overflow_handler(). However, fasync_helper()
  1533. * operates with interrupts disabled and it cleans up the
  1534. * queue. If the PMU handler is called prior to entering
  1535. * fasync_helper() then it will send a signal. If it is
  1536. * invoked after, it will find an empty queue and no
  1537. * signal will be sent. In both case, we are safe
  1538. */
  1539. if (filp->f_flags & FASYNC) {
  1540. DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
  1541. pfm_do_fasync (-1, filp, ctx, 0);
  1542. }
  1543. PROTECT_CTX(ctx, flags);
  1544. state = ctx->ctx_state;
  1545. is_system = ctx->ctx_fl_system;
  1546. task = PFM_CTX_TASK(ctx);
  1547. regs = task_pt_regs(task);
  1548. DPRINT(("ctx_state=%d is_current=%d\n",
  1549. state,
  1550. task == current ? 1 : 0));
  1551. /*
  1552. * if state == UNLOADED, then task is NULL
  1553. */
  1554. /*
  1555. * we must stop and unload because we are losing access to the context.
  1556. */
  1557. if (task == current) {
  1558. #ifdef CONFIG_SMP
  1559. /*
  1560. * the task IS the owner but it migrated to another CPU: that's bad
  1561. * but we must handle this cleanly. Unfortunately, the kernel does
  1562. * not provide a mechanism to block migration (while the context is loaded).
  1563. *
  1564. * We need to release the resource on the ORIGINAL cpu.
  1565. */
  1566. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  1567. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  1568. /*
  1569. * keep context protected but unmask interrupt for IPI
  1570. */
  1571. local_irq_restore(flags);
  1572. pfm_syswide_cleanup_other_cpu(ctx);
  1573. /*
  1574. * restore interrupt masking
  1575. */
  1576. local_irq_save(flags);
  1577. /*
  1578. * context is unloaded at this point
  1579. */
  1580. } else
  1581. #endif /* CONFIG_SMP */
  1582. {
  1583. DPRINT(("forcing unload\n"));
  1584. /*
  1585. * stop and unload, returning with state UNLOADED
  1586. * and session unreserved.
  1587. */
  1588. pfm_context_unload(ctx, NULL, 0, regs);
  1589. DPRINT(("ctx_state=%d\n", ctx->ctx_state));
  1590. }
  1591. }
  1592. /*
  1593. * remove virtual mapping, if any, for the calling task.
  1594. * cannot reset ctx field until last user is calling close().
  1595. *
  1596. * ctx_smpl_vaddr must never be cleared because it is needed
  1597. * by every task with access to the context
  1598. *
  1599. * When called from do_exit(), the mm context is gone already, therefore
  1600. * mm is NULL, i.e., the VMA is already gone and we do not have to
  1601. * do anything here
  1602. */
  1603. if (ctx->ctx_smpl_vaddr && current->mm) {
  1604. smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
  1605. smpl_buf_size = ctx->ctx_smpl_size;
  1606. }
  1607. UNPROTECT_CTX(ctx, flags);
  1608. /*
  1609. * if there was a mapping, then we systematically remove it
  1610. * at this point. Cannot be done inside critical section
  1611. * because some VM function reenables interrupts.
  1612. *
  1613. */
  1614. if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
  1615. return 0;
  1616. }
  1617. /*
  1618. * called either on explicit close() or from exit_files().
  1619. * Only the LAST user of the file gets to this point, i.e., it is
  1620. * called only ONCE.
  1621. *
  1622. * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
  1623. * (fput()),i.e, last task to access the file. Nobody else can access the
  1624. * file at this point.
  1625. *
  1626. * When called from exit_files(), the VMA has been freed because exit_mm()
  1627. * is executed before exit_files().
  1628. *
  1629. * When called from exit_files(), the current task is not yet ZOMBIE but we
  1630. * flush the PMU state to the context.
  1631. */
  1632. static int
  1633. pfm_close(struct inode *inode, struct file *filp)
  1634. {
  1635. pfm_context_t *ctx;
  1636. struct task_struct *task;
  1637. struct pt_regs *regs;
  1638. DECLARE_WAITQUEUE(wait, current);
  1639. unsigned long flags;
  1640. unsigned long smpl_buf_size = 0UL;
  1641. void *smpl_buf_addr = NULL;
  1642. int free_possible = 1;
  1643. int state, is_system;
  1644. DPRINT(("pfm_close called private=%p\n", filp->private_data));
  1645. if (PFM_IS_FILE(filp) == 0) {
  1646. DPRINT(("bad magic\n"));
  1647. return -EBADF;
  1648. }
  1649. ctx = (pfm_context_t *)filp->private_data;
  1650. if (ctx == NULL) {
  1651. printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
  1652. return -EBADF;
  1653. }
  1654. PROTECT_CTX(ctx, flags);
  1655. state = ctx->ctx_state;
  1656. is_system = ctx->ctx_fl_system;
  1657. task = PFM_CTX_TASK(ctx);
  1658. regs = task_pt_regs(task);
  1659. DPRINT(("ctx_state=%d is_current=%d\n",
  1660. state,
  1661. task == current ? 1 : 0));
  1662. /*
  1663. * if task == current, then pfm_flush() unloaded the context
  1664. */
  1665. if (state == PFM_CTX_UNLOADED) goto doit;
  1666. /*
  1667. * context is loaded/masked and task != current, we need to
  1668. * either force an unload or go zombie
  1669. */
  1670. /*
  1671. * The task is currently blocked or will block after an overflow.
  1672. * we must force it to wakeup to get out of the
  1673. * MASKED state and transition to the unloaded state by itself.
  1674. *
  1675. * This situation is only possible for per-task mode
  1676. */
  1677. if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
  1678. /*
  1679. * set a "partial" zombie state to be checked
  1680. * upon return from down() in pfm_handle_work().
  1681. *
  1682. * We cannot use the ZOMBIE state, because it is checked
  1683. * by pfm_load_regs() which is called upon wakeup from down().
  1684. * In such case, it would free the context and then we would
  1685. * return to pfm_handle_work() which would access the
  1686. * stale context. Instead, we set a flag invisible to pfm_load_regs()
  1687. * but visible to pfm_handle_work().
  1688. *
  1689. * For some window of time, we have a zombie context with
  1690. * ctx_state = MASKED and not ZOMBIE
  1691. */
  1692. ctx->ctx_fl_going_zombie = 1;
  1693. /*
  1694. * force task to wake up from MASKED state
  1695. */
  1696. complete(&ctx->ctx_restart_done);
  1697. DPRINT(("waking up ctx_state=%d\n", state));
  1698. /*
  1699. * put ourself to sleep waiting for the other
  1700. * task to report completion
  1701. *
  1702. * the context is protected by mutex, therefore there
  1703. * is no risk of being notified of completion before
  1704. * begin actually on the waitq.
  1705. */
  1706. set_current_state(TASK_INTERRUPTIBLE);
  1707. add_wait_queue(&ctx->ctx_zombieq, &wait);
  1708. UNPROTECT_CTX(ctx, flags);
  1709. /*
  1710. * XXX: check for signals :
  1711. * - ok for explicit close
  1712. * - not ok when coming from exit_files()
  1713. */
  1714. schedule();
  1715. PROTECT_CTX(ctx, flags);
  1716. remove_wait_queue(&ctx->ctx_zombieq, &wait);
  1717. set_current_state(TASK_RUNNING);
  1718. /*
  1719. * context is unloaded at this point
  1720. */
  1721. DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
  1722. }
  1723. else if (task != current) {
  1724. #ifdef CONFIG_SMP
  1725. /*
  1726. * switch context to zombie state
  1727. */
  1728. ctx->ctx_state = PFM_CTX_ZOMBIE;
  1729. DPRINT(("zombie ctx for [%d]\n", task->pid));
  1730. /*
  1731. * cannot free the context on the spot. deferred until
  1732. * the task notices the ZOMBIE state
  1733. */
  1734. free_possible = 0;
  1735. #else
  1736. pfm_context_unload(ctx, NULL, 0, regs);
  1737. #endif
  1738. }
  1739. doit:
  1740. /* reload state, may have changed during opening of critical section */
  1741. state = ctx->ctx_state;
  1742. /*
  1743. * the context is still attached to a task (possibly current)
  1744. * we cannot destroy it right now
  1745. */
  1746. /*
  1747. * we must free the sampling buffer right here because
  1748. * we cannot rely on it being cleaned up later by the
  1749. * monitored task. It is not possible to free vmalloc'ed
  1750. * memory in pfm_load_regs(). Instead, we remove the buffer
  1751. * now. should there be subsequent PMU overflow originally
  1752. * meant for sampling, the will be converted to spurious
  1753. * and that's fine because the monitoring tools is gone anyway.
  1754. */
  1755. if (ctx->ctx_smpl_hdr) {
  1756. smpl_buf_addr = ctx->ctx_smpl_hdr;
  1757. smpl_buf_size = ctx->ctx_smpl_size;
  1758. /* no more sampling */
  1759. ctx->ctx_smpl_hdr = NULL;
  1760. ctx->ctx_fl_is_sampling = 0;
  1761. }
  1762. DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
  1763. state,
  1764. free_possible,
  1765. smpl_buf_addr,
  1766. smpl_buf_size));
  1767. if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
  1768. /*
  1769. * UNLOADED that the session has already been unreserved.
  1770. */
  1771. if (state == PFM_CTX_ZOMBIE) {
  1772. pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
  1773. }
  1774. /*
  1775. * disconnect file descriptor from context must be done
  1776. * before we unlock.
  1777. */
  1778. filp->private_data = NULL;
  1779. /*
  1780. * if we free on the spot, the context is now completely unreachable
  1781. * from the callers side. The monitored task side is also cut, so we
  1782. * can freely cut.
  1783. *
  1784. * If we have a deferred free, only the caller side is disconnected.
  1785. */
  1786. UNPROTECT_CTX(ctx, flags);
  1787. /*
  1788. * All memory free operations (especially for vmalloc'ed memory)
  1789. * MUST be done with interrupts ENABLED.
  1790. */
  1791. if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
  1792. /*
  1793. * return the memory used by the context
  1794. */
  1795. if (free_possible) pfm_context_free(ctx);
  1796. return 0;
  1797. }
  1798. static int
  1799. pfm_no_open(struct inode *irrelevant, struct file *dontcare)
  1800. {
  1801. DPRINT(("pfm_no_open called\n"));
  1802. return -ENXIO;
  1803. }
  1804. static const struct file_operations pfm_file_ops = {
  1805. .llseek = no_llseek,
  1806. .read = pfm_read,
  1807. .write = pfm_write,
  1808. .poll = pfm_poll,
  1809. .ioctl = pfm_ioctl,
  1810. .open = pfm_no_open, /* special open code to disallow open via /proc */
  1811. .fasync = pfm_fasync,
  1812. .release = pfm_close,
  1813. .flush = pfm_flush
  1814. };
  1815. static int
  1816. pfmfs_delete_dentry(struct dentry *dentry)
  1817. {
  1818. return 1;
  1819. }
  1820. static struct dentry_operations pfmfs_dentry_operations = {
  1821. .d_delete = pfmfs_delete_dentry,
  1822. };
  1823. static int
  1824. pfm_alloc_fd(struct file **cfile)
  1825. {
  1826. int fd, ret = 0;
  1827. struct file *file = NULL;
  1828. struct inode * inode;
  1829. char name[32];
  1830. struct qstr this;
  1831. fd = get_unused_fd();
  1832. if (fd < 0) return -ENFILE;
  1833. ret = -ENFILE;
  1834. file = get_empty_filp();
  1835. if (!file) goto out;
  1836. /*
  1837. * allocate a new inode
  1838. */
  1839. inode = new_inode(pfmfs_mnt->mnt_sb);
  1840. if (!inode) goto out;
  1841. DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
  1842. inode->i_mode = S_IFCHR|S_IRUGO;
  1843. inode->i_uid = current->fsuid;
  1844. inode->i_gid = current->fsgid;
  1845. sprintf(name, "[%lu]", inode->i_ino);
  1846. this.name = name;
  1847. this.len = strlen(name);
  1848. this.hash = inode->i_ino;
  1849. ret = -ENOMEM;
  1850. /*
  1851. * allocate a new dcache entry
  1852. */
  1853. file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
  1854. if (!file->f_path.dentry) goto out;
  1855. file->f_path.dentry->d_op = &pfmfs_dentry_operations;
  1856. d_add(file->f_path.dentry, inode);
  1857. file->f_path.mnt = mntget(pfmfs_mnt);
  1858. file->f_mapping = inode->i_mapping;
  1859. file->f_op = &pfm_file_ops;
  1860. file->f_mode = FMODE_READ;
  1861. file->f_flags = O_RDONLY;
  1862. file->f_pos = 0;
  1863. /*
  1864. * may have to delay until context is attached?
  1865. */
  1866. fd_install(fd, file);
  1867. /*
  1868. * the file structure we will use
  1869. */
  1870. *cfile = file;
  1871. return fd;
  1872. out:
  1873. if (file) put_filp(file);
  1874. put_unused_fd(fd);
  1875. return ret;
  1876. }
  1877. static void
  1878. pfm_free_fd(int fd, struct file *file)
  1879. {
  1880. struct files_struct *files = current->files;
  1881. struct fdtable *fdt;
  1882. /*
  1883. * there ie no fd_uninstall(), so we do it here
  1884. */
  1885. spin_lock(&files->file_lock);
  1886. fdt = files_fdtable(files);
  1887. rcu_assign_pointer(fdt->fd[fd], NULL);
  1888. spin_unlock(&files->file_lock);
  1889. if (file)
  1890. put_filp(file);
  1891. put_unused_fd(fd);
  1892. }
  1893. static int
  1894. pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
  1895. {
  1896. DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
  1897. while (size > 0) {
  1898. unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
  1899. if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
  1900. return -ENOMEM;
  1901. addr += PAGE_SIZE;
  1902. buf += PAGE_SIZE;
  1903. size -= PAGE_SIZE;
  1904. }
  1905. return 0;
  1906. }
  1907. /*
  1908. * allocate a sampling buffer and remaps it into the user address space of the task
  1909. */
  1910. static int
  1911. pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
  1912. {
  1913. struct mm_struct *mm = task->mm;
  1914. struct vm_area_struct *vma = NULL;
  1915. unsigned long size;
  1916. void *smpl_buf;
  1917. /*
  1918. * the fixed header + requested size and align to page boundary
  1919. */
  1920. size = PAGE_ALIGN(rsize);
  1921. DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
  1922. /*
  1923. * check requested size to avoid Denial-of-service attacks
  1924. * XXX: may have to refine this test
  1925. * Check against address space limit.
  1926. *
  1927. * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
  1928. * return -ENOMEM;
  1929. */
  1930. if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
  1931. return -ENOMEM;
  1932. /*
  1933. * We do the easy to undo allocations first.
  1934. *
  1935. * pfm_rvmalloc(), clears the buffer, so there is no leak
  1936. */
  1937. smpl_buf = pfm_rvmalloc(size);
  1938. if (smpl_buf == NULL) {
  1939. DPRINT(("Can't allocate sampling buffer\n"));
  1940. return -ENOMEM;
  1941. }
  1942. DPRINT(("smpl_buf @%p\n", smpl_buf));
  1943. /* allocate vma */
  1944. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  1945. if (!vma) {
  1946. DPRINT(("Cannot allocate vma\n"));
  1947. goto error_kmem;
  1948. }
  1949. /*
  1950. * partially initialize the vma for the sampling buffer
  1951. */
  1952. vma->vm_mm = mm;
  1953. vma->vm_file = filp;
  1954. vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
  1955. vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
  1956. /*
  1957. * Now we have everything we need and we can initialize
  1958. * and connect all the data structures
  1959. */
  1960. ctx->ctx_smpl_hdr = smpl_buf;
  1961. ctx->ctx_smpl_size = size; /* aligned size */
  1962. /*
  1963. * Let's do the difficult operations next.
  1964. *
  1965. * now we atomically find some area in the address space and
  1966. * remap the buffer in it.
