page_alloc.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/mempolicy.h>
  39. #include <linux/stop_machine.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/div64.h>
  42. #include "internal.h"
  43. /*
  44. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  45. * initializer cleaner
  46. */
  47. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  48. EXPORT_SYMBOL(node_online_map);
  49. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  50. EXPORT_SYMBOL(node_possible_map);
  51. unsigned long totalram_pages __read_mostly;
  52. unsigned long totalhigh_pages __read_mostly;
  53. unsigned long totalreserve_pages __read_mostly;
  54. long nr_swap_pages;
  55. int percpu_pagelist_fraction;
  56. static void __free_pages_ok(struct page *page, unsigned int order);
  57. /*
  58. * results with 256, 32 in the lowmem_reserve sysctl:
  59. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  60. * 1G machine -> (16M dma, 784M normal, 224M high)
  61. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  62. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  63. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  64. *
  65. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  66. * don't need any ZONE_NORMAL reservation
  67. */
  68. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
  69. EXPORT_SYMBOL(totalram_pages);
  70. /*
  71. * Used by page_zone() to look up the address of the struct zone whose
  72. * id is encoded in the upper bits of page->flags
  73. */
  74. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  75. EXPORT_SYMBOL(zone_table);
  76. static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
  77. int min_free_kbytes = 1024;
  78. unsigned long __meminitdata nr_kernel_pages;
  79. unsigned long __meminitdata nr_all_pages;
  80. #ifdef CONFIG_DEBUG_VM
  81. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  82. {
  83. int ret = 0;
  84. unsigned seq;
  85. unsigned long pfn = page_to_pfn(page);
  86. do {
  87. seq = zone_span_seqbegin(zone);
  88. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  89. ret = 1;
  90. else if (pfn < zone->zone_start_pfn)
  91. ret = 1;
  92. } while (zone_span_seqretry(zone, seq));
  93. return ret;
  94. }
  95. static int page_is_consistent(struct zone *zone, struct page *page)
  96. {
  97. #ifdef CONFIG_HOLES_IN_ZONE
  98. if (!pfn_valid(page_to_pfn(page)))
  99. return 0;
  100. #endif
  101. if (zone != page_zone(page))
  102. return 0;
  103. return 1;
  104. }
  105. /*
  106. * Temporary debugging check for pages not lying within a given zone.
  107. */
  108. static int bad_range(struct zone *zone, struct page *page)
  109. {
  110. if (page_outside_zone_boundaries(zone, page))
  111. return 1;
  112. if (!page_is_consistent(zone, page))
  113. return 1;
  114. return 0;
  115. }
  116. #else
  117. static inline int bad_range(struct zone *zone, struct page *page)
  118. {
  119. return 0;
  120. }
  121. #endif
  122. static void bad_page(struct page *page)
  123. {
  124. printk(KERN_EMERG "Bad page state in process '%s'\n"
  125. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  126. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  127. KERN_EMERG "Backtrace:\n",
  128. current->comm, page, (int)(2*sizeof(unsigned long)),
  129. (unsigned long)page->flags, page->mapping,
  130. page_mapcount(page), page_count(page));
  131. dump_stack();
  132. page->flags &= ~(1 << PG_lru |
  133. 1 << PG_private |
  134. 1 << PG_locked |
  135. 1 << PG_active |
  136. 1 << PG_dirty |
  137. 1 << PG_reclaim |
  138. 1 << PG_slab |
  139. 1 << PG_swapcache |
  140. 1 << PG_writeback |
  141. 1 << PG_buddy );
  142. set_page_count(page, 0);
  143. reset_page_mapcount(page);
  144. page->mapping = NULL;
  145. add_taint(TAINT_BAD_PAGE);
  146. }
  147. /*
  148. * Higher-order pages are called "compound pages". They are structured thusly:
  149. *
  150. * The first PAGE_SIZE page is called the "head page".
  151. *
  152. * The remaining PAGE_SIZE pages are called "tail pages".
  153. *
  154. * All pages have PG_compound set. All pages have their ->private pointing at
  155. * the head page (even the head page has this).
  156. *
  157. * The first tail page's ->lru.next holds the address of the compound page's
  158. * put_page() function. Its ->lru.prev holds the order of allocation.
  159. * This usage means that zero-order pages may not be compound.
  160. */
  161. static void free_compound_page(struct page *page)
  162. {
  163. __free_pages_ok(page, (unsigned long)page[1].lru.prev);
  164. }
  165. static void prep_compound_page(struct page *page, unsigned long order)
  166. {
  167. int i;
  168. int nr_pages = 1 << order;
  169. page[1].lru.next = (void *)free_compound_page; /* set dtor */
  170. page[1].lru.prev = (void *)order;
  171. for (i = 0; i < nr_pages; i++) {
  172. struct page *p = page + i;
  173. __SetPageCompound(p);
  174. set_page_private(p, (unsigned long)page);
  175. }
  176. }
  177. static void destroy_compound_page(struct page *page, unsigned long order)
  178. {
  179. int i;
  180. int nr_pages = 1 << order;
  181. if (unlikely((unsigned long)page[1].lru.prev != order))
  182. bad_page(page);
  183. for (i = 0; i < nr_pages; i++) {
  184. struct page *p = page + i;
  185. if (unlikely(!PageCompound(p) |
  186. (page_private(p) != (unsigned long)page)))
  187. bad_page(page);
  188. __ClearPageCompound(p);
  189. }
  190. }
  191. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  192. {
  193. int i;
  194. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  195. /*
  196. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  197. * and __GFP_HIGHMEM from hard or soft interrupt context.
  198. */
  199. BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  200. for (i = 0; i < (1 << order); i++)
  201. clear_highpage(page + i);
  202. }
  203. /*
  204. * function for dealing with page's order in buddy system.
  205. * zone->lock is already acquired when we use these.
  206. * So, we don't need atomic page->flags operations here.
  207. */
  208. static inline unsigned long page_order(struct page *page)
  209. {
  210. return page_private(page);
  211. }
  212. static inline void set_page_order(struct page *page, int order)
  213. {
  214. set_page_private(page, order);
  215. __SetPageBuddy(page);
  216. }
  217. static inline void rmv_page_order(struct page *page)
  218. {
  219. __ClearPageBuddy(page);
  220. set_page_private(page, 0);
  221. }
  222. /*
  223. * Locate the struct page for both the matching buddy in our
  224. * pair (buddy1) and the combined O(n+1) page they form (page).
  225. *
  226. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  227. * the following equation:
  228. * B2 = B1 ^ (1 << O)
  229. * For example, if the starting buddy (buddy2) is #8 its order
  230. * 1 buddy is #10:
  231. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  232. *
  233. * 2) Any buddy B will have an order O+1 parent P which
  234. * satisfies the following equation:
  235. * P = B & ~(1 << O)
  236. *
  237. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  238. */
  239. static inline struct page *
  240. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  241. {
  242. unsigned long buddy_idx = page_idx ^ (1 << order);
  243. return page + (buddy_idx - page_idx);
  244. }
  245. static inline unsigned long
  246. __find_combined_index(unsigned long page_idx, unsigned int order)
  247. {
  248. return (page_idx & ~(1 << order));
  249. }
  250. /*
  251. * This function checks whether a page is free && is the buddy
  252. * we can do coalesce a page and its buddy if
  253. * (a) the buddy is not in a hole &&
  254. * (b) the buddy is in the buddy system &&
  255. * (c) a page and its buddy have the same order &&
  256. * (d) a page and its buddy are in the same zone.
  257. *
  258. * For recording whether a page is in the buddy system, we use PG_buddy.
  259. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  260. *
  261. * For recording page's order, we use page_private(page).
  262. */
  263. static inline int page_is_buddy(struct page *page, struct page *buddy,
  264. int order)
  265. {
  266. #ifdef CONFIG_HOLES_IN_ZONE
  267. if (!pfn_valid(page_to_pfn(buddy)))
  268. return 0;
  269. #endif
  270. if (page_zone_id(page) != page_zone_id(buddy))
  271. return 0;
  272. if (PageBuddy(buddy) && page_order(buddy) == order) {
  273. BUG_ON(page_count(buddy) != 0);
  274. return 1;
  275. }
  276. return 0;
  277. }
  278. /*
  279. * Freeing function for a buddy system allocator.
  280. *
  281. * The concept of a buddy system is to maintain direct-mapped table
  282. * (containing bit values) for memory blocks of various "orders".
  283. * The bottom level table contains the map for the smallest allocatable
  284. * units of memory (here, pages), and each level above it describes
  285. * pairs of units from the levels below, hence, "buddies".
  286. * At a high level, all that happens here is marking the table entry
  287. * at the bottom level available, and propagating the changes upward
  288. * as necessary, plus some accounting needed to play nicely with other
  289. * parts of the VM system.
  290. * At each level, we keep a list of pages, which are heads of continuous
  291. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  292. * order is recorded in page_private(page) field.
  293. * So when we are allocating or freeing one, we can derive the state of the
  294. * other. That is, if we allocate a small block, and both were
  295. * free, the remainder of the region must be split into blocks.
  296. * If a block is freed, and its buddy is also free, then this
  297. * triggers coalescing into a block of larger size.
