sge.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127
  1. /*****************************************************************************
  2. * *
  3. * File: sge.c *
  4. * $Revision: 1.26 $ *
  5. * $Date: 2005/06/21 18:29:48 $ *
  6. * Description: *
  7. * DMA engine. *
  8. * part of the Chelsio 10Gb Ethernet Driver. *
  9. * *
  10. * This program is free software; you can redistribute it and/or modify *
  11. * it under the terms of the GNU General Public License, version 2, as *
  12. * published by the Free Software Foundation. *
  13. * *
  14. * You should have received a copy of the GNU General Public License along *
  15. * with this program; if not, write to the Free Software Foundation, Inc., *
  16. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
  17. * *
  18. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
  19. * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
  20. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
  21. * *
  22. * http://www.chelsio.com *
  23. * *
  24. * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
  25. * All rights reserved. *
  26. * *
  27. * Maintainers: maintainers@chelsio.com *
  28. * *
  29. * Authors: Dimitrios Michailidis <dm@chelsio.com> *
  30. * Tina Yang <tainay@chelsio.com> *
  31. * Felix Marti <felix@chelsio.com> *
  32. * Scott Bardone <sbardone@chelsio.com> *
  33. * Kurt Ottaway <kottaway@chelsio.com> *
  34. * Frank DiMambro <frank@chelsio.com> *
  35. * *
  36. * History: *
  37. * *
  38. ****************************************************************************/
  39. #include "common.h"
  40. #include <linux/types.h>
  41. #include <linux/errno.h>
  42. #include <linux/pci.h>
  43. #include <linux/ktime.h>
  44. #include <linux/netdevice.h>
  45. #include <linux/etherdevice.h>
  46. #include <linux/if_vlan.h>
  47. #include <linux/skbuff.h>
  48. #include <linux/init.h>
  49. #include <linux/mm.h>
  50. #include <linux/tcp.h>
  51. #include <linux/ip.h>
  52. #include <linux/in.h>
  53. #include <linux/if_arp.h>
  54. #include <linux/slab.h>
  55. #include <linux/prefetch.h>
  56. #include "cpl5_cmd.h"
  57. #include "sge.h"
  58. #include "regs.h"
  59. #include "espi.h"
  60. /* This belongs in if_ether.h */
  61. #define ETH_P_CPL5 0xf
  62. #define SGE_CMDQ_N 2
  63. #define SGE_FREELQ_N 2
  64. #define SGE_CMDQ0_E_N 1024
  65. #define SGE_CMDQ1_E_N 128
  66. #define SGE_FREEL_SIZE 4096
  67. #define SGE_JUMBO_FREEL_SIZE 512
  68. #define SGE_FREEL_REFILL_THRESH 16
  69. #define SGE_RESPQ_E_N 1024
  70. #define SGE_INTRTIMER_NRES 1000
  71. #define SGE_RX_SM_BUF_SIZE 1536
  72. #define SGE_TX_DESC_MAX_PLEN 16384
  73. #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
  74. /*
  75. * Period of the TX buffer reclaim timer. This timer does not need to run
  76. * frequently as TX buffers are usually reclaimed by new TX packets.
  77. */
  78. #define TX_RECLAIM_PERIOD (HZ / 4)
  79. #define M_CMD_LEN 0x7fffffff
  80. #define V_CMD_LEN(v) (v)
  81. #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
  82. #define V_CMD_GEN1(v) ((v) << 31)
  83. #define V_CMD_GEN2(v) (v)
  84. #define F_CMD_DATAVALID (1 << 1)
  85. #define F_CMD_SOP (1 << 2)
  86. #define V_CMD_EOP(v) ((v) << 3)
  87. /*
  88. * Command queue, receive buffer list, and response queue descriptors.
  89. */
  90. #if defined(__BIG_ENDIAN_BITFIELD)
  91. struct cmdQ_e {
  92. u32 addr_lo;
  93. u32 len_gen;
  94. u32 flags;
  95. u32 addr_hi;
  96. };
  97. struct freelQ_e {
  98. u32 addr_lo;
  99. u32 len_gen;
  100. u32 gen2;
  101. u32 addr_hi;
  102. };
  103. struct respQ_e {
  104. u32 Qsleeping : 4;
  105. u32 Cmdq1CreditReturn : 5;
  106. u32 Cmdq1DmaComplete : 5;
  107. u32 Cmdq0CreditReturn : 5;
  108. u32 Cmdq0DmaComplete : 5;
  109. u32 FreelistQid : 2;
  110. u32 CreditValid : 1;
  111. u32 DataValid : 1;
  112. u32 Offload : 1;
  113. u32 Eop : 1;
  114. u32 Sop : 1;
  115. u32 GenerationBit : 1;
  116. u32 BufferLength;
  117. };
  118. #elif defined(__LITTLE_ENDIAN_BITFIELD)
  119. struct cmdQ_e {
  120. u32 len_gen;
  121. u32 addr_lo;
  122. u32 addr_hi;
  123. u32 flags;
  124. };
  125. struct freelQ_e {
  126. u32 len_gen;
  127. u32 addr_lo;
  128. u32 addr_hi;
  129. u32 gen2;
  130. };
  131. struct respQ_e {
  132. u32 BufferLength;
  133. u32 GenerationBit : 1;
  134. u32 Sop : 1;
  135. u32 Eop : 1;
  136. u32 Offload : 1;
  137. u32 DataValid : 1;
  138. u32 CreditValid : 1;
  139. u32 FreelistQid : 2;
  140. u32 Cmdq0DmaComplete : 5;
  141. u32 Cmdq0CreditReturn : 5;
  142. u32 Cmdq1DmaComplete : 5;
  143. u32 Cmdq1CreditReturn : 5;
  144. u32 Qsleeping : 4;
  145. } ;
  146. #endif
  147. /*
  148. * SW Context Command and Freelist Queue Descriptors
  149. */
  150. struct cmdQ_ce {
  151. struct sk_buff *skb;
  152. DEFINE_DMA_UNMAP_ADDR(dma_addr);
  153. DEFINE_DMA_UNMAP_LEN(dma_len);
  154. };
  155. struct freelQ_ce {
  156. struct sk_buff *skb;
  157. DEFINE_DMA_UNMAP_ADDR(dma_addr);
  158. DEFINE_DMA_UNMAP_LEN(dma_len);
  159. };
  160. /*
  161. * SW command, freelist and response rings
  162. */
  163. struct cmdQ {
  164. unsigned long status; /* HW DMA fetch status */
  165. unsigned int in_use; /* # of in-use command descriptors */
  166. unsigned int size; /* # of descriptors */
  167. unsigned int processed; /* total # of descs HW has processed */
  168. unsigned int cleaned; /* total # of descs SW has reclaimed */
  169. unsigned int stop_thres; /* SW TX queue suspend threshold */
  170. u16 pidx; /* producer index (SW) */
  171. u16 cidx; /* consumer index (HW) */
  172. u8 genbit; /* current generation (=valid) bit */
  173. u8 sop; /* is next entry start of packet? */
  174. struct cmdQ_e *entries; /* HW command descriptor Q */
  175. struct cmdQ_ce *centries; /* SW command context descriptor Q */
  176. dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
  177. spinlock_t lock; /* Lock to protect cmdQ enqueuing */
  178. };
  179. struct freelQ {
  180. unsigned int credits; /* # of available RX buffers */
  181. unsigned int size; /* free list capacity */
  182. u16 pidx; /* producer index (SW) */
  183. u16 cidx; /* consumer index (HW) */
  184. u16 rx_buffer_size; /* Buffer size on this free list */
  185. u16 dma_offset; /* DMA offset to align IP headers */
  186. u16 recycleq_idx; /* skb recycle q to use */
  187. u8 genbit; /* current generation (=valid) bit */
  188. struct freelQ_e *entries; /* HW freelist descriptor Q */
  189. struct freelQ_ce *centries; /* SW freelist context descriptor Q */
  190. dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
  191. };
  192. struct respQ {
  193. unsigned int credits; /* credits to be returned to SGE */
  194. unsigned int size; /* # of response Q descriptors */
  195. u16 cidx; /* consumer index (SW) */
  196. u8 genbit; /* current generation(=valid) bit */
  197. struct respQ_e *entries; /* HW response descriptor Q */
  198. dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
  199. };
  200. /* Bit flags for cmdQ.status */
  201. enum {
  202. CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
  203. CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
  204. };
  205. /* T204 TX SW scheduler */
  206. /* Per T204 TX port */
  207. struct sched_port {
  208. unsigned int avail; /* available bits - quota */
  209. unsigned int drain_bits_per_1024ns; /* drain rate */
  210. unsigned int speed; /* drain rate, mbps */
  211. unsigned int mtu; /* mtu size */
  212. struct sk_buff_head skbq; /* pending skbs */
  213. };
  214. /* Per T204 device */
  215. struct sched {
  216. ktime_t last_updated; /* last time quotas were computed */
  217. unsigned int max_avail; /* max bits to be sent to any port */
  218. unsigned int port; /* port index (round robin ports) */
  219. unsigned int num; /* num skbs in per port queues */
  220. struct sched_port p[MAX_NPORTS];
  221. struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
  222. };
  223. static void restart_sched(unsigned long);
  224. /*
  225. * Main SGE data structure
  226. *
  227. * Interrupts are handled by a single CPU and it is likely that on a MP system
  228. * the application is migrated to another CPU. In that scenario, we try to
  229. * separate the RX(in irq context) and TX state in order to decrease memory
  230. * contention.