  1967. */
  1968. down_write(&task->mm->mmap_sem);
  1969. /* find some free area in address space, must have mmap sem held */
  1970. vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
  1971. if (vma->vm_start == 0UL) {
  1972. DPRINT(("Cannot find unmapped area for size %ld\n", size));
  1973. up_write(&task->mm->mmap_sem);
  1974. goto error;
  1975. }
  1976. vma->vm_end = vma->vm_start + size;
  1977. vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
  1978. DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
  1979. /* can only be applied to current task, need to have the mm semaphore held when called */
  1980. if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
  1981. DPRINT(("Can't remap buffer\n"));
  1982. up_write(&task->mm->mmap_sem);
  1983. goto error;
  1984. }
  1985. get_file(filp);
  1986. /*
  1987. * now insert the vma in the vm list for the process, must be
  1988. * done with mmap lock held
  1989. */
  1990. insert_vm_struct(mm, vma);
  1991. mm->total_vm += size >> PAGE_SHIFT;
  1992. vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
  1993. vma_pages(vma));
  1994. up_write(&task->mm->mmap_sem);
  1995. /*
  1996. * keep track of user level virtual address
  1997. */
  1998. ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
  1999. *(unsigned long *)user_vaddr = vma->vm_start;
  2000. return 0;
  2001. error:
  2002. kmem_cache_free(vm_area_cachep, vma);
  2003. error_kmem:
  2004. pfm_rvfree(smpl_buf, size);
  2005. return -ENOMEM;
  2006. }
  2007. /*
  2008. * XXX: do something better here
  2009. */
  2010. static int
  2011. pfm_bad_permissions(struct task_struct *task)
  2012. {
  2013. /* inspired by ptrace_attach() */
  2014. DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
  2015. current->uid,
  2016. current->gid,
  2017. task->euid,
  2018. task->suid,
  2019. task->uid,
  2020. task->egid,
  2021. task->sgid));
  2022. return ((current->uid != task->euid)
  2023. || (current->uid != task->suid)
  2024. || (current->uid != task->uid)
  2025. || (current->gid != task->egid)
  2026. || (current->gid != task->sgid)
  2027. || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
  2028. }
  2029. static int
  2030. pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
  2031. {
  2032. int ctx_flags;
  2033. /* valid signal */
  2034. ctx_flags = pfx->ctx_flags;
  2035. if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
  2036. /*
  2037. * cannot block in this mode
  2038. */
  2039. if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
  2040. DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
  2041. return -EINVAL;
  2042. }
  2043. } else {
  2044. }
  2045. /* probably more to add here */
  2046. return 0;
  2047. }
  2048. static int
  2049. pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
  2050. unsigned int cpu, pfarg_context_t *arg)
  2051. {
  2052. pfm_buffer_fmt_t *fmt = NULL;
  2053. unsigned long size = 0UL;
  2054. void *uaddr = NULL;
  2055. void *fmt_arg = NULL;
  2056. int ret = 0;
  2057. #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
  2058. /* invoke and lock buffer format, if found */
  2059. fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
  2060. if (fmt == NULL) {
  2061. DPRINT(("[%d] cannot find buffer format\n", task->pid));
  2062. return -EINVAL;
  2063. }
  2064. /*
  2065. * buffer argument MUST be contiguous to pfarg_context_t
  2066. */
  2067. if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
  2068. ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
  2069. DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
  2070. if (ret) goto error;
  2071. /* link buffer format and context */
  2072. ctx->ctx_buf_fmt = fmt;
  2073. /*
  2074. * check if buffer format wants to use perfmon buffer allocation/mapping service
  2075. */
  2076. ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
  2077. if (ret) goto error;
  2078. if (size) {
  2079. /*
  2080. * buffer is always remapped into the caller's address space
  2081. */
  2082. ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
  2083. if (ret) goto error;
  2084. /* keep track of user address of buffer */
  2085. arg->ctx_smpl_vaddr = uaddr;
  2086. }
  2087. ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
  2088. error:
  2089. return ret;
  2090. }
  2091. static void
  2092. pfm_reset_pmu_state(pfm_context_t *ctx)
  2093. {
  2094. int i;
  2095. /*
  2096. * install reset values for PMC.
  2097. */
  2098. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  2099. if (PMC_IS_IMPL(i) == 0) continue;
  2100. ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
  2101. DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
  2102. }
  2103. /*
  2104. * PMD registers are set to 0UL when the context in memset()
  2105. */
  2106. /*
  2107. * On context switched restore, we must restore ALL pmc and ALL pmd even
  2108. * when they are not actively used by the task. In UP, the incoming process
  2109. * may otherwise pick up left over PMC, PMD state from the previous process.
  2110. * As opposed to PMD, stale PMC can cause harm to the incoming
  2111. * process because they may change what is being measured.
  2112. * Therefore, we must systematically reinstall the entire
  2113. * PMC state. In SMP, the same thing is possible on the
  2114. * same CPU but also on between 2 CPUs.
  2115. *
  2116. * The problem with PMD is information leaking especially
  2117. * to user level when psr.sp=0
  2118. *
  2119. * There is unfortunately no easy way to avoid this problem
  2120. * on either UP or SMP. This definitively slows down the
  2121. * pfm_load_regs() function.
  2122. */
  2123. /*
  2124. * bitmask of all PMCs accessible to this context
  2125. *
  2126. * PMC0 is treated differently.
  2127. */
  2128. ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
  2129. /*
  2130. * bitmask of all PMDs that are accessible to this context
  2131. */
  2132. ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
  2133. DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
  2134. /*
  2135. * useful in case of re-enable after disable
  2136. */
  2137. ctx->ctx_used_ibrs[0] = 0UL;
  2138. ctx->ctx_used_dbrs[0] = 0UL;
  2139. }
  2140. static int
  2141. pfm_ctx_getsize(void *arg, size_t *sz)
  2142. {
  2143. pfarg_context_t *req = (pfarg_context_t *)arg;
  2144. pfm_buffer_fmt_t *fmt;
  2145. *sz = 0;
  2146. if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
  2147. fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
  2148. if (fmt == NULL) {
  2149. DPRINT(("cannot find buffer format\n"));
  2150. return -EINVAL;
  2151. }
  2152. /* get just enough to copy in user parameters */
  2153. *sz = fmt->fmt_arg_size;
  2154. DPRINT(("arg_size=%lu\n", *sz));
  2155. return 0;
  2156. }
  2157. /*
  2158. * cannot attach if :
  2159. * - kernel task
  2160. * - task not owned by caller
  2161. * - task incompatible with context mode
  2162. */
  2163. static int
  2164. pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
  2165. {
  2166. /*
  2167. * no kernel task or task not owner by caller
  2168. */
  2169. if (task->mm == NULL) {
  2170. DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
  2171. return -EPERM;
  2172. }
  2173. if (pfm_bad_permissions(task)) {
  2174. DPRINT(("no permission to attach to [%d]\n", task->pid));
  2175. return -EPERM;
  2176. }
  2177. /*
  2178. * cannot block in self-monitoring mode
  2179. */
  2180. if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
  2181. DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
  2182. return -EINVAL;
  2183. }
  2184. if (task->exit_state == EXIT_ZOMBIE) {
  2185. DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
  2186. return -EBUSY;
  2187. }
  2188. /*
  2189. * always ok for self
  2190. */
  2191. if (task == current) return 0;
  2192. if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
  2193. DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
  2194. return -EBUSY;
  2195. }
  2196. /*
  2197. * make sure the task is off any CPU
  2198. */
  2199. wait_task_inactive(task);
  2200. /* more to come... */
  2201. return 0;
  2202. }
  2203. static int
  2204. pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
  2205. {
  2206. struct task_struct *p = current;
  2207. int ret;
  2208. /* XXX: need to add more checks here */
  2209. if (pid < 2) return -EPERM;
  2210. if (pid != current->pid) {
  2211. read_lock(&tasklist_lock);
  2212. p = find_task_by_pid(pid);
  2213. /* make sure task cannot go away while we operate on it */
  2214. if (p) get_task_struct(p);
  2215. read_unlock(&tasklist_lock);
  2216. if (p == NULL) return -ESRCH;
  2217. }
  2218. ret = pfm_task_incompatible(ctx, p);
  2219. if (ret == 0) {
  2220. *task = p;
  2221. } else if (p != current) {
  2222. pfm_put_task(p);
  2223. }
  2224. return ret;
  2225. }
  2226. static int
  2227. pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2228. {
  2229. pfarg_context_t *req = (pfarg_context_t *)arg;
  2230. struct file *filp;
  2231. int ctx_flags;
  2232. int ret;
  2233. /* let's check the arguments first */
  2234. ret = pfarg_is_sane(current, req);
  2235. if (ret < 0) return ret;
  2236. ctx_flags = req->ctx_flags;
  2237. ret = -ENOMEM;
  2238. ctx = pfm_context_alloc();
  2239. if (!ctx) goto error;
  2240. ret = pfm_alloc_fd(&filp);
  2241. if (ret < 0) goto error_file;
  2242. req->ctx_fd = ctx->ctx_fd = ret;
  2243. /*
  2244. * attach context to file
  2245. */
  2246. filp->private_data = ctx;
  2247. /*
  2248. * does the user want to sample?
  2249. */
  2250. if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
  2251. ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
  2252. if (ret) goto buffer_error;
  2253. }
  2254. /*
  2255. * init context protection lock
  2256. */
  2257. spin_lock_init(&ctx->ctx_lock);
  2258. /*
  2259. * context is unloaded
  2260. */
  2261. ctx->ctx_state = PFM_CTX_UNLOADED;
  2262. /*
  2263. * initialization of context's flags
  2264. */
  2265. ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
  2266. ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
  2267. ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
  2268. ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
  2269. /*
  2270. * will move to set properties
  2271. * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
  2272. */
  2273. /*
  2274. * init restart semaphore to locked
  2275. */
  2276. init_completion(&ctx->ctx_restart_done);
  2277. /*
  2278. * activation is used in SMP only
  2279. */
  2280. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  2281. SET_LAST_CPU(ctx, -1);
  2282. /*
  2283. * initialize notification message queue
  2284. */
  2285. ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
  2286. init_waitqueue_head(&ctx->ctx_msgq_wait);
  2287. init_waitqueue_head(&ctx->ctx_zombieq);
  2288. DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
  2289. ctx,
  2290. ctx_flags,
  2291. ctx->ctx_fl_system,
  2292. ctx->ctx_fl_block,
  2293. ctx->ctx_fl_excl_idle,
  2294. ctx->ctx_fl_no_msg,
  2295. ctx->ctx_fd));
  2296. /*
  2297. * initialize soft PMU state
  2298. */
  2299. pfm_reset_pmu_state(ctx);
  2300. return 0;
  2301. buffer_error:
  2302. pfm_free_fd(ctx->ctx_fd, filp);
  2303. if (ctx->ctx_buf_fmt) {
  2304. pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
  2305. }
  2306. error_file:
  2307. pfm_context_free(ctx);
  2308. error:
  2309. return ret;
  2310. }
  2311. static inline unsigned long
  2312. pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
  2313. {
  2314. unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
  2315. unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
  2316. extern unsigned long carta_random32 (unsigned long seed);
  2317. if (reg->flags & PFM_REGFL_RANDOM) {
  2318. new_seed = carta_random32(old_seed);
  2319. val -= (old_seed & mask); /* counter values are negative numbers! */
  2320. if ((mask >> 32) != 0)
  2321. /* construct a full 64-bit random value: */
  2322. new_seed |= carta_random32(old_seed >> 32) << 32;
  2323. reg->seed = new_seed;
  2324. }
  2325. reg->lval = val;
  2326. return val;
  2327. }
  2328. static void
  2329. pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2330. {
  2331. unsigned long mask = ovfl_regs[0];
  2332. unsigned long reset_others = 0UL;
  2333. unsigned long val;
  2334. int i;
  2335. /*
  2336. * now restore reset value on sampling overflowed counters
  2337. */
  2338. mask >>= PMU_FIRST_COUNTER;
  2339. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2340. if ((mask & 0x1UL) == 0UL) continue;
  2341. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2342. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2343. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2344. }
  2345. /*
  2346. * Now take care of resetting the other registers
  2347. */
  2348. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2349. if ((reset_others & 0x1) == 0) continue;
  2350. ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2351. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2352. is_long_reset ? "long" : "short", i, val));
  2353. }
  2354. }
  2355. static void
  2356. pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
  2357. {
  2358. unsigned long mask = ovfl_regs[0];
  2359. unsigned long reset_others = 0UL;
  2360. unsigned long val;
  2361. int i;
  2362. DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
  2363. if (ctx->ctx_state == PFM_CTX_MASKED) {
  2364. pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
  2365. return;
  2366. }
  2367. /*
  2368. * now restore reset value on sampling overflowed counters
  2369. */
  2370. mask >>= PMU_FIRST_COUNTER;
  2371. for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
  2372. if ((mask & 0x1UL) == 0UL) continue;
  2373. val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
  2374. reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
  2375. DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
  2376. pfm_write_soft_counter(ctx, i, val);
  2377. }
  2378. /*
  2379. * Now take care of resetting the other registers
  2380. */
  2381. for(i = 0; reset_others; i++, reset_others >>= 1) {
  2382. if ((reset_others & 0x1) == 0) continue;
  2383. val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
  2384. if (PMD_IS_COUNTING(i)) {
  2385. pfm_write_soft_counter(ctx, i, val);
  2386. } else {
  2387. ia64_set_pmd(i, val);
  2388. }
  2389. DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
  2390. is_long_reset ? "long" : "short", i, val));
  2391. }
  2392. ia64_srlz_d();
  2393. }
  2394. static int
  2395. pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2396. {
  2397. struct task_struct *task;
  2398. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2399. unsigned long value, pmc_pm;
  2400. unsigned long smpl_pmds, reset_pmds, impl_pmds;
  2401. unsigned int cnum, reg_flags, flags, pmc_type;
  2402. int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
  2403. int is_monitor, is_counting, state;
  2404. int ret = -EINVAL;
  2405. pfm_reg_check_t wr_func;
  2406. #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
  2407. state = ctx->ctx_state;
  2408. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2409. is_system = ctx->ctx_fl_system;
  2410. task = ctx->ctx_task;
  2411. impl_pmds = pmu_conf->impl_pmds[0];
  2412. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2413. if (is_loaded) {
  2414. /*
  2415. * In system wide and when the context is loaded, access can only happen
  2416. * when the caller is running on the CPU being monitored by the session.
  2417. * It does not have to be the owner (ctx_task) of the context per se.
  2418. */
  2419. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  2420. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2421. return -EBUSY;
  2422. }
  2423. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2424. }
  2425. expert_mode = pfm_sysctl.expert_mode;
  2426. for (i = 0; i < count; i++, req++) {
  2427. cnum = req->reg_num;
  2428. reg_flags = req->reg_flags;
  2429. value = req->reg_value;
  2430. smpl_pmds = req->reg_smpl_pmds[0];
  2431. reset_pmds = req->reg_reset_pmds[0];
  2432. flags = 0;
  2433. if (cnum >= PMU_MAX_PMCS) {
  2434. DPRINT(("pmc%u is invalid\n", cnum));
  2435. goto error;
  2436. }
  2437. pmc_type = pmu_conf->pmc_desc[cnum].type;
  2438. pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
  2439. is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
  2440. is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
  2441. /*
  2442. * we reject all non implemented PMC as well
  2443. * as attempts to modify PMC[0-3] which are used
  2444. * as status registers by the PMU
  2445. */
  2446. if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
  2447. DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
  2448. goto error;
  2449. }
  2450. wr_func = pmu_conf->pmc_desc[cnum].write_check;
  2451. /*
  2452. * If the PMC is a monitor, then if the value is not the default:
  2453. * - system-wide session: PMCx.pm=1 (privileged monitor)
  2454. * - per-task : PMCx.pm=0 (user monitor)
  2455. */
  2456. if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
  2457. DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
  2458. cnum,
  2459. pmc_pm,
  2460. is_system));
  2461. goto error;
  2462. }
  2463. if (is_counting) {
  2464. /*
  2465. * enforce generation of overflow interrupt. Necessary on all
  2466. * CPUs.
  2467. */
  2468. value |= 1 << PMU_PMC_OI;
  2469. if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
  2470. flags |= PFM_REGFL_OVFL_NOTIFY;
  2471. }
  2472. if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
  2473. /* verify validity of smpl_pmds */
  2474. if ((smpl_pmds & impl_pmds) != smpl_pmds) {
  2475. DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
  2476. goto error;
  2477. }
  2478. /* verify validity of reset_pmds */
  2479. if ((reset_pmds & impl_pmds) != reset_pmds) {
  2480. DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
  2481. goto error;
  2482. }
  2483. } else {
  2484. if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
  2485. DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
  2486. goto error;
  2487. }
  2488. /* eventid on non-counting monitors are ignored */
  2489. }
  2490. /*
  2491. * execute write checker, if any
  2492. */
  2493. if (likely(expert_mode == 0 && wr_func)) {
  2494. ret = (*wr_func)(task, ctx, cnum, &value, regs);
  2495. if (ret) goto error;
  2496. ret = -EINVAL;
  2497. }
  2498. /*
  2499. * no error on this register
  2500. */
  2501. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2502. /*
  2503. * Now we commit the changes to the software state
  2504. */
  2505. /*
  2506. * update overflow information
  2507. */
  2508. if (is_counting) {
  2509. /*
  2510. * full flag update each time a register is programmed
  2511. */
  2512. ctx->ctx_pmds[cnum].flags = flags;
  2513. ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
  2514. ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
  2515. ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
  2516. /*
  2517. * Mark all PMDS to be accessed as used.
  2518. *
  2519. * We do not keep track of PMC because we have to
  2520. * systematically restore ALL of them.
  2521. *
  2522. * We do not update the used_monitors mask, because
  2523. * if we have not programmed them, then will be in
  2524. * a quiescent state, therefore we will not need to
  2525. * mask/restore then when context is MASKED.
  2526. */
  2527. CTX_USED_PMD(ctx, reset_pmds);
  2528. CTX_USED_PMD(ctx, smpl_pmds);
  2529. /*
  2530. * make sure we do not try to reset on
  2531. * restart because we have established new values
  2532. */
  2533. if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2534. }
  2535. /*
  2536. * Needed in case the user does not initialize the equivalent
  2537. * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
  2538. * possible leak here.
  2539. */
  2540. CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
  2541. /*
  2542. * keep track of the monitor PMC that we are using.
  2543. * we save the value of the pmc in ctx_pmcs[] and if
  2544. * the monitoring is not stopped for the context we also
  2545. * place it in the saved state area so that it will be
  2546. * picked up later by the context switch code.
  2547. *
  2548. * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
  2549. *
  2550. * The value in th_pmcs[] may be modified on overflow, i.e., when
  2551. * monitoring needs to be stopped.
  2552. */
  2553. if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
  2554. /*
  2555. * update context state
  2556. */
  2557. ctx->ctx_pmcs[cnum] = value;
  2558. if (is_loaded) {
  2559. /*
  2560. * write thread state
  2561. */
  2562. if (is_system == 0) ctx->th_pmcs[cnum] = value;
  2563. /*
  2564. * write hardware register if we can
  2565. */
  2566. if (can_access_pmu) {
  2567. ia64_set_pmc(cnum, value);
  2568. }
  2569. #ifdef CONFIG_SMP
  2570. else {
  2571. /*
  2572. * per-task SMP only here
  2573. *
  2574. * we are guaranteed that the task is not running on the other CPU,
  2575. * we indicate that this PMD will need to be reloaded if the task
  2576. * is rescheduled on the CPU it ran last on.