  298. *
  299. * -- wli
  300. */
  301. static inline void __free_one_page(struct page *page,
  302. struct zone *zone, unsigned int order)
  303. {
  304. unsigned long page_idx;
  305. int order_size = 1 << order;
  306. if (unlikely(PageCompound(page)))
  307. destroy_compound_page(page, order);
  308. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  309. BUG_ON(page_idx & (order_size - 1));
  310. BUG_ON(bad_range(zone, page));
  311. zone->free_pages += order_size;
  312. while (order < MAX_ORDER-1) {
  313. unsigned long combined_idx;
  314. struct free_area *area;
  315. struct page *buddy;
  316. buddy = __page_find_buddy(page, page_idx, order);
  317. if (!page_is_buddy(page, buddy, order))
  318. break; /* Move the buddy up one level. */
  319. list_del(&buddy->lru);
  320. area = zone->free_area + order;
  321. area->nr_free--;
  322. rmv_page_order(buddy);
  323. combined_idx = __find_combined_index(page_idx, order);
  324. page = page + (combined_idx - page_idx);
  325. page_idx = combined_idx;
  326. order++;
  327. }
  328. set_page_order(page, order);
  329. list_add(&page->lru, &zone->free_area[order].free_list);
  330. zone->free_area[order].nr_free++;
  331. }
  332. static inline int free_pages_check(struct page *page)
  333. {
  334. if (unlikely(page_mapcount(page) |
  335. (page->mapping != NULL) |
  336. (page_count(page) != 0) |
  337. (page->flags & (
  338. 1 << PG_lru |
  339. 1 << PG_private |
  340. 1 << PG_locked |
  341. 1 << PG_active |
  342. 1 << PG_reclaim |
  343. 1 << PG_slab |
  344. 1 << PG_swapcache |
  345. 1 << PG_writeback |
  346. 1 << PG_reserved |
  347. 1 << PG_buddy ))))
  348. bad_page(page);
  349. if (PageDirty(page))
  350. __ClearPageDirty(page);
  351. /*
  352. * For now, we report if PG_reserved was found set, but do not
  353. * clear it, and do not free the page. But we shall soon need
  354. * to do more, for when the ZERO_PAGE count wraps negative.
  355. */
  356. return PageReserved(page);
  357. }
  358. /*
  359. * Frees a list of pages.
  360. * Assumes all pages on list are in same zone, and of same order.
  361. * count is the number of pages to free.
  362. *
  363. * If the zone was previously in an "all pages pinned" state then look to
  364. * see if this freeing clears that state.
  365. *
  366. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  367. * pinned" detection logic.
  368. */
  369. static void free_pages_bulk(struct zone *zone, int count,
  370. struct list_head *list, int order)
  371. {
  372. spin_lock(&zone->lock);
  373. zone->all_unreclaimable = 0;
  374. zone->pages_scanned = 0;
  375. while (count--) {
  376. struct page *page;
  377. BUG_ON(list_empty(list));
  378. page = list_entry(list->prev, struct page, lru);
  379. /* have to delete it as __free_one_page list manipulates */
  380. list_del(&page->lru);
  381. __free_one_page(page, zone, order);
  382. }
  383. spin_unlock(&zone->lock);
  384. }
  385. static void free_one_page(struct zone *zone, struct page *page, int order)
  386. {
  387. LIST_HEAD(list);
  388. list_add(&page->lru, &list);
  389. free_pages_bulk(zone, 1, &list, order);
  390. }
  391. static void __free_pages_ok(struct page *page, unsigned int order)
  392. {
  393. unsigned long flags;
  394. int i;
  395. int reserved = 0;
  396. arch_free_page(page, order);
  397. if (!PageHighMem(page))
  398. debug_check_no_locks_freed(page_address(page),
  399. PAGE_SIZE<<order);
  400. for (i = 0 ; i < (1 << order) ; ++i)
  401. reserved += free_pages_check(page + i);
  402. if (reserved)
  403. return;
  404. kernel_map_pages(page, 1 << order, 0);
  405. local_irq_save(flags);
  406. __mod_page_state(pgfree, 1 << order);
  407. free_one_page(page_zone(page), page, order);
  408. local_irq_restore(flags);
  409. }
  410. /*
  411. * permit the bootmem allocator to evade page validation on high-order frees
  412. */
  413. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  414. {
  415. if (order == 0) {
  416. __ClearPageReserved(page);
  417. set_page_count(page, 0);
  418. set_page_refcounted(page);
  419. __free_page(page);
  420. } else {
  421. int loop;
  422. prefetchw(page);
  423. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  424. struct page *p = &page[loop];
  425. if (loop + 1 < BITS_PER_LONG)
  426. prefetchw(p + 1);
  427. __ClearPageReserved(p);
  428. set_page_count(p, 0);
  429. }
  430. set_page_refcounted(page);
  431. __free_pages(page, order);
  432. }
  433. }
  434. /*
  435. * The order of subdivision here is critical for the IO subsystem.
  436. * Please do not alter this order without good reasons and regression
  437. * testing. Specifically, as large blocks of memory are subdivided,
  438. * the order in which smaller blocks are delivered depends on the order
  439. * they're subdivided in this function. This is the primary factor
  440. * influencing the order in which pages are delivered to the IO
  441. * subsystem according to empirical testing, and this is also justified
  442. * by considering the behavior of a buddy system containing a single
  443. * large block of memory acted on by a series of small allocations.
  444. * This behavior is a critical factor in sglist merging's success.
  445. *
  446. * -- wli
  447. */
  448. static inline void expand(struct zone *zone, struct page *page,
  449. int low, int high, struct free_area *area)
  450. {
  451. unsigned long size = 1 << high;
  452. while (high > low) {
  453. area--;
  454. high--;
  455. size >>= 1;
  456. BUG_ON(bad_range(zone, &page[size]));
  457. list_add(&page[size].lru, &area->free_list);
  458. area->nr_free++;
  459. set_page_order(&page[size], high);
  460. }
  461. }
  462. /*
  463. * This page is about to be returned from the page allocator
  464. */
  465. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  466. {
  467. if (unlikely(page_mapcount(page) |
  468. (page->mapping != NULL) |
  469. (page_count(page) != 0) |
  470. (page->flags & (
  471. 1 << PG_lru |
  472. 1 << PG_private |
  473. 1 << PG_locked |
  474. 1 << PG_active |
  475. 1 << PG_dirty |
  476. 1 << PG_reclaim |
  477. 1 << PG_slab |
  478. 1 << PG_swapcache |
  479. 1 << PG_writeback |
  480. 1 << PG_reserved |
  481. 1 << PG_buddy ))))
  482. bad_page(page);
  483. /*
  484. * For now, we report if PG_reserved was found set, but do not
  485. * clear it, and do not allocate the page: as a safety net.
  486. */
  487. if (PageReserved(page))
  488. return 1;
  489. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  490. 1 << PG_referenced | 1 << PG_arch_1 |
  491. 1 << PG_checked | 1 << PG_mappedtodisk);
  492. set_page_private(page, 0);
  493. set_page_refcounted(page);
  494. kernel_map_pages(page, 1 << order, 1);
  495. if (gfp_flags & __GFP_ZERO)
  496. prep_zero_page(page, order, gfp_flags);
  497. if (order && (gfp_flags & __GFP_COMP))
  498. prep_compound_page(page, order);
  499. return 0;
  500. }
  501. /*
  502. * Do the hard work of removing an element from the buddy allocator.
  503. * Call me with the zone->lock already held.
  504. */
  505. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  506. {
  507. struct free_area * area;
  508. unsigned int current_order;
  509. struct page *page;
  510. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  511. area = zone->free_area + current_order;
  512. if (list_empty(&area->free_list))
  513. continue;
  514. page = list_entry(area->free_list.next, struct page, lru);
  515. list_del(&page->lru);
  516. rmv_page_order(page);
  517. area->nr_free--;
  518. zone->free_pages -= 1UL << order;
  519. expand(zone, page, order, current_order, area);
  520. return page;
  521. }
  522. return NULL;
  523. }
  524. /*
  525. * Obtain a specified number of elements from the buddy allocator, all under
  526. * a single hold of the lock, for efficiency. Add them to the supplied list.
  527. * Returns the number of new pages which were placed at *list.
  528. */
  529. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  530. unsigned long count, struct list_head *list)
  531. {
  532. int i;
  533. spin_lock(&zone->lock);
  534. for (i = 0; i < count; ++i) {
  535. struct page *page = __rmqueue(zone, order);
  536. if (unlikely(page == NULL))
  537. break;
  538. list_add_tail(&page->lru, list);
  539. }
  540. spin_unlock(&zone->lock);
  541. return i;
  542. }
  543. #ifdef CONFIG_NUMA
  544. /*
  545. * Called from the slab reaper to drain pagesets on a particular node that
  546. * belong to the currently executing processor.
  547. * Note that this function must be called with the thread pinned to
  548. * a single processor.
