rtc-sa1100.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. /*
  2. * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
  3. *
  4. * Copyright (c) 2000 Nils Faerber
  5. *
  6. * Based on rtc.c by Paul Gortmaker
  7. *
  8. * Original Driver by Nils Faerber <nils@kernelconcepts.de>
  9. *
  10. * Modifications from:
  11. * CIH <cih@coventive.com>
  12. * Nicolas Pitre <nico@fluxnic.net>
  13. * Andrew Christian <andrew.christian@hp.com>
  14. *
  15. * Converted to the RTC subsystem and Driver Model
  16. * by Richard Purdie <rpurdie@rpsys.net>
  17. *
  18. * This program is free software; you can redistribute it and/or
  19. * modify it under the terms of the GNU General Public License
  20. * as published by the Free Software Foundation; either version
  21. * 2 of the License, or (at your option) any later version.
  22. */
  23. #include <linux/platform_device.h>
  24. #include <linux/module.h>
  25. #include <linux/rtc.h>
  26. #include <linux/init.h>
  27. #include <linux/fs.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/string.h>
  30. #include <linux/pm.h>
  31. #include <linux/bitops.h>
  32. #include <mach/hardware.h>
  33. #include <asm/irq.h>
  34. #ifdef CONFIG_ARCH_PXA
  35. #include <mach/regs-rtc.h>
  36. #include <mach/regs-ost.h>
  37. #endif
  38. #define RTC_DEF_DIVIDER (32768 - 1)
  39. #define RTC_DEF_TRIM 0
  40. static unsigned long rtc_freq = 1024;
  41. static unsigned long timer_freq;
  42. static struct rtc_time rtc_alarm;
  43. static DEFINE_SPINLOCK(sa1100_rtc_lock);
  44. static inline int rtc_periodic_alarm(struct rtc_time *tm)
  45. {
  46. return (tm->tm_year == -1) ||
  47. ((unsigned)tm->tm_mon >= 12) ||
  48. ((unsigned)(tm->tm_mday - 1) >= 31) ||
  49. ((unsigned)tm->tm_hour > 23) ||
  50. ((unsigned)tm->tm_min > 59) ||
  51. ((unsigned)tm->tm_sec > 59);
  52. }
  53. /*
  54. * Calculate the next alarm time given the requested alarm time mask
  55. * and the current time.
  56. */
  57. static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
  58. struct rtc_time *alrm)
  59. {
  60. unsigned long next_time;
  61. unsigned long now_time;
  62. next->tm_year = now->tm_year;
  63. next->tm_mon = now->tm_mon;
  64. next->tm_mday = now->tm_mday;
  65. next->tm_hour = alrm->tm_hour;
  66. next->tm_min = alrm->tm_min;
  67. next->tm_sec = alrm->tm_sec;
  68. rtc_tm_to_time(now, &now_time);
  69. rtc_tm_to_time(next, &next_time);
  70. if (next_time < now_time) {
  71. /* Advance one day */
  72. next_time += 60 * 60 * 24;
  73. rtc_time_to_tm(next_time, next);
  74. }
  75. }
  76. static int rtc_update_alarm(struct rtc_time *alrm)
  77. {
  78. struct rtc_time alarm_tm, now_tm;
  79. unsigned long now, time;
  80. int ret;
  81. do {
  82. now = RCNR;
  83. rtc_time_to_tm(now, &now_tm);
  84. rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
  85. ret = rtc_tm_to_time(&alarm_tm, &time);
  86. if (ret != 0)
  87. break;
  88. RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
  89. RTAR = time;
  90. } while (now != RCNR);
  91. return ret;
  92. }
  93. static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
  94. {
  95. struct platform_device *pdev = to_platform_device(dev_id);
  96. struct rtc_device *rtc = platform_get_drvdata(pdev);
  97. unsigned int rtsr;
  98. unsigned long events = 0;
  99. spin_lock(&sa1100_rtc_lock);
  100. rtsr = RTSR;
  101. /* clear interrupt sources */
  102. RTSR = 0;
  103. RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
  104. /* clear alarm interrupt if it has occurred */
  105. if (rtsr & RTSR_AL)
  106. rtsr &= ~RTSR_ALE;
  107. RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
  108. /* update irq data & counter */
  109. if (rtsr & RTSR_AL)
  110. events |= RTC_AF | RTC_IRQF;
  111. if (rtsr & RTSR_HZ)
  112. events |= RTC_UF | RTC_IRQF;
  113. rtc_update_irq(rtc, 1, events);
  114. if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
  115. rtc_update_alarm(&rtc_alarm);
  116. spin_unlock(&sa1100_rtc_lock);
  117. return IRQ_HANDLED;
  118. }
  119. static int rtc_timer1_count;
  120. static irqreturn_t timer1_interrupt(int irq, void *dev_id)
  121. {
  122. struct platform_device *pdev = to_platform_device(dev_id);
  123. struct rtc_device *rtc = platform_get_drvdata(pdev);
  124. /*
  125. * If we match for the first time, rtc_timer1_count will be 1.