  2577. */
  2578. ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
  2579. }
  2580. #endif
  2581. }
  2582. DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
  2583. cnum,
  2584. value,
  2585. is_loaded,
  2586. can_access_pmu,
  2587. flags,
  2588. ctx->ctx_all_pmcs[0],
  2589. ctx->ctx_used_pmds[0],
  2590. ctx->ctx_pmds[cnum].eventid,
  2591. smpl_pmds,
  2592. reset_pmds,
  2593. ctx->ctx_reload_pmcs[0],
  2594. ctx->ctx_used_monitors[0],
  2595. ctx->ctx_ovfl_regs[0]));
  2596. }
  2597. /*
  2598. * make sure the changes are visible
  2599. */
  2600. if (can_access_pmu) ia64_srlz_d();
  2601. return 0;
  2602. error:
  2603. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2604. return ret;
  2605. }
  2606. static int
  2607. pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2608. {
  2609. struct task_struct *task;
  2610. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2611. unsigned long value, hw_value, ovfl_mask;
  2612. unsigned int cnum;
  2613. int i, can_access_pmu = 0, state;
  2614. int is_counting, is_loaded, is_system, expert_mode;
  2615. int ret = -EINVAL;
  2616. pfm_reg_check_t wr_func;
  2617. state = ctx->ctx_state;
  2618. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2619. is_system = ctx->ctx_fl_system;
  2620. ovfl_mask = pmu_conf->ovfl_val;
  2621. task = ctx->ctx_task;
  2622. if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
  2623. /*
  2624. * on both UP and SMP, we can only write to the PMC when the task is
  2625. * the owner of the local PMU.
  2626. */
  2627. if (likely(is_loaded)) {
  2628. /*
  2629. * In system wide and when the context is loaded, access can only happen
  2630. * when the caller is running on the CPU being monitored by the session.
  2631. * It does not have to be the owner (ctx_task) of the context per se.
  2632. */
  2633. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2634. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2635. return -EBUSY;
  2636. }
  2637. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2638. }
  2639. expert_mode = pfm_sysctl.expert_mode;
  2640. for (i = 0; i < count; i++, req++) {
  2641. cnum = req->reg_num;
  2642. value = req->reg_value;
  2643. if (!PMD_IS_IMPL(cnum)) {
  2644. DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
  2645. goto abort_mission;
  2646. }
  2647. is_counting = PMD_IS_COUNTING(cnum);
  2648. wr_func = pmu_conf->pmd_desc[cnum].write_check;
  2649. /*
  2650. * execute write checker, if any
  2651. */
  2652. if (unlikely(expert_mode == 0 && wr_func)) {
  2653. unsigned long v = value;
  2654. ret = (*wr_func)(task, ctx, cnum, &v, regs);
  2655. if (ret) goto abort_mission;
  2656. value = v;
  2657. ret = -EINVAL;
  2658. }
  2659. /*
  2660. * no error on this register
  2661. */
  2662. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  2663. /*
  2664. * now commit changes to software state
  2665. */
  2666. hw_value = value;
  2667. /*
  2668. * update virtualized (64bits) counter
  2669. */
  2670. if (is_counting) {
  2671. /*
  2672. * write context state
  2673. */
  2674. ctx->ctx_pmds[cnum].lval = value;
  2675. /*
  2676. * when context is load we use the split value
  2677. */
  2678. if (is_loaded) {
  2679. hw_value = value & ovfl_mask;
  2680. value = value & ~ovfl_mask;
  2681. }
  2682. }
  2683. /*
  2684. * update reset values (not just for counters)
  2685. */
  2686. ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
  2687. ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
  2688. /*
  2689. * update randomization parameters (not just for counters)
  2690. */
  2691. ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
  2692. ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
  2693. /*
  2694. * update context value
  2695. */
  2696. ctx->ctx_pmds[cnum].val = value;
  2697. /*
  2698. * Keep track of what we use
  2699. *
  2700. * We do not keep track of PMC because we have to
  2701. * systematically restore ALL of them.
  2702. */
  2703. CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
  2704. /*
  2705. * mark this PMD register used as well
  2706. */
  2707. CTX_USED_PMD(ctx, RDEP(cnum));
  2708. /*
  2709. * make sure we do not try to reset on
  2710. * restart because we have established new values
  2711. */
  2712. if (is_counting && state == PFM_CTX_MASKED) {
  2713. ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
  2714. }
  2715. if (is_loaded) {
  2716. /*
  2717. * write thread state
  2718. */
  2719. if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
  2720. /*
  2721. * write hardware register if we can
  2722. */
  2723. if (can_access_pmu) {
  2724. ia64_set_pmd(cnum, hw_value);
  2725. } else {
  2726. #ifdef CONFIG_SMP
  2727. /*
  2728. * we are guaranteed that the task is not running on the other CPU,
  2729. * we indicate that this PMD will need to be reloaded if the task
  2730. * is rescheduled on the CPU it ran last on.
  2731. */
  2732. ctx->ctx_reload_pmds[0] |= 1UL << cnum;
  2733. #endif
  2734. }
  2735. }
  2736. DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
  2737. "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
  2738. cnum,
  2739. value,
  2740. is_loaded,
  2741. can_access_pmu,
  2742. hw_value,
  2743. ctx->ctx_pmds[cnum].val,
  2744. ctx->ctx_pmds[cnum].short_reset,
  2745. ctx->ctx_pmds[cnum].long_reset,
  2746. PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
  2747. ctx->ctx_pmds[cnum].seed,
  2748. ctx->ctx_pmds[cnum].mask,
  2749. ctx->ctx_used_pmds[0],
  2750. ctx->ctx_pmds[cnum].reset_pmds[0],
  2751. ctx->ctx_reload_pmds[0],
  2752. ctx->ctx_all_pmds[0],
  2753. ctx->ctx_ovfl_regs[0]));
  2754. }
  2755. /*
  2756. * make changes visible
  2757. */
  2758. if (can_access_pmu) ia64_srlz_d();
  2759. return 0;
  2760. abort_mission:
  2761. /*
  2762. * for now, we have only one possibility for error
  2763. */
  2764. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2765. return ret;
  2766. }
  2767. /*
  2768. * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
  2769. * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
  2770. * interrupt is delivered during the call, it will be kept pending until we leave, making
  2771. * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
  2772. * guaranteed to return consistent data to the user, it may simply be old. It is not
  2773. * trivial to treat the overflow while inside the call because you may end up in
  2774. * some module sampling buffer code causing deadlocks.
  2775. */
  2776. static int
  2777. pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2778. {
  2779. struct task_struct *task;
  2780. unsigned long val = 0UL, lval, ovfl_mask, sval;
  2781. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  2782. unsigned int cnum, reg_flags = 0;
  2783. int i, can_access_pmu = 0, state;
  2784. int is_loaded, is_system, is_counting, expert_mode;
  2785. int ret = -EINVAL;
  2786. pfm_reg_check_t rd_func;
  2787. /*
  2788. * access is possible when loaded only for
  2789. * self-monitoring tasks or in UP mode
  2790. */
  2791. state = ctx->ctx_state;
  2792. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  2793. is_system = ctx->ctx_fl_system;
  2794. ovfl_mask = pmu_conf->ovfl_val;
  2795. task = ctx->ctx_task;
  2796. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  2797. if (likely(is_loaded)) {
  2798. /*
  2799. * In system wide and when the context is loaded, access can only happen
  2800. * when the caller is running on the CPU being monitored by the session.
  2801. * It does not have to be the owner (ctx_task) of the context per se.
  2802. */
  2803. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  2804. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  2805. return -EBUSY;
  2806. }
  2807. /*
  2808. * this can be true when not self-monitoring only in UP
  2809. */
  2810. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  2811. if (can_access_pmu) ia64_srlz_d();
  2812. }
  2813. expert_mode = pfm_sysctl.expert_mode;
  2814. DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
  2815. is_loaded,
  2816. can_access_pmu,
  2817. state));
  2818. /*
  2819. * on both UP and SMP, we can only read the PMD from the hardware register when
  2820. * the task is the owner of the local PMU.
  2821. */
  2822. for (i = 0; i < count; i++, req++) {
  2823. cnum = req->reg_num;
  2824. reg_flags = req->reg_flags;
  2825. if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
  2826. /*
  2827. * we can only read the register that we use. That includes
  2828. * the one we explicitly initialize AND the one we want included
  2829. * in the sampling buffer (smpl_regs).
  2830. *
  2831. * Having this restriction allows optimization in the ctxsw routine
  2832. * without compromising security (leaks)
  2833. */
  2834. if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
  2835. sval = ctx->ctx_pmds[cnum].val;
  2836. lval = ctx->ctx_pmds[cnum].lval;
  2837. is_counting = PMD_IS_COUNTING(cnum);
  2838. /*
  2839. * If the task is not the current one, then we check if the
  2840. * PMU state is still in the local live register due to lazy ctxsw.
  2841. * If true, then we read directly from the registers.
  2842. */
  2843. if (can_access_pmu){
  2844. val = ia64_get_pmd(cnum);
  2845. } else {
  2846. /*
  2847. * context has been saved
  2848. * if context is zombie, then task does not exist anymore.
  2849. * In this case, we use the full value saved in the context (pfm_flush_regs()).
  2850. */
  2851. val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
  2852. }
  2853. rd_func = pmu_conf->pmd_desc[cnum].read_check;
  2854. if (is_counting) {
  2855. /*
  2856. * XXX: need to check for overflow when loaded
  2857. */
  2858. val &= ovfl_mask;
  2859. val += sval;
  2860. }
  2861. /*
  2862. * execute read checker, if any
  2863. */
  2864. if (unlikely(expert_mode == 0 && rd_func)) {
  2865. unsigned long v = val;
  2866. ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
  2867. if (ret) goto error;
  2868. val = v;
  2869. ret = -EINVAL;
  2870. }
  2871. PFM_REG_RETFLAG_SET(reg_flags, 0);
  2872. DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
  2873. /*
  2874. * update register return value, abort all if problem during copy.
  2875. * we only modify the reg_flags field. no check mode is fine because
  2876. * access has been verified upfront in sys_perfmonctl().
  2877. */
  2878. req->reg_value = val;
  2879. req->reg_flags = reg_flags;
  2880. req->reg_last_reset_val = lval;
  2881. }
  2882. return 0;
  2883. error:
  2884. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  2885. return ret;
  2886. }
  2887. int
  2888. pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2889. {
  2890. pfm_context_t *ctx;
  2891. if (req == NULL) return -EINVAL;
  2892. ctx = GET_PMU_CTX();
  2893. if (ctx == NULL) return -EINVAL;
  2894. /*
  2895. * for now limit to current task, which is enough when calling
  2896. * from overflow handler
  2897. */
  2898. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2899. return pfm_write_pmcs(ctx, req, nreq, regs);
  2900. }
  2901. EXPORT_SYMBOL(pfm_mod_write_pmcs);
  2902. int
  2903. pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  2904. {
  2905. pfm_context_t *ctx;
  2906. if (req == NULL) return -EINVAL;
  2907. ctx = GET_PMU_CTX();
  2908. if (ctx == NULL) return -EINVAL;
  2909. /*
  2910. * for now limit to current task, which is enough when calling
  2911. * from overflow handler
  2912. */
  2913. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  2914. return pfm_read_pmds(ctx, req, nreq, regs);
  2915. }
  2916. EXPORT_SYMBOL(pfm_mod_read_pmds);
  2917. /*
  2918. * Only call this function when a process it trying to
  2919. * write the debug registers (reading is always allowed)
  2920. */
  2921. int
  2922. pfm_use_debug_registers(struct task_struct *task)
  2923. {
  2924. pfm_context_t *ctx = task->thread.pfm_context;
  2925. unsigned long flags;
  2926. int ret = 0;
  2927. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2928. DPRINT(("called for [%d]\n", task->pid));
  2929. /*
  2930. * do it only once
  2931. */
  2932. if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
  2933. /*
  2934. * Even on SMP, we do not need to use an atomic here because
  2935. * the only way in is via ptrace() and this is possible only when the
  2936. * process is stopped. Even in the case where the ctxsw out is not totally
  2937. * completed by the time we come here, there is no way the 'stopped' process
  2938. * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
  2939. * So this is always safe.
  2940. */
  2941. if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
  2942. LOCK_PFS(flags);
  2943. /*
  2944. * We cannot allow setting breakpoints when system wide monitoring
  2945. * sessions are using the debug registers.
  2946. */
  2947. if (pfm_sessions.pfs_sys_use_dbregs> 0)
  2948. ret = -1;
  2949. else
  2950. pfm_sessions.pfs_ptrace_use_dbregs++;
  2951. DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
  2952. pfm_sessions.pfs_ptrace_use_dbregs,
  2953. pfm_sessions.pfs_sys_use_dbregs,
  2954. task->pid, ret));
  2955. UNLOCK_PFS(flags);
  2956. return ret;
  2957. }
  2958. /*
  2959. * This function is called for every task that exits with the
  2960. * IA64_THREAD_DBG_VALID set. This indicates a task which was
  2961. * able to use the debug registers for debugging purposes via
  2962. * ptrace(). Therefore we know it was not using them for
  2963. * perfmormance monitoring, so we only decrement the number
  2964. * of "ptraced" debug register users to keep the count up to date
  2965. */
  2966. int
  2967. pfm_release_debug_registers(struct task_struct *task)
  2968. {
  2969. unsigned long flags;
  2970. int ret;
  2971. if (pmu_conf->use_rr_dbregs == 0) return 0;
  2972. LOCK_PFS(flags);
  2973. if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
  2974. printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
  2975. ret = -1;
  2976. } else {
  2977. pfm_sessions.pfs_ptrace_use_dbregs--;
  2978. ret = 0;
  2979. }
  2980. UNLOCK_PFS(flags);
  2981. return ret;
  2982. }
  2983. static int
  2984. pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  2985. {
  2986. struct task_struct *task;
  2987. pfm_buffer_fmt_t *fmt;
  2988. pfm_ovfl_ctrl_t rst_ctrl;
  2989. int state, is_system;
  2990. int ret = 0;
  2991. state = ctx->ctx_state;
  2992. fmt = ctx->ctx_buf_fmt;
  2993. is_system = ctx->ctx_fl_system;
  2994. task = PFM_CTX_TASK(ctx);
  2995. switch(state) {
  2996. case PFM_CTX_MASKED:
  2997. break;
  2998. case PFM_CTX_LOADED:
  2999. if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
  3000. /* fall through */
  3001. case PFM_CTX_UNLOADED:
  3002. case PFM_CTX_ZOMBIE:
  3003. DPRINT(("invalid state=%d\n", state));
  3004. return -EBUSY;
  3005. default:
  3006. DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
  3007. return -EINVAL;
  3008. }
  3009. /*
  3010. * In system wide and when the context is loaded, access can only happen
  3011. * when the caller is running on the CPU being monitored by the session.
  3012. * It does not have to be the owner (ctx_task) of the context per se.
  3013. */
  3014. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3015. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3016. return -EBUSY;
  3017. }
  3018. /* sanity check */
  3019. if (unlikely(task == NULL)) {
  3020. printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
  3021. return -EINVAL;
  3022. }
  3023. if (task == current || is_system) {
  3024. fmt = ctx->ctx_buf_fmt;
  3025. DPRINT(("restarting self %d ovfl=0x%lx\n",
  3026. task->pid,
  3027. ctx->ctx_ovfl_regs[0]));
  3028. if (CTX_HAS_SMPL(ctx)) {
  3029. prefetch(ctx->ctx_smpl_hdr);
  3030. rst_ctrl.bits.mask_monitoring = 0;
  3031. rst_ctrl.bits.reset_ovfl_pmds = 0;
  3032. if (state == PFM_CTX_LOADED)
  3033. ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3034. else
  3035. ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  3036. } else {
  3037. rst_ctrl.bits.mask_monitoring = 0;
  3038. rst_ctrl.bits.reset_ovfl_pmds = 1;
  3039. }
  3040. if (ret == 0) {
  3041. if (rst_ctrl.bits.reset_ovfl_pmds)
  3042. pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
  3043. if (rst_ctrl.bits.mask_monitoring == 0) {
  3044. DPRINT(("resuming monitoring for [%d]\n", task->pid));
  3045. if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
  3046. } else {
  3047. DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
  3048. // cannot use pfm_stop_monitoring(task, regs);
  3049. }
  3050. }
  3051. /*
  3052. * clear overflowed PMD mask to remove any stale information
  3053. */
  3054. ctx->ctx_ovfl_regs[0] = 0UL;
  3055. /*
  3056. * back to LOADED state
  3057. */
  3058. ctx->ctx_state = PFM_CTX_LOADED;
  3059. /*
  3060. * XXX: not really useful for self monitoring
  3061. */
  3062. ctx->ctx_fl_can_restart = 0;
  3063. return 0;
  3064. }
  3065. /*
  3066. * restart another task
  3067. */
  3068. /*
  3069. * When PFM_CTX_MASKED, we cannot issue a restart before the previous
  3070. * one is seen by the task.
  3071. */
  3072. if (state == PFM_CTX_MASKED) {
  3073. if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
  3074. /*
  3075. * will prevent subsequent restart before this one is
  3076. * seen by other task
  3077. */
  3078. ctx->ctx_fl_can_restart = 0;
  3079. }
  3080. /*
  3081. * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
  3082. * the task is blocked or on its way to block. That's the normal
  3083. * restart path. If the monitoring is not masked, then the task
  3084. * can be actively monitoring and we cannot directly intervene.
  3085. * Therefore we use the trap mechanism to catch the task and
  3086. * force it to reset the buffer/reset PMDs.
  3087. *
  3088. * if non-blocking, then we ensure that the task will go into
  3089. * pfm_handle_work() before returning to user mode.
  3090. *
  3091. * We cannot explicitly reset another task, it MUST always
  3092. * be done by the task itself. This works for system wide because
  3093. * the tool that is controlling the session is logically doing
  3094. * "self-monitoring".