  549. */
  550. void drain_node_pages(int nodeid)
  551. {
  552. int i, z;
  553. unsigned long flags;
  554. for (z = 0; z < MAX_NR_ZONES; z++) {
  555. struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
  556. struct per_cpu_pageset *pset;
  557. pset = zone_pcp(zone, smp_processor_id());
  558. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  559. struct per_cpu_pages *pcp;
  560. pcp = &pset->pcp[i];
  561. if (pcp->count) {
  562. local_irq_save(flags);
  563. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  564. pcp->count = 0;
  565. local_irq_restore(flags);
  566. }
  567. }
  568. }
  569. }
  570. #endif
  571. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  572. static void __drain_pages(unsigned int cpu)
  573. {
  574. unsigned long flags;
  575. struct zone *zone;
  576. int i;
  577. for_each_zone(zone) {
  578. struct per_cpu_pageset *pset;
  579. pset = zone_pcp(zone, cpu);
  580. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  581. struct per_cpu_pages *pcp;
  582. pcp = &pset->pcp[i];
  583. local_irq_save(flags);
  584. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  585. pcp->count = 0;
  586. local_irq_restore(flags);
  587. }
  588. }
  589. }
  590. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  591. #ifdef CONFIG_PM
  592. void mark_free_pages(struct zone *zone)
  593. {
  594. unsigned long zone_pfn, flags;
  595. int order;
  596. struct list_head *curr;
  597. if (!zone->spanned_pages)
  598. return;
  599. spin_lock_irqsave(&zone->lock, flags);
  600. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  601. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  602. for (order = MAX_ORDER - 1; order >= 0; --order)
  603. list_for_each(curr, &zone->free_area[order].free_list) {
  604. unsigned long start_pfn, i;
  605. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  606. for (i=0; i < (1<<order); i++)
  607. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  608. }
  609. spin_unlock_irqrestore(&zone->lock, flags);
  610. }
  611. /*
  612. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  613. */
  614. void drain_local_pages(void)
  615. {
  616. unsigned long flags;
  617. local_irq_save(flags);
  618. __drain_pages(smp_processor_id());
  619. local_irq_restore(flags);
  620. }
  621. #endif /* CONFIG_PM */
  622. static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
  623. {
  624. #ifdef CONFIG_NUMA
  625. pg_data_t *pg = z->zone_pgdat;
  626. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  627. struct per_cpu_pageset *p;
  628. p = zone_pcp(z, cpu);
  629. if (pg == orig) {
  630. p->numa_hit++;
  631. } else {
  632. p->numa_miss++;
  633. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  634. }
  635. if (pg == NODE_DATA(numa_node_id()))
  636. p->local_node++;
  637. else
  638. p->other_node++;
  639. #endif
  640. }
  641. /*
  642. * Free a 0-order page
  643. */
  644. static void fastcall free_hot_cold_page(struct page *page, int cold)
  645. {
  646. struct zone *zone = page_zone(page);
  647. struct per_cpu_pages *pcp;
  648. unsigned long flags;
  649. arch_free_page(page, 0);
  650. if (PageAnon(page))
  651. page->mapping = NULL;
  652. if (free_pages_check(page))
  653. return;
  654. kernel_map_pages(page, 1, 0);
  655. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  656. local_irq_save(flags);
  657. __inc_page_state(pgfree);
  658. list_add(&page->lru, &pcp->list);
  659. pcp->count++;
  660. if (pcp->count >= pcp->high) {
  661. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  662. pcp->count -= pcp->batch;
  663. }
  664. local_irq_restore(flags);
  665. put_cpu();
  666. }
  667. void fastcall free_hot_page(struct page *page)
  668. {
  669. free_hot_cold_page(page, 0);
  670. }
  671. void fastcall free_cold_page(struct page *page)
  672. {
  673. free_hot_cold_page(page, 1);
  674. }
  675. /*
  676. * split_page takes a non-compound higher-order page, and splits it into
  677. * n (1<<order) sub-pages: page[0..n]
  678. * Each sub-page must be freed individually.
  679. *
  680. * Note: this is probably too low level an operation for use in drivers.
  681. * Please consult with lkml before using this in your driver.
  682. */
  683. void split_page(struct page *page, unsigned int order)
  684. {
  685. int i;
  686. BUG_ON(PageCompound(page));
  687. BUG_ON(!page_count(page));
  688. for (i = 1; i < (1 << order); i++)
  689. set_page_refcounted(page + i);
  690. }
  691. /*
  692. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  693. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  694. * or two.
  695. */
  696. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  697. struct zone *zone, int order, gfp_t gfp_flags)
  698. {
  699. unsigned long flags;
  700. struct page *page;
  701. int cold = !!(gfp_flags & __GFP_COLD);
  702. int cpu;
  703. again:
  704. cpu = get_cpu();
  705. if (likely(order == 0)) {
  706. struct per_cpu_pages *pcp;
  707. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  708. local_irq_save(flags);
  709. if (!pcp->count) {
  710. pcp->count += rmqueue_bulk(zone, 0,
  711. pcp->batch, &pcp->list);
  712. if (unlikely(!pcp->count))
  713. goto failed;
  714. }
  715. page = list_entry(pcp->list.next, struct page, lru);
  716. list_del(&page->lru);
  717. pcp->count--;
  718. } else {
  719. spin_lock_irqsave(&zone->lock, flags);
  720. page = __rmqueue(zone, order);
  721. spin_unlock(&zone->lock);
  722. if (!page)
  723. goto failed;
  724. }
  725. __mod_page_state_zone(zone, pgalloc, 1 << order);
  726. zone_statistics(zonelist, zone, cpu);
  727. local_irq_restore(flags);
  728. put_cpu();
  729. BUG_ON(bad_range(zone, page));
  730. if (prep_new_page(page, order, gfp_flags))
  731. goto again;
  732. return page;
  733. failed:
  734. local_irq_restore(flags);
  735. put_cpu();
  736. return NULL;
  737. }
  738. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  739. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  740. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  741. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  742. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  743. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  744. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  745. /*
  746. * Return 1 if free pages are above 'mark'. This takes into account the order
  747. * of the allocation.
  748. */
  749. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  750. int classzone_idx, int alloc_flags)
  751. {
  752. /* free_pages my go negative - that's OK */
  753. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  754. int o;
  755. if (alloc_flags & ALLOC_HIGH)
  756. min -= min / 2;
  757. if (alloc_flags & ALLOC_HARDER)
  758. min -= min / 4;
  759. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  760. return 0;
  761. for (o = 0; o < order; o++) {
  762. /* At the next order, this order's pages become unavailable */
  763. free_pages -= z->free_area[o].nr_free << o;
  764. /* Require fewer higher order pages to be free */
  765. min >>= 1;
  766. if (free_pages <= min)
  767. return 0;
  768. }
  769. return 1;
  770. }
  771. /*
  772. * get_page_from_freeliest goes through the zonelist trying to allocate
  773. * a page.
  774. */
  775. static struct page *
  776. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  777. struct zonelist *zonelist, int alloc_flags)
  778. {
  779. struct zone **z = zonelist->zones;
  780. struct page *page = NULL;
  781. int classzone_idx = zone_idx(*z);
  782. /*
  783. * Go through the zonelist once, looking for a zone with enough free.
  784. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  785. */
  786. do {
  787. if ((alloc_flags & ALLOC_CPUSET) &&
  788. !cpuset_zone_allowed(*z, gfp_mask))
  789. continue;
  790. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  791. unsigned long mark;
  792. if (alloc_flags & ALLOC_WMARK_MIN)
  793. mark = (*z)->pages_min;
  794. else if (alloc_flags & ALLOC_WMARK_LOW)
  795. mark = (*z)->pages_low;
  796. else
  797. mark = (*z)->pages_high;
  798. if (!zone_watermark_ok(*z, order, mark,
  799. classzone_idx, alloc_flags))
  800. if (!zone_reclaim_mode ||
  801. !zone_reclaim(*z, gfp_mask, order))
  802. continue;
  803. }
  804. page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
  805. if (page) {
  806. break;
  807. }
  808. } while (*(++z) != NULL);
  809. return page;
  810. }
  811. /*
  812. * This is the 'heart' of the zoned buddy allocator.
  813. */
  814. struct page * fastcall
  815. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  816. struct zonelist *zonelist)
  817. {
  818. const gfp_t wait = gfp_mask & __GFP_WAIT;
  819. struct zone **z;
  820. struct page *page;
  821. struct reclaim_state reclaim_state;
  822. struct task_struct *p = current;
  823. int do_retry;
  824. int alloc_flags;
  825. int did_some_progress;
  826. might_sleep_if(wait);
  827. restart:
  828. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  829. if (unlikely(*z == NULL)) {
  830. /* Should this ever happen?? */
  831. return NULL;
  832. }
  833. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  834. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  835. if (page)
  836. goto got_pg;
  837. do {
  838. wakeup_kswapd(*z, order);
  839. } while (*(++z));
  840. /*
  841. * OK, we're below the kswapd watermark and have kicked background
  842. * reclaim. Now things get more complex, so set up alloc_flags according
  843. * to how we want to proceed.
  844. *
  845. * The caller may dip into page reserves a bit more if the caller
  846. * cannot run direct reclaim, or if the caller has realtime scheduling
  847. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  848. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  849. */
  850. alloc_flags = ALLOC_WMARK_MIN;
  851. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  852. alloc_flags |= ALLOC_HARDER;
  853. if (gfp_mask & __GFP_HIGH)
  854. alloc_flags |= ALLOC_HIGH;
  855. if (wait)
  856. alloc_flags |= ALLOC_CPUSET;
  857. /*
  858. * Go through the zonelist again. Let __GFP_HIGH and allocations
  859. * coming from realtime tasks go deeper into reserves.
  860. *
  861. * This is the last chance, in general, before the goto nopage.