  126. * Otherwise, we wrapped around (very unlikely but
  127. * still possible) so compute the amount of missed periods.
  128. * The match reg is updated only when the data is actually retrieved
  129. * to avoid unnecessary interrupts.
  130. */
  131. OSSR = OSSR_M1; /* clear match on timer1 */
  132. rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
  133. if (rtc_timer1_count == 1)
  134. rtc_timer1_count = (rtc_freq * ((1 << 30) / (timer_freq >> 2)));
  135. return IRQ_HANDLED;
  136. }
  137. static int sa1100_rtc_read_callback(struct device *dev, int data)
  138. {
  139. if (data & RTC_PF) {
  140. /* interpolate missed periods and set match for the next */
  141. unsigned long period = timer_freq / rtc_freq;
  142. unsigned long oscr = OSCR;
  143. unsigned long osmr1 = OSMR1;
  144. unsigned long missed = (oscr - osmr1)/period;
  145. data += missed << 8;
  146. OSSR = OSSR_M1; /* clear match on timer 1 */
  147. OSMR1 = osmr1 + (missed + 1)*period;
  148. /* Ensure we didn't miss another match in the mean time.
  149. * Here we compare (match - OSCR) 8 instead of 0 --
  150. * see comment in pxa_timer_interrupt() for explanation.
  151. */
  152. while ((signed long)((osmr1 = OSMR1) - OSCR) <= 8) {
  153. data += 0x100;
  154. OSSR = OSSR_M1; /* clear match on timer 1 */
  155. OSMR1 = osmr1 + period;
  156. }
  157. }
  158. return data;
  159. }
  160. static int sa1100_rtc_open(struct device *dev)
  161. {
  162. int ret;
  163. ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
  164. "rtc 1Hz", dev);
  165. if (ret) {
  166. dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
  167. goto fail_ui;
  168. }
  169. ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
  170. "rtc Alrm", dev);
  171. if (ret) {
  172. dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
  173. goto fail_ai;
  174. }
  175. ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
  176. "rtc timer", dev);
  177. if (ret) {
  178. dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
  179. goto fail_pi;
  180. }
  181. return 0;
  182. fail_pi:
  183. free_irq(IRQ_RTCAlrm, dev);
  184. fail_ai:
  185. free_irq(IRQ_RTC1Hz, dev);
  186. fail_ui:
  187. return ret;
  188. }
  189. static void sa1100_rtc_release(struct device *dev)
  190. {
  191. spin_lock_irq(&sa1100_rtc_lock);
  192. RTSR = 0;
  193. OIER &= ~OIER_E1;
  194. OSSR = OSSR_M1;
  195. spin_unlock_irq(&sa1100_rtc_lock);
  196. free_irq(IRQ_OST1, dev);
  197. free_irq(IRQ_RTCAlrm, dev);
  198. free_irq(IRQ_RTC1Hz, dev);
  199. }
  200. static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
  201. unsigned long arg)
  202. {
  203. switch (cmd) {
  204. case RTC_AIE_OFF:
  205. spin_lock_irq(&sa1100_rtc_lock);
  206. RTSR &= ~RTSR_ALE;
  207. spin_unlock_irq(&sa1100_rtc_lock);
  208. return 0;
  209. case RTC_AIE_ON:
  210. spin_lock_irq(&sa1100_rtc_lock);
  211. RTSR |= RTSR_ALE;
  212. spin_unlock_irq(&sa1100_rtc_lock);
  213. return 0;
  214. case RTC_UIE_OFF:
  215. spin_lock_irq(&sa1100_rtc_lock);
  216. RTSR &= ~RTSR_HZE;
  217. spin_unlock_irq(&sa1100_rtc_lock);
  218. return 0;
  219. case RTC_UIE_ON:
  220. spin_lock_irq(&sa1100_rtc_lock);
  221. RTSR |= RTSR_HZE;
  222. spin_unlock_irq(&sa1100_rtc_lock);
  223. return 0;
  224. case RTC_PIE_OFF:
  225. spin_lock_irq(&sa1100_rtc_lock);
  226. OIER &= ~OIER_E1;
  227. spin_unlock_irq(&sa1100_rtc_lock);
  228. return 0;
  229. case RTC_PIE_ON:
  230. spin_lock_irq(&sa1100_rtc_lock);
  231. OSMR1 = timer_freq / rtc_freq + OSCR;
  232. OIER |= OIER_E1;
  233. rtc_timer1_count = 1;
  234. spin_unlock_irq(&sa1100_rtc_lock);
  235. return 0;
  236. case RTC_IRQP_READ:
  237. return put_user(rtc_freq, (unsigned long *)arg);
  238. case RTC_IRQP_SET:
  239. if (arg < 1 || arg > timer_freq)
  240. return -EINVAL;
  241. rtc_freq = arg;
  242. return 0;
  243. }
  244. return -ENOIOCTLCMD;
  245. }
  246. static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
  247. {
  248. rtc_time_to_tm(RCNR, tm);
  249. return 0;
  250. }
  251. static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
  252. {
  253. unsigned long time;
  254. int ret;
  255. ret = rtc_tm_to_time(tm, &time);