  3095. */
  3096. if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
  3097. DPRINT(("unblocking [%d] \n", task->pid));
  3098. complete(&ctx->ctx_restart_done);
  3099. } else {
  3100. DPRINT(("[%d] armed exit trap\n", task->pid));
  3101. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
  3102. PFM_SET_WORK_PENDING(task, 1);
  3103. pfm_set_task_notify(task);
  3104. /*
  3105. * XXX: send reschedule if task runs on another CPU
  3106. */
  3107. }
  3108. return 0;
  3109. }
  3110. static int
  3111. pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3112. {
  3113. unsigned int m = *(unsigned int *)arg;
  3114. pfm_sysctl.debug = m == 0 ? 0 : 1;
  3115. printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
  3116. if (m == 0) {
  3117. memset(pfm_stats, 0, sizeof(pfm_stats));
  3118. for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
  3119. }
  3120. return 0;
  3121. }
  3122. /*
  3123. * arg can be NULL and count can be zero for this function
  3124. */
  3125. static int
  3126. pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3127. {
  3128. struct thread_struct *thread = NULL;
  3129. struct task_struct *task;
  3130. pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
  3131. unsigned long flags;
  3132. dbreg_t dbreg;
  3133. unsigned int rnum;
  3134. int first_time;
  3135. int ret = 0, state;
  3136. int i, can_access_pmu = 0;
  3137. int is_system, is_loaded;
  3138. if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
  3139. state = ctx->ctx_state;
  3140. is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
  3141. is_system = ctx->ctx_fl_system;
  3142. task = ctx->ctx_task;
  3143. if (state == PFM_CTX_ZOMBIE) return -EINVAL;
  3144. /*
  3145. * on both UP and SMP, we can only write to the PMC when the task is
  3146. * the owner of the local PMU.
  3147. */
  3148. if (is_loaded) {
  3149. thread = &task->thread;
  3150. /*
  3151. * In system wide and when the context is loaded, access can only happen
  3152. * when the caller is running on the CPU being monitored by the session.
  3153. * It does not have to be the owner (ctx_task) of the context per se.
  3154. */
  3155. if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
  3156. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3157. return -EBUSY;
  3158. }
  3159. can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
  3160. }
  3161. /*
  3162. * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
  3163. * ensuring that no real breakpoint can be installed via this call.
  3164. *
  3165. * IMPORTANT: regs can be NULL in this function
  3166. */
  3167. first_time = ctx->ctx_fl_using_dbreg == 0;
  3168. /*
  3169. * don't bother if we are loaded and task is being debugged
  3170. */
  3171. if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
  3172. DPRINT(("debug registers already in use for [%d]\n", task->pid));
  3173. return -EBUSY;
  3174. }
  3175. /*
  3176. * check for debug registers in system wide mode
  3177. *
  3178. * If though a check is done in pfm_context_load(),
  3179. * we must repeat it here, in case the registers are
  3180. * written after the context is loaded
  3181. */
  3182. if (is_loaded) {
  3183. LOCK_PFS(flags);
  3184. if (first_time && is_system) {
  3185. if (pfm_sessions.pfs_ptrace_use_dbregs)
  3186. ret = -EBUSY;
  3187. else
  3188. pfm_sessions.pfs_sys_use_dbregs++;
  3189. }
  3190. UNLOCK_PFS(flags);
  3191. }
  3192. if (ret != 0) return ret;
  3193. /*
  3194. * mark ourself as user of the debug registers for
  3195. * perfmon purposes.
  3196. */
  3197. ctx->ctx_fl_using_dbreg = 1;
  3198. /*
  3199. * clear hardware registers to make sure we don't
  3200. * pick up stale state.
  3201. *
  3202. * for a system wide session, we do not use
  3203. * thread.dbr, thread.ibr because this process
  3204. * never leaves the current CPU and the state
  3205. * is shared by all processes running on it
  3206. */
  3207. if (first_time && can_access_pmu) {
  3208. DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
  3209. for (i=0; i < pmu_conf->num_ibrs; i++) {
  3210. ia64_set_ibr(i, 0UL);
  3211. ia64_dv_serialize_instruction();
  3212. }
  3213. ia64_srlz_i();
  3214. for (i=0; i < pmu_conf->num_dbrs; i++) {
  3215. ia64_set_dbr(i, 0UL);
  3216. ia64_dv_serialize_data();
  3217. }
  3218. ia64_srlz_d();
  3219. }
  3220. /*
  3221. * Now install the values into the registers
  3222. */
  3223. for (i = 0; i < count; i++, req++) {
  3224. rnum = req->dbreg_num;
  3225. dbreg.val = req->dbreg_value;
  3226. ret = -EINVAL;
  3227. if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
  3228. DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
  3229. rnum, dbreg.val, mode, i, count));
  3230. goto abort_mission;
  3231. }
  3232. /*
  3233. * make sure we do not install enabled breakpoint
  3234. */
  3235. if (rnum & 0x1) {
  3236. if (mode == PFM_CODE_RR)
  3237. dbreg.ibr.ibr_x = 0;
  3238. else
  3239. dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
  3240. }
  3241. PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
  3242. /*
  3243. * Debug registers, just like PMC, can only be modified
  3244. * by a kernel call. Moreover, perfmon() access to those
  3245. * registers are centralized in this routine. The hardware
  3246. * does not modify the value of these registers, therefore,
  3247. * if we save them as they are written, we can avoid having
  3248. * to save them on context switch out. This is made possible
  3249. * by the fact that when perfmon uses debug registers, ptrace()
  3250. * won't be able to modify them concurrently.
  3251. */
  3252. if (mode == PFM_CODE_RR) {
  3253. CTX_USED_IBR(ctx, rnum);
  3254. if (can_access_pmu) {
  3255. ia64_set_ibr(rnum, dbreg.val);
  3256. ia64_dv_serialize_instruction();
  3257. }
  3258. ctx->ctx_ibrs[rnum] = dbreg.val;
  3259. DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
  3260. rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
  3261. } else {
  3262. CTX_USED_DBR(ctx, rnum);
  3263. if (can_access_pmu) {
  3264. ia64_set_dbr(rnum, dbreg.val);
  3265. ia64_dv_serialize_data();
  3266. }
  3267. ctx->ctx_dbrs[rnum] = dbreg.val;
  3268. DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
  3269. rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
  3270. }
  3271. }
  3272. return 0;
  3273. abort_mission:
  3274. /*
  3275. * in case it was our first attempt, we undo the global modifications
  3276. */
  3277. if (first_time) {
  3278. LOCK_PFS(flags);
  3279. if (ctx->ctx_fl_system) {
  3280. pfm_sessions.pfs_sys_use_dbregs--;
  3281. }
  3282. UNLOCK_PFS(flags);
  3283. ctx->ctx_fl_using_dbreg = 0;
  3284. }
  3285. /*
  3286. * install error return flag
  3287. */
  3288. PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
  3289. return ret;
  3290. }
  3291. static int
  3292. pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3293. {
  3294. return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
  3295. }
  3296. static int
  3297. pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3298. {
  3299. return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
  3300. }
  3301. int
  3302. pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3303. {
  3304. pfm_context_t *ctx;
  3305. if (req == NULL) return -EINVAL;
  3306. ctx = GET_PMU_CTX();
  3307. if (ctx == NULL) return -EINVAL;
  3308. /*
  3309. * for now limit to current task, which is enough when calling
  3310. * from overflow handler
  3311. */
  3312. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3313. return pfm_write_ibrs(ctx, req, nreq, regs);
  3314. }
  3315. EXPORT_SYMBOL(pfm_mod_write_ibrs);
  3316. int
  3317. pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
  3318. {
  3319. pfm_context_t *ctx;
  3320. if (req == NULL) return -EINVAL;
  3321. ctx = GET_PMU_CTX();
  3322. if (ctx == NULL) return -EINVAL;
  3323. /*
  3324. * for now limit to current task, which is enough when calling
  3325. * from overflow handler
  3326. */
  3327. if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
  3328. return pfm_write_dbrs(ctx, req, nreq, regs);
  3329. }
  3330. EXPORT_SYMBOL(pfm_mod_write_dbrs);
  3331. static int
  3332. pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3333. {
  3334. pfarg_features_t *req = (pfarg_features_t *)arg;
  3335. req->ft_version = PFM_VERSION;
  3336. return 0;
  3337. }
  3338. static int
  3339. pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3340. {
  3341. struct pt_regs *tregs;
  3342. struct task_struct *task = PFM_CTX_TASK(ctx);
  3343. int state, is_system;
  3344. state = ctx->ctx_state;
  3345. is_system = ctx->ctx_fl_system;
  3346. /*
  3347. * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
  3348. */
  3349. if (state == PFM_CTX_UNLOADED) return -EINVAL;
  3350. /*
  3351. * In system wide and when the context is loaded, access can only happen
  3352. * when the caller is running on the CPU being monitored by the session.
  3353. * It does not have to be the owner (ctx_task) of the context per se.
  3354. */
  3355. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3356. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3357. return -EBUSY;
  3358. }
  3359. DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
  3360. PFM_CTX_TASK(ctx)->pid,
  3361. state,
  3362. is_system));
  3363. /*
  3364. * in system mode, we need to update the PMU directly
  3365. * and the user level state of the caller, which may not
  3366. * necessarily be the creator of the context.
  3367. */
  3368. if (is_system) {
  3369. /*
  3370. * Update local PMU first
  3371. *
  3372. * disable dcr pp
  3373. */
  3374. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
  3375. ia64_srlz_i();
  3376. /*
  3377. * update local cpuinfo
  3378. */
  3379. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3380. /*
  3381. * stop monitoring, does srlz.i
  3382. */
  3383. pfm_clear_psr_pp();
  3384. /*
  3385. * stop monitoring in the caller
  3386. */
  3387. ia64_psr(regs)->pp = 0;
  3388. return 0;
  3389. }
  3390. /*
  3391. * per-task mode
  3392. */
  3393. if (task == current) {
  3394. /* stop monitoring at kernel level */
  3395. pfm_clear_psr_up();
  3396. /*
  3397. * stop monitoring at the user level
  3398. */
  3399. ia64_psr(regs)->up = 0;
  3400. } else {
  3401. tregs = task_pt_regs(task);
  3402. /*
  3403. * stop monitoring at the user level
  3404. */
  3405. ia64_psr(tregs)->up = 0;
  3406. /*
  3407. * monitoring disabled in kernel at next reschedule
  3408. */
  3409. ctx->ctx_saved_psr_up = 0;
  3410. DPRINT(("task=[%d]\n", task->pid));
  3411. }
  3412. return 0;
  3413. }
  3414. static int
  3415. pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3416. {
  3417. struct pt_regs *tregs;
  3418. int state, is_system;
  3419. state = ctx->ctx_state;
  3420. is_system = ctx->ctx_fl_system;
  3421. if (state != PFM_CTX_LOADED) return -EINVAL;
  3422. /*
  3423. * In system wide and when the context is loaded, access can only happen
  3424. * when the caller is running on the CPU being monitored by the session.
  3425. * It does not have to be the owner (ctx_task) of the context per se.
  3426. */
  3427. if (is_system && ctx->ctx_cpu != smp_processor_id()) {
  3428. DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
  3429. return -EBUSY;
  3430. }
  3431. /*
  3432. * in system mode, we need to update the PMU directly
  3433. * and the user level state of the caller, which may not
  3434. * necessarily be the creator of the context.
  3435. */
  3436. if (is_system) {
  3437. /*
  3438. * set user level psr.pp for the caller
  3439. */
  3440. ia64_psr(regs)->pp = 1;
  3441. /*
  3442. * now update the local PMU and cpuinfo
  3443. */
  3444. PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
  3445. /*
  3446. * start monitoring at kernel level
  3447. */
  3448. pfm_set_psr_pp();
  3449. /* enable dcr pp */
  3450. ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
  3451. ia64_srlz_i();
  3452. return 0;
  3453. }
  3454. /*
  3455. * per-process mode
  3456. */
  3457. if (ctx->ctx_task == current) {
  3458. /* start monitoring at kernel level */
  3459. pfm_set_psr_up();
  3460. /*
  3461. * activate monitoring at user level
  3462. */
  3463. ia64_psr(regs)->up = 1;
  3464. } else {
  3465. tregs = task_pt_regs(ctx->ctx_task);
  3466. /*
  3467. * start monitoring at the kernel level the next
  3468. * time the task is scheduled
  3469. */
  3470. ctx->ctx_saved_psr_up = IA64_PSR_UP;
  3471. /*
  3472. * activate monitoring at user level
  3473. */
  3474. ia64_psr(tregs)->up = 1;
  3475. }
  3476. return 0;
  3477. }
  3478. static int
  3479. pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3480. {
  3481. pfarg_reg_t *req = (pfarg_reg_t *)arg;
  3482. unsigned int cnum;
  3483. int i;
  3484. int ret = -EINVAL;
  3485. for (i = 0; i < count; i++, req++) {
  3486. cnum = req->reg_num;
  3487. if (!PMC_IS_IMPL(cnum)) goto abort_mission;
  3488. req->reg_value = PMC_DFL_VAL(cnum);
  3489. PFM_REG_RETFLAG_SET(req->reg_flags, 0);
  3490. DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
  3491. }
  3492. return 0;
  3493. abort_mission:
  3494. PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
  3495. return ret;
  3496. }
  3497. static int
  3498. pfm_check_task_exist(pfm_context_t *ctx)
  3499. {
  3500. struct task_struct *g, *t;
  3501. int ret = -ESRCH;
  3502. read_lock(&tasklist_lock);
  3503. do_each_thread (g, t) {
  3504. if (t->thread.pfm_context == ctx) {
  3505. ret = 0;
  3506. break;
  3507. }
  3508. } while_each_thread (g, t);
  3509. read_unlock(&tasklist_lock);
  3510. DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
  3511. return ret;
  3512. }
  3513. static int
  3514. pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3515. {
  3516. struct task_struct *task;
  3517. struct thread_struct *thread;
  3518. struct pfm_context_t *old;
  3519. unsigned long flags;
  3520. #ifndef CONFIG_SMP
  3521. struct task_struct *owner_task = NULL;
  3522. #endif
  3523. pfarg_load_t *req = (pfarg_load_t *)arg;
  3524. unsigned long *pmcs_source, *pmds_source;
  3525. int the_cpu;
  3526. int ret = 0;
  3527. int state, is_system, set_dbregs = 0;
  3528. state = ctx->ctx_state;
  3529. is_system = ctx->ctx_fl_system;
  3530. /*
  3531. * can only load from unloaded or terminated state
  3532. */
  3533. if (state != PFM_CTX_UNLOADED) {
  3534. DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
  3535. req->load_pid,
  3536. ctx->ctx_state));
  3537. return -EBUSY;
  3538. }
  3539. DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
  3540. if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
  3541. DPRINT(("cannot use blocking mode on self\n"));
  3542. return -EINVAL;
  3543. }
  3544. ret = pfm_get_task(ctx, req->load_pid, &task);
  3545. if (ret) {
  3546. DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
  3547. return ret;
  3548. }
  3549. ret = -EINVAL;
  3550. /*
  3551. * system wide is self monitoring only
  3552. */
  3553. if (is_system && task != current) {
  3554. DPRINT(("system wide is self monitoring only load_pid=%d\n",
  3555. req->load_pid));
  3556. goto error;
  3557. }
  3558. thread = &task->thread;
  3559. ret = 0;
  3560. /*
  3561. * cannot load a context which is using range restrictions,
  3562. * into a task that is being debugged.
  3563. */
  3564. if (ctx->ctx_fl_using_dbreg) {
  3565. if (thread->flags & IA64_THREAD_DBG_VALID) {
  3566. ret = -EBUSY;
  3567. DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
  3568. goto error;
  3569. }
  3570. LOCK_PFS(flags);
  3571. if (is_system) {
  3572. if (pfm_sessions.pfs_ptrace_use_dbregs) {
  3573. DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
  3574. ret = -EBUSY;
  3575. } else {
  3576. pfm_sessions.pfs_sys_use_dbregs++;
  3577. DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
  3578. set_dbregs = 1;
  3579. }
  3580. }
  3581. UNLOCK_PFS(flags);
  3582. if (ret) goto error;
  3583. }
  3584. /*
  3585. * SMP system-wide monitoring implies self-monitoring.
  3586. *
  3587. * The programming model expects the task to
  3588. * be pinned on a CPU throughout the session.
  3589. * Here we take note of the current CPU at the
  3590. * time the context is loaded. No call from
  3591. * another CPU will be allowed.
  3592. *
  3593. * The pinning via shed_setaffinity()
  3594. * must be done by the calling task prior
  3595. * to this call.
  3596. *
  3597. * systemwide: keep track of CPU this session is supposed to run on
  3598. */
  3599. the_cpu = ctx->ctx_cpu = smp_processor_id();
  3600. ret = -EBUSY;
  3601. /*
  3602. * now reserve the session
  3603. */
  3604. ret = pfm_reserve_session(current, is_system, the_cpu);
  3605. if (ret) goto error;
  3606. /*
  3607. * task is necessarily stopped at this point.
  3608. *
  3609. * If the previous context was zombie, then it got removed in
  3610. * pfm_save_regs(). Therefore we should not see it here.