  862. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  863. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  864. */
  865. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  866. if (page)
  867. goto got_pg;
  868. /* This allocation should allow future memory freeing. */
  869. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  870. && !in_interrupt()) {
  871. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  872. nofail_alloc:
  873. /* go through the zonelist yet again, ignoring mins */
  874. page = get_page_from_freelist(gfp_mask, order,
  875. zonelist, ALLOC_NO_WATERMARKS);
  876. if (page)
  877. goto got_pg;
  878. if (gfp_mask & __GFP_NOFAIL) {
  879. blk_congestion_wait(WRITE, HZ/50);
  880. goto nofail_alloc;
  881. }
  882. }
  883. goto nopage;
  884. }
  885. /* Atomic allocations - we can't balance anything */
  886. if (!wait)
  887. goto nopage;
  888. rebalance:
  889. cond_resched();
  890. /* We now go into synchronous reclaim */
  891. cpuset_memory_pressure_bump();
  892. p->flags |= PF_MEMALLOC;
  893. reclaim_state.reclaimed_slab = 0;
  894. p->reclaim_state = &reclaim_state;
  895. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  896. p->reclaim_state = NULL;
  897. p->flags &= ~PF_MEMALLOC;
  898. cond_resched();
  899. if (likely(did_some_progress)) {
  900. page = get_page_from_freelist(gfp_mask, order,
  901. zonelist, alloc_flags);
  902. if (page)
  903. goto got_pg;
  904. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  905. /*
  906. * Go through the zonelist yet one more time, keep
  907. * very high watermark here, this is only to catch
  908. * a parallel oom killing, we must fail if we're still
  909. * under heavy pressure.
  910. */
  911. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  912. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  913. if (page)
  914. goto got_pg;
  915. out_of_memory(zonelist, gfp_mask, order);
  916. goto restart;
  917. }
  918. /*
  919. * Don't let big-order allocations loop unless the caller explicitly
  920. * requests that. Wait for some write requests to complete then retry.
  921. *
  922. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  923. * <= 3, but that may not be true in other implementations.
  924. */
  925. do_retry = 0;
  926. if (!(gfp_mask & __GFP_NORETRY)) {
  927. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  928. do_retry = 1;
  929. if (gfp_mask & __GFP_NOFAIL)
  930. do_retry = 1;
  931. }
  932. if (do_retry) {
  933. blk_congestion_wait(WRITE, HZ/50);
  934. goto rebalance;
  935. }
  936. nopage:
  937. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  938. printk(KERN_WARNING "%s: page allocation failure."
  939. " order:%d, mode:0x%x\n",
  940. p->comm, order, gfp_mask);
  941. dump_stack();
  942. show_mem();
  943. }
  944. got_pg:
  945. return page;
  946. }
  947. EXPORT_SYMBOL(__alloc_pages);
  948. /*
  949. * Common helper functions.
  950. */
  951. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  952. {
  953. struct page * page;
  954. page = alloc_pages(gfp_mask, order);
  955. if (!page)
  956. return 0;
  957. return (unsigned long) page_address(page);
  958. }
  959. EXPORT_SYMBOL(__get_free_pages);
  960. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  961. {
  962. struct page * page;
  963. /*
  964. * get_zeroed_page() returns a 32-bit address, which cannot represent
  965. * a highmem page
  966. */
  967. BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  968. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  969. if (page)
  970. return (unsigned long) page_address(page);
  971. return 0;
  972. }
  973. EXPORT_SYMBOL(get_zeroed_page);
  974. void __pagevec_free(struct pagevec *pvec)
  975. {
  976. int i = pagevec_count(pvec);
  977. while (--i >= 0)
  978. free_hot_cold_page(pvec->pages[i], pvec->cold);
  979. }
  980. fastcall void __free_pages(struct page *page, unsigned int order)
  981. {
  982. if (put_page_testzero(page)) {
  983. if (order == 0)
  984. free_hot_page(page);
  985. else
  986. __free_pages_ok(page, order);
  987. }
  988. }
  989. EXPORT_SYMBOL(__free_pages);
  990. fastcall void free_pages(unsigned long addr, unsigned int order)
  991. {
  992. if (addr != 0) {
  993. BUG_ON(!virt_addr_valid((void *)addr));
  994. __free_pages(virt_to_page((void *)addr), order);
  995. }
  996. }
  997. EXPORT_SYMBOL(free_pages);
  998. /*
  999. * Total amount of free (allocatable) RAM:
  1000. */
  1001. unsigned int nr_free_pages(void)
  1002. {
  1003. unsigned int sum = 0;
  1004. struct zone *zone;
  1005. for_each_zone(zone)
  1006. sum += zone->free_pages;
  1007. return sum;
  1008. }
  1009. EXPORT_SYMBOL(nr_free_pages);
  1010. #ifdef CONFIG_NUMA
  1011. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  1012. {
  1013. unsigned int i, sum = 0;
  1014. for (i = 0; i < MAX_NR_ZONES; i++)
  1015. sum += pgdat->node_zones[i].free_pages;
  1016. return sum;
  1017. }
  1018. #endif
  1019. static unsigned int nr_free_zone_pages(int offset)
  1020. {
  1021. /* Just pick one node, since fallback list is circular */
  1022. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1023. unsigned int sum = 0;
  1024. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1025. struct zone **zonep = zonelist->zones;
  1026. struct zone *zone;
  1027. for (zone = *zonep++; zone; zone = *zonep++) {
  1028. unsigned long size = zone->present_pages;
  1029. unsigned long high = zone->pages_high;
  1030. if (size > high)
  1031. sum += size - high;
  1032. }
  1033. return sum;
  1034. }
  1035. /*
  1036. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1037. */
  1038. unsigned int nr_free_buffer_pages(void)
  1039. {
  1040. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1041. }
  1042. /*
  1043. * Amount of free RAM allocatable within all zones
  1044. */
  1045. unsigned int nr_free_pagecache_pages(void)
  1046. {
  1047. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  1048. }
  1049. #ifdef CONFIG_HIGHMEM
  1050. unsigned int nr_free_highpages (void)
  1051. {
  1052. pg_data_t *pgdat;
  1053. unsigned int pages = 0;
  1054. for_each_online_pgdat(pgdat)
  1055. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1056. return pages;
  1057. }
  1058. #endif
  1059. #ifdef CONFIG_NUMA
  1060. static void show_node(struct zone *zone)
  1061. {
  1062. printk("Node %d ", zone->zone_pgdat->node_id);
  1063. }
  1064. #else
  1065. #define show_node(zone) do { } while (0)
  1066. #endif
  1067. void si_meminfo(struct sysinfo *val)
  1068. {
  1069. val->totalram = totalram_pages;
  1070. val->sharedram = 0;
  1071. val->freeram = nr_free_pages();
  1072. val->bufferram = nr_blockdev_pages();
  1073. #ifdef CONFIG_HIGHMEM
  1074. val->totalhigh = totalhigh_pages;
  1075. val->freehigh = nr_free_highpages();
  1076. #else
  1077. val->totalhigh = 0;
  1078. val->freehigh = 0;
  1079. #endif
  1080. val->mem_unit = PAGE_SIZE;
  1081. }
  1082. EXPORT_SYMBOL(si_meminfo);
  1083. #ifdef CONFIG_NUMA
  1084. void si_meminfo_node(struct sysinfo *val, int nid)
  1085. {
  1086. pg_data_t *pgdat = NODE_DATA(nid);
  1087. val->totalram = pgdat->node_present_pages;
  1088. val->freeram = nr_free_pages_pgdat(pgdat);
  1089. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1090. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1091. val->mem_unit = PAGE_SIZE;
  1092. }
  1093. #endif
  1094. #define K(x) ((x) << (PAGE_SHIFT-10))
  1095. /*
  1096. * Show free area list (used inside shift_scroll-lock stuff)
  1097. * We also calculate the percentage fragmentation. We do this by counting the
  1098. * memory on each free list with the exception of the first item on the list.