  231. */
  232. struct sge {
  233. struct adapter *adapter; /* adapter backpointer */
  234. struct net_device *netdev; /* netdevice backpointer */
  235. struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
  236. struct respQ respQ; /* response Q */
  237. unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
  238. unsigned int rx_pkt_pad; /* RX padding for L2 packets */
  239. unsigned int jumbo_fl; /* jumbo freelist Q index */
  240. unsigned int intrtimer_nres; /* no-resource interrupt timer */
  241. unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
  242. struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
  243. struct timer_list espibug_timer;
  244. unsigned long espibug_timeout;
  245. struct sk_buff *espibug_skb[MAX_NPORTS];
  246. u32 sge_control; /* shadow value of sge control reg */
  247. struct sge_intr_counts stats;
  248. struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
  249. struct sched *tx_sched;
  250. struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
  251. };
  252. static const u8 ch_mac_addr[ETH_ALEN] = {
  253. 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
  254. };
  255. /*
  256. * stop tasklet and free all pending skb's
  257. */
  258. static void tx_sched_stop(struct sge *sge)
  259. {
  260. struct sched *s = sge->tx_sched;
  261. int i;
  262. tasklet_kill(&s->sched_tsk);
  263. for (i = 0; i < MAX_NPORTS; i++)
  264. __skb_queue_purge(&s->p[s->port].skbq);
  265. }
  266. /*
  267. * t1_sched_update_parms() is called when the MTU or link speed changes. It
  268. * re-computes scheduler parameters to scope with the change.
  269. */
  270. unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
  271. unsigned int mtu, unsigned int speed)
  272. {
  273. struct sched *s = sge->tx_sched;
  274. struct sched_port *p = &s->p[port];
  275. unsigned int max_avail_segs;
  276. pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
  277. if (speed)
  278. p->speed = speed;
  279. if (mtu)
  280. p->mtu = mtu;
  281. if (speed || mtu) {
  282. unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
  283. do_div(drain, (p->mtu + 50) * 1000);
  284. p->drain_bits_per_1024ns = (unsigned int) drain;
  285. if (p->speed < 1000)
  286. p->drain_bits_per_1024ns =
  287. 90 * p->drain_bits_per_1024ns / 100;
  288. }
  289. if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
  290. p->drain_bits_per_1024ns -= 16;
  291. s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
  292. max_avail_segs = max(1U, 4096 / (p->mtu - 40));
  293. } else {
  294. s->max_avail = 16384;
  295. max_avail_segs = max(1U, 9000 / (p->mtu - 40));
  296. }
  297. pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
  298. "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
  299. p->speed, s->max_avail, max_avail_segs,
  300. p->drain_bits_per_1024ns);
  301. return max_avail_segs * (p->mtu - 40);
  302. }
  303. #if 0
  304. /*
  305. * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
  306. * data that can be pushed per port.
  307. */
  308. void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
  309. {
  310. struct sched *s = sge->tx_sched;
  311. unsigned int i;
  312. s->max_avail = val;
  313. for (i = 0; i < MAX_NPORTS; i++)
  314. t1_sched_update_parms(sge, i, 0, 0);
  315. }
  316. /*
  317. * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
  318. * is draining.
  319. */
  320. void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
  321. unsigned int val)
  322. {
  323. struct sched *s = sge->tx_sched;
  324. struct sched_port *p = &s->p[port];
  325. p->drain_bits_per_1024ns = val * 1024 / 1000;
  326. t1_sched_update_parms(sge, port, 0, 0);
  327. }
  328. #endif /* 0 */
  329. /*
  330. * tx_sched_init() allocates resources and does basic initialization.
  331. */
  332. static int tx_sched_init(struct sge *sge)
  333. {
  334. struct sched *s;
  335. int i;
  336. s = kzalloc(sizeof (struct sched), GFP_KERNEL);
  337. if (!s)
  338. return -ENOMEM;
  339. pr_debug("tx_sched_init\n");
  340. tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
  341. sge->tx_sched = s;
  342. for (i = 0; i < MAX_NPORTS; i++) {
  343. skb_queue_head_init(&s->p[i].skbq);
  344. t1_sched_update_parms(sge, i, 1500, 1000);
  345. }
  346. return 0;
  347. }
  348. /*
  349. * sched_update_avail() computes the delta since the last time it was called
  350. * and updates the per port quota (number of bits that can be sent to the any
  351. * port).
  352. */
  353. static inline int sched_update_avail(struct sge *sge)
  354. {
  355. struct sched *s = sge->tx_sched;
  356. ktime_t now = ktime_get();
  357. unsigned int i;
  358. long long delta_time_ns;
  359. delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
  360. pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
  361. if (delta_time_ns < 15000)
  362. return 0;
  363. for (i = 0; i < MAX_NPORTS; i++) {
  364. struct sched_port *p = &s->p[i];
  365. unsigned int delta_avail;
  366. delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
  367. p->avail = min(p->avail + delta_avail, s->max_avail);
  368. }
  369. s->last_updated = now;
  370. return 1;
  371. }
  372. /*
  373. * sched_skb() is called from two different places. In the tx path, any
  374. * packet generating load on an output port will call sched_skb()
  375. * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
  376. * context (skb == NULL).
  377. * The scheduler only returns a skb (which will then be sent) if the
  378. * length of the skb is <= the current quota of the output port.
  379. */
  380. static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
  381. unsigned int credits)
  382. {
  383. struct sched *s = sge->tx_sched;
  384. struct sk_buff_head *skbq;
  385. unsigned int i, len, update = 1;
  386. pr_debug("sched_skb %p\n", skb);
  387. if (!skb) {
  388. if (!s->num)
  389. return NULL;
  390. } else {
  391. skbq = &s->p[skb->dev->if_port].skbq;
  392. __skb_queue_tail(skbq, skb);
  393. s->num++;
  394. skb = NULL;
  395. }
  396. if (credits < MAX_SKB_FRAGS + 1)
  397. goto out;
  398. again:
  399. for (i = 0; i < MAX_NPORTS; i++) {
  400. s->port = (s->port + 1) & (MAX_NPORTS - 1);
  401. skbq = &s->p[s->port].skbq;
  402. skb = skb_peek(skbq);
  403. if (!skb)
  404. continue;
  405. len = skb->len;
  406. if (len <= s->p[s->port].avail) {
  407. s->p[s->port].avail -= len;
  408. s->num--;
  409. __skb_unlink(skb, skbq);
  410. goto out;
  411. }
  412. skb = NULL;
  413. }
  414. if (update-- && sched_update_avail(sge))
  415. goto again;
  416. out:
  417. /* If there are more pending skbs, we use the hardware to schedule us
  418. * again.
  419. */
  420. if (s->num && !skb) {
  421. struct cmdQ *q = &sge->cmdQ[0];
  422. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  423. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  424. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  425. writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
  426. }
  427. }
  428. pr_debug("sched_skb ret %p\n", skb);
  429. return skb;
  430. }
  431. /*
  432. * PIO to indicate that memory mapped Q contains valid descriptor(s).
  433. */
  434. static inline void doorbell_pio(struct adapter *adapter, u32 val)
  435. {
  436. wmb();
  437. writel(val, adapter->regs + A_SG_DOORBELL);
  438. }
  439. /*
  440. * Frees all RX buffers on the freelist Q. The caller must make sure that
  441. * the SGE is turned off before calling this function.
  442. */
  443. static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
  444. {
  445. unsigned int cidx = q->cidx;
  446. while (q->credits--) {
  447. struct freelQ_ce *ce = &q->centries[cidx];
  448. pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
  449. dma_unmap_len(ce, dma_len),
  450. PCI_DMA_FROMDEVICE);
  451. dev_kfree_skb(ce->skb);
  452. ce->skb = NULL;
  453. if (++cidx == q->size)
  454. cidx = 0;
  455. }
  456. }
  457. /*
  458. * Free RX free list and response queue resources.