  3611. * If we see a context, then this is an active context
  3612. *
  3613. * XXX: needs to be atomic
  3614. */
  3615. DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
  3616. thread->pfm_context, ctx));
  3617. ret = -EBUSY;
  3618. old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
  3619. if (old != NULL) {
  3620. DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
  3621. goto error_unres;
  3622. }
  3623. pfm_reset_msgq(ctx);
  3624. ctx->ctx_state = PFM_CTX_LOADED;
  3625. /*
  3626. * link context to task
  3627. */
  3628. ctx->ctx_task = task;
  3629. if (is_system) {
  3630. /*
  3631. * we load as stopped
  3632. */
  3633. PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
  3634. PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
  3635. if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
  3636. } else {
  3637. thread->flags |= IA64_THREAD_PM_VALID;
  3638. }
  3639. /*
  3640. * propagate into thread-state
  3641. */
  3642. pfm_copy_pmds(task, ctx);
  3643. pfm_copy_pmcs(task, ctx);
  3644. pmcs_source = ctx->th_pmcs;
  3645. pmds_source = ctx->th_pmds;
  3646. /*
  3647. * always the case for system-wide
  3648. */
  3649. if (task == current) {
  3650. if (is_system == 0) {
  3651. /* allow user level control */
  3652. ia64_psr(regs)->sp = 0;
  3653. DPRINT(("clearing psr.sp for [%d]\n", task->pid));
  3654. SET_LAST_CPU(ctx, smp_processor_id());
  3655. INC_ACTIVATION();
  3656. SET_ACTIVATION(ctx);
  3657. #ifndef CONFIG_SMP
  3658. /*
  3659. * push the other task out, if any
  3660. */
  3661. owner_task = GET_PMU_OWNER();
  3662. if (owner_task) pfm_lazy_save_regs(owner_task);
  3663. #endif
  3664. }
  3665. /*
  3666. * load all PMD from ctx to PMU (as opposed to thread state)
  3667. * restore all PMC from ctx to PMU
  3668. */
  3669. pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
  3670. pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
  3671. ctx->ctx_reload_pmcs[0] = 0UL;
  3672. ctx->ctx_reload_pmds[0] = 0UL;
  3673. /*
  3674. * guaranteed safe by earlier check against DBG_VALID
  3675. */
  3676. if (ctx->ctx_fl_using_dbreg) {
  3677. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  3678. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  3679. }
  3680. /*
  3681. * set new ownership
  3682. */
  3683. SET_PMU_OWNER(task, ctx);
  3684. DPRINT(("context loaded on PMU for [%d]\n", task->pid));
  3685. } else {
  3686. /*
  3687. * when not current, task MUST be stopped, so this is safe
  3688. */
  3689. regs = task_pt_regs(task);
  3690. /* force a full reload */
  3691. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3692. SET_LAST_CPU(ctx, -1);
  3693. /* initial saved psr (stopped) */
  3694. ctx->ctx_saved_psr_up = 0UL;
  3695. ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
  3696. }
  3697. ret = 0;
  3698. error_unres:
  3699. if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
  3700. error:
  3701. /*
  3702. * we must undo the dbregs setting (for system-wide)
  3703. */
  3704. if (ret && set_dbregs) {
  3705. LOCK_PFS(flags);
  3706. pfm_sessions.pfs_sys_use_dbregs--;
  3707. UNLOCK_PFS(flags);
  3708. }
  3709. /*
  3710. * release task, there is now a link with the context
  3711. */
  3712. if (is_system == 0 && task != current) {
  3713. pfm_put_task(task);
  3714. if (ret == 0) {
  3715. ret = pfm_check_task_exist(ctx);
  3716. if (ret) {
  3717. ctx->ctx_state = PFM_CTX_UNLOADED;
  3718. ctx->ctx_task = NULL;
  3719. }
  3720. }
  3721. }
  3722. return ret;
  3723. }
  3724. /*
  3725. * in this function, we do not need to increase the use count
  3726. * for the task via get_task_struct(), because we hold the
  3727. * context lock. If the task were to disappear while having
  3728. * a context attached, it would go through pfm_exit_thread()
  3729. * which also grabs the context lock and would therefore be blocked
  3730. * until we are here.
  3731. */
  3732. static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
  3733. static int
  3734. pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
  3735. {
  3736. struct task_struct *task = PFM_CTX_TASK(ctx);
  3737. struct pt_regs *tregs;
  3738. int prev_state, is_system;
  3739. int ret;
  3740. DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
  3741. prev_state = ctx->ctx_state;
  3742. is_system = ctx->ctx_fl_system;
  3743. /*
  3744. * unload only when necessary
  3745. */
  3746. if (prev_state == PFM_CTX_UNLOADED) {
  3747. DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
  3748. return 0;
  3749. }
  3750. /*
  3751. * clear psr and dcr bits
  3752. */
  3753. ret = pfm_stop(ctx, NULL, 0, regs);
  3754. if (ret) return ret;
  3755. ctx->ctx_state = PFM_CTX_UNLOADED;
  3756. /*
  3757. * in system mode, we need to update the PMU directly
  3758. * and the user level state of the caller, which may not
  3759. * necessarily be the creator of the context.
  3760. */
  3761. if (is_system) {
  3762. /*
  3763. * Update cpuinfo
  3764. *
  3765. * local PMU is taken care of in pfm_stop()
  3766. */
  3767. PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
  3768. PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
  3769. /*
  3770. * save PMDs in context
  3771. * release ownership
  3772. */
  3773. pfm_flush_pmds(current, ctx);
  3774. /*
  3775. * at this point we are done with the PMU
  3776. * so we can unreserve the resource.
  3777. */
  3778. if (prev_state != PFM_CTX_ZOMBIE)
  3779. pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
  3780. /*
  3781. * disconnect context from task
  3782. */
  3783. task->thread.pfm_context = NULL;
  3784. /*
  3785. * disconnect task from context
  3786. */
  3787. ctx->ctx_task = NULL;
  3788. /*
  3789. * There is nothing more to cleanup here.
  3790. */
  3791. return 0;
  3792. }
  3793. /*
  3794. * per-task mode
  3795. */
  3796. tregs = task == current ? regs : task_pt_regs(task);
  3797. if (task == current) {
  3798. /*
  3799. * cancel user level control
  3800. */
  3801. ia64_psr(regs)->sp = 1;
  3802. DPRINT(("setting psr.sp for [%d]\n", task->pid));
  3803. }
  3804. /*
  3805. * save PMDs to context
  3806. * release ownership
  3807. */
  3808. pfm_flush_pmds(task, ctx);
  3809. /*
  3810. * at this point we are done with the PMU
  3811. * so we can unreserve the resource.
  3812. *
  3813. * when state was ZOMBIE, we have already unreserved.
  3814. */
  3815. if (prev_state != PFM_CTX_ZOMBIE)
  3816. pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
  3817. /*
  3818. * reset activation counter and psr
  3819. */
  3820. ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
  3821. SET_LAST_CPU(ctx, -1);
  3822. /*
  3823. * PMU state will not be restored
  3824. */
  3825. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  3826. /*
  3827. * break links between context and task
  3828. */
  3829. task->thread.pfm_context = NULL;
  3830. ctx->ctx_task = NULL;
  3831. PFM_SET_WORK_PENDING(task, 0);
  3832. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  3833. ctx->ctx_fl_can_restart = 0;
  3834. ctx->ctx_fl_going_zombie = 0;
  3835. DPRINT(("disconnected [%d] from context\n", task->pid));
  3836. return 0;
  3837. }
  3838. /*
  3839. * called only from exit_thread(): task == current
  3840. * we come here only if current has a context attached (loaded or masked)
  3841. */
  3842. void
  3843. pfm_exit_thread(struct task_struct *task)
  3844. {
  3845. pfm_context_t *ctx;
  3846. unsigned long flags;
  3847. struct pt_regs *regs = task_pt_regs(task);
  3848. int ret, state;
  3849. int free_ok = 0;
  3850. ctx = PFM_GET_CTX(task);
  3851. PROTECT_CTX(ctx, flags);
  3852. DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
  3853. state = ctx->ctx_state;
  3854. switch(state) {
  3855. case PFM_CTX_UNLOADED:
  3856. /*
  3857. * only comes to this function if pfm_context is not NULL, i.e., cannot
  3858. * be in unloaded state
  3859. */
  3860. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
  3861. break;
  3862. case PFM_CTX_LOADED:
  3863. case PFM_CTX_MASKED:
  3864. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3865. if (ret) {
  3866. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
  3867. }
  3868. DPRINT(("ctx unloaded for current state was %d\n", state));
  3869. pfm_end_notify_user(ctx);
  3870. break;
  3871. case PFM_CTX_ZOMBIE:
  3872. ret = pfm_context_unload(ctx, NULL, 0, regs);
  3873. if (ret) {
  3874. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
  3875. }
  3876. free_ok = 1;
  3877. break;
  3878. default:
  3879. printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
  3880. break;
  3881. }
  3882. UNPROTECT_CTX(ctx, flags);
  3883. { u64 psr = pfm_get_psr();
  3884. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  3885. BUG_ON(GET_PMU_OWNER());
  3886. BUG_ON(ia64_psr(regs)->up);
  3887. BUG_ON(ia64_psr(regs)->pp);
  3888. }
  3889. /*
  3890. * All memory free operations (especially for vmalloc'ed memory)
  3891. * MUST be done with interrupts ENABLED.
  3892. */
  3893. if (free_ok) pfm_context_free(ctx);
  3894. }
  3895. /*
  3896. * functions MUST be listed in the increasing order of their index (see permfon.h)
  3897. */
  3898. #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
  3899. #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
  3900. #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
  3901. #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
  3902. #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
  3903. static pfm_cmd_desc_t pfm_cmd_tab[]={
  3904. /* 0 */PFM_CMD_NONE,
  3905. /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3906. /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3907. /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3908. /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
  3909. /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
  3910. /* 6 */PFM_CMD_NONE,
  3911. /* 7 */PFM_CMD_NONE,
  3912. /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
  3913. /* 9 */PFM_CMD_NONE,
  3914. /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
  3915. /* 11 */PFM_CMD_NONE,
  3916. /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
  3917. /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
  3918. /* 14 */PFM_CMD_NONE,
  3919. /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
  3920. /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
  3921. /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
  3922. /* 18 */PFM_CMD_NONE,
  3923. /* 19 */PFM_CMD_NONE,
  3924. /* 20 */PFM_CMD_NONE,
  3925. /* 21 */PFM_CMD_NONE,
  3926. /* 22 */PFM_CMD_NONE,
  3927. /* 23 */PFM_CMD_NONE,
  3928. /* 24 */PFM_CMD_NONE,
  3929. /* 25 */PFM_CMD_NONE,
  3930. /* 26 */PFM_CMD_NONE,
  3931. /* 27 */PFM_CMD_NONE,
  3932. /* 28 */PFM_CMD_NONE,
  3933. /* 29 */PFM_CMD_NONE,
  3934. /* 30 */PFM_CMD_NONE,
  3935. /* 31 */PFM_CMD_NONE,
  3936. /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
  3937. /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
  3938. };
  3939. #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
  3940. static int
  3941. pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
  3942. {
  3943. struct task_struct *task;
  3944. int state, old_state;
  3945. recheck:
  3946. state = ctx->ctx_state;
  3947. task = ctx->ctx_task;
  3948. if (task == NULL) {
  3949. DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
  3950. return 0;
  3951. }
  3952. DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
  3953. ctx->ctx_fd,
  3954. state,
  3955. task->pid,
  3956. task->state, PFM_CMD_STOPPED(cmd)));
  3957. /*
  3958. * self-monitoring always ok.
  3959. *
  3960. * for system-wide the caller can either be the creator of the
  3961. * context (to one to which the context is attached to) OR
  3962. * a task running on the same CPU as the session.
  3963. */
  3964. if (task == current || ctx->ctx_fl_system) return 0;
  3965. /*
  3966. * we are monitoring another thread
  3967. */
  3968. switch(state) {
  3969. case PFM_CTX_UNLOADED:
  3970. /*
  3971. * if context is UNLOADED we are safe to go
  3972. */
  3973. return 0;
  3974. case PFM_CTX_ZOMBIE:
  3975. /*
  3976. * no command can operate on a zombie context
  3977. */
  3978. DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
  3979. return -EINVAL;
  3980. case PFM_CTX_MASKED:
  3981. /*
  3982. * PMU state has been saved to software even though
  3983. * the thread may still be running.
  3984. */
  3985. if (cmd != PFM_UNLOAD_CONTEXT) return 0;
  3986. }
  3987. /*
  3988. * context is LOADED or MASKED. Some commands may need to have
  3989. * the task stopped.
  3990. *
  3991. * We could lift this restriction for UP but it would mean that
  3992. * the user has no guarantee the task would not run between
  3993. * two successive calls to perfmonctl(). That's probably OK.
  3994. * If this user wants to ensure the task does not run, then
  3995. * the task must be stopped.
  3996. */
  3997. if (PFM_CMD_STOPPED(cmd)) {
  3998. if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
  3999. DPRINT(("[%d] task not in stopped state\n", task->pid));
  4000. return -EBUSY;
  4001. }
  4002. /*
  4003. * task is now stopped, wait for ctxsw out
  4004. *
  4005. * This is an interesting point in the code.
  4006. * We need to unprotect the context because
  4007. * the pfm_save_regs() routines needs to grab
  4008. * the same lock. There are danger in doing
  4009. * this because it leaves a window open for
  4010. * another task to get access to the context
  4011. * and possibly change its state. The one thing
  4012. * that is not possible is for the context to disappear
  4013. * because we are protected by the VFS layer, i.e.,
  4014. * get_fd()/put_fd().
  4015. */
  4016. old_state = state;
  4017. UNPROTECT_CTX(ctx, flags);
  4018. wait_task_inactive(task);
  4019. PROTECT_CTX(ctx, flags);
  4020. /*
  4021. * we must recheck to verify if state has changed
  4022. */
  4023. if (ctx->ctx_state != old_state) {
  4024. DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
  4025. goto recheck;
  4026. }
  4027. }
  4028. return 0;
  4029. }
  4030. /*
  4031. * system-call entry point (must return long)
  4032. */
  4033. asmlinkage long
  4034. sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
  4035. {
  4036. struct file *file = NULL;
  4037. pfm_context_t *ctx = NULL;
  4038. unsigned long flags = 0UL;
  4039. void *args_k = NULL;
  4040. long ret; /* will expand int return types */
  4041. size_t base_sz, sz, xtra_sz = 0;
  4042. int narg, completed_args = 0, call_made = 0, cmd_flags;
  4043. int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
  4044. int (*getsize)(void *arg, size_t *sz);
  4045. #define PFM_MAX_ARGSIZE 4096
  4046. /*
  4047. * reject any call if perfmon was disabled at initialization
  4048. */
  4049. if (unlikely(pmu_conf == NULL)) return -ENOSYS;
  4050. if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
  4051. DPRINT(("invalid cmd=%d\n", cmd));
  4052. return -EINVAL;
  4053. }
  4054. func = pfm_cmd_tab[cmd].cmd_func;
  4055. narg = pfm_cmd_tab[cmd].cmd_narg;
  4056. base_sz = pfm_cmd_tab[cmd].cmd_argsize;
  4057. getsize = pfm_cmd_tab[cmd].cmd_getsize;
  4058. cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
  4059. if (unlikely(func == NULL)) {
  4060. DPRINT(("invalid cmd=%d\n", cmd));
  4061. return -EINVAL;
  4062. }
  4063. DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
  4064. PFM_CMD_NAME(cmd),
  4065. cmd,
  4066. narg,
  4067. base_sz,
  4068. count));
  4069. /*
  4070. * check if number of arguments matches what the command expects
  4071. */
  4072. if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
  4073. return -EINVAL;
  4074. restart_args:
  4075. sz = xtra_sz + base_sz*count;
  4076. /*
  4077. * limit abuse to min page size
  4078. */
  4079. if (unlikely(sz > PFM_MAX_ARGSIZE)) {
  4080. printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
  4081. return -E2BIG;
  4082. }
  4083. /*
  4084. * allocate default-sized argument buffer
  4085. */
  4086. if (likely(count && args_k == NULL)) {
  4087. args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
  4088. if (args_k == NULL) return -ENOMEM;
  4089. }
  4090. ret = -EFAULT;
  4091. /*
  4092. * copy arguments
  4093. *
  4094. * assume sz = 0 for command without parameters
  4095. */
  4096. if (sz && copy_from_user(args_k, arg, sz)) {
  4097. DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
  4098. goto error_args;
  4099. }
  4100. /*
  4101. * check if command supports extra parameters
  4102. */
  4103. if (completed_args == 0 && getsize) {
  4104. /*
  4105. * get extra parameters size (based on main argument)
  4106. */
  4107. ret = (*getsize)(args_k, &xtra_sz);
  4108. if (ret) goto error_args;
  4109. completed_args = 1;
  4110. DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
  4111. /* retry if necessary */
  4112. if (likely(xtra_sz)) goto restart_args;
  4113. }
  4114. if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
  4115. ret = -EBADF;
  4116. file = fget(fd);
  4117. if (unlikely(file == NULL)) {
  4118. DPRINT(("invalid fd %d\n", fd));
  4119. goto error_args;
  4120. }
  4121. if (unlikely(PFM_IS_FILE(file) == 0)) {
  4122. DPRINT(("fd %d not related to perfmon\n", fd));
  4123. goto error_args;
  4124. }
  4125. ctx = (pfm_context_t *)file->private_data;
  4126. if (unlikely(ctx == NULL)) {
  4127. DPRINT(("no context for fd %d\n", fd));
  4128. goto error_args;
  4129. }
  4130. prefetch(&ctx->ctx_state);
  4131. PROTECT_CTX(ctx, flags);
  4132. /*
  4133. * check task is stopped
  4134. */
  4135. ret = pfm_check_task_state(ctx, cmd, flags);
  4136. if (unlikely(ret)) goto abort_locked;
  4137. skip_fd:
  4138. ret = (*func)(ctx, args_k, count, task_pt_regs(current));
  4139. call_made = 1;
  4140. abort_locked:
  4141. if (likely(ctx)) {
  4142. DPRINT(("context unlocked\n"));
  4143. UNPROTECT_CTX(ctx, flags);
  4144. }
  4145. /* copy argument back to user, if needed */
  4146. if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
  4147. error_args:
  4148. if (file)
  4149. fput(file);
  4150. kfree(args_k);
  4151. DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
  4152. return ret;
  4153. }
  4154. static void
  4155. pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
  4156. {
  4157. pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
  4158. pfm_ovfl_ctrl_t rst_ctrl;
  4159. int state;
  4160. int ret = 0;
  4161. state = ctx->ctx_state;
  4162. /*
  4163. * Unlock sampling buffer and reset index atomically
  4164. * XXX: not really needed when blocking
  4165. */
  4166. if (CTX_HAS_SMPL(ctx)) {
  4167. rst_ctrl.bits.mask_monitoring = 0;
  4168. rst_ctrl.bits.reset_ovfl_pmds = 0;
  4169. if (state == PFM_CTX_LOADED)
  4170. ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4171. else
  4172. ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
  4173. } else {
  4174. rst_ctrl.bits.mask_monitoring = 0;
  4175. rst_ctrl.bits.reset_ovfl_pmds = 1;
  4176. }
  4177. if (ret == 0) {
  4178. if (rst_ctrl.bits.reset_ovfl_pmds) {
  4179. pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
  4180. }
  4181. if (rst_ctrl.bits.mask_monitoring == 0) {
  4182. DPRINT(("resuming monitoring\n"));
  4183. if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
  4184. } else {
  4185. DPRINT(("stopping monitoring\n"));
  4186. //pfm_stop_monitoring(current, regs);
  4187. }
  4188. ctx->ctx_state = PFM_CTX_LOADED;
  4189. }
  4190. }
  4191. /*
  4192. * context MUST BE LOCKED when calling
  4193. * can only be called for current
  4194. */
  4195. static void
  4196. pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
  4197. {
  4198. int ret;
  4199. DPRINT(("entering for [%d]\n", current->pid));
  4200. ret = pfm_context_unload(ctx, NULL, 0, regs);
  4201. if (ret) {
  4202. printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
  4203. }
  4204. /*
  4205. * and wakeup controlling task, indicating we are now disconnected
  4206. */
  4207. wake_up_interruptible(&ctx->ctx_zombieq);
  4208. /*
  4209. * given that context is still locked, the controlling
  4210. * task will only get access when we return from
  4211. * pfm_handle_work().
