time.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/config.h>
  35. #include <linux/errno.h>
  36. #include <linux/module.h>
  37. #include <linux/sched.h>
  38. #include <linux/kernel.h>
  39. #include <linux/param.h>
  40. #include <linux/string.h>
  41. #include <linux/mm.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/timex.h>
  44. #include <linux/kernel_stat.h>
  45. #include <linux/time.h>
  46. #include <linux/init.h>
  47. #include <linux/profile.h>
  48. #include <linux/cpu.h>
  49. #include <linux/security.h>
  50. #include <linux/percpu.h>
  51. #include <linux/rtc.h>
  52. #include <linux/jiffies.h>
  53. #include <asm/io.h>
  54. #include <asm/processor.h>
  55. #include <asm/nvram.h>
  56. #include <asm/cache.h>
  57. #include <asm/machdep.h>
  58. #include <asm/uaccess.h>
  59. #include <asm/time.h>
  60. #include <asm/prom.h>
  61. #include <asm/irq.h>
  62. #include <asm/div64.h>
  63. #include <asm/smp.h>
  64. #include <asm/vdso_datapage.h>
  65. #ifdef CONFIG_PPC64
  66. #include <asm/firmware.h>
  67. #endif
  68. #ifdef CONFIG_PPC_ISERIES
  69. #include <asm/iseries/it_lp_queue.h>
  70. #include <asm/iseries/hv_call_xm.h>
  71. #endif
  72. #include <asm/smp.h>
  73. /* keep track of when we need to update the rtc */
  74. time_t last_rtc_update;
  75. extern int piranha_simulator;
  76. #ifdef CONFIG_PPC_ISERIES
  77. unsigned long iSeries_recal_titan = 0;
  78. unsigned long iSeries_recal_tb = 0;
  79. static unsigned long first_settimeofday = 1;
  80. #endif
  81. /* The decrementer counts down by 128 every 128ns on a 601. */
  82. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  83. #define XSEC_PER_SEC (1024*1024)
  84. #ifdef CONFIG_PPC64
  85. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  86. #else
  87. /* compute ((xsec << 12) * max) >> 32 */
  88. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  89. #endif
  90. unsigned long tb_ticks_per_jiffy;
  91. unsigned long tb_ticks_per_usec = 100; /* sane default */
  92. EXPORT_SYMBOL(tb_ticks_per_usec);
  93. unsigned long tb_ticks_per_sec;
  94. u64 tb_to_xs;
  95. unsigned tb_to_us;
  96. #define TICKLEN_SCALE (SHIFT_SCALE - 10)
  97. u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  98. u64 ticklen_to_xs; /* 0.64 fraction */
  99. /* If last_tick_len corresponds to about 1/HZ seconds, then
  100. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  101. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  102. DEFINE_SPINLOCK(rtc_lock);
  103. EXPORT_SYMBOL_GPL(rtc_lock);
  104. u64 tb_to_ns_scale;
  105. unsigned tb_to_ns_shift;
  106. struct gettimeofday_struct do_gtod;
  107. extern unsigned long wall_jiffies;
  108. extern struct timezone sys_tz;
  109. static long timezone_offset;
  110. unsigned long ppc_proc_freq;
  111. unsigned long ppc_tb_freq;
  112. u64 tb_last_jiffy __cacheline_aligned_in_smp;
  113. unsigned long tb_last_stamp;
  114. /*
  115. * Note that on ppc32 this only stores the bottom 32 bits of
  116. * the timebase value, but that's enough to tell when a jiffy
  117. * has passed.
  118. */
  119. DEFINE_PER_CPU(unsigned long, last_jiffy);
  120. void __delay(unsigned long loops)
  121. {
  122. unsigned long start;
  123. int diff;
  124. if (__USE_RTC()) {
  125. start = get_rtcl();
  126. do {
  127. /* the RTCL register wraps at 1000000000 */
  128. diff = get_rtcl() - start;
  129. if (diff < 0)
  130. diff += 1000000000;
  131. } while (diff < loops);
  132. } else {
  133. start = get_tbl();
  134. while (get_tbl() - start < loops)
  135. HMT_low();
  136. HMT_medium();
  137. }
  138. }
  139. EXPORT_SYMBOL(__delay);
  140. void udelay(unsigned long usecs)
  141. {
  142. __delay(tb_ticks_per_usec * usecs);
  143. }
  144. EXPORT_SYMBOL(udelay);
  145. static __inline__ void timer_check_rtc(void)
  146. {
  147. /*
  148. * update the rtc when needed, this should be performed on the
  149. * right fraction of a second. Half or full second ?