  1099. */
  1100. void show_free_areas(void)
  1101. {
  1102. int cpu, temperature;
  1103. unsigned long active;
  1104. unsigned long inactive;
  1105. unsigned long free;
  1106. struct zone *zone;
  1107. for_each_zone(zone) {
  1108. show_node(zone);
  1109. printk("%s per-cpu:", zone->name);
  1110. if (!populated_zone(zone)) {
  1111. printk(" empty\n");
  1112. continue;
  1113. } else
  1114. printk("\n");
  1115. for_each_online_cpu(cpu) {
  1116. struct per_cpu_pageset *pageset;
  1117. pageset = zone_pcp(zone, cpu);
  1118. for (temperature = 0; temperature < 2; temperature++)
  1119. printk("cpu %d %s: high %d, batch %d used:%d\n",
  1120. cpu,
  1121. temperature ? "cold" : "hot",
  1122. pageset->pcp[temperature].high,
  1123. pageset->pcp[temperature].batch,
  1124. pageset->pcp[temperature].count);
  1125. }
  1126. }
  1127. get_zone_counts(&active, &inactive, &free);
  1128. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1129. K(nr_free_pages()),
  1130. K(nr_free_highpages()));
  1131. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1132. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1133. active,
  1134. inactive,
  1135. global_page_state(NR_FILE_DIRTY),
  1136. global_page_state(NR_WRITEBACK),
  1137. global_page_state(NR_UNSTABLE_NFS),
  1138. nr_free_pages(),
  1139. global_page_state(NR_SLAB),
  1140. global_page_state(NR_FILE_MAPPED),
  1141. global_page_state(NR_PAGETABLE));
  1142. for_each_zone(zone) {
  1143. int i;
  1144. show_node(zone);
  1145. printk("%s"
  1146. " free:%lukB"
  1147. " min:%lukB"
  1148. " low:%lukB"
  1149. " high:%lukB"
  1150. " active:%lukB"
  1151. " inactive:%lukB"
  1152. " present:%lukB"
  1153. " pages_scanned:%lu"
  1154. " all_unreclaimable? %s"
  1155. "\n",
  1156. zone->name,
  1157. K(zone->free_pages),
  1158. K(zone->pages_min),
  1159. K(zone->pages_low),
  1160. K(zone->pages_high),
  1161. K(zone->nr_active),
  1162. K(zone->nr_inactive),
  1163. K(zone->present_pages),
  1164. zone->pages_scanned,
  1165. (zone->all_unreclaimable ? "yes" : "no")
  1166. );
  1167. printk("lowmem_reserve[]:");
  1168. for (i = 0; i < MAX_NR_ZONES; i++)
  1169. printk(" %lu", zone->lowmem_reserve[i]);
  1170. printk("\n");
  1171. }
  1172. for_each_zone(zone) {
  1173. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1174. show_node(zone);
  1175. printk("%s: ", zone->name);
  1176. if (!populated_zone(zone)) {
  1177. printk("empty\n");
  1178. continue;
  1179. }
  1180. spin_lock_irqsave(&zone->lock, flags);
  1181. for (order = 0; order < MAX_ORDER; order++) {
  1182. nr[order] = zone->free_area[order].nr_free;
  1183. total += nr[order] << order;
  1184. }
  1185. spin_unlock_irqrestore(&zone->lock, flags);
  1186. for (order = 0; order < MAX_ORDER; order++)
  1187. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1188. printk("= %lukB\n", K(total));
  1189. }
  1190. show_swap_cache_info();
  1191. }
  1192. /*
  1193. * Builds allocation fallback zone lists.
  1194. *
  1195. * Add all populated zones of a node to the zonelist.
  1196. */
  1197. static int __meminit build_zonelists_node(pg_data_t *pgdat,
  1198. struct zonelist *zonelist, int nr_zones, int zone_type)
  1199. {
  1200. struct zone *zone;
  1201. BUG_ON(zone_type > ZONE_HIGHMEM);
  1202. do {
  1203. zone = pgdat->node_zones + zone_type;
  1204. if (populated_zone(zone)) {
  1205. #ifndef CONFIG_HIGHMEM
  1206. BUG_ON(zone_type > ZONE_NORMAL);
  1207. #endif
  1208. zonelist->zones[nr_zones++] = zone;
  1209. check_highest_zone(zone_type);
  1210. }
  1211. zone_type--;
  1212. } while (zone_type >= 0);
  1213. return nr_zones;
  1214. }
  1215. static inline int highest_zone(int zone_bits)
  1216. {
  1217. int res = ZONE_NORMAL;
  1218. if (zone_bits & (__force int)__GFP_HIGHMEM)
  1219. res = ZONE_HIGHMEM;
  1220. if (zone_bits & (__force int)__GFP_DMA32)
  1221. res = ZONE_DMA32;
  1222. if (zone_bits & (__force int)__GFP_DMA)
  1223. res = ZONE_DMA;
  1224. return res;
  1225. }
  1226. #ifdef CONFIG_NUMA
  1227. #define MAX_NODE_LOAD (num_online_nodes())
  1228. static int __meminitdata node_load[MAX_NUMNODES];
  1229. /**
  1230. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1231. * @node: node whose fallback list we're appending
  1232. * @used_node_mask: nodemask_t of already used nodes
  1233. *
  1234. * We use a number of factors to determine which is the next node that should
  1235. * appear on a given node's fallback list. The node should not have appeared
  1236. * already in @node's fallback list, and it should be the next closest node
  1237. * according to the distance array (which contains arbitrary distance values
  1238. * from each node to each node in the system), and should also prefer nodes
  1239. * with no CPUs, since presumably they'll have very little allocation pressure
  1240. * on them otherwise.
  1241. * It returns -1 if no node is found.
  1242. */
  1243. static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
  1244. {
  1245. int n, val;
  1246. int min_val = INT_MAX;
  1247. int best_node = -1;
  1248. /* Use the local node if we haven't already */
  1249. if (!node_isset(node, *used_node_mask)) {
  1250. node_set(node, *used_node_mask);
  1251. return node;
  1252. }
  1253. for_each_online_node(n) {
  1254. cpumask_t tmp;
  1255. /* Don't want a node to appear more than once */
  1256. if (node_isset(n, *used_node_mask))
  1257. continue;
  1258. /* Use the distance array to find the distance */
  1259. val = node_distance(node, n);
  1260. /* Penalize nodes under us ("prefer the next node") */
  1261. val += (n < node);
  1262. /* Give preference to headless and unused nodes */
  1263. tmp = node_to_cpumask(n);
  1264. if (!cpus_empty(tmp))
  1265. val += PENALTY_FOR_NODE_WITH_CPUS;
  1266. /* Slight preference for less loaded node */
  1267. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1268. val += node_load[n];
  1269. if (val < min_val) {
  1270. min_val = val;
  1271. best_node = n;
  1272. }
  1273. }
  1274. if (best_node >= 0)
  1275. node_set(best_node, *used_node_mask);
  1276. return best_node;
  1277. }
  1278. static void __meminit build_zonelists(pg_data_t *pgdat)
  1279. {
  1280. int i, j, k, node, local_node;
  1281. int prev_node, load;
  1282. struct zonelist *zonelist;
  1283. nodemask_t used_mask;
  1284. /* initialize zonelists */
  1285. for (i = 0; i < GFP_ZONETYPES; i++) {
  1286. zonelist = pgdat->node_zonelists + i;
  1287. zonelist->zones[0] = NULL;
  1288. }
  1289. /* NUMA-aware ordering of nodes */
  1290. local_node = pgdat->node_id;
  1291. load = num_online_nodes();
  1292. prev_node = local_node;
  1293. nodes_clear(used_mask);
  1294. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1295. int distance = node_distance(local_node, node);
  1296. /*
  1297. * If another node is sufficiently far away then it is better
  1298. * to reclaim pages in a zone before going off node.
  1299. */
  1300. if (distance > RECLAIM_DISTANCE)
  1301. zone_reclaim_mode = 1;
  1302. /*
  1303. * We don't want to pressure a particular node.
  1304. * So adding penalty to the first node in same
  1305. * distance group to make it round-robin.
  1306. */
  1307. if (distance != node_distance(local_node, prev_node))
  1308. node_load[node] += load;
  1309. prev_node = node;
  1310. load--;
  1311. for (i = 0; i < GFP_ZONETYPES; i++) {
  1312. zonelist = pgdat->node_zonelists + i;
  1313. for (j = 0; zonelist->zones[j] != NULL; j++);
  1314. k = highest_zone(i);
  1315. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1316. zonelist->zones[j] = NULL;
  1317. }
  1318. }
  1319. }
  1320. #else /* CONFIG_NUMA */
  1321. static void __meminit build_zonelists(pg_data_t *pgdat)
  1322. {
  1323. int i, j, k, node, local_node;
  1324. local_node = pgdat->node_id;
  1325. for (i = 0; i < GFP_ZONETYPES; i++) {
  1326. struct zonelist *zonelist;
  1327. zonelist = pgdat->node_zonelists + i;
  1328. j = 0;
  1329. k = highest_zone(i);
  1330. j = build_zonelists_node(pgdat, zonelist, j, k);
  1331. /*
  1332. * Now we build the zonelist so that it contains the zones
  1333. * of all the other nodes.
  1334. * We don't want to pressure a particular node, so when
  1335. * building the zones for node N, we make sure that the
  1336. * zones coming right after the local ones are those from
  1337. * node N+1 (modulo N)
  1338. */
  1339. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1340. if (!node_online(node))
  1341. continue;
  1342. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1343. }
  1344. for (node = 0; node < local_node; node++) {
  1345. if (!node_online(node))
  1346. continue;
  1347. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1348. }
  1349. zonelist->zones[j] = NULL;
  1350. }
  1351. }
  1352. #endif /* CONFIG_NUMA */
  1353. /* return values int ....just for stop_machine_run() */
  1354. static int __meminit __build_all_zonelists(void *dummy)
  1355. {
  1356. int nid;
  1357. for_each_online_node(nid)
  1358. build_zonelists(NODE_DATA(nid));
  1359. return 0;
  1360. }
  1361. void __meminit build_all_zonelists(void)
  1362. {
  1363. if (system_state == SYSTEM_BOOTING) {
  1364. __build_all_zonelists(0);
  1365. cpuset_init_current_mems_allowed();
  1366. } else {
  1367. /* we have to stop all cpus to guaranntee there is no user
  1368. of zonelist */
  1369. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1370. /* cpuset refresh routine should be here */
  1371. }
  1372. vm_total_pages = nr_free_pagecache_pages();
  1373. printk("Built %i zonelists. Total pages: %ld\n",
  1374. num_online_nodes(), vm_total_pages);
  1375. }
  1376. /*
  1377. * Helper functions to size the waitqueue hash table.