  4212. */
  4213. }
  4214. static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
  4215. /*
  4216. * pfm_handle_work() can be called with interrupts enabled
  4217. * (TIF_NEED_RESCHED) or disabled. The down_interruptible
  4218. * call may sleep, therefore we must re-enable interrupts
  4219. * to avoid deadlocks. It is safe to do so because this function
  4220. * is called ONLY when returning to user level (PUStk=1), in which case
  4221. * there is no risk of kernel stack overflow due to deep
  4222. * interrupt nesting.
  4223. */
  4224. void
  4225. pfm_handle_work(void)
  4226. {
  4227. pfm_context_t *ctx;
  4228. struct pt_regs *regs;
  4229. unsigned long flags, dummy_flags;
  4230. unsigned long ovfl_regs;
  4231. unsigned int reason;
  4232. int ret;
  4233. ctx = PFM_GET_CTX(current);
  4234. if (ctx == NULL) {
  4235. printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
  4236. return;
  4237. }
  4238. PROTECT_CTX(ctx, flags);
  4239. PFM_SET_WORK_PENDING(current, 0);
  4240. pfm_clear_task_notify();
  4241. regs = task_pt_regs(current);
  4242. /*
  4243. * extract reason for being here and clear
  4244. */
  4245. reason = ctx->ctx_fl_trap_reason;
  4246. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
  4247. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4248. DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
  4249. /*
  4250. * must be done before we check for simple-reset mode
  4251. */
  4252. if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
  4253. //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
  4254. if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
  4255. /*
  4256. * restore interrupt mask to what it was on entry.
  4257. * Could be enabled/diasbled.
  4258. */
  4259. UNPROTECT_CTX(ctx, flags);
  4260. /*
  4261. * force interrupt enable because of down_interruptible()
  4262. */
  4263. local_irq_enable();
  4264. DPRINT(("before block sleeping\n"));
  4265. /*
  4266. * may go through without blocking on SMP systems
  4267. * if restart has been received already by the time we call down()
  4268. */
  4269. ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
  4270. DPRINT(("after block sleeping ret=%d\n", ret));
  4271. /*
  4272. * lock context and mask interrupts again
  4273. * We save flags into a dummy because we may have
  4274. * altered interrupts mask compared to entry in this
  4275. * function.
  4276. */
  4277. PROTECT_CTX(ctx, dummy_flags);
  4278. /*
  4279. * we need to read the ovfl_regs only after wake-up
  4280. * because we may have had pfm_write_pmds() in between
  4281. * and that can changed PMD values and therefore
  4282. * ovfl_regs is reset for these new PMD values.
  4283. */
  4284. ovfl_regs = ctx->ctx_ovfl_regs[0];
  4285. if (ctx->ctx_fl_going_zombie) {
  4286. do_zombie:
  4287. DPRINT(("context is zombie, bailing out\n"));
  4288. pfm_context_force_terminate(ctx, regs);
  4289. goto nothing_to_do;
  4290. }
  4291. /*
  4292. * in case of interruption of down() we don't restart anything
  4293. */
  4294. if (ret < 0) goto nothing_to_do;
  4295. skip_blocking:
  4296. pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
  4297. ctx->ctx_ovfl_regs[0] = 0UL;
  4298. nothing_to_do:
  4299. /*
  4300. * restore flags as they were upon entry
  4301. */
  4302. UNPROTECT_CTX(ctx, flags);
  4303. }
  4304. static int
  4305. pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
  4306. {
  4307. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4308. DPRINT(("ignoring overflow notification, owner is zombie\n"));
  4309. return 0;
  4310. }
  4311. DPRINT(("waking up somebody\n"));
  4312. if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
  4313. /*
  4314. * safe, we are not in intr handler, nor in ctxsw when
  4315. * we come here
  4316. */
  4317. kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
  4318. return 0;
  4319. }
  4320. static int
  4321. pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
  4322. {
  4323. pfm_msg_t *msg = NULL;
  4324. if (ctx->ctx_fl_no_msg == 0) {
  4325. msg = pfm_get_new_msg(ctx);
  4326. if (msg == NULL) {
  4327. printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
  4328. return -1;
  4329. }
  4330. msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
  4331. msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
  4332. msg->pfm_ovfl_msg.msg_active_set = 0;
  4333. msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
  4334. msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
  4335. msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
  4336. msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
  4337. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4338. }
  4339. DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
  4340. msg,
  4341. ctx->ctx_fl_no_msg,
  4342. ctx->ctx_fd,
  4343. ovfl_pmds));
  4344. return pfm_notify_user(ctx, msg);
  4345. }
  4346. static int
  4347. pfm_end_notify_user(pfm_context_t *ctx)
  4348. {
  4349. pfm_msg_t *msg;
  4350. msg = pfm_get_new_msg(ctx);
  4351. if (msg == NULL) {
  4352. printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
  4353. return -1;
  4354. }
  4355. /* no leak */
  4356. memset(msg, 0, sizeof(*msg));
  4357. msg->pfm_end_msg.msg_type = PFM_MSG_END;
  4358. msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
  4359. msg->pfm_ovfl_msg.msg_tstamp = 0UL;
  4360. DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
  4361. msg,
  4362. ctx->ctx_fl_no_msg,
  4363. ctx->ctx_fd));
  4364. return pfm_notify_user(ctx, msg);
  4365. }
  4366. /*
  4367. * main overflow processing routine.
  4368. * it can be called from the interrupt path or explicitly during the context switch code
  4369. */
  4370. static void
  4371. pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
  4372. {
  4373. pfm_ovfl_arg_t *ovfl_arg;
  4374. unsigned long mask;
  4375. unsigned long old_val, ovfl_val, new_val;
  4376. unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
  4377. unsigned long tstamp;
  4378. pfm_ovfl_ctrl_t ovfl_ctrl;
  4379. unsigned int i, has_smpl;
  4380. int must_notify = 0;
  4381. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
  4382. /*
  4383. * sanity test. Should never happen
  4384. */
  4385. if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
  4386. tstamp = ia64_get_itc();
  4387. mask = pmc0 >> PMU_FIRST_COUNTER;
  4388. ovfl_val = pmu_conf->ovfl_val;
  4389. has_smpl = CTX_HAS_SMPL(ctx);
  4390. DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
  4391. "used_pmds=0x%lx\n",
  4392. pmc0,
  4393. task ? task->pid: -1,
  4394. (regs ? regs->cr_iip : 0),
  4395. CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
  4396. ctx->ctx_used_pmds[0]));
  4397. /*
  4398. * first we update the virtual counters
  4399. * assume there was a prior ia64_srlz_d() issued
  4400. */
  4401. for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
  4402. /* skip pmd which did not overflow */
  4403. if ((mask & 0x1) == 0) continue;
  4404. /*
  4405. * Note that the pmd is not necessarily 0 at this point as qualified events
  4406. * may have happened before the PMU was frozen. The residual count is not
  4407. * taken into consideration here but will be with any read of the pmd via
  4408. * pfm_read_pmds().
  4409. */
  4410. old_val = new_val = ctx->ctx_pmds[i].val;
  4411. new_val += 1 + ovfl_val;
  4412. ctx->ctx_pmds[i].val = new_val;
  4413. /*
  4414. * check for overflow condition
  4415. */
  4416. if (likely(old_val > new_val)) {
  4417. ovfl_pmds |= 1UL << i;
  4418. if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
  4419. }
  4420. DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
  4421. i,
  4422. new_val,
  4423. old_val,
  4424. ia64_get_pmd(i) & ovfl_val,
  4425. ovfl_pmds,
  4426. ovfl_notify));
  4427. }
  4428. /*
  4429. * there was no 64-bit overflow, nothing else to do
  4430. */
  4431. if (ovfl_pmds == 0UL) return;
  4432. /*
  4433. * reset all control bits
  4434. */
  4435. ovfl_ctrl.val = 0;
  4436. reset_pmds = 0UL;
  4437. /*
  4438. * if a sampling format module exists, then we "cache" the overflow by
  4439. * calling the module's handler() routine.
  4440. */
  4441. if (has_smpl) {
  4442. unsigned long start_cycles, end_cycles;
  4443. unsigned long pmd_mask;
  4444. int j, k, ret = 0;
  4445. int this_cpu = smp_processor_id();
  4446. pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
  4447. ovfl_arg = &ctx->ctx_ovfl_arg;
  4448. prefetch(ctx->ctx_smpl_hdr);
  4449. for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
  4450. mask = 1UL << i;
  4451. if ((pmd_mask & 0x1) == 0) continue;
  4452. ovfl_arg->ovfl_pmd = (unsigned char )i;
  4453. ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
  4454. ovfl_arg->active_set = 0;
  4455. ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
  4456. ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
  4457. ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
  4458. ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
  4459. ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
  4460. /*
  4461. * copy values of pmds of interest. Sampling format may copy them
  4462. * into sampling buffer.
  4463. */
  4464. if (smpl_pmds) {
  4465. for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
  4466. if ((smpl_pmds & 0x1) == 0) continue;
  4467. ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
  4468. DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
  4469. }
  4470. }
  4471. pfm_stats[this_cpu].pfm_smpl_handler_calls++;
  4472. start_cycles = ia64_get_itc();
  4473. /*
  4474. * call custom buffer format record (handler) routine
  4475. */
  4476. ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
  4477. end_cycles = ia64_get_itc();
  4478. /*
  4479. * For those controls, we take the union because they have
  4480. * an all or nothing behavior.
  4481. */
  4482. ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
  4483. ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
  4484. ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
  4485. /*
  4486. * build the bitmask of pmds to reset now
  4487. */
  4488. if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
  4489. pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
  4490. }
  4491. /*
  4492. * when the module cannot handle the rest of the overflows, we abort right here
  4493. */
  4494. if (ret && pmd_mask) {
  4495. DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
  4496. pmd_mask<<PMU_FIRST_COUNTER));
  4497. }
  4498. /*
  4499. * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
  4500. */
  4501. ovfl_pmds &= ~reset_pmds;
  4502. } else {
  4503. /*
  4504. * when no sampling module is used, then the default
  4505. * is to notify on overflow if requested by user
  4506. */
  4507. ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
  4508. ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
  4509. ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
  4510. ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
  4511. /*
  4512. * if needed, we reset all overflowed pmds
  4513. */
  4514. if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
  4515. }
  4516. DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
  4517. /*
  4518. * reset the requested PMD registers using the short reset values
  4519. */
  4520. if (reset_pmds) {
  4521. unsigned long bm = reset_pmds;
  4522. pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
  4523. }
  4524. if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
  4525. /*
  4526. * keep track of what to reset when unblocking
  4527. */
  4528. ctx->ctx_ovfl_regs[0] = ovfl_pmds;
  4529. /*
  4530. * check for blocking context
  4531. */
  4532. if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
  4533. ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
  4534. /*
  4535. * set the perfmon specific checking pending work for the task
  4536. */
  4537. PFM_SET_WORK_PENDING(task, 1);
  4538. /*
  4539. * when coming from ctxsw, current still points to the
  4540. * previous task, therefore we must work with task and not current.
  4541. */
  4542. pfm_set_task_notify(task);
  4543. }
  4544. /*
  4545. * defer until state is changed (shorten spin window). the context is locked
  4546. * anyway, so the signal receiver would come spin for nothing.
  4547. */
  4548. must_notify = 1;
  4549. }
  4550. DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
  4551. GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
  4552. PFM_GET_WORK_PENDING(task),
  4553. ctx->ctx_fl_trap_reason,
  4554. ovfl_pmds,
  4555. ovfl_notify,
  4556. ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
  4557. /*
  4558. * in case monitoring must be stopped, we toggle the psr bits
  4559. */
  4560. if (ovfl_ctrl.bits.mask_monitoring) {
  4561. pfm_mask_monitoring(task);
  4562. ctx->ctx_state = PFM_CTX_MASKED;
  4563. ctx->ctx_fl_can_restart = 1;
  4564. }
  4565. /*
  4566. * send notification now
  4567. */
  4568. if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
  4569. return;
  4570. sanity_check:
  4571. printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
  4572. smp_processor_id(),
  4573. task ? task->pid : -1,
  4574. pmc0);
  4575. return;
  4576. stop_monitoring:
  4577. /*
  4578. * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
  4579. * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
  4580. * come here as zombie only if the task is the current task. In which case, we
  4581. * can access the PMU hardware directly.
  4582. *
  4583. * Note that zombies do have PM_VALID set. So here we do the minimal.
  4584. *
  4585. * In case the context was zombified it could not be reclaimed at the time
  4586. * the monitoring program exited. At this point, the PMU reservation has been
  4587. * returned, the sampiing buffer has been freed. We must convert this call
  4588. * into a spurious interrupt. However, we must also avoid infinite overflows
  4589. * by stopping monitoring for this task. We can only come here for a per-task
  4590. * context. All we need to do is to stop monitoring using the psr bits which
  4591. * are always task private. By re-enabling secure montioring, we ensure that
  4592. * the monitored task will not be able to re-activate monitoring.
  4593. * The task will eventually be context switched out, at which point the context
  4594. * will be reclaimed (that includes releasing ownership of the PMU).
  4595. *
  4596. * So there might be a window of time where the number of per-task session is zero
  4597. * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
  4598. * context. This is safe because if a per-task session comes in, it will push this one
  4599. * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
  4600. * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
  4601. * also push our zombie context out.
  4602. *
  4603. * Overall pretty hairy stuff....
  4604. */
  4605. DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
  4606. pfm_clear_psr_up();
  4607. ia64_psr(regs)->up = 0;
  4608. ia64_psr(regs)->sp = 1;
  4609. return;
  4610. }
  4611. static int
  4612. pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
  4613. {
  4614. struct task_struct *task;
  4615. pfm_context_t *ctx;
  4616. unsigned long flags;
  4617. u64 pmc0;
  4618. int this_cpu = smp_processor_id();
  4619. int retval = 0;
  4620. pfm_stats[this_cpu].pfm_ovfl_intr_count++;
  4621. /*
  4622. * srlz.d done before arriving here
  4623. */
  4624. pmc0 = ia64_get_pmc(0);
  4625. task = GET_PMU_OWNER();
  4626. ctx = GET_PMU_CTX();
  4627. /*
  4628. * if we have some pending bits set
  4629. * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
  4630. */
  4631. if (PMC0_HAS_OVFL(pmc0) && task) {
  4632. /*
  4633. * we assume that pmc0.fr is always set here
  4634. */
  4635. /* sanity check */
  4636. if (!ctx) goto report_spurious1;
  4637. if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
  4638. goto report_spurious2;
  4639. PROTECT_CTX_NOPRINT(ctx, flags);
  4640. pfm_overflow_handler(task, ctx, pmc0, regs);
  4641. UNPROTECT_CTX_NOPRINT(ctx, flags);
  4642. } else {
  4643. pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
  4644. retval = -1;
  4645. }
  4646. /*
  4647. * keep it unfrozen at all times
  4648. */
  4649. pfm_unfreeze_pmu();
  4650. return retval;
  4651. report_spurious1:
  4652. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
  4653. this_cpu, task->pid);
  4654. pfm_unfreeze_pmu();
  4655. return -1;
  4656. report_spurious2:
  4657. printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
  4658. this_cpu,
  4659. task->pid);
  4660. pfm_unfreeze_pmu();
  4661. return -1;
  4662. }
  4663. static irqreturn_t
  4664. pfm_interrupt_handler(int irq, void *arg)
  4665. {
  4666. unsigned long start_cycles, total_cycles;
  4667. unsigned long min, max;
  4668. int this_cpu;
  4669. int ret;
  4670. struct pt_regs *regs = get_irq_regs();
  4671. this_cpu = get_cpu();
  4672. if (likely(!pfm_alt_intr_handler)) {
  4673. min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
  4674. max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
  4675. start_cycles = ia64_get_itc();
  4676. ret = pfm_do_interrupt_handler(irq, arg, regs);
  4677. total_cycles = ia64_get_itc();
  4678. /*
  4679. * don't measure spurious interrupts
  4680. */
  4681. if (likely(ret == 0)) {
  4682. total_cycles -= start_cycles;
  4683. if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
  4684. if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
  4685. pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
  4686. }
  4687. }
  4688. else {
  4689. (*pfm_alt_intr_handler->handler)(irq, arg, regs);
  4690. }
  4691. put_cpu_no_resched();
  4692. return IRQ_HANDLED;
  4693. }
  4694. /*
  4695. * /proc/perfmon interface, for debug only
  4696. */
  4697. #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
  4698. static void *
  4699. pfm_proc_start(struct seq_file *m, loff_t *pos)
  4700. {
  4701. if (*pos == 0) {
  4702. return PFM_PROC_SHOW_HEADER;
  4703. }
  4704. while (*pos <= NR_CPUS) {
  4705. if (cpu_online(*pos - 1)) {
  4706. return (void *)*pos;
  4707. }
  4708. ++*pos;
  4709. }
  4710. return NULL;
  4711. }
  4712. static void *
  4713. pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
  4714. {
  4715. ++*pos;
  4716. return pfm_proc_start(m, pos);
  4717. }
  4718. static void
  4719. pfm_proc_stop(struct seq_file *m, void *v)
  4720. {
  4721. }
  4722. static void
  4723. pfm_proc_show_header(struct seq_file *m)
  4724. {
  4725. struct list_head * pos;
  4726. pfm_buffer_fmt_t * entry;
  4727. unsigned long flags;
  4728. seq_printf(m,
  4729. "perfmon version : %u.%u\n"
  4730. "model : %s\n"
  4731. "fastctxsw : %s\n"
  4732. "expert mode : %s\n"
  4733. "ovfl_mask : 0x%lx\n"
  4734. "PMU flags : 0x%x\n",
  4735. PFM_VERSION_MAJ, PFM_VERSION_MIN,
  4736. pmu_conf->pmu_name,
  4737. pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
  4738. pfm_sysctl.expert_mode > 0 ? "Yes": "No",
  4739. pmu_conf->ovfl_val,
  4740. pmu_conf->flags);
  4741. LOCK_PFS(flags);
  4742. seq_printf(m,
  4743. "proc_sessions : %u\n"
  4744. "sys_sessions : %u\n"
  4745. "sys_use_dbregs : %u\n"
  4746. "ptrace_use_dbregs : %u\n",
  4747. pfm_sessions.pfs_task_sessions,
  4748. pfm_sessions.pfs_sys_sessions,
  4749. pfm_sessions.pfs_sys_use_dbregs,
  4750. pfm_sessions.pfs_ptrace_use_dbregs);
  4751. UNLOCK_PFS(flags);
  4752. spin_lock(&pfm_buffer_fmt_lock);
  4753. list_for_each(pos, &pfm_buffer_fmt_list) {
  4754. entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
  4755. seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
  4756. entry->fmt_uuid[0],
  4757. entry->fmt_uuid[1],
  4758. entry->fmt_uuid[2],
  4759. entry->fmt_uuid[3],
  4760. entry->fmt_uuid[4],
  4761. entry->fmt_uuid[5],
  4762. entry->fmt_uuid[6],
  4763. entry->fmt_uuid[7],
  4764. entry->fmt_uuid[8],
  4765. entry->fmt_uuid[9],
  4766. entry->fmt_uuid[10],
  4767. entry->fmt_uuid[11],
  4768. entry->fmt_uuid[12],
  4769. entry->fmt_uuid[13],
  4770. entry->fmt_uuid[14],
  4771. entry->fmt_uuid[15],
  4772. entry->fmt_name);
  4773. }
  4774. spin_unlock(&pfm_buffer_fmt_lock);
  4775. }
  4776. static int
  4777. pfm_proc_show(struct seq_file *m, void *v)
  4778. {
  4779. unsigned long psr;
  4780. unsigned int i;
  4781. int cpu;
  4782. if (v == PFM_PROC_SHOW_HEADER) {
  4783. pfm_proc_show_header(m);
  4784. return 0;
  4785. }
  4786. /* show info for CPU (v - 1) */
  4787. cpu = (long)v - 1;
  4788. seq_printf(m,
  4789. "CPU%-2d overflow intrs : %lu\n"
  4790. "CPU%-2d overflow cycles : %lu\n"
  4791. "CPU%-2d overflow min : %lu\n"
  4792. "CPU%-2d overflow max : %lu\n"
  4793. "CPU%-2d smpl handler calls : %lu\n"
  4794. "CPU%-2d smpl handler cycles : %lu\n"
  4795. "CPU%-2d spurious intrs : %lu\n"
  4796. "CPU%-2d replay intrs : %lu\n"
  4797. "CPU%-2d syst_wide : %d\n"
  4798. "CPU%-2d dcr_pp : %d\n"
  4799. "CPU%-2d exclude idle : %d\n"
  4800. "CPU%-2d owner : %d\n"
  4801. "CPU%-2d context : %p\n"
  4802. "CPU%-2d activations : %lu\n",
  4803. cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
  4804. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
  4805. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
  4806. cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
  4807. cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
  4808. cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
  4809. cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
  4810. cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
  4811. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
  4812. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
  4813. cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
  4814. cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
  4815. cpu, pfm_get_cpu_data(pmu_ctx, cpu),
  4816. cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
  4817. if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
  4818. psr = pfm_get_psr();
  4819. ia64_srlz_d();
  4820. seq_printf(m,
  4821. "CPU%-2d psr : 0x%lx\n"
  4822. "CPU%-2d pmc0 : 0x%lx\n",
  4823. cpu, psr,
  4824. cpu, ia64_get_pmc(0));
  4825. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  4826. if (PMC_IS_COUNTING(i) == 0) continue;
  4827. seq_printf(m,
  4828. "CPU%-2d pmc%u : 0x%lx\n"
  4829. "CPU%-2d pmd%u : 0x%lx\n",
  4830. cpu, i, ia64_get_pmc(i),
  4831. cpu, i, ia64_get_pmd(i));
  4832. }
  4833. }
  4834. return 0;
  4835. }
  4836. struct seq_operations pfm_seq_ops = {
  4837. .start = pfm_proc_start,
  4838. .next = pfm_proc_next,
  4839. .stop = pfm_proc_stop,
  4840. .show = pfm_proc_show
  4841. };
  4842. static int
  4843. pfm_proc_open(struct inode *inode, struct file *file)
  4844. {
  4845. return seq_open(file, &pfm_seq_ops);
  4846. }
  4847. /*
  4848. * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
  4849. * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
  4850. * is active or inactive based on mode. We must rely on the value in
  4851. * local_cpu_data->pfm_syst_info
  4852. */
  4853. void
  4854. pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
  4855. {
  4856. struct pt_regs *regs;
  4857. unsigned long dcr;
  4858. unsigned long dcr_pp;
  4859. dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
  4860. /*
  4861. * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
  4862. * on every CPU, so we can rely on the pid to identify the idle task.
  4863. */
  4864. if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
  4865. regs = task_pt_regs(task);
  4866. ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
  4867. return;
  4868. }
  4869. /*
  4870. * if monitoring has started
  4871. */
  4872. if (dcr_pp) {
  4873. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  4874. /*
  4875. * context switching in?
  4876. */
  4877. if (is_ctxswin) {
  4878. /* mask monitoring for the idle task */
  4879. ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
  4880. pfm_clear_psr_pp();
  4881. ia64_srlz_i();
  4882. return;
  4883. }
  4884. /*
  4885. * context switching out
  4886. * restore monitoring for next task
  4887. *
  4888. * Due to inlining this odd if-then-else construction generates
  4889. * better code.
  4890. */
  4891. ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
  4892. pfm_set_psr_pp();
  4893. ia64_srlz_i();
  4894. }
  4895. }
  4896. #ifdef CONFIG_SMP
  4897. static void
  4898. pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
  4899. {
  4900. struct task_struct *task = ctx->ctx_task;
  4901. ia64_psr(regs)->up = 0;
  4902. ia64_psr(regs)->sp = 1;
  4903. if (GET_PMU_OWNER() == task) {
  4904. DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
  4905. SET_PMU_OWNER(NULL, NULL);
  4906. }
  4907. /*
  4908. * disconnect the task from the context and vice-versa
  4909. */
  4910. PFM_SET_WORK_PENDING(task, 0);
  4911. task->thread.pfm_context = NULL;
  4912. task->thread.flags &= ~IA64_THREAD_PM_VALID;
  4913. DPRINT(("force cleanup for [%d]\n", task->pid));
  4914. }
  4915. /*
  4916. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  4917. */
  4918. void
  4919. pfm_save_regs(struct task_struct *task)
  4920. {
  4921. pfm_context_t *ctx;
  4922. unsigned long flags;
  4923. u64 psr;
  4924. ctx = PFM_GET_CTX(task);
  4925. if (ctx == NULL) return;
  4926. /*
  4927. * we always come here with interrupts ALREADY disabled by
  4928. * the scheduler. So we simply need to protect against concurrent
  4929. * access, not CPU concurrency.
  4930. */
  4931. flags = pfm_protect_ctx_ctxsw(ctx);
  4932. if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
  4933. struct pt_regs *regs = task_pt_regs(task);
  4934. pfm_clear_psr_up();
  4935. pfm_force_cleanup(ctx, regs);
  4936. BUG_ON(ctx->ctx_smpl_hdr);
  4937. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4938. pfm_context_free(ctx);
  4939. return;
  4940. }
  4941. /*
  4942. * save current PSR: needed because we modify it
  4943. */
  4944. ia64_srlz_d();
  4945. psr = pfm_get_psr();
  4946. BUG_ON(psr & (IA64_PSR_I));
  4947. /*
  4948. * stop monitoring:
  4949. * This is the last instruction which may generate an overflow
  4950. *
  4951. * We do not need to set psr.sp because, it is irrelevant in kernel.
  4952. * It will be restored from ipsr when going back to user level
  4953. */
  4954. pfm_clear_psr_up();
  4955. /*
  4956. * keep a copy of psr.up (for reload)
  4957. */
  4958. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  4959. /*
  4960. * release ownership of this PMU.
  4961. * PM interrupts are masked, so nothing
  4962. * can happen.
  4963. */
  4964. SET_PMU_OWNER(NULL, NULL);
  4965. /*
  4966. * we systematically save the PMD as we have no
  4967. * guarantee we will be schedule at that same
  4968. * CPU again.
  4969. */
  4970. pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
  4971. /*
  4972. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  4973. * we will need it on the restore path to check
  4974. * for pending overflow.
  4975. */
  4976. ctx->th_pmcs[0] = ia64_get_pmc(0);
  4977. /*
  4978. * unfreeze PMU if had pending overflows
  4979. */
  4980. if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  4981. /*
  4982. * finally, allow context access.
  4983. * interrupts will still be masked after this call.
  4984. */
  4985. pfm_unprotect_ctx_ctxsw(ctx, flags);
  4986. }
  4987. #else /* !CONFIG_SMP */
  4988. void
  4989. pfm_save_regs(struct task_struct *task)
  4990. {
  4991. pfm_context_t *ctx;
  4992. u64 psr;
  4993. ctx = PFM_GET_CTX(task);
  4994. if (ctx == NULL) return;
  4995. /*
  4996. * save current PSR: needed because we modify it
  4997. */
  4998. psr = pfm_get_psr();
  4999. BUG_ON(psr & (IA64_PSR_I));
  5000. /*
  5001. * stop monitoring:
  5002. * This is the last instruction which may generate an overflow
  5003. *
  5004. * We do not need to set psr.sp because, it is irrelevant in kernel.
  5005. * It will be restored from ipsr when going back to user level
  5006. */
  5007. pfm_clear_psr_up();
  5008. /*
  5009. * keep a copy of psr.up (for reload)
  5010. */
  5011. ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
  5012. }
  5013. static void
  5014. pfm_lazy_save_regs (struct task_struct *task)
  5015. {
  5016. pfm_context_t *ctx;
  5017. unsigned long flags;
  5018. { u64 psr = pfm_get_psr();
  5019. BUG_ON(psr & IA64_PSR_UP);
  5020. }
  5021. ctx = PFM_GET_CTX(task);
  5022. /*
  5023. * we need to mask PMU overflow here to
  5024. * make sure that we maintain pmc0 until
  5025. * we save it. overflow interrupts are
  5026. * treated as spurious if there is no
  5027. * owner.
  5028. *
  5029. * XXX: I don't think this is necessary
  5030. */
  5031. PROTECT_CTX(ctx,flags);
  5032. /*
  5033. * release ownership of this PMU.
  5034. * must be done before we save the registers.
  5035. *
  5036. * after this call any PMU interrupt is treated
  5037. * as spurious.
  5038. */
  5039. SET_PMU_OWNER(NULL, NULL);
  5040. /*
  5041. * save all the pmds we use
  5042. */
  5043. pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
  5044. /*
  5045. * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
  5046. * it is needed to check for pended overflow
  5047. * on the restore path
  5048. */
  5049. ctx->th_pmcs[0] = ia64_get_pmc(0);
  5050. /*
  5051. * unfreeze PMU if had pending overflows
  5052. */
  5053. if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
  5054. /*
  5055. * now get can unmask PMU interrupts, they will
  5056. * be treated as purely spurious and we will not
  5057. * lose any information
  5058. */
  5059. UNPROTECT_CTX(ctx,flags);
  5060. }
  5061. #endif /* CONFIG_SMP */
  5062. #ifdef CONFIG_SMP
  5063. /*
  5064. * in 2.6, interrupts are masked when we come here and the runqueue lock is held
  5065. */
  5066. void
  5067. pfm_load_regs (struct task_struct *task)
  5068. {
  5069. pfm_context_t *ctx;
  5070. unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
  5071. unsigned long flags;
  5072. u64 psr, psr_up;
  5073. int need_irq_resend;
  5074. ctx = PFM_GET_CTX(task);
  5075. if (unlikely(ctx == NULL)) return;
  5076. BUG_ON(GET_PMU_OWNER());
  5077. /*
  5078. * possible on unload
  5079. */
  5080. if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
  5081. /*
  5082. * we always come here with interrupts ALREADY disabled by
  5083. * the scheduler. So we simply need to protect against concurrent
  5084. * access, not CPU concurrency.
  5085. */
  5086. flags = pfm_protect_ctx_ctxsw(ctx);
  5087. psr = pfm_get_psr();
  5088. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5089. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5090. BUG_ON(psr & IA64_PSR_I);
  5091. if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
  5092. struct pt_regs *regs = task_pt_regs(task);
  5093. BUG_ON(ctx->ctx_smpl_hdr);
  5094. pfm_force_cleanup(ctx, regs);
  5095. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5096. /*
  5097. * this one (kmalloc'ed) is fine with interrupts disabled
  5098. */
  5099. pfm_context_free(ctx);
  5100. return;
  5101. }
  5102. /*
  5103. * we restore ALL the debug registers to avoid picking up
  5104. * stale state.
  5105. */
  5106. if (ctx->ctx_fl_using_dbreg) {
  5107. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5108. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5109. }
  5110. /*
  5111. * retrieve saved psr.up
  5112. */
  5113. psr_up = ctx->ctx_saved_psr_up;
  5114. /*
  5115. * if we were the last user of the PMU on that CPU,
  5116. * then nothing to do except restore psr
  5117. */
  5118. if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
  5119. /*
  5120. * retrieve partial reload masks (due to user modifications)
  5121. */
  5122. pmc_mask = ctx->ctx_reload_pmcs[0];
  5123. pmd_mask = ctx->ctx_reload_pmds[0];
  5124. } else {
  5125. /*
  5126. * To avoid leaking information to the user level when psr.sp=0,
  5127. * we must reload ALL implemented pmds (even the ones we don't use).
  5128. * In the kernel we only allow PFM_READ_PMDS on registers which
  5129. * we initialized or requested (sampling) so there is no risk there.
  5130. */
  5131. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5132. /*
  5133. * ALL accessible PMCs are systematically reloaded, unused registers
  5134. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5135. * up stale configuration.
  5136. *
  5137. * PMC0 is never in the mask. It is always restored separately.
  5138. */
  5139. pmc_mask = ctx->ctx_all_pmcs[0];
  5140. }
  5141. /*
  5142. * when context is MASKED, we will restore PMC with plm=0
  5143. * and PMD with stale information, but that's ok, nothing
  5144. * will be captured.
  5145. *
  5146. * XXX: optimize here
  5147. */
  5148. if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
  5149. if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
  5150. /*
  5151. * check for pending overflow at the time the state
  5152. * was saved.
  5153. */
  5154. if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
  5155. /*
  5156. * reload pmc0 with the overflow information
  5157. * On McKinley PMU, this will trigger a PMU interrupt
  5158. */
  5159. ia64_set_pmc(0, ctx->th_pmcs[0]);
  5160. ia64_srlz_d();
  5161. ctx->th_pmcs[0] = 0UL;
  5162. /*
  5163. * will replay the PMU interrupt
  5164. */
  5165. if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
  5166. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5167. }
  5168. /*
  5169. * we just did a reload, so we reset the partial reload fields
  5170. */
  5171. ctx->ctx_reload_pmcs[0] = 0UL;
  5172. ctx->ctx_reload_pmds[0] = 0UL;
  5173. SET_LAST_CPU(ctx, smp_processor_id());
  5174. /*
  5175. * dump activation value for this PMU
  5176. */
  5177. INC_ACTIVATION();
  5178. /*
  5179. * record current activation for this context
  5180. */
  5181. SET_ACTIVATION(ctx);
  5182. /*
  5183. * establish new ownership.
  5184. */
  5185. SET_PMU_OWNER(task, ctx);
  5186. /*
  5187. * restore the psr.up bit. measurement
  5188. * is active again.
  5189. * no PMU interrupt can happen at this point
  5190. * because we still have interrupts disabled.
  5191. */
  5192. if (likely(psr_up)) pfm_set_psr_up();
  5193. /*
  5194. * allow concurrent access to context
  5195. */
  5196. pfm_unprotect_ctx_ctxsw(ctx, flags);
  5197. }
  5198. #else /* !CONFIG_SMP */
  5199. /*
  5200. * reload PMU state for UP kernels
  5201. * in 2.5 we come here with interrupts disabled
  5202. */
  5203. void
  5204. pfm_load_regs (struct task_struct *task)
  5205. {
  5206. pfm_context_t *ctx;
  5207. struct task_struct *owner;
  5208. unsigned long pmd_mask, pmc_mask;
  5209. u64 psr, psr_up;
  5210. int need_irq_resend;
  5211. owner = GET_PMU_OWNER();
  5212. ctx = PFM_GET_CTX(task);
  5213. psr = pfm_get_psr();
  5214. BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
  5215. BUG_ON(psr & IA64_PSR_I);
  5216. /*
  5217. * we restore ALL the debug registers to avoid picking up
  5218. * stale state.
  5219. *
  5220. * This must be done even when the task is still the owner
  5221. * as the registers may have been modified via ptrace()
  5222. * (not perfmon) by the previous task.
  5223. */
  5224. if (ctx->ctx_fl_using_dbreg) {
  5225. pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
  5226. pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
  5227. }
  5228. /*
  5229. * retrieved saved psr.up
  5230. */
  5231. psr_up = ctx->ctx_saved_psr_up;
  5232. need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
  5233. /*
  5234. * short path, our state is still there, just
  5235. * need to restore psr and we go
  5236. *
  5237. * we do not touch either PMC nor PMD. the psr is not touched
  5238. * by the overflow_handler. So we are safe w.r.t. to interrupt
  5239. * concurrency even without interrupt masking.
  5240. */
  5241. if (likely(owner == task)) {
  5242. if (likely(psr_up)) pfm_set_psr_up();
  5243. return;
  5244. }
  5245. /*
  5246. * someone else is still using the PMU, first push it out and
  5247. * then we'll be able to install our stuff !
  5248. *
  5249. * Upon return, there will be no owner for the current PMU
  5250. */
  5251. if (owner) pfm_lazy_save_regs(owner);
  5252. /*
  5253. * To avoid leaking information to the user level when psr.sp=0,
  5254. * we must reload ALL implemented pmds (even the ones we don't use).
  5255. * In the kernel we only allow PFM_READ_PMDS on registers which
  5256. * we initialized or requested (sampling) so there is no risk there.
  5257. */
  5258. pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
  5259. /*
  5260. * ALL accessible PMCs are systematically reloaded, unused registers
  5261. * get their default (from pfm_reset_pmu_state()) values to avoid picking
  5262. * up stale configuration.
  5263. *
  5264. * PMC0 is never in the mask. It is always restored separately
  5265. */
  5266. pmc_mask = ctx->ctx_all_pmcs[0];
  5267. pfm_restore_pmds(ctx->th_pmds, pmd_mask);
  5268. pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
  5269. /*
  5270. * check for pending overflow at the time the state
  5271. * was saved.
  5272. */
  5273. if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
  5274. /*
  5275. * reload pmc0 with the overflow information
  5276. * On McKinley PMU, this will trigger a PMU interrupt
  5277. */
  5278. ia64_set_pmc(0, ctx->th_pmcs[0]);
  5279. ia64_srlz_d();
  5280. ctx->th_pmcs[0] = 0UL;
  5281. /*
  5282. * will replay the PMU interrupt
  5283. */
  5284. if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
  5285. pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
  5286. }
  5287. /*
  5288. * establish new ownership.
  5289. */
  5290. SET_PMU_OWNER(task, ctx);
  5291. /*
  5292. * restore the psr.up bit. measurement
  5293. * is active again.
  5294. * no PMU interrupt can happen at this point
  5295. * because we still have interrupts disabled.
  5296. */
  5297. if (likely(psr_up)) pfm_set_psr_up();
  5298. }
  5299. #endif /* CONFIG_SMP */
  5300. /*
  5301. * this function assumes monitoring is stopped
  5302. */
  5303. static void
  5304. pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
  5305. {
  5306. u64 pmc0;
  5307. unsigned long mask2, val, pmd_val, ovfl_val;
  5308. int i, can_access_pmu = 0;
  5309. int is_self;
  5310. /*
  5311. * is the caller the task being monitored (or which initiated the
  5312. * session for system wide measurements)
  5313. */
  5314. is_self = ctx->ctx_task == task ? 1 : 0;
  5315. /*
  5316. * can access PMU is task is the owner of the PMU state on the current CPU
  5317. * or if we are running on the CPU bound to the context in system-wide mode
  5318. * (that is not necessarily the task the context is attached to in this mode).
  5319. * In system-wide we always have can_access_pmu true because a task running on an
  5320. * invalid processor is flagged earlier in the call stack (see pfm_stop).
  5321. */
  5322. can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
  5323. if (can_access_pmu) {
  5324. /*
  5325. * Mark the PMU as not owned
  5326. * This will cause the interrupt handler to do nothing in case an overflow
  5327. * interrupt was in-flight
  5328. * This also guarantees that pmc0 will contain the final state
  5329. * It virtually gives us full control on overflow processing from that point
  5330. * on.
  5331. */
  5332. SET_PMU_OWNER(NULL, NULL);
  5333. DPRINT(("releasing ownership\n"));
  5334. /*
  5335. * read current overflow status:
  5336. *
  5337. * we are guaranteed to read the final stable state
  5338. */
  5339. ia64_srlz_d();
  5340. pmc0 = ia64_get_pmc(0); /* slow */
  5341. /*
  5342. * reset freeze bit, overflow status information destroyed
  5343. */
  5344. pfm_unfreeze_pmu();
  5345. } else {
  5346. pmc0 = ctx->th_pmcs[0];
  5347. /*
  5348. * clear whatever overflow status bits there were
  5349. */
  5350. ctx->th_pmcs[0] = 0;
  5351. }
  5352. ovfl_val = pmu_conf->ovfl_val;
  5353. /*
  5354. * we save all the used pmds
  5355. * we take care of overflows for counting PMDs
  5356. *
  5357. * XXX: sampling situation is not taken into account here
  5358. */
  5359. mask2 = ctx->ctx_used_pmds[0];
  5360. DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
  5361. for (i = 0; mask2; i++, mask2>>=1) {
  5362. /* skip non used pmds */
  5363. if ((mask2 & 0x1) == 0) continue;
  5364. /*
  5365. * can access PMU always true in system wide mode
  5366. */
  5367. val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
  5368. if (PMD_IS_COUNTING(i)) {
  5369. DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
  5370. task->pid,
  5371. i,
  5372. ctx->ctx_pmds[i].val,
  5373. val & ovfl_val));
  5374. /*
  5375. * we rebuild the full 64 bit value of the counter
  5376. */
  5377. val = ctx->ctx_pmds[i].val + (val & ovfl_val);
  5378. /*
  5379. * now everything is in ctx_pmds[] and we need
  5380. * to clear the saved context from save_regs() such that
  5381. * pfm_read_pmds() gets the correct value
  5382. */
  5383. pmd_val = 0UL;
  5384. /*
  5385. * take care of overflow inline
  5386. */
  5387. if (pmc0 & (1UL << i)) {
  5388. val += 1 + ovfl_val;
  5389. DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
  5390. }
  5391. }
  5392. DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
  5393. if (is_self) ctx->th_pmds[i] = pmd_val;
  5394. ctx->ctx_pmds[i].val = val;
  5395. }
  5396. }
  5397. static struct irqaction perfmon_irqaction = {
  5398. .handler = pfm_interrupt_handler,
  5399. .flags = IRQF_DISABLED,
  5400. .name = "perfmon"
  5401. };
  5402. static void
  5403. pfm_alt_save_pmu_state(void *data)
  5404. {
  5405. struct pt_regs *regs;
  5406. regs = task_pt_regs(current);
  5407. DPRINT(("called\n"));
  5408. /*
  5409. * should not be necessary but
  5410. * let's take not risk
  5411. */
  5412. pfm_clear_psr_up();
  5413. pfm_clear_psr_pp();
  5414. ia64_psr(regs)->pp = 0;
  5415. /*
  5416. * This call is required
  5417. * May cause a spurious interrupt on some processors
  5418. */
  5419. pfm_freeze_pmu();
  5420. ia64_srlz_d();
  5421. }
  5422. void
  5423. pfm_alt_restore_pmu_state(void *data)
  5424. {
  5425. struct pt_regs *regs;
  5426. regs = task_pt_regs(current);
  5427. DPRINT(("called\n"));
  5428. /*
  5429. * put PMU back in state expected
  5430. * by perfmon
  5431. */
  5432. pfm_clear_psr_up();
  5433. pfm_clear_psr_pp();
  5434. ia64_psr(regs)->pp = 0;
  5435. /*
  5436. * perfmon runs with PMU unfrozen at all times
  5437. */
  5438. pfm_unfreeze_pmu();
  5439. ia64_srlz_d();
  5440. }
  5441. int
  5442. pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5443. {
  5444. int ret, i;
  5445. int reserve_cpu;
  5446. /* some sanity checks */
  5447. if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
  5448. /* do the easy test first */
  5449. if (pfm_alt_intr_handler) return -EBUSY;
  5450. /* one at a time in the install or remove, just fail the others */
  5451. if (!spin_trylock(&pfm_alt_install_check)) {
  5452. return -EBUSY;
  5453. }
  5454. /* reserve our session */
  5455. for_each_online_cpu(reserve_cpu) {
  5456. ret = pfm_reserve_session(NULL, 1, reserve_cpu);
  5457. if (ret) goto cleanup_reserve;
  5458. }
  5459. /* save the current system wide pmu states */
  5460. ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
  5461. if (ret) {
  5462. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5463. goto cleanup_reserve;
  5464. }
  5465. /* officially change to the alternate interrupt handler */
  5466. pfm_alt_intr_handler = hdl;
  5467. spin_unlock(&pfm_alt_install_check);
  5468. return 0;
  5469. cleanup_reserve:
  5470. for_each_online_cpu(i) {
  5471. /* don't unreserve more than we reserved */
  5472. if (i >= reserve_cpu) break;
  5473. pfm_unreserve_session(NULL, 1, i);
  5474. }
  5475. spin_unlock(&pfm_alt_install_check);
  5476. return ret;
  5477. }
  5478. EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
  5479. int
  5480. pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
  5481. {
  5482. int i;
  5483. int ret;
  5484. if (hdl == NULL) return -EINVAL;
  5485. /* cannot remove someone else's handler! */
  5486. if (pfm_alt_intr_handler != hdl) return -EINVAL;
  5487. /* one at a time in the install or remove, just fail the others */
  5488. if (!spin_trylock(&pfm_alt_install_check)) {
  5489. return -EBUSY;
  5490. }
  5491. pfm_alt_intr_handler = NULL;
  5492. ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
  5493. if (ret) {
  5494. DPRINT(("on_each_cpu() failed: %d\n", ret));
  5495. }
  5496. for_each_online_cpu(i) {
  5497. pfm_unreserve_session(NULL, 1, i);
  5498. }
  5499. spin_unlock(&pfm_alt_install_check);
  5500. return 0;
  5501. }
  5502. EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
  5503. /*
  5504. * perfmon initialization routine, called from the initcall() table
  5505. */
  5506. static int init_pfm_fs(void);
  5507. static int __init
  5508. pfm_probe_pmu(void)
  5509. {
  5510. pmu_config_t **p;
  5511. int family;
  5512. family = local_cpu_data->family;
  5513. p = pmu_confs;
  5514. while(*p) {
  5515. if ((*p)->probe) {
  5516. if ((*p)->probe() == 0) goto found;
  5517. } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
  5518. goto found;
  5519. }
  5520. p++;
  5521. }
  5522. return -1;
  5523. found:
  5524. pmu_conf = *p;
  5525. return 0;
  5526. }
  5527. static const struct file_operations pfm_proc_fops = {
  5528. .open = pfm_proc_open,
  5529. .read = seq_read,
  5530. .llseek = seq_lseek,
  5531. .release = seq_release,
  5532. };
  5533. int __init
  5534. pfm_init(void)
  5535. {
  5536. unsigned int n, n_counters, i;
  5537. printk("perfmon: version %u.%u IRQ %u\n",
  5538. PFM_VERSION_MAJ,
  5539. PFM_VERSION_MIN,
  5540. IA64_PERFMON_VECTOR);
  5541. if (pfm_probe_pmu()) {
  5542. printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
  5543. local_cpu_data->family);
  5544. return -ENODEV;
  5545. }
  5546. /*
  5547. * compute the number of implemented PMD/PMC from the
  5548. * description tables
  5549. */
  5550. n = 0;
  5551. for (i=0; PMC_IS_LAST(i) == 0; i++) {
  5552. if (PMC_IS_IMPL(i) == 0) continue;
  5553. pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
  5554. n++;
  5555. }
  5556. pmu_conf->num_pmcs = n;
  5557. n = 0; n_counters = 0;
  5558. for (i=0; PMD_IS_LAST(i) == 0; i++) {
  5559. if (PMD_IS_IMPL(i) == 0) continue;
  5560. pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
  5561. n++;
  5562. if (PMD_IS_COUNTING(i)) n_counters++;
  5563. }
  5564. pmu_conf->num_pmds = n;
  5565. pmu_conf->num_counters = n_counters;
  5566. /*
  5567. * sanity checks on the number of debug registers
  5568. */
  5569. if (pmu_conf->use_rr_dbregs) {
  5570. if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
  5571. printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
  5572. pmu_conf = NULL;
  5573. return -1;
  5574. }
  5575. if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
  5576. printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
  5577. pmu_conf = NULL;
  5578. return -1;
  5579. }
  5580. }
  5581. printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
  5582. pmu_conf->pmu_name,
  5583. pmu_conf->num_pmcs,
  5584. pmu_conf->num_pmds,
  5585. pmu_conf->num_counters,
  5586. ffz(pmu_conf->ovfl_val));
  5587. /* sanity check */
  5588. if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
  5589. printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
  5590. pmu_conf = NULL;
  5591. return -1;
  5592. }
  5593. /*
  5594. * create /proc/perfmon (mostly for debugging purposes)
  5595. */
  5596. perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
  5597. if (perfmon_dir == NULL) {
  5598. printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
  5599. pmu_conf = NULL;
  5600. return -1;
  5601. }
  5602. /*
  5603. * install customized file operations for /proc/perfmon entry
  5604. */
  5605. perfmon_dir->proc_fops = &pfm_proc_fops;
  5606. /*
  5607. * create /proc/sys/kernel/perfmon (for debugging purposes)
  5608. */
  5609. pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
  5610. /*
  5611. * initialize all our spinlocks
  5612. */
  5613. spin_lock_init(&pfm_sessions.pfs_lock);
  5614. spin_lock_init(&pfm_buffer_fmt_lock);
  5615. init_pfm_fs();
  5616. for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
  5617. return 0;
  5618. }
  5619. __initcall(pfm_init);
  5620. /*
  5621. * this function is called before pfm_init()
  5622. */
  5623. void
  5624. pfm_init_percpu (void)
  5625. {
  5626. static int first_time=1;
  5627. /*
  5628. * make sure no measurement is active
  5629. * (may inherit programmed PMCs from EFI).
  5630. */
  5631. pfm_clear_psr_pp();
  5632. pfm_clear_psr_up();
  5633. /*
  5634. * we run with the PMU not frozen at all times
  5635. */
  5636. pfm_unfreeze_pmu();
  5637. if (first_time) {
  5638. register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
  5639. first_time=0;
  5640. }
  5641. ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
  5642. ia64_srlz_d();
  5643. }
  5644. /*
  5645. * used for debug purposes only
  5646. */
  5647. void
  5648. dump_pmu_state(const char *from)
  5649. {
  5650. struct task_struct *task;
  5651. struct pt_regs *regs;
  5652. pfm_context_t *ctx;
  5653. unsigned long psr, dcr, info, flags;
  5654. int i, this_cpu;
  5655. local_irq_save(flags);
  5656. this_cpu = smp_processor_id();
  5657. regs = task_pt_regs(current);
  5658. info = PFM_CPUINFO_GET();
  5659. dcr = ia64_getreg(_IA64_REG_CR_DCR);
  5660. if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
  5661. local_irq_restore(flags);
  5662. return;
  5663. }
  5664. printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
  5665. this_cpu,
  5666. from,
  5667. current->pid,
  5668. regs->cr_iip,
  5669. current->comm);
  5670. task = GET_PMU_OWNER();
  5671. ctx = GET_PMU_CTX();
  5672. printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
  5673. psr = pfm_get_psr();
  5674. printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
  5675. this_cpu,
  5676. ia64_get_pmc(0),
  5677. psr & IA64_PSR_PP ? 1 : 0,
  5678. psr & IA64_PSR_UP ? 1 : 0,
  5679. dcr & IA64_DCR_PP ? 1 : 0,
  5680. info,
  5681. ia64_psr(regs)->up,
  5682. ia64_psr(regs)->pp);
  5683. ia64_psr(regs)->up = 0;
  5684. ia64_psr(regs)->pp = 0;
  5685. for (i=1; PMC_IS_LAST(i) == 0; i++) {
  5686. if (PMC_IS_IMPL(i) == 0) continue;
  5687. printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
  5688. }
  5689. for (i=1; PMD_IS_LAST(i) == 0; i++) {
  5690. if (PMD_IS_IMPL(i) == 0) continue;
  5691. printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
  5692. }
  5693. if (ctx) {
  5694. printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
  5695. this_cpu,
  5696. ctx->ctx_state,
  5697. ctx->ctx_smpl_vaddr,
  5698. ctx->ctx_smpl_hdr,
  5699. ctx->ctx_msgq_head,
  5700. ctx->ctx_msgq_tail,
  5701. ctx->ctx_saved_psr_up);
  5702. }
  5703. local_irq_restore(flags);
  5704. }
  5705. /*
  5706. * called from process.c:copy_thread(). task is new child.
  5707. */
  5708. void
  5709. pfm_inherit(struct task_struct *task, struct pt_regs *regs)
  5710. {
  5711. struct thread_struct *thread;
  5712. DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
  5713. thread = &task->thread;
  5714. /*
  5715. * cut links inherited from parent (current)
  5716. */
  5717. thread->pfm_context = NULL;
  5718. PFM_SET_WORK_PENDING(task, 0);
  5719. /*
  5720. * the psr bits are already set properly in copy_threads()
  5721. */
  5722. }
  5723. #else /* !CONFIG_PERFMON */
  5724. asmlinkage long
  5725. sys_perfmonctl (int fd, int cmd, void *arg, int count)
  5726. {
  5727. return -ENOSYS;
  5728. }
  5729. #endif /* CONFIG_PERFMON */