  256. if (ret == 0)
  257. RCNR = time;
  258. return ret;
  259. }
  260. static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  261. {
  262. u32 rtsr;
  263. memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
  264. rtsr = RTSR;
  265. alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
  266. alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
  267. return 0;
  268. }
  269. static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  270. {
  271. int ret;
  272. spin_lock_irq(&sa1100_rtc_lock);
  273. ret = rtc_update_alarm(&alrm->time);
  274. if (ret == 0) {
  275. if (alrm->enabled)
  276. RTSR |= RTSR_ALE;
  277. else
  278. RTSR &= ~RTSR_ALE;
  279. }
  280. spin_unlock_irq(&sa1100_rtc_lock);
  281. return ret;
  282. }
  283. static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
  284. {
  285. seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
  286. seq_printf(seq, "update_IRQ\t: %s\n",
  287. (RTSR & RTSR_HZE) ? "yes" : "no");
  288. seq_printf(seq, "periodic_IRQ\t: %s\n",
  289. (OIER & OIER_E1) ? "yes" : "no");
  290. seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
  291. seq_printf(seq, "RTSR\t\t: 0x%08x\n", (u32)RTSR);
  292. return 0;
  293. }
  294. static const struct rtc_class_ops sa1100_rtc_ops = {
  295. .open = sa1100_rtc_open,
  296. .read_callback = sa1100_rtc_read_callback,
  297. .release = sa1100_rtc_release,
  298. .ioctl = sa1100_rtc_ioctl,
  299. .read_time = sa1100_rtc_read_time,
  300. .set_time = sa1100_rtc_set_time,
  301. .read_alarm = sa1100_rtc_read_alarm,
  302. .set_alarm = sa1100_rtc_set_alarm,
  303. .proc = sa1100_rtc_proc,
  304. };
  305. static int sa1100_rtc_probe(struct platform_device *pdev)
  306. {
  307. struct rtc_device *rtc;
  308. timer_freq = get_clock_tick_rate();
  309. /*
  310. * According to the manual we should be able to let RTTR be zero
  311. * and then a default diviser for a 32.768KHz clock is used.
  312. * Apparently this doesn't work, at least for my SA1110 rev 5.
  313. * If the clock divider is uninitialized then reset it to the
  314. * default value to get the 1Hz clock.
  315. */
  316. if (RTTR == 0) {
  317. RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
  318. dev_warn(&pdev->dev, "warning: "
  319. "initializing default clock divider/trim value\n");
  320. /* The current RTC value probably doesn't make sense either */
  321. RCNR = 0;
  322. }
  323. device_init_wakeup(&pdev->dev, 1);
  324. rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
  325. THIS_MODULE);
  326. if (IS_ERR(rtc))
  327. return PTR_ERR(rtc);
  328. platform_set_drvdata(pdev, rtc);
  329. return 0;
  330. }
  331. static int sa1100_rtc_remove(struct platform_device *pdev)
  332. {
  333. struct rtc_device *rtc = platform_get_drvdata(pdev);
  334. if (rtc)
  335. rtc_device_unregister(rtc);
  336. return 0;
  337. }
  338. #ifdef CONFIG_PM
  339. static int sa1100_rtc_suspend(struct device *dev)
  340. {
  341. if (device_may_wakeup(dev))
  342. enable_irq_wake(IRQ_RTCAlrm);
  343. return 0;
  344. }
  345. static int sa1100_rtc_resume(struct device *dev)
  346. {
  347. if (device_may_wakeup(dev))
  348. disable_irq_wake(IRQ_RTCAlrm);
  349. return 0;
  350. }
  351. static const struct dev_pm_ops sa1100_rtc_pm_ops = {
  352. .suspend = sa1100_rtc_suspend,
  353. .resume = sa1100_rtc_resume,
  354. };
  355. #endif
  356. static struct platform_driver sa1100_rtc_driver = {
  357. .probe = sa1100_rtc_probe,
  358. .remove = sa1100_rtc_remove,
  359. .driver = {
  360. .name = "sa1100-rtc",
  361. #ifdef CONFIG_PM
  362. .pm = &sa1100_rtc_pm_ops,
  363. #endif
  364. },
  365. };
  366. static int __init sa1100_rtc_init(void)
  367. {
  368. return platform_driver_register(&sa1100_rtc_driver);
  369. }
  370. static void __exit sa1100_rtc_exit(void)
  371. {
  372. platform_driver_unregister(&sa1100_rtc_driver);
  373. }
  374. module_init(sa1100_rtc_init);
  375. module_exit(sa1100_rtc_exit);
  376. MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
  377. MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
  378. MODULE_LICENSE("GPL");
  379. MODULE_ALIAS("platform:sa1100-rtc");