  1378. * Essentially these want to choose hash table sizes sufficiently
  1379. * large so that collisions trying to wait on pages are rare.
  1380. * But in fact, the number of active page waitqueues on typical
  1381. * systems is ridiculously low, less than 200. So this is even
  1382. * conservative, even though it seems large.
  1383. *
  1384. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1385. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1386. */
  1387. #define PAGES_PER_WAITQUEUE 256
  1388. #ifndef CONFIG_MEMORY_HOTPLUG
  1389. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1390. {
  1391. unsigned long size = 1;
  1392. pages /= PAGES_PER_WAITQUEUE;
  1393. while (size < pages)
  1394. size <<= 1;
  1395. /*
  1396. * Once we have dozens or even hundreds of threads sleeping
  1397. * on IO we've got bigger problems than wait queue collision.
  1398. * Limit the size of the wait table to a reasonable size.
  1399. */
  1400. size = min(size, 4096UL);
  1401. return max(size, 4UL);
  1402. }
  1403. #else
  1404. /*
  1405. * A zone's size might be changed by hot-add, so it is not possible to determine
  1406. * a suitable size for its wait_table. So we use the maximum size now.
  1407. *
  1408. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1409. *
  1410. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1411. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1412. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1413. *
  1414. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1415. * or more by the traditional way. (See above). It equals:
  1416. *
  1417. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1418. * ia64(16K page size) : = ( 8G + 4M)byte.
  1419. * powerpc (64K page size) : = (32G +16M)byte.
  1420. */
  1421. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1422. {
  1423. return 4096UL;
  1424. }
  1425. #endif
  1426. /*
  1427. * This is an integer logarithm so that shifts can be used later
  1428. * to extract the more random high bits from the multiplicative
  1429. * hash function before the remainder is taken.
  1430. */
  1431. static inline unsigned long wait_table_bits(unsigned long size)
  1432. {
  1433. return ffz(~size);
  1434. }
  1435. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1436. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1437. unsigned long *zones_size, unsigned long *zholes_size)
  1438. {
  1439. unsigned long realtotalpages, totalpages = 0;
  1440. int i;
  1441. for (i = 0; i < MAX_NR_ZONES; i++)
  1442. totalpages += zones_size[i];
  1443. pgdat->node_spanned_pages = totalpages;
  1444. realtotalpages = totalpages;
  1445. if (zholes_size)
  1446. for (i = 0; i < MAX_NR_ZONES; i++)
  1447. realtotalpages -= zholes_size[i];
  1448. pgdat->node_present_pages = realtotalpages;
  1449. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1450. }
  1451. /*
  1452. * Initially all pages are reserved - free ones are freed
  1453. * up by free_all_bootmem() once the early boot process is
  1454. * done. Non-atomic initialization, single-pass.
  1455. */
  1456. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1457. unsigned long start_pfn)
  1458. {
  1459. struct page *page;
  1460. unsigned long end_pfn = start_pfn + size;
  1461. unsigned long pfn;
  1462. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1463. if (!early_pfn_valid(pfn))
  1464. continue;
  1465. page = pfn_to_page(pfn);
  1466. set_page_links(page, zone, nid, pfn);
  1467. init_page_count(page);
  1468. reset_page_mapcount(page);
  1469. SetPageReserved(page);
  1470. INIT_LIST_HEAD(&page->lru);
  1471. #ifdef WANT_PAGE_VIRTUAL
  1472. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1473. if (!is_highmem_idx(zone))
  1474. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1475. #endif
  1476. }
  1477. }
  1478. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1479. unsigned long size)
  1480. {
  1481. int order;
  1482. for (order = 0; order < MAX_ORDER ; order++) {
  1483. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1484. zone->free_area[order].nr_free = 0;
  1485. }
  1486. }
  1487. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1488. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1489. unsigned long size)
  1490. {
  1491. unsigned long snum = pfn_to_section_nr(pfn);
  1492. unsigned long end = pfn_to_section_nr(pfn + size);
  1493. if (FLAGS_HAS_NODE)
  1494. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1495. else
  1496. for (; snum <= end; snum++)
  1497. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1498. }
  1499. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1500. #define memmap_init(size, nid, zone, start_pfn) \
  1501. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1502. #endif
  1503. static int __cpuinit zone_batchsize(struct zone *zone)
  1504. {
  1505. int batch;
  1506. /*
  1507. * The per-cpu-pages pools are set to around 1000th of the
  1508. * size of the zone. But no more than 1/2 of a meg.
  1509. *
  1510. * OK, so we don't know how big the cache is. So guess.
  1511. */
  1512. batch = zone->present_pages / 1024;
  1513. if (batch * PAGE_SIZE > 512 * 1024)
  1514. batch = (512 * 1024) / PAGE_SIZE;
  1515. batch /= 4; /* We effectively *= 4 below */
  1516. if (batch < 1)
  1517. batch = 1;
  1518. /*
  1519. * Clamp the batch to a 2^n - 1 value. Having a power
  1520. * of 2 value was found to be more likely to have
  1521. * suboptimal cache aliasing properties in some cases.
  1522. *
  1523. * For example if 2 tasks are alternately allocating
  1524. * batches of pages, one task can end up with a lot
  1525. * of pages of one half of the possible page colors
  1526. * and the other with pages of the other colors.
  1527. */
  1528. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1529. return batch;
  1530. }
  1531. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1532. {
  1533. struct per_cpu_pages *pcp;
  1534. memset(p, 0, sizeof(*p));
  1535. pcp = &p->pcp[0]; /* hot */
  1536. pcp->count = 0;
  1537. pcp->high = 6 * batch;
  1538. pcp->batch = max(1UL, 1 * batch);
  1539. INIT_LIST_HEAD(&pcp->list);
  1540. pcp = &p->pcp[1]; /* cold*/
  1541. pcp->count = 0;
  1542. pcp->high = 2 * batch;
  1543. pcp->batch = max(1UL, batch/2);
  1544. INIT_LIST_HEAD(&pcp->list);
  1545. }
  1546. /*
  1547. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  1548. * to the value high for the pageset p.
  1549. */
  1550. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  1551. unsigned long high)
  1552. {
  1553. struct per_cpu_pages *pcp;
  1554. pcp = &p->pcp[0]; /* hot list */
  1555. pcp->high = high;
  1556. pcp->batch = max(1UL, high/4);
  1557. if ((high/4) > (PAGE_SHIFT * 8))
  1558. pcp->batch = PAGE_SHIFT * 8;
  1559. }
  1560. #ifdef CONFIG_NUMA
  1561. /*
  1562. * Boot pageset table. One per cpu which is going to be used for all
  1563. * zones and all nodes. The parameters will be set in such a way
  1564. * that an item put on a list will immediately be handed over to
  1565. * the buddy list. This is safe since pageset manipulation is done
  1566. * with interrupts disabled.
  1567. *
  1568. * Some NUMA counter updates may also be caught by the boot pagesets.
  1569. *
  1570. * The boot_pagesets must be kept even after bootup is complete for
  1571. * unused processors and/or zones. They do play a role for bootstrapping
  1572. * hotplugged processors.
  1573. *
  1574. * zoneinfo_show() and maybe other functions do
  1575. * not check if the processor is online before following the pageset pointer.
  1576. * Other parts of the kernel may not check if the zone is available.
  1577. */
  1578. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  1579. /*
  1580. * Dynamically allocate memory for the
  1581. * per cpu pageset array in struct zone.
  1582. */
  1583. static int __cpuinit process_zones(int cpu)
  1584. {
  1585. struct zone *zone, *dzone;
  1586. for_each_zone(zone) {
  1587. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  1588. GFP_KERNEL, cpu_to_node(cpu));
  1589. if (!zone_pcp(zone, cpu))
  1590. goto bad;
  1591. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  1592. if (percpu_pagelist_fraction)
  1593. setup_pagelist_highmark(zone_pcp(zone, cpu),
  1594. (zone->present_pages / percpu_pagelist_fraction));
  1595. }
  1596. return 0;
  1597. bad:
  1598. for_each_zone(dzone) {
  1599. if (dzone == zone)
  1600. break;
  1601. kfree(zone_pcp(dzone, cpu));
  1602. zone_pcp(dzone, cpu) = NULL;
  1603. }
  1604. return -ENOMEM;
  1605. }
  1606. static inline void free_zone_pagesets(int cpu)
  1607. {
  1608. struct zone *zone;
  1609. for_each_zone(zone) {
  1610. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1611. zone_pcp(zone, cpu) = NULL;
  1612. kfree(pset);
  1613. }
  1614. }
  1615. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  1616. unsigned long action,
  1617. void *hcpu)
  1618. {
  1619. int cpu = (long)hcpu;
  1620. int ret = NOTIFY_OK;
  1621. switch (action) {
  1622. case CPU_UP_PREPARE:
  1623. if (process_zones(cpu))
  1624. ret = NOTIFY_BAD;
  1625. break;
  1626. case CPU_UP_CANCELED:
  1627. case CPU_DEAD:
  1628. free_zone_pagesets(cpu);
  1629. break;
  1630. default:
  1631. break;
  1632. }
  1633. return ret;
  1634. }
  1635. static struct notifier_block __cpuinitdata pageset_notifier =
  1636. { &pageset_cpuup_callback, NULL, 0 };
  1637. void __init setup_per_cpu_pageset(void)
  1638. {
  1639. int err;
  1640. /* Initialize per_cpu_pageset for cpu 0.