  150. * Full second works on mk48t59 clocks, others need testing.
  151. * Note that this update is basically only used through
  152. * the adjtimex system calls. Setting the HW clock in
  153. * any other way is a /dev/rtc and userland business.
  154. * This is still wrong by -0.5/+1.5 jiffies because of the
  155. * timer interrupt resolution and possible delay, but here we
  156. * hit a quantization limit which can only be solved by higher
  157. * resolution timers and decoupling time management from timer
  158. * interrupts. This is also wrong on the clocks
  159. * which require being written at the half second boundary.
  160. * We should have an rtc call that only sets the minutes and
  161. * seconds like on Intel to avoid problems with non UTC clocks.
  162. */
  163. if (ppc_md.set_rtc_time && ntp_synced() &&
  164. xtime.tv_sec - last_rtc_update >= 659 &&
  165. abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
  166. struct rtc_time tm;
  167. to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
  168. tm.tm_year -= 1900;
  169. tm.tm_mon -= 1;
  170. if (ppc_md.set_rtc_time(&tm) == 0)
  171. last_rtc_update = xtime.tv_sec + 1;
  172. else
  173. /* Try again one minute later */
  174. last_rtc_update += 60;
  175. }
  176. }
  177. /*
  178. * This version of gettimeofday has microsecond resolution.
  179. */
  180. static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
  181. {
  182. unsigned long sec, usec;
  183. u64 tb_ticks, xsec;
  184. struct gettimeofday_vars *temp_varp;
  185. u64 temp_tb_to_xs, temp_stamp_xsec;
  186. /*
  187. * These calculations are faster (gets rid of divides)
  188. * if done in units of 1/2^20 rather than microseconds.
  189. * The conversion to microseconds at the end is done
  190. * without a divide (and in fact, without a multiply)
  191. */
  192. temp_varp = do_gtod.varp;
  193. tb_ticks = tb_val - temp_varp->tb_orig_stamp;
  194. temp_tb_to_xs = temp_varp->tb_to_xs;
  195. temp_stamp_xsec = temp_varp->stamp_xsec;
  196. xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
  197. sec = xsec / XSEC_PER_SEC;
  198. usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
  199. usec = SCALE_XSEC(usec, 1000000);
  200. tv->tv_sec = sec;
  201. tv->tv_usec = usec;
  202. }
  203. void do_gettimeofday(struct timeval *tv)
  204. {
  205. if (__USE_RTC()) {
  206. /* do this the old way */
  207. unsigned long flags, seq;
  208. unsigned int sec, nsec, usec;
  209. do {
  210. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  211. sec = xtime.tv_sec;
  212. nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
  213. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  214. usec = nsec / 1000;
  215. while (usec >= 1000000) {
  216. usec -= 1000000;
  217. ++sec;
  218. }
  219. tv->tv_sec = sec;
  220. tv->tv_usec = usec;
  221. return;
  222. }
  223. __do_gettimeofday(tv, get_tb());
  224. }
  225. EXPORT_SYMBOL(do_gettimeofday);
  226. /*
  227. * There are two copies of tb_to_xs and stamp_xsec so that no
  228. * lock is needed to access and use these values in
  229. * do_gettimeofday. We alternate the copies and as long as a
  230. * reasonable time elapses between changes, there will never
  231. * be inconsistent values. ntpd has a minimum of one minute
  232. * between updates.
  233. */
  234. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  235. u64 new_tb_to_xs)
  236. {
  237. unsigned temp_idx;
  238. struct gettimeofday_vars *temp_varp;
  239. temp_idx = (do_gtod.var_idx == 0);
  240. temp_varp = &do_gtod.vars[temp_idx];
  241. temp_varp->tb_to_xs = new_tb_to_xs;
  242. temp_varp->tb_orig_stamp = new_tb_stamp;
  243. temp_varp->stamp_xsec = new_stamp_xsec;
  244. smp_mb();
  245. do_gtod.varp = temp_varp;
  246. do_gtod.var_idx = temp_idx;
  247. /*
  248. * tb_update_count is used to allow the userspace gettimeofday code
  249. * to assure itself that it sees a consistent view of the tb_to_xs and
  250. * stamp_xsec variables. It reads the tb_update_count, then reads
  251. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  252. * the two values of tb_update_count match and are even then the
  253. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  254. * loops back and reads them again until this criteria is met.