  459. */
  460. static void free_rx_resources(struct sge *sge)
  461. {
  462. struct pci_dev *pdev = sge->adapter->pdev;
  463. unsigned int size, i;
  464. if (sge->respQ.entries) {
  465. size = sizeof(struct respQ_e) * sge->respQ.size;
  466. pci_free_consistent(pdev, size, sge->respQ.entries,
  467. sge->respQ.dma_addr);
  468. }
  469. for (i = 0; i < SGE_FREELQ_N; i++) {
  470. struct freelQ *q = &sge->freelQ[i];
  471. if (q->centries) {
  472. free_freelQ_buffers(pdev, q);
  473. kfree(q->centries);
  474. }
  475. if (q->entries) {
  476. size = sizeof(struct freelQ_e) * q->size;
  477. pci_free_consistent(pdev, size, q->entries,
  478. q->dma_addr);
  479. }
  480. }
  481. }
  482. /*
  483. * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
  484. * response queue.
  485. */
  486. static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
  487. {
  488. struct pci_dev *pdev = sge->adapter->pdev;
  489. unsigned int size, i;
  490. for (i = 0; i < SGE_FREELQ_N; i++) {
  491. struct freelQ *q = &sge->freelQ[i];
  492. q->genbit = 1;
  493. q->size = p->freelQ_size[i];
  494. q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
  495. size = sizeof(struct freelQ_e) * q->size;
  496. q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
  497. if (!q->entries)
  498. goto err_no_mem;
  499. size = sizeof(struct freelQ_ce) * q->size;
  500. q->centries = kzalloc(size, GFP_KERNEL);
  501. if (!q->centries)
  502. goto err_no_mem;
  503. }
  504. /*
  505. * Calculate the buffer sizes for the two free lists. FL0 accommodates
  506. * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
  507. * including all the sk_buff overhead.
  508. *
  509. * Note: For T2 FL0 and FL1 are reversed.
  510. */
  511. sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
  512. sizeof(struct cpl_rx_data) +
  513. sge->freelQ[!sge->jumbo_fl].dma_offset;
  514. size = (16 * 1024) -
  515. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  516. sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
  517. /*
  518. * Setup which skb recycle Q should be used when recycling buffers from
  519. * each free list.
  520. */
  521. sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
  522. sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
  523. sge->respQ.genbit = 1;
  524. sge->respQ.size = SGE_RESPQ_E_N;
  525. sge->respQ.credits = 0;
  526. size = sizeof(struct respQ_e) * sge->respQ.size;
  527. sge->respQ.entries =
  528. pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
  529. if (!sge->respQ.entries)
  530. goto err_no_mem;
  531. return 0;
  532. err_no_mem:
  533. free_rx_resources(sge);
  534. return -ENOMEM;
  535. }
  536. /*
  537. * Reclaims n TX descriptors and frees the buffers associated with them.
  538. */
  539. static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
  540. {
  541. struct cmdQ_ce *ce;
  542. struct pci_dev *pdev = sge->adapter->pdev;
  543. unsigned int cidx = q->cidx;
  544. q->in_use -= n;
  545. ce = &q->centries[cidx];
  546. while (n--) {
  547. if (likely(dma_unmap_len(ce, dma_len))) {
  548. pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
  549. dma_unmap_len(ce, dma_len),
  550. PCI_DMA_TODEVICE);
  551. if (q->sop)
  552. q->sop = 0;
  553. }
  554. if (ce->skb) {
  555. dev_kfree_skb_any(ce->skb);
  556. q->sop = 1;
  557. }
  558. ce++;
  559. if (++cidx == q->size) {
  560. cidx = 0;
  561. ce = q->centries;
  562. }
  563. }
  564. q->cidx = cidx;
  565. }
  566. /*
  567. * Free TX resources.
  568. *
  569. * Assumes that SGE is stopped and all interrupts are disabled.
  570. */
  571. static void free_tx_resources(struct sge *sge)
  572. {
  573. struct pci_dev *pdev = sge->adapter->pdev;
  574. unsigned int size, i;
  575. for (i = 0; i < SGE_CMDQ_N; i++) {
  576. struct cmdQ *q = &sge->cmdQ[i];
  577. if (q->centries) {
  578. if (q->in_use)
  579. free_cmdQ_buffers(sge, q, q->in_use);
  580. kfree(q->centries);
  581. }
  582. if (q->entries) {
  583. size = sizeof(struct cmdQ_e) * q->size;
  584. pci_free_consistent(pdev, size, q->entries,
  585. q->dma_addr);
  586. }
  587. }
  588. }
  589. /*
  590. * Allocates basic TX resources, consisting of memory mapped command Qs.
  591. */
  592. static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
  593. {
  594. struct pci_dev *pdev = sge->adapter->pdev;
  595. unsigned int size, i;
  596. for (i = 0; i < SGE_CMDQ_N; i++) {
  597. struct cmdQ *q = &sge->cmdQ[i];
  598. q->genbit = 1;
  599. q->sop = 1;
  600. q->size = p->cmdQ_size[i];
  601. q->in_use = 0;
  602. q->status = 0;
  603. q->processed = q->cleaned = 0;
  604. q->stop_thres = 0;
  605. spin_lock_init(&q->lock);
  606. size = sizeof(struct cmdQ_e) * q->size;
  607. q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
  608. if (!q->entries)
  609. goto err_no_mem;
  610. size = sizeof(struct cmdQ_ce) * q->size;
  611. q->centries = kzalloc(size, GFP_KERNEL);
  612. if (!q->centries)
  613. goto err_no_mem;
  614. }
  615. /*
  616. * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
  617. * only. For queue 0 set the stop threshold so we can handle one more
  618. * packet from each port, plus reserve an additional 24 entries for
  619. * Ethernet packets only. Queue 1 never suspends nor do we reserve
  620. * space for Ethernet packets.
  621. */
  622. sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
  623. (MAX_SKB_FRAGS + 1);
  624. return 0;
  625. err_no_mem:
  626. free_tx_resources(sge);
  627. return -ENOMEM;
  628. }
  629. static inline void setup_ring_params(struct adapter *adapter, u64 addr,
  630. u32 size, int base_reg_lo,
  631. int base_reg_hi, int size_reg)
  632. {
  633. writel((u32)addr, adapter->regs + base_reg_lo);
  634. writel(addr >> 32, adapter->regs + base_reg_hi);
  635. writel(size, adapter->regs + size_reg);
  636. }
  637. /*
  638. * Enable/disable VLAN acceleration.
  639. */
  640. void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
  641. {
  642. struct sge *sge = adapter->sge;
  643. if (features & NETIF_F_HW_VLAN_RX)
  644. sge->sge_control |= F_VLAN_XTRACT;
  645. else
  646. sge->sge_control &= ~F_VLAN_XTRACT;
  647. if (adapter->open_device_map) {
  648. writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
  649. readl(adapter->regs + A_SG_CONTROL); /* flush */
  650. }
  651. }
  652. /*
  653. * Programs the various SGE registers. However, the engine is not yet enabled,
  654. * but sge->sge_control is setup and ready to go.
  655. */
  656. static void configure_sge(struct sge *sge, struct sge_params *p)
  657. {
  658. struct adapter *ap = sge->adapter;
  659. writel(0, ap->regs + A_SG_CONTROL);
  660. setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
  661. A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
  662. setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
  663. A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
  664. setup_ring_params(ap, sge->freelQ[0].dma_addr,
  665. sge->freelQ[0].size, A_SG_FL0BASELWR,
  666. A_SG_FL0BASEUPR, A_SG_FL0SIZE);
  667. setup_ring_params(ap, sge->freelQ[1].dma_addr,
  668. sge->freelQ[1].size, A_SG_FL1BASELWR,
  669. A_SG_FL1BASEUPR, A_SG_FL1SIZE);
  670. /* The threshold comparison uses <. */
  671. writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
  672. setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
  673. A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
  674. writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
  675. sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
  676. F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
  677. V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
  678. V_RX_PKT_OFFSET(sge->rx_pkt_pad);
  679. #if defined(__BIG_ENDIAN_BITFIELD)
  680. sge->sge_control |= F_ENABLE_BIG_ENDIAN;
  681. #endif
  682. /* Initialize no-resource timer */
  683. sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
  684. t1_sge_set_coalesce_params(sge, p);
  685. }
  686. /*
  687. * Return the payload capacity of the jumbo free-list buffers.
  688. */
  689. static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
  690. {
  691. return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
  692. sge->freelQ[sge->jumbo_fl].dma_offset -
  693. sizeof(struct cpl_rx_data);
  694. }
  695. /*
  696. * Frees all SGE related resources and the sge structure itself
  697. */
  698. void t1_sge_destroy(struct sge *sge)
  699. {
  700. int i;
  701. for_each_port(sge->adapter, i)
  702. free_percpu(sge->port_stats[i]);
  703. kfree(sge->tx_sched);
  704. free_tx_resources(sge);
  705. free_rx_resources(sge);
  706. kfree(sge);
  707. }
  708. /*
  709. * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
  710. * context Q) until the Q is full or alloc_skb fails.
  711. *
  712. * It is possible that the generation bits already match, indicating that the
  713. * buffer is already valid and nothing needs to be done. This happens when we
  714. * copied a received buffer into a new sk_buff during the interrupt processing.
  715. *
  716. * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
  717. * we specify a RX_OFFSET in order to make sure that the IP header is 4B
  718. * aligned.
  719. */
  720. static void refill_free_list(struct sge *sge, struct freelQ *q)
  721. {
  722. struct pci_dev *pdev = sge->adapter->pdev;
  723. struct freelQ_ce *ce = &q->centries[q->pidx];
  724. struct freelQ_e *e = &q->entries[q->pidx];
  725. unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
  726. while (q->credits < q->size) {
  727. struct sk_buff *skb;
  728. dma_addr_t mapping;
  729. skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
  730. if (!skb)
  731. break;
  732. skb_reserve(skb, q->dma_offset);
  733. mapping = pci_map_single(pdev, skb->data, dma_len,
  734. PCI_DMA_FROMDEVICE);
  735. skb_reserve(skb, sge->rx_pkt_pad);
  736. ce->skb = skb;
  737. dma_unmap_addr_set(ce, dma_addr, mapping);
  738. dma_unmap_len_set(ce, dma_len, dma_len);
  739. e->addr_lo = (u32)mapping;
  740. e->addr_hi = (u64)mapping >> 32;
  741. e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
  742. wmb();
  743. e->gen2 = V_CMD_GEN2(q->genbit);
  744. e++;
  745. ce++;
  746. if (++q->pidx == q->size) {
  747. q->pidx = 0;
  748. q->genbit ^= 1;
  749. ce = q->centries;
  750. e = q->entries;
  751. }
  752. q->credits++;
  753. }
  754. }
  755. /*
  756. * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
  757. * of both rings, we go into 'few interrupt mode' in order to give the system
  758. * time to free up resources.
  759. */
  760. static void freelQs_empty(struct sge *sge)
  761. {
  762. struct adapter *adapter = sge->adapter;
  763. u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
  764. u32 irqholdoff_reg;
  765. refill_free_list(sge, &sge->freelQ[0]);
  766. refill_free_list(sge, &sge->freelQ[1]);
  767. if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
  768. sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
  769. irq_reg |= F_FL_EXHAUSTED;
  770. irqholdoff_reg = sge->fixed_intrtimer;
  771. } else {
  772. /* Clear the F_FL_EXHAUSTED interrupts for now */
  773. irq_reg &= ~F_FL_EXHAUSTED;
  774. irqholdoff_reg = sge->intrtimer_nres;
  775. }
  776. writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
  777. writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
  778. /* We reenable the Qs to force a freelist GTS interrupt later */
  779. doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
  780. }
  781. #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
  782. #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
  783. #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
  784. F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
  785. /*
  786. * Disable SGE Interrupts
  787. */
  788. void t1_sge_intr_disable(struct sge *sge)
  789. {
  790. u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
  791. writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
  792. writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
  793. }
  794. /*
  795. * Enable SGE interrupts.
  796. */
  797. void t1_sge_intr_enable(struct sge *sge)
  798. {
  799. u32 en = SGE_INT_ENABLE;
  800. u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
  801. if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
  802. en &= ~F_PACKET_TOO_BIG;
  803. writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
  804. writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
  805. }
  806. /*
  807. * Clear SGE interrupts.
  808. */
  809. void t1_sge_intr_clear(struct sge *sge)
  810. {
  811. writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
  812. writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
  813. }
  814. /*
  815. * SGE 'Error' interrupt handler
  816. */
  817. int t1_sge_intr_error_handler(struct sge *sge)
  818. {
  819. struct adapter *adapter = sge->adapter;
  820. u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
  821. if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
  822. cause &= ~F_PACKET_TOO_BIG;
  823. if (cause & F_RESPQ_EXHAUSTED)
  824. sge->stats.respQ_empty++;
  825. if (cause & F_RESPQ_OVERFLOW) {
  826. sge->stats.respQ_overflow++;
  827. pr_alert("%s: SGE response queue overflow\n",
  828. adapter->name);
  829. }
  830. if (cause & F_FL_EXHAUSTED) {
  831. sge->stats.freelistQ_empty++;
  832. freelQs_empty(sge);
  833. }
  834. if (cause & F_PACKET_TOO_BIG) {
  835. sge->stats.pkt_too_big++;
  836. pr_alert("%s: SGE max packet size exceeded\n",
  837. adapter->name);
  838. }
  839. if (cause & F_PACKET_MISMATCH) {
  840. sge->stats.pkt_mismatch++;
  841. pr_alert("%s: SGE packet mismatch\n", adapter->name);
  842. }
  843. if (cause & SGE_INT_FATAL)
  844. t1_fatal_err(adapter);
  845. writel(cause, adapter->regs + A_SG_INT_CAUSE);
  846. return 0;
  847. }
  848. const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
  849. {
  850. return &sge->stats;
  851. }
  852. void t1_sge_get_port_stats(const struct sge *sge, int port,
  853. struct sge_port_stats *ss)
  854. {
  855. int cpu;
  856. memset(ss, 0, sizeof(*ss));
  857. for_each_possible_cpu(cpu) {
  858. struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
  859. ss->rx_cso_good += st->rx_cso_good;
  860. ss->tx_cso += st->tx_cso;
  861. ss->tx_tso += st->tx_tso;
  862. ss->tx_need_hdrroom += st->tx_need_hdrroom;
  863. ss->vlan_xtract += st->vlan_xtract;
  864. ss->vlan_insert += st->vlan_insert;
  865. }
  866. }
  867. /**
  868. * recycle_fl_buf - recycle a free list buffer
  869. * @fl: the free list
  870. * @idx: index of buffer to recycle
  871. *
  872. * Recycles the specified buffer on the given free list by adding it at
  873. * the next available slot on the list.
  874. */
  875. static void recycle_fl_buf(struct freelQ *fl, int idx)
  876. {
  877. struct freelQ_e *from = &fl->entries[idx];
  878. struct freelQ_e *to = &fl->entries[fl->pidx];
  879. fl->centries[fl->pidx] = fl->centries[idx];
  880. to->addr_lo = from->addr_lo;
  881. to->addr_hi = from->addr_hi;
  882. to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
  883. wmb();
  884. to->gen2 = V_CMD_GEN2(fl->genbit);
  885. fl->credits++;
  886. if (++fl->pidx == fl->size) {
  887. fl->pidx = 0;
  888. fl->genbit ^= 1;
  889. }
  890. }
  891. static int copybreak __read_mostly = 256;
  892. module_param(copybreak, int, 0);
  893. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  894. /**
  895. * get_packet - return the next ingress packet buffer
  896. * @pdev: the PCI device that received the packet
  897. * @fl: the SGE free list holding the packet
  898. * @len: the actual packet length, excluding any SGE padding
  899. *
  900. * Get the next packet from a free list and complete setup of the
  901. * sk_buff. If the packet is small we make a copy and recycle the
  902. * original buffer, otherwise we use the original buffer itself. If a
  903. * positive drop threshold is supplied packets are dropped and their
  904. * buffers recycled if (a) the number of remaining buffers is under the
  905. * threshold and the packet is too big to copy, or (b) the packet should
  906. * be copied but there is no memory for the copy.
  907. */
  908. static inline struct sk_buff *get_packet(struct pci_dev *pdev,
  909. struct freelQ *fl, unsigned int len)
  910. {
  911. struct sk_buff *skb;
  912. const struct freelQ_ce *ce = &fl->centries[fl->cidx];
  913. if (len < copybreak) {
  914. skb = alloc_skb(len + 2, GFP_ATOMIC);
  915. if (!skb)
  916. goto use_orig_buf;
  917. skb_reserve(skb, 2); /* align IP header */
  918. skb_put(skb, len);
  919. pci_dma_sync_single_for_cpu(pdev,
  920. dma_unmap_addr(ce, dma_addr),
  921. dma_unmap_len(ce, dma_len),
  922. PCI_DMA_FROMDEVICE);
  923. skb_copy_from_linear_data(ce->skb, skb->data, len);
  924. pci_dma_sync_single_for_device(pdev,
  925. dma_unmap_addr(ce, dma_addr),
  926. dma_unmap_len(ce, dma_len),
  927. PCI_DMA_FROMDEVICE);
  928. recycle_fl_buf(fl, fl->cidx);
  929. return skb;
  930. }
  931. use_orig_buf:
  932. if (fl->credits < 2) {
  933. recycle_fl_buf(fl, fl->cidx);
  934. return NULL;
  935. }
  936. pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
  937. dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
  938. skb = ce->skb;
  939. prefetch(skb->data);
  940. skb_put(skb, len);
  941. return skb;
  942. }
  943. /**
  944. * unexpected_offload - handle an unexpected offload packet
  945. * @adapter: the adapter
  946. * @fl: the free list that received the packet
  947. *
  948. * Called when we receive an unexpected offload packet (e.g., the TOE
  949. * function is disabled or the card is a NIC). Prints a message and
  950. * recycles the buffer.
  951. */
  952. static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
  953. {
  954. struct freelQ_ce *ce = &fl->centries[fl->cidx];
  955. struct sk_buff *skb = ce->skb;
  956. pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
  957. dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
  958. pr_err("%s: unexpected offload packet, cmd %u\n",
  959. adapter->name, *skb->data);
  960. recycle_fl_buf(fl, fl->cidx);
  961. }
  962. /*
  963. * T1/T2 SGE limits the maximum DMA size per TX descriptor to
  964. * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
  965. * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
  966. * Note that the *_large_page_tx_descs stuff will be optimized out when
  967. * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
  968. *
  969. * compute_large_page_descs() computes how many additional descriptors are
  970. * required to break down the stack's request.
  971. */
  972. static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
  973. {
  974. unsigned int count = 0;
  975. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
  976. unsigned int nfrags = skb_shinfo(skb)->nr_frags;
  977. unsigned int i, len = skb_headlen(skb);
  978. while (len > SGE_TX_DESC_MAX_PLEN) {
  979. count++;
  980. len -= SGE_TX_DESC_MAX_PLEN;
  981. }
  982. for (i = 0; nfrags--; i++) {
  983. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  984. len = skb_frag_size(frag);
  985. while (len > SGE_TX_DESC_MAX_PLEN) {
  986. count++;
  987. len -= SGE_TX_DESC_MAX_PLEN;
  988. }
  989. }
  990. }
  991. return count;
  992. }
  993. /*
  994. * Write a cmdQ entry.
  995. *
  996. * Since this function writes the 'flags' field, it must not be used to
  997. * write the first cmdQ entry.
  998. */
  999. static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
  1000. unsigned int len, unsigned int gen,
  1001. unsigned int eop)
  1002. {
  1003. BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
  1004. e->addr_lo = (u32)mapping;
  1005. e->addr_hi = (u64)mapping >> 32;
  1006. e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
  1007. e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
  1008. }
  1009. /*
  1010. * See comment for previous function.
  1011. *
  1012. * write_tx_descs_large_page() writes additional SGE tx descriptors if
  1013. * *desc_len exceeds HW's capability.
  1014. */
  1015. static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
  1016. struct cmdQ_e **e,
  1017. struct cmdQ_ce **ce,
  1018. unsigned int *gen,
  1019. dma_addr_t *desc_mapping,
  1020. unsigned int *desc_len,
  1021. unsigned int nfrags,
  1022. struct cmdQ *q)
  1023. {
  1024. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
  1025. struct cmdQ_e *e1 = *e;
  1026. struct cmdQ_ce *ce1 = *ce;
  1027. while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
  1028. *desc_len -= SGE_TX_DESC_MAX_PLEN;
  1029. write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
  1030. *gen, nfrags == 0 && *desc_len == 0);
  1031. ce1->skb = NULL;
  1032. dma_unmap_len_set(ce1, dma_len, 0);
  1033. *desc_mapping += SGE_TX_DESC_MAX_PLEN;
  1034. if (*desc_len) {
  1035. ce1++;
  1036. e1++;
  1037. if (++pidx == q->size) {
  1038. pidx = 0;
  1039. *gen ^= 1;
  1040. ce1 = q->centries;
  1041. e1 = q->entries;
  1042. }
  1043. }
  1044. }
  1045. *e = e1;
  1046. *ce = ce1;
  1047. }
  1048. return pidx;
  1049. }
  1050. /*
  1051. * Write the command descriptors to transmit the given skb starting at
  1052. * descriptor pidx with the given generation.
  1053. */
  1054. static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
  1055. unsigned int pidx, unsigned int gen,
  1056. struct cmdQ *q)
  1057. {
  1058. dma_addr_t mapping, desc_mapping;
  1059. struct cmdQ_e *e, *e1;
  1060. struct cmdQ_ce *ce;
  1061. unsigned int i, flags, first_desc_len, desc_len,
  1062. nfrags = skb_shinfo(skb)->nr_frags;
  1063. e = e1 = &q->entries[pidx];
  1064. ce = &q->centries[pidx];
  1065. mapping = pci_map_single(adapter->pdev, skb->data,
  1066. skb_headlen(skb), PCI_DMA_TODEVICE);
  1067. desc_mapping = mapping;
  1068. desc_len = skb_headlen(skb);
  1069. flags = F_CMD_DATAVALID | F_CMD_SOP |
  1070. V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
  1071. V_CMD_GEN2(gen);
  1072. first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
  1073. desc_len : SGE_TX_DESC_MAX_PLEN;
  1074. e->addr_lo = (u32)desc_mapping;
  1075. e->addr_hi = (u64)desc_mapping >> 32;
  1076. e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
  1077. ce->skb = NULL;
  1078. dma_unmap_len_set(ce, dma_len, 0);
  1079. if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
  1080. desc_len > SGE_TX_DESC_MAX_PLEN) {
  1081. desc_mapping += first_desc_len;
  1082. desc_len -= first_desc_len;
  1083. e1++;
  1084. ce++;
  1085. if (++pidx == q->size) {
  1086. pidx = 0;
  1087. gen ^= 1;
  1088. e1 = q->entries;
  1089. ce = q->centries;
  1090. }
  1091. pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
  1092. &desc_mapping, &desc_len,
  1093. nfrags, q);
  1094. if (likely(desc_len))
  1095. write_tx_desc(e1, desc_mapping, desc_len, gen,
  1096. nfrags == 0);
  1097. }
  1098. ce->skb = NULL;
  1099. dma_unmap_addr_set(ce, dma_addr, mapping);
  1100. dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
  1101. for (i = 0; nfrags--; i++) {
  1102. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1103. e1++;
  1104. ce++;
  1105. if (++pidx == q->size) {
  1106. pidx = 0;
  1107. gen ^= 1;
  1108. e1 = q->entries;
  1109. ce = q->centries;
  1110. }
  1111. mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
  1112. skb_frag_size(frag), DMA_TO_DEVICE);
  1113. desc_mapping = mapping;
  1114. desc_len = skb_frag_size(frag);
  1115. pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
  1116. &desc_mapping, &desc_len,
  1117. nfrags, q);
  1118. if (likely(desc_len))
  1119. write_tx_desc(e1, desc_mapping, desc_len, gen,
  1120. nfrags == 0);
  1121. ce->skb = NULL;
  1122. dma_unmap_addr_set(ce, dma_addr, mapping);
  1123. dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
  1124. }
  1125. ce->skb = skb;
  1126. wmb();
  1127. e->flags = flags;
  1128. }
  1129. /*
  1130. * Clean up completed Tx buffers.
  1131. */
  1132. static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
  1133. {
  1134. unsigned int reclaim = q->processed - q->cleaned;
  1135. if (reclaim) {
  1136. pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
  1137. q->processed, q->cleaned);
  1138. free_cmdQ_buffers(sge, q, reclaim);
  1139. q->cleaned += reclaim;
  1140. }
  1141. }
  1142. /*
  1143. * Called from tasklet. Checks the scheduler for any
  1144. * pending skbs that can be sent.
  1145. */
  1146. static void restart_sched(unsigned long arg)
  1147. {
  1148. struct sge *sge = (struct sge *) arg;
  1149. struct adapter *adapter = sge->adapter;
  1150. struct cmdQ *q = &sge->cmdQ[0];
  1151. struct sk_buff *skb;
  1152. unsigned int credits, queued_skb = 0;
  1153. spin_lock(&q->lock);
  1154. reclaim_completed_tx(sge, q);
  1155. credits = q->size - q->in_use;
  1156. pr_debug("restart_sched credits=%d\n", credits);
  1157. while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
  1158. unsigned int genbit, pidx, count;
  1159. count = 1 + skb_shinfo(skb)->nr_frags;
  1160. count += compute_large_page_tx_descs(skb);
  1161. q->in_use += count;
  1162. genbit = q->genbit;
  1163. pidx = q->pidx;
  1164. q->pidx += count;
  1165. if (q->pidx >= q->size) {
  1166. q->pidx -= q->size;
  1167. q->genbit ^= 1;
  1168. }
  1169. write_tx_descs(adapter, skb, pidx, genbit, q);
  1170. credits = q->size - q->in_use;
  1171. queued_skb = 1;
  1172. }
  1173. if (queued_skb) {
  1174. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1175. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  1176. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1177. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1178. }
  1179. }
  1180. spin_unlock(&q->lock);
  1181. }
  1182. /**
  1183. * sge_rx - process an ingress ethernet packet
  1184. * @sge: the sge structure
  1185. * @fl: the free list that contains the packet buffer
  1186. * @len: the packet length
  1187. *
  1188. * Process an ingress ethernet pakcet and deliver it to the stack.
  1189. */
  1190. static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
  1191. {
  1192. struct sk_buff *skb;
  1193. const struct cpl_rx_pkt *p;
  1194. struct adapter *adapter = sge->adapter;
  1195. struct sge_port_stats *st;
  1196. struct net_device *dev;
  1197. skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
  1198. if (unlikely(!skb)) {
  1199. sge->stats.rx_drops++;
  1200. return;
  1201. }
  1202. p = (const struct cpl_rx_pkt *) skb->data;
  1203. if (p->iff >= adapter->params.nports) {
  1204. kfree_skb(skb);
  1205. return;
  1206. }
  1207. __skb_pull(skb, sizeof(*p));
  1208. st = this_cpu_ptr(sge->port_stats[p->iff]);
  1209. dev = adapter->port[p->iff].dev;
  1210. skb->protocol = eth_type_trans(skb, dev);
  1211. if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
  1212. skb->protocol == htons(ETH_P_IP) &&
  1213. (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
  1214. ++st->rx_cso_good;
  1215. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1216. } else
  1217. skb_checksum_none_assert(skb);
  1218. if (p->vlan_valid) {
  1219. st->vlan_xtract++;
  1220. __vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
  1221. }
  1222. netif_receive_skb(skb);
  1223. }
  1224. /*
  1225. * Returns true if a command queue has enough available descriptors that
  1226. * we can resume Tx operation after temporarily disabling its packet queue.
  1227. */
  1228. static inline int enough_free_Tx_descs(const struct cmdQ *q)
  1229. {
  1230. unsigned int r = q->processed - q->cleaned;
  1231. return q->in_use - r < (q->size >> 1);
  1232. }
  1233. /*
  1234. * Called when sufficient space has become available in the SGE command queues
  1235. * after the Tx packet schedulers have been suspended to restart the Tx path.
  1236. */
  1237. static void restart_tx_queues(struct sge *sge)
  1238. {
  1239. struct adapter *adap = sge->adapter;
  1240. int i;
  1241. if (!enough_free_Tx_descs(&sge->cmdQ[0]))
  1242. return;
  1243. for_each_port(adap, i) {
  1244. struct net_device *nd = adap->port[i].dev;
  1245. if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
  1246. netif_running(nd)) {
  1247. sge->stats.cmdQ_restarted[2]++;
  1248. netif_wake_queue(nd);
  1249. }
  1250. }
  1251. }
  1252. /*
  1253. * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
  1254. * information.
  1255. */
  1256. static unsigned int update_tx_info(struct adapter *adapter,
  1257. unsigned int flags,
  1258. unsigned int pr0)
  1259. {
  1260. struct sge *sge = adapter->sge;
  1261. struct cmdQ *cmdq = &sge->cmdQ[0];
  1262. cmdq->processed += pr0;
  1263. if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
  1264. freelQs_empty(sge);
  1265. flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
  1266. }
  1267. if (flags & F_CMDQ0_ENABLE) {
  1268. clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
  1269. if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
  1270. !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
  1271. set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
  1272. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1273. }
  1274. if (sge->tx_sched)
  1275. tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
  1276. flags &= ~F_CMDQ0_ENABLE;
  1277. }
  1278. if (unlikely(sge->stopped_tx_queues != 0))
  1279. restart_tx_queues(sge);
  1280. return flags;
  1281. }
  1282. /*
  1283. * Process SGE responses, up to the supplied budget. Returns the number of
  1284. * responses processed. A negative budget is effectively unlimited.
  1285. */
  1286. static int process_responses(struct adapter *adapter, int budget)
  1287. {
  1288. struct sge *sge = adapter->sge;
  1289. struct respQ *q = &sge->respQ;
  1290. struct respQ_e *e = &q->entries[q->cidx];
  1291. int done = 0;
  1292. unsigned int flags = 0;
  1293. unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
  1294. while (done < budget && e->GenerationBit == q->genbit) {
  1295. flags |= e->Qsleeping;
  1296. cmdq_processed[0] += e->Cmdq0CreditReturn;
  1297. cmdq_processed[1] += e->Cmdq1CreditReturn;
  1298. /* We batch updates to the TX side to avoid cacheline
  1299. * ping-pong of TX state information on MP where the sender
  1300. * might run on a different CPU than this function...
  1301. */
  1302. if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
  1303. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1304. cmdq_processed[0] = 0;
  1305. }
  1306. if (unlikely(cmdq_processed[1] > 16)) {
  1307. sge->cmdQ[1].processed += cmdq_processed[1];
  1308. cmdq_processed[1] = 0;
  1309. }
  1310. if (likely(e->DataValid)) {
  1311. struct freelQ *fl = &sge->freelQ[e->FreelistQid];
  1312. BUG_ON(!e->Sop || !e->Eop);
  1313. if (unlikely(e->Offload))
  1314. unexpected_offload(adapter, fl);
  1315. else
  1316. sge_rx(sge, fl, e->BufferLength);
  1317. ++done;
  1318. /*
  1319. * Note: this depends on each packet consuming a
  1320. * single free-list buffer; cf. the BUG above.
  1321. */
  1322. if (++fl->cidx == fl->size)
  1323. fl->cidx = 0;
  1324. prefetch(fl->centries[fl->cidx].skb);
  1325. if (unlikely(--fl->credits <
  1326. fl->size - SGE_FREEL_REFILL_THRESH))
  1327. refill_free_list(sge, fl);
  1328. } else
  1329. sge->stats.pure_rsps++;
  1330. e++;
  1331. if (unlikely(++q->cidx == q->size)) {
  1332. q->cidx = 0;
  1333. q->genbit ^= 1;
  1334. e = q->entries;
  1335. }
  1336. prefetch(e);
  1337. if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
  1338. writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
  1339. q->credits = 0;
  1340. }
  1341. }
  1342. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1343. sge->cmdQ[1].processed += cmdq_processed[1];
  1344. return done;
  1345. }
  1346. static inline int responses_pending(const struct adapter *adapter)
  1347. {
  1348. const struct respQ *Q = &adapter->sge->respQ;
  1349. const struct respQ_e *e = &Q->entries[Q->cidx];
  1350. return e->GenerationBit == Q->genbit;
  1351. }
  1352. /*
  1353. * A simpler version of process_responses() that handles only pure (i.e.,
  1354. * non data-carrying) responses. Such respones are too light-weight to justify
  1355. * calling a softirq when using NAPI, so we handle them specially in hard
  1356. * interrupt context. The function is called with a pointer to a response,
  1357. * which the caller must ensure is a valid pure response. Returns 1 if it
  1358. * encounters a valid data-carrying response, 0 otherwise.
  1359. */
  1360. static int process_pure_responses(struct adapter *adapter)
  1361. {
  1362. struct sge *sge = adapter->sge;
  1363. struct respQ *q = &sge->respQ;
  1364. struct respQ_e *e = &q->entries[q->cidx];
  1365. const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
  1366. unsigned int flags = 0;
  1367. unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
  1368. prefetch(fl->centries[fl->cidx].skb);
  1369. if (e->DataValid)
  1370. return 1;
  1371. do {
  1372. flags |= e->Qsleeping;
  1373. cmdq_processed[0] += e->Cmdq0CreditReturn;
  1374. cmdq_processed[1] += e->Cmdq1CreditReturn;
  1375. e++;
  1376. if (unlikely(++q->cidx == q->size)) {
  1377. q->cidx = 0;
  1378. q->genbit ^= 1;
  1379. e = q->entries;
  1380. }
  1381. prefetch(e);
  1382. if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
  1383. writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
  1384. q->credits = 0;
  1385. }
  1386. sge->stats.pure_rsps++;
  1387. } while (e->GenerationBit == q->genbit && !e->DataValid);
  1388. flags = update_tx_info(adapter, flags, cmdq_processed[0]);
  1389. sge->cmdQ[1].processed += cmdq_processed[1];
  1390. return e->GenerationBit == q->genbit;
  1391. }
  1392. /*
  1393. * Handler for new data events when using NAPI. This does not need any locking
  1394. * or protection from interrupts as data interrupts are off at this point and
  1395. * other adapter interrupts do not interfere.
  1396. */
  1397. int t1_poll(struct napi_struct *napi, int budget)
  1398. {
  1399. struct adapter *adapter = container_of(napi, struct adapter, napi);
  1400. int work_done = process_responses(adapter, budget);
  1401. if (likely(work_done < budget)) {
  1402. napi_complete(napi);
  1403. writel(adapter->sge->respQ.cidx,
  1404. adapter->regs + A_SG_SLEEPING);
  1405. }
  1406. return work_done;
  1407. }
  1408. irqreturn_t t1_interrupt(int irq, void *data)
  1409. {
  1410. struct adapter *adapter = data;
  1411. struct sge *sge = adapter->sge;
  1412. int handled;
  1413. if (likely(responses_pending(adapter))) {
  1414. writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
  1415. if (napi_schedule_prep(&adapter->napi)) {
  1416. if (process_pure_responses(adapter))
  1417. __napi_schedule(&adapter->napi);
  1418. else {
  1419. /* no data, no NAPI needed */
  1420. writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
  1421. /* undo schedule_prep */
  1422. napi_enable(&adapter->napi);
  1423. }
  1424. }
  1425. return IRQ_HANDLED;
  1426. }
  1427. spin_lock(&adapter->async_lock);
  1428. handled = t1_slow_intr_handler(adapter);
  1429. spin_unlock(&adapter->async_lock);
  1430. if (!handled)
  1431. sge->stats.unhandled_irqs++;
  1432. return IRQ_RETVAL(handled != 0);
  1433. }
  1434. /*
  1435. * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
  1436. *
  1437. * The code figures out how many entries the sk_buff will require in the
  1438. * cmdQ and updates the cmdQ data structure with the state once the enqueue
  1439. * has complete. Then, it doesn't access the global structure anymore, but
  1440. * uses the corresponding fields on the stack. In conjunction with a spinlock
  1441. * around that code, we can make the function reentrant without holding the
  1442. * lock when we actually enqueue (which might be expensive, especially on
  1443. * architectures with IO MMUs).
  1444. *
  1445. * This runs with softirqs disabled.
  1446. */
  1447. static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
  1448. unsigned int qid, struct net_device *dev)
  1449. {
  1450. struct sge *sge = adapter->sge;
  1451. struct cmdQ *q = &sge->cmdQ[qid];
  1452. unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
  1453. if (!spin_trylock(&q->lock))
  1454. return NETDEV_TX_LOCKED;
  1455. reclaim_completed_tx(sge, q);
  1456. pidx = q->pidx;
  1457. credits = q->size - q->in_use;
  1458. count = 1 + skb_shinfo(skb)->nr_frags;
  1459. count += compute_large_page_tx_descs(skb);
  1460. /* Ethernet packet */
  1461. if (unlikely(credits < count)) {
  1462. if (!netif_queue_stopped(dev)) {
  1463. netif_stop_queue(dev);
  1464. set_bit(dev->if_port, &sge->stopped_tx_queues);
  1465. sge->stats.cmdQ_full[2]++;
  1466. pr_err("%s: Tx ring full while queue awake!\n",
  1467. adapter->name);
  1468. }
  1469. spin_unlock(&q->lock);
  1470. return NETDEV_TX_BUSY;
  1471. }
  1472. if (unlikely(credits - count < q->stop_thres)) {
  1473. netif_stop_queue(dev);
  1474. set_bit(dev->if_port, &sge->stopped_tx_queues);
  1475. sge->stats.cmdQ_full[2]++;
  1476. }
  1477. /* T204 cmdQ0 skbs that are destined for a certain port have to go
  1478. * through the scheduler.
  1479. */
  1480. if (sge->tx_sched && !qid && skb->dev) {
  1481. use_sched:
  1482. use_sched_skb = 1;
  1483. /* Note that the scheduler might return a different skb than
  1484. * the one passed in.
  1485. */
  1486. skb = sched_skb(sge, skb, credits);
  1487. if (!skb) {
  1488. spin_unlock(&q->lock);
  1489. return NETDEV_TX_OK;
  1490. }
  1491. pidx = q->pidx;
  1492. count = 1 + skb_shinfo(skb)->nr_frags;
  1493. count += compute_large_page_tx_descs(skb);
  1494. }
  1495. q->in_use += count;
  1496. genbit = q->genbit;
  1497. pidx = q->pidx;
  1498. q->pidx += count;
  1499. if (q->pidx >= q->size) {
  1500. q->pidx -= q->size;
  1501. q->genbit ^= 1;
  1502. }
  1503. spin_unlock(&q->lock);
  1504. write_tx_descs(adapter, skb, pidx, genbit, q);
  1505. /*
  1506. * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
  1507. * the doorbell if the Q is asleep. There is a natural race, where
  1508. * the hardware is going to sleep just after we checked, however,
  1509. * then the interrupt handler will detect the outstanding TX packet
  1510. * and ring the doorbell for us.
  1511. */
  1512. if (qid)
  1513. doorbell_pio(adapter, F_CMDQ1_ENABLE);
  1514. else {
  1515. clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1516. if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
  1517. set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
  1518. writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
  1519. }
  1520. }
  1521. if (use_sched_skb) {
  1522. if (spin_trylock(&q->lock)) {
  1523. credits = q->size - q->in_use;
  1524. skb = NULL;
  1525. goto use_sched;
  1526. }
  1527. }
  1528. return NETDEV_TX_OK;
  1529. }
  1530. #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
  1531. /*
  1532. * eth_hdr_len - return the length of an Ethernet header
  1533. * @data: pointer to the start of the Ethernet header
  1534. *
  1535. * Returns the length of an Ethernet header, including optional VLAN tag.
  1536. */
  1537. static inline int eth_hdr_len(const void *data)
  1538. {
  1539. const struct ethhdr *e = data;
  1540. return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
  1541. }
  1542. /*
  1543. * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
  1544. */
  1545. netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1546. {
  1547. struct adapter *adapter = dev->ml_priv;
  1548. struct sge *sge = adapter->sge;
  1549. struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
  1550. struct cpl_tx_pkt *cpl;
  1551. struct sk_buff *orig_skb = skb;
  1552. int ret;
  1553. if (skb->protocol == htons(ETH_P_CPL5))
  1554. goto send;
  1555. /*
  1556. * We are using a non-standard hard_header_len.
  1557. * Allocate more header room in the rare cases it is not big enough.
  1558. */
  1559. if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
  1560. skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
  1561. ++st->tx_need_hdrroom;
  1562. dev_kfree_skb_any(orig_skb);
  1563. if (!skb)
  1564. return NETDEV_TX_OK;
  1565. }
  1566. if (skb_shinfo(skb)->gso_size) {
  1567. int eth_type;
  1568. struct cpl_tx_pkt_lso *hdr;
  1569. ++st->tx_tso;
  1570. eth_type = skb_network_offset(skb) == ETH_HLEN ?
  1571. CPL_ETH_II : CPL_ETH_II_VLAN;
  1572. hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
  1573. hdr->opcode = CPL_TX_PKT_LSO;
  1574. hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
  1575. hdr->ip_hdr_words = ip_hdr(skb)->ihl;
  1576. hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
  1577. hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
  1578. skb_shinfo(skb)->gso_size));
  1579. hdr->len = htonl(skb->len - sizeof(*hdr));
  1580. cpl = (struct cpl_tx_pkt *)hdr;
  1581. } else {
  1582. /*
  1583. * Packets shorter than ETH_HLEN can break the MAC, drop them
  1584. * early. Also, we may get oversized packets because some
  1585. * parts of the kernel don't handle our unusual hard_header_len
  1586. * right, drop those too.
  1587. */
  1588. if (unlikely(skb->len < ETH_HLEN ||
  1589. skb->len > dev->mtu + eth_hdr_len(skb->data))) {
  1590. pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
  1591. skb->len, eth_hdr_len(skb->data), dev->mtu);
  1592. dev_kfree_skb_any(skb);
  1593. return NETDEV_TX_OK;
  1594. }
  1595. if (skb->ip_summed == CHECKSUM_PARTIAL &&
  1596. ip_hdr(skb)->protocol == IPPROTO_UDP) {
  1597. if (unlikely(skb_checksum_help(skb))) {
  1598. pr_debug("%s: unable to do udp checksum\n", dev->name);
  1599. dev_kfree_skb_any(skb);
  1600. return NETDEV_TX_OK;
  1601. }
  1602. }
  1603. /* Hmmm, assuming to catch the gratious arp... and we'll use
  1604. * it to flush out stuck espi packets...
  1605. */
  1606. if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
  1607. if (skb->protocol == htons(ETH_P_ARP) &&
  1608. arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
  1609. adapter->sge->espibug_skb[dev->if_port] = skb;
  1610. /* We want to re-use this skb later. We
  1611. * simply bump the reference count and it
  1612. * will not be freed...
  1613. */
  1614. skb = skb_get(skb);
  1615. }
  1616. }
  1617. cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
  1618. cpl->opcode = CPL_TX_PKT;
  1619. cpl->ip_csum_dis = 1; /* SW calculates IP csum */
  1620. cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
  1621. /* the length field isn't used so don't bother setting it */
  1622. st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
  1623. }
  1624. cpl->iff = dev->if_port;
  1625. if (vlan_tx_tag_present(skb)) {
  1626. cpl->vlan_valid = 1;
  1627. cpl->vlan = htons(vlan_tx_tag_get(skb));
  1628. st->vlan_insert++;
  1629. } else
  1630. cpl->vlan_valid = 0;
  1631. send:
  1632. ret = t1_sge_tx(skb, adapter, 0, dev);
  1633. /* If transmit busy, and we reallocated skb's due to headroom limit,
  1634. * then silently discard to avoid leak.
  1635. */
  1636. if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
  1637. dev_kfree_skb_any(skb);
  1638. ret = NETDEV_TX_OK;
  1639. }
  1640. return ret;
  1641. }
  1642. /*
  1643. * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
  1644. */
  1645. static void sge_tx_reclaim_cb(unsigned long data)
  1646. {
  1647. int i;
  1648. struct sge *sge = (struct sge *)data;
  1649. for (i = 0; i < SGE_CMDQ_N; ++i) {
  1650. struct cmdQ *q = &sge->cmdQ[i];
  1651. if (!spin_trylock(&q->lock))
  1652. continue;
  1653. reclaim_completed_tx(sge, q);
  1654. if (i == 0 && q->in_use) { /* flush pending credits */
  1655. writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
  1656. }
  1657. spin_unlock(&q->lock);
  1658. }
  1659. mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  1660. }
  1661. /*
  1662. * Propagate changes of the SGE coalescing parameters to the HW.
  1663. */
  1664. int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
  1665. {
  1666. sge->fixed_intrtimer = p->rx_coalesce_usecs *
  1667. core_ticks_per_usec(sge->adapter);
  1668. writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
  1669. return 0;
  1670. }
  1671. /*
  1672. * Allocates both RX and TX resources and configures the SGE. However,
  1673. * the hardware is not enabled yet.
  1674. */
  1675. int t1_sge_configure(struct sge *sge, struct sge_params *p)
  1676. {
  1677. if (alloc_rx_resources(sge, p))
  1678. return -ENOMEM;
  1679. if (alloc_tx_resources(sge, p)) {
  1680. free_rx_resources(sge);
  1681. return -ENOMEM;
  1682. }
  1683. configure_sge(sge, p);
  1684. /*
  1685. * Now that we have sized the free lists calculate the payload
  1686. * capacity of the large buffers. Other parts of the driver use
  1687. * this to set the max offload coalescing size so that RX packets
  1688. * do not overflow our large buffers.
  1689. */
  1690. p->large_buf_capacity = jumbo_payload_capacity(sge);
  1691. return 0;
  1692. }
  1693. /*
  1694. * Disables the DMA engine.
  1695. */
  1696. void t1_sge_stop(struct sge *sge)
  1697. {
  1698. int i;
  1699. writel(0, sge->adapter->regs + A_SG_CONTROL);
  1700. readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
  1701. if (is_T2(sge->adapter))
  1702. del_timer_sync(&sge->espibug_timer);
  1703. del_timer_sync(&sge->tx_reclaim_timer);
  1704. if (sge->tx_sched)
  1705. tx_sched_stop(sge);
  1706. for (i = 0; i < MAX_NPORTS; i++)
  1707. kfree_skb(sge->espibug_skb[i]);
  1708. }
  1709. /*
  1710. * Enables the DMA engine.
  1711. */
  1712. void t1_sge_start(struct sge *sge)
  1713. {
  1714. refill_free_list(sge, &sge->freelQ[0]);
  1715. refill_free_list(sge, &sge->freelQ[1]);
  1716. writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
  1717. doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
  1718. readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
  1719. mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
  1720. if (is_T2(sge->adapter))
  1721. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1722. }
  1723. /*
  1724. * Callback for the T2 ESPI 'stuck packet feature' workaorund
  1725. */
  1726. static void espibug_workaround_t204(unsigned long data)
  1727. {
  1728. struct adapter *adapter = (struct adapter *)data;
  1729. struct sge *sge = adapter->sge;
  1730. unsigned int nports = adapter->params.nports;
  1731. u32 seop[MAX_NPORTS];
  1732. if (adapter->open_device_map & PORT_MASK) {
  1733. int i;
  1734. if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
  1735. return;
  1736. for (i = 0; i < nports; i++) {
  1737. struct sk_buff *skb = sge->espibug_skb[i];
  1738. if (!netif_running(adapter->port[i].dev) ||
  1739. netif_queue_stopped(adapter->port[i].dev) ||
  1740. !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
  1741. continue;
  1742. if (!skb->cb[0]) {
  1743. skb_copy_to_linear_data_offset(skb,
  1744. sizeof(struct cpl_tx_pkt),
  1745. ch_mac_addr,
  1746. ETH_ALEN);
  1747. skb_copy_to_linear_data_offset(skb,
  1748. skb->len - 10,
  1749. ch_mac_addr,
  1750. ETH_ALEN);
  1751. skb->cb[0] = 0xff;
  1752. }
  1753. /* bump the reference count to avoid freeing of
  1754. * the skb once the DMA has completed.
  1755. */
  1756. skb = skb_get(skb);
  1757. t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
  1758. }
  1759. }
  1760. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1761. }
  1762. static void espibug_workaround(unsigned long data)
  1763. {
  1764. struct adapter *adapter = (struct adapter *)data;
  1765. struct sge *sge = adapter->sge;
  1766. if (netif_running(adapter->port[0].dev)) {
  1767. struct sk_buff *skb = sge->espibug_skb[0];
  1768. u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
  1769. if ((seop & 0xfff0fff) == 0xfff && skb) {
  1770. if (!skb->cb[0]) {
  1771. skb_copy_to_linear_data_offset(skb,
  1772. sizeof(struct cpl_tx_pkt),
  1773. ch_mac_addr,
  1774. ETH_ALEN);
  1775. skb_copy_to_linear_data_offset(skb,
  1776. skb->len - 10,
  1777. ch_mac_addr,
  1778. ETH_ALEN);
  1779. skb->cb[0] = 0xff;
  1780. }
  1781. /* bump the reference count to avoid freeing of the
  1782. * skb once the DMA has completed.
  1783. */
  1784. skb = skb_get(skb);
  1785. t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
  1786. }
  1787. }
  1788. mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
  1789. }
  1790. /*
  1791. * Creates a t1_sge structure and returns suggested resource parameters.
  1792. */
  1793. struct sge *t1_sge_create(struct adapter *adapter,
  1794. struct sge_params *p)
  1795. {
  1796. struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
  1797. int i;
  1798. if (!sge)
  1799. return NULL;
  1800. sge->adapter = adapter;
  1801. sge->netdev = adapter->port[0].dev;
  1802. sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
  1803. sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
  1804. for_each_port(adapter, i) {
  1805. sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
  1806. if (!sge->port_stats[i])
  1807. goto nomem_port;
  1808. }
  1809. init_timer(&sge->tx_reclaim_timer);
  1810. sge->tx_reclaim_timer.data = (unsigned long)sge;
  1811. sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
  1812. if (is_T2(sge->adapter)) {
  1813. init_timer(&sge->espibug_timer);
  1814. if (adapter->params.nports > 1) {
  1815. tx_sched_init(sge);
  1816. sge->espibug_timer.function = espibug_workaround_t204;
  1817. } else
  1818. sge->espibug_timer.function = espibug_workaround;
  1819. sge->espibug_timer.data = (unsigned long)sge->adapter;
  1820. sge->espibug_timeout = 1;
  1821. /* for T204, every 10ms */
  1822. if (adapter->params.nports > 1)
  1823. sge->espibug_timeout = HZ/100;
  1824. }
  1825. p->cmdQ_size[0] = SGE_CMDQ0_E_N;
  1826. p->cmdQ_size[1] = SGE_CMDQ1_E_N;
  1827. p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
  1828. p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
  1829. if (sge->tx_sched) {
  1830. if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
  1831. p->rx_coalesce_usecs = 15;
  1832. else
  1833. p->rx_coalesce_usecs = 50;
  1834. } else
  1835. p->rx_coalesce_usecs = 50;
  1836. p->coalesce_enable = 0;
  1837. p->sample_interval_usecs = 0;
  1838. return sge;
  1839. nomem_port:
  1840. while (i >= 0) {
  1841. free_percpu(sge->port_stats[i]);
  1842. --i;
  1843. }
  1844. kfree(sge);
  1845. return NULL;
  1846. }