  1641. * A cpuup callback will do this for every cpu
  1642. * as it comes online
  1643. */
  1644. err = process_zones(smp_processor_id());
  1645. BUG_ON(err);
  1646. register_cpu_notifier(&pageset_notifier);
  1647. }
  1648. #endif
  1649. static __meminit
  1650. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1651. {
  1652. int i;
  1653. struct pglist_data *pgdat = zone->zone_pgdat;
  1654. size_t alloc_size;
  1655. /*
  1656. * The per-page waitqueue mechanism uses hashed waitqueues
  1657. * per zone.
  1658. */
  1659. zone->wait_table_hash_nr_entries =
  1660. wait_table_hash_nr_entries(zone_size_pages);
  1661. zone->wait_table_bits =
  1662. wait_table_bits(zone->wait_table_hash_nr_entries);
  1663. alloc_size = zone->wait_table_hash_nr_entries
  1664. * sizeof(wait_queue_head_t);
  1665. if (system_state == SYSTEM_BOOTING) {
  1666. zone->wait_table = (wait_queue_head_t *)
  1667. alloc_bootmem_node(pgdat, alloc_size);
  1668. } else {
  1669. /*
  1670. * This case means that a zone whose size was 0 gets new memory
  1671. * via memory hot-add.
  1672. * But it may be the case that a new node was hot-added. In
  1673. * this case vmalloc() will not be able to use this new node's
  1674. * memory - this wait_table must be initialized to use this new
  1675. * node itself as well.
  1676. * To use this new node's memory, further consideration will be
  1677. * necessary.
  1678. */
  1679. zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
  1680. }
  1681. if (!zone->wait_table)
  1682. return -ENOMEM;
  1683. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  1684. init_waitqueue_head(zone->wait_table + i);
  1685. return 0;
  1686. }
  1687. static __meminit void zone_pcp_init(struct zone *zone)
  1688. {
  1689. int cpu;
  1690. unsigned long batch = zone_batchsize(zone);
  1691. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1692. #ifdef CONFIG_NUMA
  1693. /* Early boot. Slab allocator not functional yet */
  1694. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  1695. setup_pageset(&boot_pageset[cpu],0);
  1696. #else
  1697. setup_pageset(zone_pcp(zone,cpu), batch);
  1698. #endif
  1699. }
  1700. if (zone->present_pages)
  1701. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1702. zone->name, zone->present_pages, batch);
  1703. }
  1704. __meminit int init_currently_empty_zone(struct zone *zone,
  1705. unsigned long zone_start_pfn,
  1706. unsigned long size)
  1707. {
  1708. struct pglist_data *pgdat = zone->zone_pgdat;
  1709. int ret;
  1710. ret = zone_wait_table_init(zone, size);
  1711. if (ret)
  1712. return ret;
  1713. pgdat->nr_zones = zone_idx(zone) + 1;
  1714. zone->zone_start_pfn = zone_start_pfn;
  1715. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1716. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1717. return 0;
  1718. }
  1719. /*
  1720. * Set up the zone data structures:
  1721. * - mark all pages reserved
  1722. * - mark all memory queues empty
  1723. * - clear the memory bitmaps
  1724. */
  1725. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  1726. unsigned long *zones_size, unsigned long *zholes_size)
  1727. {
  1728. unsigned long j;
  1729. int nid = pgdat->node_id;
  1730. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1731. int ret;
  1732. pgdat_resize_init(pgdat);
  1733. pgdat->nr_zones = 0;
  1734. init_waitqueue_head(&pgdat->kswapd_wait);
  1735. pgdat->kswapd_max_order = 0;
  1736. for (j = 0; j < MAX_NR_ZONES; j++) {
  1737. struct zone *zone = pgdat->node_zones + j;
  1738. unsigned long size, realsize;
  1739. realsize = size = zones_size[j];
  1740. if (zholes_size)
  1741. realsize -= zholes_size[j];
  1742. if (j < ZONE_HIGHMEM)
  1743. nr_kernel_pages += realsize;
  1744. nr_all_pages += realsize;
  1745. zone->spanned_pages = size;
  1746. zone->present_pages = realsize;
  1747. zone->name = zone_names[j];
  1748. spin_lock_init(&zone->lock);
  1749. spin_lock_init(&zone->lru_lock);
  1750. zone_seqlock_init(zone);
  1751. zone->zone_pgdat = pgdat;
  1752. zone->free_pages = 0;
  1753. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1754. zone_pcp_init(zone);
  1755. INIT_LIST_HEAD(&zone->active_list);
  1756. INIT_LIST_HEAD(&zone->inactive_list);
  1757. zone->nr_scan_active = 0;
  1758. zone->nr_scan_inactive = 0;
  1759. zone->nr_active = 0;
  1760. zone->nr_inactive = 0;
  1761. zap_zone_vm_stats(zone);
  1762. atomic_set(&zone->reclaim_in_progress, 0);
  1763. if (!size)
  1764. continue;
  1765. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1766. ret = init_currently_empty_zone(zone, zone_start_pfn, size);
  1767. BUG_ON(ret);
  1768. zone_start_pfn += size;
  1769. }
  1770. }
  1771. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1772. {
  1773. /* Skip empty nodes */
  1774. if (!pgdat->node_spanned_pages)
  1775. return;
  1776. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1777. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1778. if (!pgdat->node_mem_map) {
  1779. unsigned long size, start, end;
  1780. struct page *map;
  1781. /*
  1782. * The zone's endpoints aren't required to be MAX_ORDER
  1783. * aligned but the node_mem_map endpoints must be in order
  1784. * for the buddy allocator to function correctly.
  1785. */
  1786. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  1787. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  1788. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  1789. size = (end - start) * sizeof(struct page);
  1790. map = alloc_remap(pgdat->node_id, size);
  1791. if (!map)
  1792. map = alloc_bootmem_node(pgdat, size);
  1793. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  1794. }
  1795. #ifdef CONFIG_FLATMEM
  1796. /*
  1797. * With no DISCONTIG, the global mem_map is just set as node 0's
  1798. */
  1799. if (pgdat == NODE_DATA(0))
  1800. mem_map = NODE_DATA(0)->node_mem_map;
  1801. #endif
  1802. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1803. }
  1804. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  1805. unsigned long *zones_size, unsigned long node_start_pfn,
  1806. unsigned long *zholes_size)
  1807. {
  1808. pgdat->node_id = nid;
  1809. pgdat->node_start_pfn = node_start_pfn;
  1810. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1811. alloc_node_mem_map(pgdat);
  1812. free_area_init_core(pgdat, zones_size, zholes_size);
  1813. }
  1814. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1815. static bootmem_data_t contig_bootmem_data;
  1816. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1817. EXPORT_SYMBOL(contig_page_data);
  1818. #endif
  1819. void __init free_area_init(unsigned long *zones_size)
  1820. {
  1821. free_area_init_node(0, NODE_DATA(0), zones_size,
  1822. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1823. }
  1824. #ifdef CONFIG_HOTPLUG_CPU
  1825. static int page_alloc_cpu_notify(struct notifier_block *self,
  1826. unsigned long action, void *hcpu)
  1827. {
  1828. int cpu = (unsigned long)hcpu;
  1829. unsigned long *src, *dest;
  1830. if (action == CPU_DEAD) {
  1831. int i;
  1832. local_irq_disable();
  1833. __drain_pages(cpu);
  1834. /* Add dead cpu's page_states to our own. */
  1835. dest = (unsigned long *)&__get_cpu_var(page_states);
  1836. src = (unsigned long *)&per_cpu(page_states, cpu);
  1837. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  1838. i++) {
  1839. dest[i] += src[i];
  1840. src[i] = 0;
  1841. }
  1842. local_irq_enable();
  1843. refresh_cpu_vm_stats(cpu);
  1844. }
  1845. return NOTIFY_OK;
  1846. }
  1847. #endif /* CONFIG_HOTPLUG_CPU */
  1848. void __init page_alloc_init(void)
  1849. {
  1850. hotcpu_notifier(page_alloc_cpu_notify, 0);
  1851. }
  1852. /*
  1853. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  1854. * or min_free_kbytes changes.
  1855. */
  1856. static void calculate_totalreserve_pages(void)
  1857. {
  1858. struct pglist_data *pgdat;
  1859. unsigned long reserve_pages = 0;
  1860. int i, j;
  1861. for_each_online_pgdat(pgdat) {
  1862. for (i = 0; i < MAX_NR_ZONES; i++) {
  1863. struct zone *zone = pgdat->node_zones + i;
  1864. unsigned long max = 0;
  1865. /* Find valid and maximum lowmem_reserve in the zone */
  1866. for (j = i; j < MAX_NR_ZONES; j++) {
  1867. if (zone->lowmem_reserve[j] > max)
  1868. max = zone->lowmem_reserve[j];
  1869. }
  1870. /* we treat pages_high as reserved pages. */
  1871. max += zone->pages_high;
  1872. if (max > zone->present_pages)
  1873. max = zone->present_pages;
  1874. reserve_pages += max;
  1875. }
  1876. }
  1877. totalreserve_pages = reserve_pages;
  1878. }
  1879. /*
  1880. * setup_per_zone_lowmem_reserve - called whenever
  1881. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  1882. * has a correct pages reserved value, so an adequate number of
  1883. * pages are left in the zone after a successful __alloc_pages().