  255. * We expect the caller to have done the first increment of
  256. * vdso_data->tb_update_count already.
  257. */
  258. vdso_data->tb_orig_stamp = new_tb_stamp;
  259. vdso_data->stamp_xsec = new_stamp_xsec;
  260. vdso_data->tb_to_xs = new_tb_to_xs;
  261. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  262. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  263. smp_wmb();
  264. ++(vdso_data->tb_update_count);
  265. }
  266. /*
  267. * When the timebase - tb_orig_stamp gets too big, we do a manipulation
  268. * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
  269. * difference tb - tb_orig_stamp small enough to always fit inside a
  270. * 32 bits number. This is a requirement of our fast 32 bits userland
  271. * implementation in the vdso. If we "miss" a call to this function
  272. * (interrupt latency, CPU locked in a spinlock, ...) and we end up
  273. * with a too big difference, then the vdso will fallback to calling
  274. * the syscall
  275. */
  276. static __inline__ void timer_recalc_offset(u64 cur_tb)
  277. {
  278. unsigned long offset;
  279. u64 new_stamp_xsec;
  280. u64 tlen, t2x;
  281. u64 tb, xsec_old, xsec_new;
  282. struct gettimeofday_vars *varp;
  283. if (__USE_RTC())
  284. return;
  285. tlen = current_tick_length();
  286. offset = cur_tb - do_gtod.varp->tb_orig_stamp;
  287. if (tlen == last_tick_len && offset < 0x80000000u)
  288. return;
  289. if (tlen != last_tick_len) {
  290. t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
  291. last_tick_len = tlen;
  292. } else
  293. t2x = do_gtod.varp->tb_to_xs;
  294. new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  295. do_div(new_stamp_xsec, 1000000000);
  296. new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  297. ++vdso_data->tb_update_count;
  298. smp_mb();
  299. /*
  300. * Make sure time doesn't go backwards for userspace gettimeofday.
  301. */
  302. tb = get_tb();
  303. varp = do_gtod.varp;
  304. xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
  305. + varp->stamp_xsec;
  306. xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
  307. if (xsec_new < xsec_old)
  308. new_stamp_xsec += xsec_old - xsec_new;
  309. update_gtod(cur_tb, new_stamp_xsec, t2x);
  310. }
  311. #ifdef CONFIG_SMP
  312. unsigned long profile_pc(struct pt_regs *regs)
  313. {
  314. unsigned long pc = instruction_pointer(regs);
  315. if (in_lock_functions(pc))
  316. return regs->link;
  317. return pc;
  318. }
  319. EXPORT_SYMBOL(profile_pc);
  320. #endif
  321. #ifdef CONFIG_PPC_ISERIES
  322. /*
  323. * This function recalibrates the timebase based on the 49-bit time-of-day
  324. * value in the Titan chip. The Titan is much more accurate than the value
  325. * returned by the service processor for the timebase frequency.
  326. */
  327. static void iSeries_tb_recal(void)
  328. {
  329. struct div_result divres;
  330. unsigned long titan, tb;
  331. tb = get_tb();
  332. titan = HvCallXm_loadTod();
  333. if ( iSeries_recal_titan ) {
  334. unsigned long tb_ticks = tb - iSeries_recal_tb;
  335. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  336. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  337. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  338. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  339. char sign = '+';
  340. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  341. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  342. if ( tick_diff < 0 ) {
  343. tick_diff = -tick_diff;
  344. sign = '-';
  345. }
  346. if ( tick_diff ) {
  347. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  348. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  349. new_tb_ticks_per_jiffy, sign, tick_diff );
  350. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  351. tb_ticks_per_sec = new_tb_ticks_per_sec;
  352. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  353. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  354. tb_to_xs = divres.result_low;
  355. do_gtod.varp->tb_to_xs = tb_to_xs;
  356. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  357. vdso_data->tb_to_xs = tb_to_xs;
  358. }
  359. else {
  360. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  361. " new tb_ticks_per_jiffy = %lu\n"
  362. " old tb_ticks_per_jiffy = %lu\n",
  363. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  364. }
  365. }
  366. }
  367. iSeries_recal_titan = titan;
  368. iSeries_recal_tb = tb;
  369. }
  370. #endif
  371. /*
  372. * For iSeries shared processors, we have to let the hypervisor
  373. * set the hardware decrementer. We set a virtual decrementer
  374. * in the lppaca and call the hypervisor if the virtual
  375. * decrementer is less than the current value in the hardware
  376. * decrementer. (almost always the new decrementer value will
  377. * be greater than the current hardware decementer so the hypervisor
  378. * call will not be needed)
  379. */
  380. /*
  381. * timer_interrupt - gets called when the decrementer overflows,
  382. * with interrupts disabled.
  383. */
  384. void timer_interrupt(struct pt_regs * regs)
  385. {
  386. int next_dec;
  387. int cpu = smp_processor_id();
  388. unsigned long ticks;
  389. #ifdef CONFIG_PPC32
  390. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  391. do_IRQ(regs);
  392. #endif
  393. irq_enter();
  394. profile_tick(CPU_PROFILING, regs);
  395. #ifdef CONFIG_PPC_ISERIES
  396. get_lppaca()->int_dword.fields.decr_int = 0;
  397. #endif
  398. while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
  399. >= tb_ticks_per_jiffy) {
  400. /* Update last_jiffy */
  401. per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
  402. /* Handle RTCL overflow on 601 */
  403. if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
  404. per_cpu(last_jiffy, cpu) -= 1000000000;
  405. /*
  406. * We cannot disable the decrementer, so in the period
  407. * between this cpu's being marked offline in cpu_online_map
  408. * and calling stop-self, it is taking timer interrupts.
  409. * Avoid calling into the scheduler rebalancing code if this
  410. * is the case.
  411. */
  412. if (!cpu_is_offline(cpu))
  413. update_process_times(user_mode(regs));
  414. /*
  415. * No need to check whether cpu is offline here; boot_cpuid
  416. * should have been fixed up by now.
  417. */
  418. if (cpu != boot_cpuid)
  419. continue;
  420. write_seqlock(&xtime_lock);
  421. tb_last_jiffy += tb_ticks_per_jiffy;
  422. tb_last_stamp = per_cpu(last_jiffy, cpu);
  423. do_timer(regs);
  424. timer_recalc_offset(tb_last_jiffy);
  425. timer_check_rtc();
  426. write_sequnlock(&xtime_lock);
  427. }
  428. next_dec = tb_ticks_per_jiffy - ticks;
  429. set_dec(next_dec);
  430. #ifdef CONFIG_PPC_ISERIES
  431. if (hvlpevent_is_pending())
  432. process_hvlpevents(regs);
  433. #endif
  434. #ifdef CONFIG_PPC64
  435. /* collect purr register values often, for accurate calculations */
  436. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  437. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  438. cu->current_tb = mfspr(SPRN_PURR);
  439. }
  440. #endif
  441. irq_exit();
  442. }
  443. void wakeup_decrementer(void)
  444. {
  445. unsigned long ticks;
  446. /*
  447. * The timebase gets saved on sleep and restored on wakeup,
  448. * so all we need to do is to reset the decrementer.
  449. */
  450. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  451. if (ticks < tb_ticks_per_jiffy)
  452. ticks = tb_ticks_per_jiffy - ticks;
  453. else
  454. ticks = 1;
  455. set_dec(ticks);
  456. }
  457. #ifdef CONFIG_SMP
  458. void __init smp_space_timers(unsigned int max_cpus)
  459. {
  460. int i;
  461. unsigned long offset = tb_ticks_per_jiffy / max_cpus;
  462. unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
  463. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  464. previous_tb -= tb_ticks_per_jiffy;
  465. for_each_cpu(i) {
  466. if (i != boot_cpuid) {
  467. previous_tb += offset;
  468. per_cpu(last_jiffy, i) = previous_tb;
  469. }
  470. }
  471. }
  472. #endif
  473. /*
  474. * Scheduler clock - returns current time in nanosec units.
  475. *
  476. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  477. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  478. * are 64-bit unsigned numbers.
  479. */
  480. unsigned long long sched_clock(void)
  481. {
  482. if (__USE_RTC())
  483. return get_rtc();
  484. return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
  485. }
  486. int do_settimeofday(struct timespec *tv)
  487. {
  488. time_t wtm_sec, new_sec = tv->tv_sec;
  489. long wtm_nsec, new_nsec = tv->tv_nsec;
  490. unsigned long flags;
  491. u64 new_xsec;
  492. unsigned long tb_delta;
  493. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  494. return -EINVAL;
  495. write_seqlock_irqsave(&xtime_lock, flags);
  496. /*
  497. * Updating the RTC is not the job of this code. If the time is
  498. * stepped under NTP, the RTC will be updated after STA_UNSYNC
  499. * is cleared. Tools like clock/hwclock either copy the RTC
  500. * to the system time, in which case there is no point in writing
  501. * to the RTC again, or write to the RTC but then they don't call
  502. * settimeofday to perform this operation.
  503. */
  504. #ifdef CONFIG_PPC_ISERIES
  505. if (first_settimeofday) {
  506. iSeries_tb_recal();
  507. first_settimeofday = 0;
  508. }
  509. #endif
  510. /* Make userspace gettimeofday spin until we're done. */
  511. ++vdso_data->tb_update_count;
  512. smp_mb();
  513. /*
  514. * Subtract off the number of nanoseconds since the
  515. * beginning of the last tick.
  516. * Note that since we don't increment jiffies_64 anywhere other
  517. * than in do_timer (since we don't have a lost tick problem),
  518. * wall_jiffies will always be the same as jiffies,
  519. * and therefore the (jiffies - wall_jiffies) computation
  520. * has been removed.
  521. */
  522. tb_delta = tb_ticks_since(tb_last_stamp);
  523. tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
  524. new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
  525. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  526. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  527. set_normalized_timespec(&xtime, new_sec, new_nsec);
  528. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  529. /* In case of a large backwards jump in time with NTP, we want the
  530. * clock to be updated as soon as the PLL is again in lock.
  531. */
  532. last_rtc_update = new_sec - 658;
  533. ntp_clear();
  534. new_xsec = xtime.tv_nsec;
  535. if (new_xsec != 0) {
  536. new_xsec *= XSEC_PER_SEC;
  537. do_div(new_xsec, NSEC_PER_SEC);
  538. }
  539. new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
  540. update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
  541. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  542. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  543. write_sequnlock_irqrestore(&xtime_lock, flags);
  544. clock_was_set();
  545. return 0;
  546. }
  547. EXPORT_SYMBOL(do_settimeofday);
  548. void __init generic_calibrate_decr(void)
  549. {
  550. struct device_node *cpu;
  551. unsigned int *fp;
  552. int node_found;
  553. /*
  554. * The cpu node should have a timebase-frequency property
  555. * to tell us the rate at which the decrementer counts.
  556. */
  557. cpu = of_find_node_by_type(NULL, "cpu");
  558. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  559. node_found = 0;
  560. if (cpu) {
  561. fp = (unsigned int *)get_property(cpu, "timebase-frequency",
  562. NULL);
  563. if (fp) {
  564. node_found = 1;
  565. ppc_tb_freq = *fp;
  566. }
  567. }
  568. if (!node_found)
  569. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  570. "(not found)\n");
  571. ppc_proc_freq = DEFAULT_PROC_FREQ;
  572. node_found = 0;
  573. if (cpu) {
  574. fp = (unsigned int *)get_property(cpu, "clock-frequency",
  575. NULL);
  576. if (fp) {
  577. node_found = 1;
  578. ppc_proc_freq = *fp;
  579. }
  580. }
  581. #ifdef CONFIG_BOOKE
  582. /* Set the time base to zero */
  583. mtspr(SPRN_TBWL, 0);
  584. mtspr(SPRN_TBWU, 0);
  585. /* Clear any pending timer interrupts */
  586. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  587. /* Enable decrementer interrupt */
  588. mtspr(SPRN_TCR, TCR_DIE);
  589. #endif
  590. if (!node_found)
  591. printk(KERN_ERR "WARNING: Estimating processor frequency "
  592. "(not found)\n");
  593. of_node_put(cpu);
  594. }
  595. unsigned long get_boot_time(void)
  596. {
  597. struct rtc_time tm;
  598. if (ppc_md.get_boot_time)
  599. return ppc_md.get_boot_time();
  600. if (!ppc_md.get_rtc_time)
  601. return 0;
  602. ppc_md.get_rtc_time(&tm);
  603. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  604. tm.tm_hour, tm.tm_min, tm.tm_sec);
  605. }
  606. /* This function is only called on the boot processor */
  607. void __init time_init(void)
  608. {
  609. unsigned long flags;
  610. unsigned long tm = 0;
  611. struct div_result res;
  612. u64 scale, x;
  613. unsigned shift;
  614. if (ppc_md.time_init != NULL)
  615. timezone_offset = ppc_md.time_init();
  616. if (__USE_RTC()) {
  617. /* 601 processor: dec counts down by 128 every 128ns */
  618. ppc_tb_freq = 1000000000;
  619. tb_last_stamp = get_rtcl();
  620. tb_last_jiffy = tb_last_stamp;
  621. } else {
  622. /* Normal PowerPC with timebase register */
  623. ppc_md.calibrate_decr();
  624. printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  625. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  626. printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
  627. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  628. tb_last_stamp = tb_last_jiffy = get_tb();
  629. }
  630. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  631. tb_ticks_per_sec = ppc_tb_freq;
  632. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  633. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  634. /*
  635. * Calculate the length of each tick in ns. It will not be
  636. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  637. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  638. * rounded up.
  639. */
  640. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  641. do_div(x, ppc_tb_freq);
  642. tick_nsec = x;
  643. last_tick_len = x << TICKLEN_SCALE;
  644. /*
  645. * Compute ticklen_to_xs, which is a factor which gets multiplied
  646. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  647. * It is computed as:
  648. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  649. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  650. * which turns out to be N = 51 - SHIFT_HZ.
  651. * This gives the result as a 0.64 fixed-point fraction.
  652. * That value is reduced by an offset amounting to 1 xsec per
  653. * 2^31 timebase ticks to avoid problems with time going backwards
  654. * by 1 xsec when we do timer_recalc_offset due to losing the
  655. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  656. * since there are 2^20 xsec in a second.
  657. */
  658. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  659. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  660. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  661. ticklen_to_xs = res.result_low;
  662. /* Compute tb_to_xs from tick_nsec */
  663. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  664. /*
  665. * Compute scale factor for sched_clock.
  666. * The calibrate_decr() function has set tb_ticks_per_sec,
  667. * which is the timebase frequency.
  668. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  669. * the 128-bit result as a 64.64 fixed-point number.
  670. * We then shift that number right until it is less than 1.0,
  671. * giving us the scale factor and shift count to use in
  672. * sched_clock().
  673. */
  674. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  675. scale = res.result_low;
  676. for (shift = 0; res.result_high != 0; ++shift) {
  677. scale = (scale >> 1) | (res.result_high << 63);
  678. res.result_high >>= 1;
  679. }
  680. tb_to_ns_scale = scale;
  681. tb_to_ns_shift = shift;
  682. #ifdef CONFIG_PPC_ISERIES
  683. if (!piranha_simulator)
  684. #endif
  685. tm = get_boot_time();
  686. write_seqlock_irqsave(&xtime_lock, flags);
  687. /* If platform provided a timezone (pmac), we correct the time */
  688. if (timezone_offset) {
  689. sys_tz.tz_minuteswest = -timezone_offset / 60;
  690. sys_tz.tz_dsttime = 0;
  691. tm -= timezone_offset;
  692. }
  693. xtime.tv_sec = tm;
  694. xtime.tv_nsec = 0;
  695. do_gtod.varp = &do_gtod.vars[0];
  696. do_gtod.var_idx = 0;
  697. do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
  698. __get_cpu_var(last_jiffy) = tb_last_stamp;
  699. do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  700. do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
  701. do_gtod.varp->tb_to_xs = tb_to_xs;
  702. do_gtod.tb_to_us = tb_to_us;
  703. vdso_data->tb_orig_stamp = tb_last_jiffy;
  704. vdso_data->tb_update_count = 0;
  705. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  706. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  707. vdso_data->tb_to_xs = tb_to_xs;
  708. time_freq = 0;
  709. last_rtc_update = xtime.tv_sec;
  710. set_normalized_timespec(&wall_to_monotonic,
  711. -xtime.tv_sec, -xtime.tv_nsec);
  712. write_sequnlock_irqrestore(&xtime_lock, flags);
  713. /* Not exact, but the timer interrupt takes care of this */
  714. set_dec(tb_ticks_per_jiffy);
  715. }
  716. #define FEBRUARY 2
  717. #define STARTOFTIME 1970
  718. #define SECDAY 86400L
  719. #define SECYR (SECDAY * 365)
  720. #define leapyear(year) ((year) % 4 == 0 && \
  721. ((year) % 100 != 0 || (year) % 400 == 0))
  722. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  723. #define days_in_month(a) (month_days[(a) - 1])
  724. static int month_days[12] = {
  725. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  726. };
  727. /*
  728. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  729. */
  730. void GregorianDay(struct rtc_time * tm)
  731. {
  732. int leapsToDate;
  733. int lastYear;
  734. int day;
  735. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  736. lastYear = tm->tm_year - 1;
  737. /*
  738. * Number of leap corrections to apply up to end of last year
  739. */
  740. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  741. /*
  742. * This year is a leap year if it is divisible by 4 except when it is
  743. * divisible by 100 unless it is divisible by 400
  744. *
  745. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  746. */
  747. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  748. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  749. tm->tm_mday;
  750. tm->tm_wday = day % 7;
  751. }
  752. void to_tm(int tim, struct rtc_time * tm)
  753. {
  754. register int i;
  755. register long hms, day;
  756. day = tim / SECDAY;
  757. hms = tim % SECDAY;
  758. /* Hours, minutes, seconds are easy */
  759. tm->tm_hour = hms / 3600;
  760. tm->tm_min = (hms % 3600) / 60;
  761. tm->tm_sec = (hms % 3600) % 60;
  762. /* Number of years in days */
  763. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  764. day -= days_in_year(i);
  765. tm->tm_year = i;
  766. /* Number of months in days left */
  767. if (leapyear(tm->tm_year))
  768. days_in_month(FEBRUARY) = 29;
  769. for (i = 1; day >= days_in_month(i); i++)
  770. day -= days_in_month(i);
  771. days_in_month(FEBRUARY) = 28;
  772. tm->tm_mon = i;
  773. /* Days are what is left over (+1) from all that. */
  774. tm->tm_mday = day + 1;
  775. /*
  776. * Determine the day of week
  777. */
  778. GregorianDay(tm);
  779. }
  780. /* Auxiliary function to compute scaling factors */
  781. /* Actually the choice of a timebase running at 1/4 the of the bus
  782. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  783. * It makes this computation very precise (27-28 bits typically) which
  784. * is optimistic considering the stability of most processor clock
  785. * oscillators and the precision with which the timebase frequency
  786. * is measured but does not harm.
  787. */
  788. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  789. {
  790. unsigned mlt=0, tmp, err;
  791. /* No concern for performance, it's done once: use a stupid
  792. * but safe and compact method to find the multiplier.
  793. */
  794. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  795. if (mulhwu(inscale, mlt|tmp) < outscale)
  796. mlt |= tmp;
  797. }
  798. /* We might still be off by 1 for the best approximation.
  799. * A side effect of this is that if outscale is too large
  800. * the returned value will be zero.
  801. * Many corner cases have been checked and seem to work,
  802. * some might have been forgotten in the test however.
  803. */
  804. err = inscale * (mlt+1);
  805. if (err <= inscale/2)
  806. mlt++;
  807. return mlt;
  808. }
  809. /*
  810. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  811. * result.
  812. */
  813. void div128_by_32(u64 dividend_high, u64 dividend_low,
  814. unsigned divisor, struct div_result *dr)
  815. {
  816. unsigned long a, b, c, d;
  817. unsigned long w, x, y, z;
  818. u64 ra, rb, rc;
  819. a = dividend_high >> 32;
  820. b = dividend_high & 0xffffffff;
  821. c = dividend_low >> 32;
  822. d = dividend_low & 0xffffffff;
  823. w = a / divisor;
  824. ra = ((u64)(a - (w * divisor)) << 32) + b;
  825. rb = ((u64) do_div(ra, divisor) << 32) + c;
  826. x = ra;
  827. rc = ((u64) do_div(rb, divisor) << 32) + d;
  828. y = rb;
  829. do_div(rc, divisor);
  830. z = rc;
  831. dr->result_high = ((u64)w << 32) + x;
  832. dr->result_low = ((u64)y << 32) + z;
  833. }