slb.c 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /*
  2. * PowerPC64 SLB support.
  3. *
  4. * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
  5. * Based on earlier code writteh by:
  6. * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
  7. * Copyright (c) 2001 Dave Engebretsen
  8. * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  9. *
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #undef DEBUG
  17. #include <asm/pgtable.h>
  18. #include <asm/mmu.h>
  19. #include <asm/mmu_context.h>
  20. #include <asm/paca.h>
  21. #include <asm/cputable.h>
  22. #include <asm/cacheflush.h>
  23. #include <asm/smp.h>
  24. #include <asm/firmware.h>
  25. #include <linux/compiler.h>
  26. #include <asm/udbg.h>
  27. #ifdef DEBUG
  28. #define DBG(fmt...) udbg_printf(fmt)
  29. #else
  30. #define DBG(fmt...)
  31. #endif
  32. extern void slb_allocate_realmode(unsigned long ea);
  33. extern void slb_allocate_user(unsigned long ea);
  34. static void slb_allocate(unsigned long ea)
  35. {
  36. /* Currently, we do real mode for all SLBs including user, but
  37. * that will change if we bring back dynamic VSIDs
  38. */
  39. slb_allocate_realmode(ea);
  40. }
  41. static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
  42. unsigned long slot)
  43. {
  44. unsigned long mask;
  45. mask = (ssize == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T;
  46. return (ea & mask) | SLB_ESID_V | slot;
  47. }
  48. #define slb_vsid_shift(ssize) \
  49. ((ssize) == MMU_SEGSIZE_256M? SLB_VSID_SHIFT: SLB_VSID_SHIFT_1T)
  50. static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
  51. unsigned long flags)
  52. {
  53. return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
  54. ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
  55. }
  56. static inline void slb_shadow_update(unsigned long ea, int ssize,
  57. unsigned long flags,
  58. unsigned long entry)
  59. {
  60. /*
  61. * Clear the ESID first so the entry is not valid while we are
  62. * updating it. No write barriers are needed here, provided
  63. * we only update the current CPU's SLB shadow buffer.
  64. */
  65. get_slb_shadow()->save_area[entry].esid = 0;
  66. get_slb_shadow()->save_area[entry].vsid = mk_vsid_data(ea, ssize, flags);
  67. get_slb_shadow()->save_area[entry].esid = mk_esid_data(ea, ssize, entry);
  68. }
  69. static inline void slb_shadow_clear(unsigned long entry)
  70. {
  71. get_slb_shadow()->save_area[entry].esid = 0;
  72. }
  73. void slb_shadow_clear_all(void)
  74. {
  75. int i;
  76. for (i = 0; i < SLB_NUM_BOLTED; i++)
  77. slb_shadow_clear(i);
  78. }
  79. static inline void create_shadowed_slbe(unsigned long ea, int ssize,
  80. unsigned long flags,
  81. unsigned long entry)
  82. {
  83. /*
  84. * Updating the shadow buffer before writing the SLB ensures
  85. * we don't get a stale entry here if we get preempted by PHYP
  86. * between these two statements.
  87. */
  88. slb_shadow_update(ea, ssize, flags, entry);
  89. asm volatile("slbmte %0,%1" :
  90. : "r" (mk_vsid_data(ea, ssize, flags)),
  91. "r" (mk_esid_data(ea, ssize, entry))
  92. : "memory" );
  93. }
  94. void slb_flush_and_rebolt(void)
  95. {
  96. /* If you change this make sure you change SLB_NUM_BOLTED
  97. * appropriately too. */
  98. unsigned long linear_llp, vmalloc_llp, lflags, vflags;
  99. unsigned long ksp_esid_data, ksp_vsid_data;
  100. WARN_ON(!irqs_disabled());
  101. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  102. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  103. lflags = SLB_VSID_KERNEL | linear_llp;
  104. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  105. ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, 2);
  106. if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
  107. ksp_esid_data &= ~SLB_ESID_V;
  108. ksp_vsid_data = 0;
  109. slb_shadow_clear(2);
  110. } else {
  111. /* Update stack entry; others don't change */
  112. slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, 2);
  113. ksp_vsid_data = get_slb_shadow()->save_area[2].vsid;
  114. }
  115. /* We need to do this all in asm, so we're sure we don't touch
  116. * the stack between the slbia and rebolting it. */
  117. asm volatile("isync\n"
  118. "slbia\n"
  119. /* Slot 1 - first VMALLOC segment */
  120. "slbmte %0,%1\n"
  121. /* Slot 2 - kernel stack */
  122. "slbmte %2,%3\n"
  123. "isync"
  124. :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
  125. "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
  126. "r"(ksp_vsid_data),
  127. "r"(ksp_esid_data)
  128. : "memory");
  129. }
  130. void slb_vmalloc_update(void)
  131. {
  132. unsigned long vflags;
  133. vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
  134. slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
  135. slb_flush_and_rebolt();
  136. }
  137. /* Helper function to compare esids. There are four cases to handle.
  138. * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
  139. * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
  140. * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
  141. * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
  142. */
  143. static inline int esids_match(unsigned long addr1, unsigned long addr2)
  144. {
  145. int esid_1t_count;
  146. /* System is not 1T segment size capable. */
  147. if (!cpu_has_feature(CPU_FTR_1T_SEGMENT))
  148. return (GET_ESID(addr1) == GET_ESID(addr2));
  149. esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
  150. ((addr2 >> SID_SHIFT_1T) != 0));
  151. /* both addresses are < 1T */
  152. if (esid_1t_count == 0)
  153. return (GET_ESID(addr1) == GET_ESID(addr2));
  154. /* One address < 1T, the other > 1T. Not a match */
  155. if (esid_1t_count == 1)
  156. return 0;
  157. /* Both addresses are > 1T. */
  158. return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
  159. }
  160. /* Flush all user entries from the segment table of the current processor. */
  161. void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
  162. {
  163. unsigned long offset = get_paca()->slb_cache_ptr;
  164. unsigned long slbie_data = 0;
  165. unsigned long pc = KSTK_EIP(tsk);
  166. unsigned long stack = KSTK_ESP(tsk);
  167. unsigned long unmapped_base;
  168. if (!cpu_has_feature(CPU_FTR_NO_SLBIE_B) &&
  169. offset <= SLB_CACHE_ENTRIES) {
  170. int i;
  171. asm volatile("isync" : : : "memory");
  172. for (i = 0; i < offset; i++) {
  173. slbie_data = (unsigned long)get_paca()->slb_cache[i]
  174. << SID_SHIFT; /* EA */
  175. slbie_data |= user_segment_size(slbie_data)
  176. << SLBIE_SSIZE_SHIFT;
  177. slbie_data |= SLBIE_C; /* C set for user addresses */
  178. asm volatile("slbie %0" : : "r" (slbie_data));
  179. }
  180. asm volatile("isync" : : : "memory");
  181. } else {
  182. slb_flush_and_rebolt();
  183. }
  184. /* Workaround POWER5 < DD2.1 issue */
  185. if (offset == 1 || offset > SLB_CACHE_ENTRIES)
  186. asm volatile("slbie %0" : : "r" (slbie_data));
  187. get_paca()->slb_cache_ptr = 0;
  188. get_paca()->context = mm->context;
  189. /*
  190. * preload some userspace segments into the SLB.
  191. */
  192. if (test_tsk_thread_flag(tsk, TIF_32BIT))
  193. unmapped_base = TASK_UNMAPPED_BASE_USER32;
  194. else
  195. unmapped_base = TASK_UNMAPPED_BASE_USER64;
  196. if (is_kernel_addr(pc))
  197. return;
  198. slb_allocate(pc);
  199. if (esids_match(pc,stack))
  200. return;
  201. if (is_kernel_addr(stack))
  202. return;
  203. slb_allocate(stack);
  204. if (esids_match(pc,unmapped_base) || esids_match(stack,unmapped_base))
  205. return;
  206. if (is_kernel_addr(unmapped_base))
  207. return;
  208. slb_allocate(unmapped_base);
  209. }
  210. static inline void patch_slb_encoding(unsigned int *insn_addr,
  211. unsigned int immed)
  212. {
  213. /* Assume the instruction had a "0" immediate value, just
  214. * "or" in the new value
  215. */
  216. *insn_addr |= immed;
  217. flush_icache_range((unsigned long)insn_addr, 4+
  218. (unsigned long)insn_addr);
  219. }
  220. void slb_initialize(void)
  221. {
  222. unsigned long linear_llp, vmalloc_llp, io_llp;
  223. unsigned long lflags, vflags;
  224. static int slb_encoding_inited;
  225. extern unsigned int *slb_miss_kernel_load_linear;
  226. extern unsigned int *slb_miss_kernel_load_io;
  227. /* Prepare our SLB miss handler based on our page size */
  228. linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
  229. io_llp = mmu_psize_defs[mmu_io_psize].sllp;
  230. vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
  231. get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
  232. if (!slb_encoding_inited) {
  233. slb_encoding_inited = 1;
  234. patch_slb_encoding(slb_miss_kernel_load_linear,
  235. SLB_VSID_KERNEL | linear_llp);
  236. patch_slb_encoding(slb_miss_kernel_load_io,
  237. SLB_VSID_KERNEL | io_llp);
  238. DBG("SLB: linear LLP = %04x\n", linear_llp);
  239. DBG("SLB: io LLP = %04x\n", io_llp);
  240. }
  241. get_paca()->stab_rr = SLB_NUM_BOLTED;
  242. /* On iSeries the bolted entries have already been set up by
  243. * the hypervisor from the lparMap data in head.S */
  244. if (firmware_has_feature(FW_FEATURE_ISERIES))
  245. return;
  246. lflags = SLB_VSID_KERNEL | linear_llp;
  247. vflags = SLB_VSID_KERNEL | vmalloc_llp;
  248. /* Invalidate the entire SLB (even slot 0) & all the ERATS */
  249. asm volatile("isync":::"memory");
  250. asm volatile("slbmte %0,%0"::"r" (0) : "memory");
  251. asm volatile("isync; slbia; isync":::"memory");
  252. create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, 0);
  253. create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, 1);
  254. /* We don't bolt the stack for the time being - we're in boot,
  255. * so the stack is in the bolted segment. By the time it goes
  256. * elsewhere, we'll call _switch() which will bolt in the new
  257. * one. */
  258. asm volatile("isync":::"memory");
  259. }