  1884. */
  1885. static void setup_per_zone_lowmem_reserve(void)
  1886. {
  1887. struct pglist_data *pgdat;
  1888. int j, idx;
  1889. for_each_online_pgdat(pgdat) {
  1890. for (j = 0; j < MAX_NR_ZONES; j++) {
  1891. struct zone *zone = pgdat->node_zones + j;
  1892. unsigned long present_pages = zone->present_pages;
  1893. zone->lowmem_reserve[j] = 0;
  1894. for (idx = j-1; idx >= 0; idx--) {
  1895. struct zone *lower_zone;
  1896. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  1897. sysctl_lowmem_reserve_ratio[idx] = 1;
  1898. lower_zone = pgdat->node_zones + idx;
  1899. lower_zone->lowmem_reserve[j] = present_pages /
  1900. sysctl_lowmem_reserve_ratio[idx];
  1901. present_pages += lower_zone->present_pages;
  1902. }
  1903. }
  1904. }
  1905. /* update totalreserve_pages */
  1906. calculate_totalreserve_pages();
  1907. }
  1908. /*
  1909. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  1910. * that the pages_{min,low,high} values for each zone are set correctly
  1911. * with respect to min_free_kbytes.
  1912. */
  1913. void setup_per_zone_pages_min(void)
  1914. {
  1915. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  1916. unsigned long lowmem_pages = 0;
  1917. struct zone *zone;
  1918. unsigned long flags;
  1919. /* Calculate total number of !ZONE_HIGHMEM pages */
  1920. for_each_zone(zone) {
  1921. if (!is_highmem(zone))
  1922. lowmem_pages += zone->present_pages;
  1923. }
  1924. for_each_zone(zone) {
  1925. u64 tmp;
  1926. spin_lock_irqsave(&zone->lru_lock, flags);
  1927. tmp = (u64)pages_min * zone->present_pages;
  1928. do_div(tmp, lowmem_pages);
  1929. if (is_highmem(zone)) {
  1930. /*
  1931. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  1932. * need highmem pages, so cap pages_min to a small
  1933. * value here.
  1934. *
  1935. * The (pages_high-pages_low) and (pages_low-pages_min)
  1936. * deltas controls asynch page reclaim, and so should
  1937. * not be capped for highmem.
  1938. */
  1939. int min_pages;
  1940. min_pages = zone->present_pages / 1024;
  1941. if (min_pages < SWAP_CLUSTER_MAX)
  1942. min_pages = SWAP_CLUSTER_MAX;
  1943. if (min_pages > 128)
  1944. min_pages = 128;
  1945. zone->pages_min = min_pages;
  1946. } else {
  1947. /*
  1948. * If it's a lowmem zone, reserve a number of pages
  1949. * proportionate to the zone's size.
  1950. */
  1951. zone->pages_min = tmp;
  1952. }
  1953. zone->pages_low = zone->pages_min + (tmp >> 2);
  1954. zone->pages_high = zone->pages_min + (tmp >> 1);
  1955. spin_unlock_irqrestore(&zone->lru_lock, flags);
  1956. }
  1957. /* update totalreserve_pages */
  1958. calculate_totalreserve_pages();
  1959. }
  1960. /*
  1961. * Initialise min_free_kbytes.
  1962. *
  1963. * For small machines we want it small (128k min). For large machines
  1964. * we want it large (64MB max). But it is not linear, because network
  1965. * bandwidth does not increase linearly with machine size. We use
  1966. *
  1967. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  1968. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  1969. *
  1970. * which yields
  1971. *
  1972. * 16MB: 512k
  1973. * 32MB: 724k
  1974. * 64MB: 1024k
  1975. * 128MB: 1448k
  1976. * 256MB: 2048k
  1977. * 512MB: 2896k
  1978. * 1024MB: 4096k
  1979. * 2048MB: 5792k
  1980. * 4096MB: 8192k
  1981. * 8192MB: 11584k
  1982. * 16384MB: 16384k
  1983. */
  1984. static int __init init_per_zone_pages_min(void)
  1985. {
  1986. unsigned long lowmem_kbytes;
  1987. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  1988. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  1989. if (min_free_kbytes < 128)
  1990. min_free_kbytes = 128;
  1991. if (min_free_kbytes > 65536)
  1992. min_free_kbytes = 65536;
  1993. setup_per_zone_pages_min();
  1994. setup_per_zone_lowmem_reserve();
  1995. return 0;
  1996. }
  1997. module_init(init_per_zone_pages_min)
  1998. /*
  1999. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2000. * that we can call two helper functions whenever min_free_kbytes
  2001. * changes.
  2002. */
  2003. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2004. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2005. {
  2006. proc_dointvec(table, write, file, buffer, length, ppos);
  2007. setup_per_zone_pages_min();
  2008. return 0;
  2009. }
  2010. /*
  2011. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2012. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2013. * whenever sysctl_lowmem_reserve_ratio changes.
  2014. *
  2015. * The reserve ratio obviously has absolutely no relation with the
  2016. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2017. * if in function of the boot time zone sizes.
  2018. */
  2019. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2020. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2021. {
  2022. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2023. setup_per_zone_lowmem_reserve();
  2024. return 0;
  2025. }
  2026. /*
  2027. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  2028. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  2029. * can have before it gets flushed back to buddy allocator.
  2030. */
  2031. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  2032. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2033. {
  2034. struct zone *zone;
  2035. unsigned int cpu;
  2036. int ret;
  2037. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2038. if (!write || (ret == -EINVAL))
  2039. return ret;
  2040. for_each_zone(zone) {
  2041. for_each_online_cpu(cpu) {
  2042. unsigned long high;
  2043. high = zone->present_pages / percpu_pagelist_fraction;
  2044. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  2045. }
  2046. }
  2047. return 0;
  2048. }
  2049. __initdata int hashdist = HASHDIST_DEFAULT;
  2050. #ifdef CONFIG_NUMA
  2051. static int __init set_hashdist(char *str)
  2052. {
  2053. if (!str)
  2054. return 0;
  2055. hashdist = simple_strtoul(str, &str, 0);
  2056. return 1;
  2057. }
  2058. __setup("hashdist=", set_hashdist);
  2059. #endif
  2060. /*
  2061. * allocate a large system hash table from bootmem
  2062. * - it is assumed that the hash table must contain an exact power-of-2
  2063. * quantity of entries
  2064. * - limit is the number of hash buckets, not the total allocation size
  2065. */
  2066. void *__init alloc_large_system_hash(const char *tablename,
  2067. unsigned long bucketsize,
  2068. unsigned long numentries,
  2069. int scale,
  2070. int flags,
  2071. unsigned int *_hash_shift,
  2072. unsigned int *_hash_mask,
  2073. unsigned long limit)
  2074. {
  2075. unsigned long long max = limit;
  2076. unsigned long log2qty, size;
  2077. void *table = NULL;
  2078. /* allow the kernel cmdline to have a say */
  2079. if (!numentries) {
  2080. /* round applicable memory size up to nearest megabyte */
  2081. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2082. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2083. numentries >>= 20 - PAGE_SHIFT;
  2084. numentries <<= 20 - PAGE_SHIFT;
  2085. /* limit to 1 bucket per 2^scale bytes of low memory */
  2086. if (scale > PAGE_SHIFT)
  2087. numentries >>= (scale - PAGE_SHIFT);
  2088. else
  2089. numentries <<= (PAGE_SHIFT - scale);
  2090. }
  2091. numentries = roundup_pow_of_two(numentries);
  2092. /* limit allocation size to 1/16 total memory by default */
  2093. if (max == 0) {
  2094. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2095. do_div(max, bucketsize);
  2096. }
  2097. if (numentries > max)
  2098. numentries = max;
  2099. log2qty = long_log2(numentries);
  2100. do {
  2101. size = bucketsize << log2qty;
  2102. if (flags & HASH_EARLY)
  2103. table = alloc_bootmem(size);
  2104. else if (hashdist)
  2105. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2106. else {
  2107. unsigned long order;
  2108. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2109. ;
  2110. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2111. }
  2112. } while (!table && size > PAGE_SIZE && --log2qty);
  2113. if (!table)
  2114. panic("Failed to allocate %s hash table\n", tablename);
  2115. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2116. tablename,
  2117. (1U << log2qty),
  2118. long_log2(size) - PAGE_SHIFT,
  2119. size);
  2120. if (_hash_shift)
  2121. *_hash_shift = log2qty;
  2122. if (_hash_mask)
  2123. *_hash_mask = (1 << log2qty) - 1;
  2124. return table;
  2125. }
  2126. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  2127. struct page *pfn_to_page(unsigned long pfn)
  2128. {
  2129. return __pfn_to_page(pfn);
  2130. }
  2131. unsigned long page_to_pfn(struct page *page)
  2132. {
  2133. return __page_to_pfn(page);
  2134. }
  2135. EXPORT_SYMBOL(pfn_to_page);
  2136. EXPORT_SYMBOL(page_to_pfn);
  2137. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */