messenger.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
  29. #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
  30. #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
  31. #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
  32. #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
  33. #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
  34. /* static tag bytes (protocol control messages) */
  35. static char tag_msg = CEPH_MSGR_TAG_MSG;
  36. static char tag_ack = CEPH_MSGR_TAG_ACK;
  37. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  38. #ifdef CONFIG_LOCKDEP
  39. static struct lock_class_key socket_class;
  40. #endif
  41. /*
  42. * When skipping (ignoring) a block of input we read it into a "skip
  43. * buffer," which is this many bytes in size.
  44. */
  45. #define SKIP_BUF_SIZE 1024
  46. static void queue_con(struct ceph_connection *con);
  47. static void con_work(struct work_struct *);
  48. static void ceph_fault(struct ceph_connection *con);
  49. /*
  50. * Nicely render a sockaddr as a string. An array of formatted
  51. * strings is used, to approximate reentrancy.
  52. */
  53. #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
  54. #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
  55. #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
  56. #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
  57. static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
  58. static atomic_t addr_str_seq = ATOMIC_INIT(0);
  59. static struct page *zero_page; /* used in certain error cases */
  60. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  61. {
  62. int i;
  63. char *s;
  64. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  65. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  66. i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
  67. s = addr_str[i];
  68. switch (ss->ss_family) {
  69. case AF_INET:
  70. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
  71. ntohs(in4->sin_port));
  72. break;
  73. case AF_INET6:
  74. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
  75. ntohs(in6->sin6_port));
  76. break;
  77. default:
  78. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
  79. ss->ss_family);
  80. }
  81. return s;
  82. }
  83. EXPORT_SYMBOL(ceph_pr_addr);
  84. static void encode_my_addr(struct ceph_messenger *msgr)
  85. {
  86. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  87. ceph_encode_addr(&msgr->my_enc_addr);
  88. }
  89. /*
  90. * work queue for all reading and writing to/from the socket.
  91. */
  92. static struct workqueue_struct *ceph_msgr_wq;
  93. void _ceph_msgr_exit(void)
  94. {
  95. if (ceph_msgr_wq) {
  96. destroy_workqueue(ceph_msgr_wq);
  97. ceph_msgr_wq = NULL;
  98. }
  99. BUG_ON(zero_page == NULL);
  100. kunmap(zero_page);
  101. page_cache_release(zero_page);
  102. zero_page = NULL;
  103. }
  104. int ceph_msgr_init(void)
  105. {
  106. BUG_ON(zero_page != NULL);
  107. zero_page = ZERO_PAGE(0);
  108. page_cache_get(zero_page);
  109. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  110. if (ceph_msgr_wq)
  111. return 0;
  112. pr_err("msgr_init failed to create workqueue\n");
  113. _ceph_msgr_exit();
  114. return -ENOMEM;
  115. }
  116. EXPORT_SYMBOL(ceph_msgr_init);
  117. void ceph_msgr_exit(void)
  118. {
  119. BUG_ON(ceph_msgr_wq == NULL);
  120. _ceph_msgr_exit();
  121. }
  122. EXPORT_SYMBOL(ceph_msgr_exit);
  123. void ceph_msgr_flush(void)
  124. {
  125. flush_workqueue(ceph_msgr_wq);
  126. }
  127. EXPORT_SYMBOL(ceph_msgr_flush);
  128. /* Connection socket state transition functions */
  129. static void con_sock_state_init(struct ceph_connection *con)
  130. {
  131. int old_state;
  132. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  133. if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
  134. printk("%s: unexpected old state %d\n", __func__, old_state);
  135. }
  136. static void con_sock_state_connecting(struct ceph_connection *con)
  137. {
  138. int old_state;
  139. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
  140. if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
  141. printk("%s: unexpected old state %d\n", __func__, old_state);
  142. }
  143. static void con_sock_state_connected(struct ceph_connection *con)
  144. {
  145. int old_state;
  146. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
  147. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
  148. printk("%s: unexpected old state %d\n", __func__, old_state);
  149. }
  150. static void con_sock_state_closing(struct ceph_connection *con)
  151. {
  152. int old_state;
  153. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
  154. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
  155. old_state != CON_SOCK_STATE_CONNECTED &&
  156. old_state != CON_SOCK_STATE_CLOSING))
  157. printk("%s: unexpected old state %d\n", __func__, old_state);
  158. }
  159. static void con_sock_state_closed(struct ceph_connection *con)
  160. {
  161. int old_state;
  162. old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
  163. if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
  164. old_state != CON_SOCK_STATE_CLOSING))
  165. printk("%s: unexpected old state %d\n", __func__, old_state);
  166. }
  167. /*
  168. * socket callback functions
  169. */
  170. /* data available on socket, or listen socket received a connect */
  171. static void ceph_sock_data_ready(struct sock *sk, int count_unused)
  172. {
  173. struct ceph_connection *con = sk->sk_user_data;
  174. if (sk->sk_state != TCP_CLOSE_WAIT) {
  175. dout("%s on %p state = %lu, queueing work\n", __func__,
  176. con, con->state);
  177. queue_con(con);
  178. }
  179. }
  180. /* socket has buffer space for writing */
  181. static void ceph_sock_write_space(struct sock *sk)
  182. {
  183. struct ceph_connection *con = sk->sk_user_data;
  184. /* only queue to workqueue if there is data we want to write,
  185. * and there is sufficient space in the socket buffer to accept
  186. * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
  187. * doesn't get called again until try_write() fills the socket
  188. * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
  189. * and net/core/stream.c:sk_stream_write_space().
  190. */
  191. if (test_bit(WRITE_PENDING, &con->flags)) {
  192. if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
  193. dout("%s %p queueing write work\n", __func__, con);
  194. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  195. queue_con(con);
  196. }
  197. } else {
  198. dout("%s %p nothing to write\n", __func__, con);
  199. }
  200. }
  201. /* socket's state has changed */
  202. static void ceph_sock_state_change(struct sock *sk)
  203. {
  204. struct ceph_connection *con = sk->sk_user_data;
  205. dout("%s %p state = %lu sk_state = %u\n", __func__,
  206. con, con->state, sk->sk_state);
  207. if (test_bit(CLOSED, &con->state))
  208. return;
  209. switch (sk->sk_state) {
  210. case TCP_CLOSE:
  211. dout("%s TCP_CLOSE\n", __func__);
  212. case TCP_CLOSE_WAIT:
  213. dout("%s TCP_CLOSE_WAIT\n", __func__);
  214. con_sock_state_closing(con);
  215. if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
  216. if (test_bit(CONNECTING, &con->state))
  217. con->error_msg = "connection failed";
  218. else
  219. con->error_msg = "socket closed";
  220. queue_con(con);
  221. }
  222. break;
  223. case TCP_ESTABLISHED:
  224. dout("%s TCP_ESTABLISHED\n", __func__);
  225. con_sock_state_connected(con);
  226. queue_con(con);
  227. break;
  228. default: /* Everything else is uninteresting */
  229. break;
  230. }
  231. }
  232. /*
  233. * set up socket callbacks
  234. */
  235. static void set_sock_callbacks(struct socket *sock,
  236. struct ceph_connection *con)
  237. {
  238. struct sock *sk = sock->sk;
  239. sk->sk_user_data = con;
  240. sk->sk_data_ready = ceph_sock_data_ready;
  241. sk->sk_write_space = ceph_sock_write_space;
  242. sk->sk_state_change = ceph_sock_state_change;
  243. }
  244. /*
  245. * socket helpers
  246. */
  247. /*
  248. * initiate connection to a remote socket.
  249. */
  250. static int ceph_tcp_connect(struct ceph_connection *con)
  251. {
  252. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  253. struct socket *sock;
  254. int ret;
  255. BUG_ON(con->sock);
  256. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  257. IPPROTO_TCP, &sock);
  258. if (ret)
  259. return ret;
  260. sock->sk->sk_allocation = GFP_NOFS;
  261. #ifdef CONFIG_LOCKDEP
  262. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  263. #endif
  264. set_sock_callbacks(sock, con);
  265. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  266. con_sock_state_connecting(con);
  267. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  268. O_NONBLOCK);
  269. if (ret == -EINPROGRESS) {
  270. dout("connect %s EINPROGRESS sk_state = %u\n",
  271. ceph_pr_addr(&con->peer_addr.in_addr),
  272. sock->sk->sk_state);
  273. } else if (ret < 0) {
  274. pr_err("connect %s error %d\n",
  275. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  276. sock_release(sock);
  277. con->error_msg = "connect error";
  278. return ret;
  279. }
  280. con->sock = sock;
  281. return 0;
  282. }
  283. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  284. {
  285. struct kvec iov = {buf, len};
  286. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  287. int r;
  288. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  289. if (r == -EAGAIN)
  290. r = 0;
  291. return r;
  292. }
  293. /*
  294. * write something. @more is true if caller will be sending more data
  295. * shortly.
  296. */
  297. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  298. size_t kvlen, size_t len, int more)
  299. {
  300. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  301. int r;
  302. if (more)
  303. msg.msg_flags |= MSG_MORE;
  304. else
  305. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  306. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  307. if (r == -EAGAIN)
  308. r = 0;
  309. return r;
  310. }
  311. static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
  312. int offset, size_t size, int more)
  313. {
  314. int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
  315. int ret;
  316. ret = kernel_sendpage(sock, page, offset, size, flags);
  317. if (ret == -EAGAIN)
  318. ret = 0;
  319. return ret;
  320. }
  321. /*
  322. * Shutdown/close the socket for the given connection.
  323. */
  324. static int con_close_socket(struct ceph_connection *con)
  325. {
  326. int rc;
  327. dout("con_close_socket on %p sock %p\n", con, con->sock);
  328. if (!con->sock)
  329. return 0;
  330. set_bit(SOCK_CLOSED, &con->state);
  331. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  332. sock_release(con->sock);
  333. con->sock = NULL;
  334. clear_bit(SOCK_CLOSED, &con->state);
  335. con_sock_state_closed(con);
  336. return rc;
  337. }
  338. /*
  339. * Reset a connection. Discard all incoming and outgoing messages
  340. * and clear *_seq state.
  341. */
  342. static void ceph_msg_remove(struct ceph_msg *msg)
  343. {
  344. list_del_init(&msg->list_head);
  345. BUG_ON(msg->con == NULL);
  346. msg->con->ops->put(msg->con);
  347. msg->con = NULL;
  348. ceph_msg_put(msg);
  349. }
  350. static void ceph_msg_remove_list(struct list_head *head)
  351. {
  352. while (!list_empty(head)) {
  353. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  354. list_head);
  355. ceph_msg_remove(msg);
  356. }
  357. }
  358. static void reset_connection(struct ceph_connection *con)
  359. {
  360. /* reset connection, out_queue, msg_ and connect_seq */
  361. /* discard existing out_queue and msg_seq */
  362. ceph_msg_remove_list(&con->out_queue);
  363. ceph_msg_remove_list(&con->out_sent);
  364. if (con->in_msg) {
  365. BUG_ON(con->in_msg->con != con);
  366. con->in_msg->con = NULL;
  367. ceph_msg_put(con->in_msg);
  368. con->in_msg = NULL;
  369. con->ops->put(con);
  370. }
  371. con->connect_seq = 0;
  372. con->out_seq = 0;
  373. if (con->out_msg) {
  374. ceph_msg_put(con->out_msg);
  375. con->out_msg = NULL;
  376. }
  377. con->in_seq = 0;
  378. con->in_seq_acked = 0;
  379. }
  380. /*
  381. * mark a peer down. drop any open connections.
  382. */
  383. void ceph_con_close(struct ceph_connection *con)
  384. {
  385. dout("con_close %p peer %s\n", con,
  386. ceph_pr_addr(&con->peer_addr.in_addr));
  387. clear_bit(NEGOTIATING, &con->state);
  388. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  389. set_bit(CLOSED, &con->state);
  390. clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
  391. clear_bit(KEEPALIVE_PENDING, &con->flags);
  392. clear_bit(WRITE_PENDING, &con->flags);
  393. mutex_lock(&con->mutex);
  394. reset_connection(con);
  395. con->peer_global_seq = 0;
  396. cancel_delayed_work(&con->work);
  397. mutex_unlock(&con->mutex);
  398. queue_con(con);
  399. }
  400. EXPORT_SYMBOL(ceph_con_close);
  401. /*
  402. * Reopen a closed connection, with a new peer address.
  403. */
  404. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  405. {
  406. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  407. set_bit(OPENING, &con->state);
  408. WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
  409. memcpy(&con->peer_addr, addr, sizeof(*addr));
  410. con->delay = 0; /* reset backoff memory */
  411. queue_con(con);
  412. }
  413. EXPORT_SYMBOL(ceph_con_open);
  414. /*
  415. * return true if this connection ever successfully opened
  416. */
  417. bool ceph_con_opened(struct ceph_connection *con)
  418. {
  419. return con->connect_seq > 0;
  420. }
  421. /*
  422. * initialize a new connection.
  423. */
  424. void ceph_con_init(struct ceph_connection *con, void *private,
  425. const struct ceph_connection_operations *ops,
  426. struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
  427. {
  428. dout("con_init %p\n", con);
  429. memset(con, 0, sizeof(*con));
  430. con->private = private;
  431. con->ops = ops;
  432. con->msgr = msgr;
  433. con_sock_state_init(con);
  434. con->peer_name.type = (__u8) entity_type;
  435. con->peer_name.num = cpu_to_le64(entity_num);
  436. mutex_init(&con->mutex);
  437. INIT_LIST_HEAD(&con->out_queue);
  438. INIT_LIST_HEAD(&con->out_sent);
  439. INIT_DELAYED_WORK(&con->work, con_work);
  440. set_bit(CLOSED, &con->state);
  441. }
  442. EXPORT_SYMBOL(ceph_con_init);
  443. /*
  444. * We maintain a global counter to order connection attempts. Get
  445. * a unique seq greater than @gt.
  446. */
  447. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  448. {
  449. u32 ret;
  450. spin_lock(&msgr->global_seq_lock);
  451. if (msgr->global_seq < gt)
  452. msgr->global_seq = gt;
  453. ret = ++msgr->global_seq;
  454. spin_unlock(&msgr->global_seq_lock);
  455. return ret;
  456. }
  457. static void con_out_kvec_reset(struct ceph_connection *con)
  458. {
  459. con->out_kvec_left = 0;
  460. con->out_kvec_bytes = 0;
  461. con->out_kvec_cur = &con->out_kvec[0];
  462. }
  463. static void con_out_kvec_add(struct ceph_connection *con,
  464. size_t size, void *data)
  465. {
  466. int index;
  467. index = con->out_kvec_left;
  468. BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
  469. con->out_kvec[index].iov_len = size;
  470. con->out_kvec[index].iov_base = data;
  471. con->out_kvec_left++;
  472. con->out_kvec_bytes += size;
  473. }
  474. static void prepare_write_message_data(struct ceph_connection *con)
  475. {
  476. struct ceph_msg *msg = con->out_msg;
  477. BUG_ON(!msg);
  478. BUG_ON(!msg->hdr.data_len);
  479. /* initialize page iterator */
  480. con->out_msg_pos.page = 0;
  481. if (msg->pages)
  482. con->out_msg_pos.page_pos = msg->page_alignment;
  483. else
  484. con->out_msg_pos.page_pos = 0;
  485. con->out_msg_pos.data_pos = 0;
  486. con->out_msg_pos.did_page_crc = false;
  487. con->out_more = 1; /* data + footer will follow */
  488. }
  489. /*
  490. * Prepare footer for currently outgoing message, and finish things
  491. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  492. */
  493. static void prepare_write_message_footer(struct ceph_connection *con)
  494. {
  495. struct ceph_msg *m = con->out_msg;
  496. int v = con->out_kvec_left;
  497. m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
  498. dout("prepare_write_message_footer %p\n", con);
  499. con->out_kvec_is_msg = true;
  500. con->out_kvec[v].iov_base = &m->footer;
  501. con->out_kvec[v].iov_len = sizeof(m->footer);
  502. con->out_kvec_bytes += sizeof(m->footer);
  503. con->out_kvec_left++;
  504. con->out_more = m->more_to_follow;
  505. con->out_msg_done = true;
  506. }
  507. /*
  508. * Prepare headers for the next outgoing message.
  509. */
  510. static void prepare_write_message(struct ceph_connection *con)
  511. {
  512. struct ceph_msg *m;
  513. u32 crc;
  514. con_out_kvec_reset(con);
  515. con->out_kvec_is_msg = true;
  516. con->out_msg_done = false;
  517. /* Sneak an ack in there first? If we can get it into the same
  518. * TCP packet that's a good thing. */
  519. if (con->in_seq > con->in_seq_acked) {
  520. con->in_seq_acked = con->in_seq;
  521. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  522. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  523. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  524. &con->out_temp_ack);
  525. }
  526. BUG_ON(list_empty(&con->out_queue));
  527. m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
  528. con->out_msg = m;
  529. BUG_ON(m->con != con);
  530. /* put message on sent list */
  531. ceph_msg_get(m);
  532. list_move_tail(&m->list_head, &con->out_sent);
  533. /*
  534. * only assign outgoing seq # if we haven't sent this message
  535. * yet. if it is requeued, resend with it's original seq.
  536. */
  537. if (m->needs_out_seq) {
  538. m->hdr.seq = cpu_to_le64(++con->out_seq);
  539. m->needs_out_seq = false;
  540. }
  541. #ifdef CONFIG_BLOCK
  542. else
  543. m->bio_iter = NULL;
  544. #endif
  545. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  546. m, con->out_seq, le16_to_cpu(m->hdr.type),
  547. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  548. le32_to_cpu(m->hdr.data_len),
  549. m->nr_pages);
  550. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  551. /* tag + hdr + front + middle */
  552. con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
  553. con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
  554. con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
  555. if (m->middle)
  556. con_out_kvec_add(con, m->middle->vec.iov_len,
  557. m->middle->vec.iov_base);
  558. /* fill in crc (except data pages), footer */
  559. crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
  560. con->out_msg->hdr.crc = cpu_to_le32(crc);
  561. con->out_msg->footer.flags = 0;
  562. crc = crc32c(0, m->front.iov_base, m->front.iov_len);
  563. con->out_msg->footer.front_crc = cpu_to_le32(crc);
  564. if (m->middle) {
  565. crc = crc32c(0, m->middle->vec.iov_base,
  566. m->middle->vec.iov_len);
  567. con->out_msg->footer.middle_crc = cpu_to_le32(crc);
  568. } else
  569. con->out_msg->footer.middle_crc = 0;
  570. dout("%s front_crc %u middle_crc %u\n", __func__,
  571. le32_to_cpu(con->out_msg->footer.front_crc),
  572. le32_to_cpu(con->out_msg->footer.middle_crc));
  573. /* is there a data payload? */
  574. con->out_msg->footer.data_crc = 0;
  575. if (m->hdr.data_len)
  576. prepare_write_message_data(con);
  577. else
  578. /* no, queue up footer too and be done */
  579. prepare_write_message_footer(con);
  580. set_bit(WRITE_PENDING, &con->flags);
  581. }
  582. /*
  583. * Prepare an ack.
  584. */
  585. static void prepare_write_ack(struct ceph_connection *con)
  586. {
  587. dout("prepare_write_ack %p %llu -> %llu\n", con,
  588. con->in_seq_acked, con->in_seq);
  589. con->in_seq_acked = con->in_seq;
  590. con_out_kvec_reset(con);
  591. con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
  592. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  593. con_out_kvec_add(con, sizeof (con->out_temp_ack),
  594. &con->out_temp_ack);
  595. con->out_more = 1; /* more will follow.. eventually.. */
  596. set_bit(WRITE_PENDING, &con->flags);
  597. }
  598. /*
  599. * Prepare to write keepalive byte.
  600. */
  601. static void prepare_write_keepalive(struct ceph_connection *con)
  602. {
  603. dout("prepare_write_keepalive %p\n", con);
  604. con_out_kvec_reset(con);
  605. con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
  606. set_bit(WRITE_PENDING, &con->flags);
  607. }
  608. /*
  609. * Connection negotiation.
  610. */
  611. static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
  612. int *auth_proto)
  613. {
  614. struct ceph_auth_handshake *auth;
  615. if (!con->ops->get_authorizer) {
  616. con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
  617. con->out_connect.authorizer_len = 0;
  618. return NULL;
  619. }
  620. /* Can't hold the mutex while getting authorizer */
  621. mutex_unlock(&con->mutex);
  622. auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
  623. mutex_lock(&con->mutex);
  624. if (IS_ERR(auth))
  625. return auth;
  626. if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
  627. return ERR_PTR(-EAGAIN);
  628. con->auth_reply_buf = auth->authorizer_reply_buf;
  629. con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
  630. return auth;
  631. }
  632. /*
  633. * We connected to a peer and are saying hello.
  634. */
  635. static void prepare_write_banner(struct ceph_connection *con)
  636. {
  637. con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
  638. con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
  639. &con->msgr->my_enc_addr);
  640. con->out_more = 0;
  641. set_bit(WRITE_PENDING, &con->flags);
  642. }
  643. static int prepare_write_connect(struct ceph_connection *con)
  644. {
  645. unsigned int global_seq = get_global_seq(con->msgr, 0);
  646. int proto;
  647. int auth_proto;
  648. struct ceph_auth_handshake *auth;
  649. switch (con->peer_name.type) {
  650. case CEPH_ENTITY_TYPE_MON:
  651. proto = CEPH_MONC_PROTOCOL;
  652. break;
  653. case CEPH_ENTITY_TYPE_OSD:
  654. proto = CEPH_OSDC_PROTOCOL;
  655. break;
  656. case CEPH_ENTITY_TYPE_MDS:
  657. proto = CEPH_MDSC_PROTOCOL;
  658. break;
  659. default:
  660. BUG();
  661. }
  662. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  663. con->connect_seq, global_seq, proto);
  664. con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
  665. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  666. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  667. con->out_connect.global_seq = cpu_to_le32(global_seq);
  668. con->out_connect.protocol_version = cpu_to_le32(proto);
  669. con->out_connect.flags = 0;
  670. auth_proto = CEPH_AUTH_UNKNOWN;
  671. auth = get_connect_authorizer(con, &auth_proto);
  672. if (IS_ERR(auth))
  673. return PTR_ERR(auth);
  674. con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
  675. con->out_connect.authorizer_len = auth ?
  676. cpu_to_le32(auth->authorizer_buf_len) : 0;
  677. con_out_kvec_add(con, sizeof (con->out_connect),
  678. &con->out_connect);
  679. if (auth && auth->authorizer_buf_len)
  680. con_out_kvec_add(con, auth->authorizer_buf_len,
  681. auth->authorizer_buf);
  682. con->out_more = 0;
  683. set_bit(WRITE_PENDING, &con->flags);
  684. return 0;
  685. }
  686. /*
  687. * write as much of pending kvecs to the socket as we can.
  688. * 1 -> done
  689. * 0 -> socket full, but more to do
  690. * <0 -> error
  691. */
  692. static int write_partial_kvec(struct ceph_connection *con)
  693. {
  694. int ret;
  695. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  696. while (con->out_kvec_bytes > 0) {
  697. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  698. con->out_kvec_left, con->out_kvec_bytes,
  699. con->out_more);
  700. if (ret <= 0)
  701. goto out;
  702. con->out_kvec_bytes -= ret;
  703. if (con->out_kvec_bytes == 0)
  704. break; /* done */
  705. /* account for full iov entries consumed */
  706. while (ret >= con->out_kvec_cur->iov_len) {
  707. BUG_ON(!con->out_kvec_left);
  708. ret -= con->out_kvec_cur->iov_len;
  709. con->out_kvec_cur++;
  710. con->out_kvec_left--;
  711. }
  712. /* and for a partially-consumed entry */
  713. if (ret) {
  714. con->out_kvec_cur->iov_len -= ret;
  715. con->out_kvec_cur->iov_base += ret;
  716. }
  717. }
  718. con->out_kvec_left = 0;
  719. con->out_kvec_is_msg = false;
  720. ret = 1;
  721. out:
  722. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  723. con->out_kvec_bytes, con->out_kvec_left, ret);
  724. return ret; /* done! */
  725. }
  726. #ifdef CONFIG_BLOCK
  727. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  728. {
  729. if (!bio) {
  730. *iter = NULL;
  731. *seg = 0;
  732. return;
  733. }
  734. *iter = bio;
  735. *seg = bio->bi_idx;
  736. }
  737. static void iter_bio_next(struct bio **bio_iter, int *seg)
  738. {
  739. if (*bio_iter == NULL)
  740. return;
  741. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  742. (*seg)++;
  743. if (*seg == (*bio_iter)->bi_vcnt)
  744. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  745. }
  746. #endif
  747. static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
  748. size_t len, size_t sent, bool in_trail)
  749. {
  750. struct ceph_msg *msg = con->out_msg;
  751. BUG_ON(!msg);
  752. BUG_ON(!sent);
  753. con->out_msg_pos.data_pos += sent;
  754. con->out_msg_pos.page_pos += sent;
  755. if (sent == len) {
  756. con->out_msg_pos.page_pos = 0;
  757. con->out_msg_pos.page++;
  758. con->out_msg_pos.did_page_crc = false;
  759. if (in_trail)
  760. list_move_tail(&page->lru,
  761. &msg->trail->head);
  762. else if (msg->pagelist)
  763. list_move_tail(&page->lru,
  764. &msg->pagelist->head);
  765. #ifdef CONFIG_BLOCK
  766. else if (msg->bio)
  767. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  768. #endif
  769. }
  770. }
  771. /*
  772. * Write as much message data payload as we can. If we finish, queue
  773. * up the footer.
  774. * 1 -> done, footer is now queued in out_kvec[].
  775. * 0 -> socket full, but more to do
  776. * <0 -> error
  777. */
  778. static int write_partial_msg_pages(struct ceph_connection *con)
  779. {
  780. struct ceph_msg *msg = con->out_msg;
  781. unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
  782. size_t len;
  783. bool do_datacrc = !con->msgr->nocrc;
  784. int ret;
  785. int total_max_write;
  786. bool in_trail = false;
  787. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  788. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  789. con, msg, con->out_msg_pos.page, msg->nr_pages,
  790. con->out_msg_pos.page_pos);
  791. #ifdef CONFIG_BLOCK
  792. if (msg->bio && !msg->bio_iter)
  793. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  794. #endif
  795. while (data_len > con->out_msg_pos.data_pos) {
  796. struct page *page = NULL;
  797. int max_write = PAGE_SIZE;
  798. int bio_offset = 0;
  799. total_max_write = data_len - trail_len -
  800. con->out_msg_pos.data_pos;
  801. /*
  802. * if we are calculating the data crc (the default), we need
  803. * to map the page. if our pages[] has been revoked, use the
  804. * zero page.
  805. */
  806. /* have we reached the trail part of the data? */
  807. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  808. in_trail = true;
  809. total_max_write = data_len - con->out_msg_pos.data_pos;
  810. page = list_first_entry(&msg->trail->head,
  811. struct page, lru);
  812. } else if (msg->pages) {
  813. page = msg->pages[con->out_msg_pos.page];
  814. } else if (msg->pagelist) {
  815. page = list_first_entry(&msg->pagelist->head,
  816. struct page, lru);
  817. #ifdef CONFIG_BLOCK
  818. } else if (msg->bio) {
  819. struct bio_vec *bv;
  820. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  821. page = bv->bv_page;
  822. bio_offset = bv->bv_offset;
  823. max_write = bv->bv_len;
  824. #endif
  825. } else {
  826. page = zero_page;
  827. }
  828. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  829. total_max_write);
  830. if (do_datacrc && !con->out_msg_pos.did_page_crc) {
  831. void *base;
  832. u32 crc;
  833. u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
  834. char *kaddr;
  835. kaddr = kmap(page);
  836. BUG_ON(kaddr == NULL);
  837. base = kaddr + con->out_msg_pos.page_pos + bio_offset;
  838. crc = crc32c(tmpcrc, base, len);
  839. msg->footer.data_crc = cpu_to_le32(crc);
  840. con->out_msg_pos.did_page_crc = true;
  841. }
  842. ret = ceph_tcp_sendpage(con->sock, page,
  843. con->out_msg_pos.page_pos + bio_offset,
  844. len, 1);
  845. if (do_datacrc)
  846. kunmap(page);
  847. if (ret <= 0)
  848. goto out;
  849. out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
  850. }
  851. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  852. /* prepare and queue up footer, too */
  853. if (!do_datacrc)
  854. msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  855. con_out_kvec_reset(con);
  856. prepare_write_message_footer(con);
  857. ret = 1;
  858. out:
  859. return ret;
  860. }
  861. /*
  862. * write some zeros
  863. */
  864. static int write_partial_skip(struct ceph_connection *con)
  865. {
  866. int ret;
  867. while (con->out_skip > 0) {
  868. size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
  869. ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
  870. if (ret <= 0)
  871. goto out;
  872. con->out_skip -= ret;
  873. }
  874. ret = 1;
  875. out:
  876. return ret;
  877. }
  878. /*
  879. * Prepare to read connection handshake, or an ack.
  880. */
  881. static void prepare_read_banner(struct ceph_connection *con)
  882. {
  883. dout("prepare_read_banner %p\n", con);
  884. con->in_base_pos = 0;
  885. }
  886. static void prepare_read_connect(struct ceph_connection *con)
  887. {
  888. dout("prepare_read_connect %p\n", con);
  889. con->in_base_pos = 0;
  890. }
  891. static void prepare_read_ack(struct ceph_connection *con)
  892. {
  893. dout("prepare_read_ack %p\n", con);
  894. con->in_base_pos = 0;
  895. }
  896. static void prepare_read_tag(struct ceph_connection *con)
  897. {
  898. dout("prepare_read_tag %p\n", con);
  899. con->in_base_pos = 0;
  900. con->in_tag = CEPH_MSGR_TAG_READY;
  901. }
  902. /*
  903. * Prepare to read a message.
  904. */
  905. static int prepare_read_message(struct ceph_connection *con)
  906. {
  907. dout("prepare_read_message %p\n", con);
  908. BUG_ON(con->in_msg != NULL);
  909. con->in_base_pos = 0;
  910. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  911. return 0;
  912. }
  913. static int read_partial(struct ceph_connection *con,
  914. int end, int size, void *object)
  915. {
  916. while (con->in_base_pos < end) {
  917. int left = end - con->in_base_pos;
  918. int have = size - left;
  919. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  920. if (ret <= 0)
  921. return ret;
  922. con->in_base_pos += ret;
  923. }
  924. return 1;
  925. }
  926. /*
  927. * Read all or part of the connect-side handshake on a new connection
  928. */
  929. static int read_partial_banner(struct ceph_connection *con)
  930. {
  931. int size;
  932. int end;
  933. int ret;
  934. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  935. /* peer's banner */
  936. size = strlen(CEPH_BANNER);
  937. end = size;
  938. ret = read_partial(con, end, size, con->in_banner);
  939. if (ret <= 0)
  940. goto out;
  941. size = sizeof (con->actual_peer_addr);
  942. end += size;
  943. ret = read_partial(con, end, size, &con->actual_peer_addr);
  944. if (ret <= 0)
  945. goto out;
  946. size = sizeof (con->peer_addr_for_me);
  947. end += size;
  948. ret = read_partial(con, end, size, &con->peer_addr_for_me);
  949. if (ret <= 0)
  950. goto out;
  951. out:
  952. return ret;
  953. }
  954. static int read_partial_connect(struct ceph_connection *con)
  955. {
  956. int size;
  957. int end;
  958. int ret;
  959. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  960. size = sizeof (con->in_reply);
  961. end = size;
  962. ret = read_partial(con, end, size, &con->in_reply);
  963. if (ret <= 0)
  964. goto out;
  965. size = le32_to_cpu(con->in_reply.authorizer_len);
  966. end += size;
  967. ret = read_partial(con, end, size, con->auth_reply_buf);
  968. if (ret <= 0)
  969. goto out;
  970. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  971. con, (int)con->in_reply.tag,
  972. le32_to_cpu(con->in_reply.connect_seq),
  973. le32_to_cpu(con->in_reply.global_seq));
  974. out:
  975. return ret;
  976. }
  977. /*
  978. * Verify the hello banner looks okay.
  979. */
  980. static int verify_hello(struct ceph_connection *con)
  981. {
  982. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  983. pr_err("connect to %s got bad banner\n",
  984. ceph_pr_addr(&con->peer_addr.in_addr));
  985. con->error_msg = "protocol error, bad banner";
  986. return -1;
  987. }
  988. return 0;
  989. }
  990. static bool addr_is_blank(struct sockaddr_storage *ss)
  991. {
  992. switch (ss->ss_family) {
  993. case AF_INET:
  994. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  995. case AF_INET6:
  996. return
  997. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  998. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  999. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  1000. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  1001. }
  1002. return false;
  1003. }
  1004. static int addr_port(struct sockaddr_storage *ss)
  1005. {
  1006. switch (ss->ss_family) {
  1007. case AF_INET:
  1008. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  1009. case AF_INET6:
  1010. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  1011. }
  1012. return 0;
  1013. }
  1014. static void addr_set_port(struct sockaddr_storage *ss, int p)
  1015. {
  1016. switch (ss->ss_family) {
  1017. case AF_INET:
  1018. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  1019. break;
  1020. case AF_INET6:
  1021. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  1022. break;
  1023. }
  1024. }
  1025. /*
  1026. * Unlike other *_pton function semantics, zero indicates success.
  1027. */
  1028. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  1029. char delim, const char **ipend)
  1030. {
  1031. struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
  1032. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
  1033. memset(ss, 0, sizeof(*ss));
  1034. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  1035. ss->ss_family = AF_INET;
  1036. return 0;
  1037. }
  1038. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  1039. ss->ss_family = AF_INET6;
  1040. return 0;
  1041. }
  1042. return -EINVAL;
  1043. }
  1044. /*
  1045. * Extract hostname string and resolve using kernel DNS facility.
  1046. */
  1047. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  1048. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  1049. struct sockaddr_storage *ss, char delim, const char **ipend)
  1050. {
  1051. const char *end, *delim_p;
  1052. char *colon_p, *ip_addr = NULL;
  1053. int ip_len, ret;
  1054. /*
  1055. * The end of the hostname occurs immediately preceding the delimiter or
  1056. * the port marker (':') where the delimiter takes precedence.
  1057. */
  1058. delim_p = memchr(name, delim, namelen);
  1059. colon_p = memchr(name, ':', namelen);
  1060. if (delim_p && colon_p)
  1061. end = delim_p < colon_p ? delim_p : colon_p;
  1062. else if (!delim_p && colon_p)
  1063. end = colon_p;
  1064. else {
  1065. end = delim_p;
  1066. if (!end) /* case: hostname:/ */
  1067. end = name + namelen;
  1068. }
  1069. if (end <= name)
  1070. return -EINVAL;
  1071. /* do dns_resolve upcall */
  1072. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  1073. if (ip_len > 0)
  1074. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  1075. else
  1076. ret = -ESRCH;
  1077. kfree(ip_addr);
  1078. *ipend = end;
  1079. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  1080. ret, ret ? "failed" : ceph_pr_addr(ss));
  1081. return ret;
  1082. }
  1083. #else
  1084. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1085. struct sockaddr_storage *ss, char delim, const char **ipend)
  1086. {
  1087. return -EINVAL;
  1088. }
  1089. #endif
  1090. /*
  1091. * Parse a server name (IP or hostname). If a valid IP address is not found
  1092. * then try to extract a hostname to resolve using userspace DNS upcall.
  1093. */
  1094. static int ceph_parse_server_name(const char *name, size_t namelen,
  1095. struct sockaddr_storage *ss, char delim, const char **ipend)
  1096. {
  1097. int ret;
  1098. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1099. if (ret)
  1100. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1101. return ret;
  1102. }
  1103. /*
  1104. * Parse an ip[:port] list into an addr array. Use the default
  1105. * monitor port if a port isn't specified.
  1106. */
  1107. int ceph_parse_ips(const char *c, const char *end,
  1108. struct ceph_entity_addr *addr,
  1109. int max_count, int *count)
  1110. {
  1111. int i, ret = -EINVAL;
  1112. const char *p = c;
  1113. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1114. for (i = 0; i < max_count; i++) {
  1115. const char *ipend;
  1116. struct sockaddr_storage *ss = &addr[i].in_addr;
  1117. int port;
  1118. char delim = ',';
  1119. if (*p == '[') {
  1120. delim = ']';
  1121. p++;
  1122. }
  1123. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1124. if (ret)
  1125. goto bad;
  1126. ret = -EINVAL;
  1127. p = ipend;
  1128. if (delim == ']') {
  1129. if (*p != ']') {
  1130. dout("missing matching ']'\n");
  1131. goto bad;
  1132. }
  1133. p++;
  1134. }
  1135. /* port? */
  1136. if (p < end && *p == ':') {
  1137. port = 0;
  1138. p++;
  1139. while (p < end && *p >= '0' && *p <= '9') {
  1140. port = (port * 10) + (*p - '0');
  1141. p++;
  1142. }
  1143. if (port > 65535 || port == 0)
  1144. goto bad;
  1145. } else {
  1146. port = CEPH_MON_PORT;
  1147. }
  1148. addr_set_port(ss, port);
  1149. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1150. if (p == end)
  1151. break;
  1152. if (*p != ',')
  1153. goto bad;
  1154. p++;
  1155. }
  1156. if (p != end)
  1157. goto bad;
  1158. if (count)
  1159. *count = i + 1;
  1160. return 0;
  1161. bad:
  1162. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1163. return ret;
  1164. }
  1165. EXPORT_SYMBOL(ceph_parse_ips);
  1166. static int process_banner(struct ceph_connection *con)
  1167. {
  1168. dout("process_banner on %p\n", con);
  1169. if (verify_hello(con) < 0)
  1170. return -1;
  1171. ceph_decode_addr(&con->actual_peer_addr);
  1172. ceph_decode_addr(&con->peer_addr_for_me);
  1173. /*
  1174. * Make sure the other end is who we wanted. note that the other
  1175. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1176. * them the benefit of the doubt.
  1177. */
  1178. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1179. sizeof(con->peer_addr)) != 0 &&
  1180. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1181. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1182. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1183. ceph_pr_addr(&con->peer_addr.in_addr),
  1184. (int)le32_to_cpu(con->peer_addr.nonce),
  1185. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1186. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1187. con->error_msg = "wrong peer at address";
  1188. return -1;
  1189. }
  1190. /*
  1191. * did we learn our address?
  1192. */
  1193. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1194. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1195. memcpy(&con->msgr->inst.addr.in_addr,
  1196. &con->peer_addr_for_me.in_addr,
  1197. sizeof(con->peer_addr_for_me.in_addr));
  1198. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1199. encode_my_addr(con->msgr);
  1200. dout("process_banner learned my addr is %s\n",
  1201. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1202. }
  1203. set_bit(NEGOTIATING, &con->state);
  1204. prepare_read_connect(con);
  1205. return 0;
  1206. }
  1207. static void fail_protocol(struct ceph_connection *con)
  1208. {
  1209. reset_connection(con);
  1210. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1211. }
  1212. static int process_connect(struct ceph_connection *con)
  1213. {
  1214. u64 sup_feat = con->msgr->supported_features;
  1215. u64 req_feat = con->msgr->required_features;
  1216. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1217. int ret;
  1218. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1219. switch (con->in_reply.tag) {
  1220. case CEPH_MSGR_TAG_FEATURES:
  1221. pr_err("%s%lld %s feature set mismatch,"
  1222. " my %llx < server's %llx, missing %llx\n",
  1223. ENTITY_NAME(con->peer_name),
  1224. ceph_pr_addr(&con->peer_addr.in_addr),
  1225. sup_feat, server_feat, server_feat & ~sup_feat);
  1226. con->error_msg = "missing required protocol features";
  1227. fail_protocol(con);
  1228. return -1;
  1229. case CEPH_MSGR_TAG_BADPROTOVER:
  1230. pr_err("%s%lld %s protocol version mismatch,"
  1231. " my %d != server's %d\n",
  1232. ENTITY_NAME(con->peer_name),
  1233. ceph_pr_addr(&con->peer_addr.in_addr),
  1234. le32_to_cpu(con->out_connect.protocol_version),
  1235. le32_to_cpu(con->in_reply.protocol_version));
  1236. con->error_msg = "protocol version mismatch";
  1237. fail_protocol(con);
  1238. return -1;
  1239. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1240. con->auth_retry++;
  1241. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1242. con->auth_retry);
  1243. if (con->auth_retry == 2) {
  1244. con->error_msg = "connect authorization failure";
  1245. return -1;
  1246. }
  1247. con->auth_retry = 1;
  1248. con_out_kvec_reset(con);
  1249. ret = prepare_write_connect(con);
  1250. if (ret < 0)
  1251. return ret;
  1252. prepare_read_connect(con);
  1253. break;
  1254. case CEPH_MSGR_TAG_RESETSESSION:
  1255. /*
  1256. * If we connected with a large connect_seq but the peer
  1257. * has no record of a session with us (no connection, or
  1258. * connect_seq == 0), they will send RESETSESION to indicate
  1259. * that they must have reset their session, and may have
  1260. * dropped messages.
  1261. */
  1262. dout("process_connect got RESET peer seq %u\n",
  1263. le32_to_cpu(con->in_connect.connect_seq));
  1264. pr_err("%s%lld %s connection reset\n",
  1265. ENTITY_NAME(con->peer_name),
  1266. ceph_pr_addr(&con->peer_addr.in_addr));
  1267. reset_connection(con);
  1268. con_out_kvec_reset(con);
  1269. ret = prepare_write_connect(con);
  1270. if (ret < 0)
  1271. return ret;
  1272. prepare_read_connect(con);
  1273. /* Tell ceph about it. */
  1274. mutex_unlock(&con->mutex);
  1275. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1276. if (con->ops->peer_reset)
  1277. con->ops->peer_reset(con);
  1278. mutex_lock(&con->mutex);
  1279. if (test_bit(CLOSED, &con->state) ||
  1280. test_bit(OPENING, &con->state))
  1281. return -EAGAIN;
  1282. break;
  1283. case CEPH_MSGR_TAG_RETRY_SESSION:
  1284. /*
  1285. * If we sent a smaller connect_seq than the peer has, try
  1286. * again with a larger value.
  1287. */
  1288. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1289. le32_to_cpu(con->out_connect.connect_seq),
  1290. le32_to_cpu(con->in_connect.connect_seq));
  1291. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1292. con_out_kvec_reset(con);
  1293. ret = prepare_write_connect(con);
  1294. if (ret < 0)
  1295. return ret;
  1296. prepare_read_connect(con);
  1297. break;
  1298. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1299. /*
  1300. * If we sent a smaller global_seq than the peer has, try
  1301. * again with a larger value.
  1302. */
  1303. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1304. con->peer_global_seq,
  1305. le32_to_cpu(con->in_connect.global_seq));
  1306. get_global_seq(con->msgr,
  1307. le32_to_cpu(con->in_connect.global_seq));
  1308. con_out_kvec_reset(con);
  1309. ret = prepare_write_connect(con);
  1310. if (ret < 0)
  1311. return ret;
  1312. prepare_read_connect(con);
  1313. break;
  1314. case CEPH_MSGR_TAG_READY:
  1315. if (req_feat & ~server_feat) {
  1316. pr_err("%s%lld %s protocol feature mismatch,"
  1317. " my required %llx > server's %llx, need %llx\n",
  1318. ENTITY_NAME(con->peer_name),
  1319. ceph_pr_addr(&con->peer_addr.in_addr),
  1320. req_feat, server_feat, req_feat & ~server_feat);
  1321. con->error_msg = "missing required protocol features";
  1322. fail_protocol(con);
  1323. return -1;
  1324. }
  1325. clear_bit(CONNECTING, &con->state);
  1326. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1327. con->connect_seq++;
  1328. con->peer_features = server_feat;
  1329. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1330. con->peer_global_seq,
  1331. le32_to_cpu(con->in_reply.connect_seq),
  1332. con->connect_seq);
  1333. WARN_ON(con->connect_seq !=
  1334. le32_to_cpu(con->in_reply.connect_seq));
  1335. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1336. set_bit(LOSSYTX, &con->flags);
  1337. prepare_read_tag(con);
  1338. break;
  1339. case CEPH_MSGR_TAG_WAIT:
  1340. /*
  1341. * If there is a connection race (we are opening
  1342. * connections to each other), one of us may just have
  1343. * to WAIT. This shouldn't happen if we are the
  1344. * client.
  1345. */
  1346. pr_err("process_connect got WAIT as client\n");
  1347. con->error_msg = "protocol error, got WAIT as client";
  1348. return -1;
  1349. default:
  1350. pr_err("connect protocol error, will retry\n");
  1351. con->error_msg = "protocol error, garbage tag during connect";
  1352. return -1;
  1353. }
  1354. return 0;
  1355. }
  1356. /*
  1357. * read (part of) an ack
  1358. */
  1359. static int read_partial_ack(struct ceph_connection *con)
  1360. {
  1361. int size = sizeof (con->in_temp_ack);
  1362. int end = size;
  1363. return read_partial(con, end, size, &con->in_temp_ack);
  1364. }
  1365. /*
  1366. * We can finally discard anything that's been acked.
  1367. */
  1368. static void process_ack(struct ceph_connection *con)
  1369. {
  1370. struct ceph_msg *m;
  1371. u64 ack = le64_to_cpu(con->in_temp_ack);
  1372. u64 seq;
  1373. while (!list_empty(&con->out_sent)) {
  1374. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1375. list_head);
  1376. seq = le64_to_cpu(m->hdr.seq);
  1377. if (seq > ack)
  1378. break;
  1379. dout("got ack for seq %llu type %d at %p\n", seq,
  1380. le16_to_cpu(m->hdr.type), m);
  1381. m->ack_stamp = jiffies;
  1382. ceph_msg_remove(m);
  1383. }
  1384. prepare_read_tag(con);
  1385. }
  1386. static int read_partial_message_section(struct ceph_connection *con,
  1387. struct kvec *section,
  1388. unsigned int sec_len, u32 *crc)
  1389. {
  1390. int ret, left;
  1391. BUG_ON(!section);
  1392. while (section->iov_len < sec_len) {
  1393. BUG_ON(section->iov_base == NULL);
  1394. left = sec_len - section->iov_len;
  1395. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1396. section->iov_len, left);
  1397. if (ret <= 0)
  1398. return ret;
  1399. section->iov_len += ret;
  1400. }
  1401. if (section->iov_len == sec_len)
  1402. *crc = crc32c(0, section->iov_base, section->iov_len);
  1403. return 1;
  1404. }
  1405. static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
  1406. struct ceph_msg_header *hdr);
  1407. static int read_partial_message_pages(struct ceph_connection *con,
  1408. struct page **pages,
  1409. unsigned int data_len, bool do_datacrc)
  1410. {
  1411. void *p;
  1412. int ret;
  1413. int left;
  1414. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1415. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1416. /* (page) data */
  1417. BUG_ON(pages == NULL);
  1418. p = kmap(pages[con->in_msg_pos.page]);
  1419. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1420. left);
  1421. if (ret > 0 && do_datacrc)
  1422. con->in_data_crc =
  1423. crc32c(con->in_data_crc,
  1424. p + con->in_msg_pos.page_pos, ret);
  1425. kunmap(pages[con->in_msg_pos.page]);
  1426. if (ret <= 0)
  1427. return ret;
  1428. con->in_msg_pos.data_pos += ret;
  1429. con->in_msg_pos.page_pos += ret;
  1430. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1431. con->in_msg_pos.page_pos = 0;
  1432. con->in_msg_pos.page++;
  1433. }
  1434. return ret;
  1435. }
  1436. #ifdef CONFIG_BLOCK
  1437. static int read_partial_message_bio(struct ceph_connection *con,
  1438. struct bio **bio_iter, int *bio_seg,
  1439. unsigned int data_len, bool do_datacrc)
  1440. {
  1441. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1442. void *p;
  1443. int ret, left;
  1444. if (IS_ERR(bv))
  1445. return PTR_ERR(bv);
  1446. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1447. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1448. p = kmap(bv->bv_page) + bv->bv_offset;
  1449. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1450. left);
  1451. if (ret > 0 && do_datacrc)
  1452. con->in_data_crc =
  1453. crc32c(con->in_data_crc,
  1454. p + con->in_msg_pos.page_pos, ret);
  1455. kunmap(bv->bv_page);
  1456. if (ret <= 0)
  1457. return ret;
  1458. con->in_msg_pos.data_pos += ret;
  1459. con->in_msg_pos.page_pos += ret;
  1460. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1461. con->in_msg_pos.page_pos = 0;
  1462. iter_bio_next(bio_iter, bio_seg);
  1463. }
  1464. return ret;
  1465. }
  1466. #endif
  1467. /*
  1468. * read (part of) a message.
  1469. */
  1470. static int read_partial_message(struct ceph_connection *con)
  1471. {
  1472. struct ceph_msg *m = con->in_msg;
  1473. int size;
  1474. int end;
  1475. int ret;
  1476. unsigned int front_len, middle_len, data_len;
  1477. bool do_datacrc = !con->msgr->nocrc;
  1478. u64 seq;
  1479. u32 crc;
  1480. dout("read_partial_message con %p msg %p\n", con, m);
  1481. /* header */
  1482. size = sizeof (con->in_hdr);
  1483. end = size;
  1484. ret = read_partial(con, end, size, &con->in_hdr);
  1485. if (ret <= 0)
  1486. return ret;
  1487. crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
  1488. if (cpu_to_le32(crc) != con->in_hdr.crc) {
  1489. pr_err("read_partial_message bad hdr "
  1490. " crc %u != expected %u\n",
  1491. crc, con->in_hdr.crc);
  1492. return -EBADMSG;
  1493. }
  1494. front_len = le32_to_cpu(con->in_hdr.front_len);
  1495. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1496. return -EIO;
  1497. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1498. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1499. return -EIO;
  1500. data_len = le32_to_cpu(con->in_hdr.data_len);
  1501. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1502. return -EIO;
  1503. /* verify seq# */
  1504. seq = le64_to_cpu(con->in_hdr.seq);
  1505. if ((s64)seq - (s64)con->in_seq < 1) {
  1506. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1507. ENTITY_NAME(con->peer_name),
  1508. ceph_pr_addr(&con->peer_addr.in_addr),
  1509. seq, con->in_seq + 1);
  1510. con->in_base_pos = -front_len - middle_len - data_len -
  1511. sizeof(m->footer);
  1512. con->in_tag = CEPH_MSGR_TAG_READY;
  1513. return 0;
  1514. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1515. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1516. seq, con->in_seq + 1);
  1517. con->error_msg = "bad message sequence # for incoming message";
  1518. return -EBADMSG;
  1519. }
  1520. /* allocate message? */
  1521. if (!con->in_msg) {
  1522. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1523. con->in_hdr.front_len, con->in_hdr.data_len);
  1524. if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
  1525. /* skip this message */
  1526. dout("alloc_msg said skip message\n");
  1527. BUG_ON(con->in_msg);
  1528. con->in_base_pos = -front_len - middle_len - data_len -
  1529. sizeof(m->footer);
  1530. con->in_tag = CEPH_MSGR_TAG_READY;
  1531. con->in_seq++;
  1532. return 0;
  1533. }
  1534. if (!con->in_msg) {
  1535. con->error_msg =
  1536. "error allocating memory for incoming message";
  1537. return -ENOMEM;
  1538. }
  1539. BUG_ON(con->in_msg->con != con);
  1540. m = con->in_msg;
  1541. m->front.iov_len = 0; /* haven't read it yet */
  1542. if (m->middle)
  1543. m->middle->vec.iov_len = 0;
  1544. con->in_msg_pos.page = 0;
  1545. if (m->pages)
  1546. con->in_msg_pos.page_pos = m->page_alignment;
  1547. else
  1548. con->in_msg_pos.page_pos = 0;
  1549. con->in_msg_pos.data_pos = 0;
  1550. }
  1551. /* front */
  1552. ret = read_partial_message_section(con, &m->front, front_len,
  1553. &con->in_front_crc);
  1554. if (ret <= 0)
  1555. return ret;
  1556. /* middle */
  1557. if (m->middle) {
  1558. ret = read_partial_message_section(con, &m->middle->vec,
  1559. middle_len,
  1560. &con->in_middle_crc);
  1561. if (ret <= 0)
  1562. return ret;
  1563. }
  1564. #ifdef CONFIG_BLOCK
  1565. if (m->bio && !m->bio_iter)
  1566. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1567. #endif
  1568. /* (page) data */
  1569. while (con->in_msg_pos.data_pos < data_len) {
  1570. if (m->pages) {
  1571. ret = read_partial_message_pages(con, m->pages,
  1572. data_len, do_datacrc);
  1573. if (ret <= 0)
  1574. return ret;
  1575. #ifdef CONFIG_BLOCK
  1576. } else if (m->bio) {
  1577. ret = read_partial_message_bio(con,
  1578. &m->bio_iter, &m->bio_seg,
  1579. data_len, do_datacrc);
  1580. if (ret <= 0)
  1581. return ret;
  1582. #endif
  1583. } else {
  1584. BUG_ON(1);
  1585. }
  1586. }
  1587. /* footer */
  1588. size = sizeof (m->footer);
  1589. end += size;
  1590. ret = read_partial(con, end, size, &m->footer);
  1591. if (ret <= 0)
  1592. return ret;
  1593. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1594. m, front_len, m->footer.front_crc, middle_len,
  1595. m->footer.middle_crc, data_len, m->footer.data_crc);
  1596. /* crc ok? */
  1597. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1598. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1599. m, con->in_front_crc, m->footer.front_crc);
  1600. return -EBADMSG;
  1601. }
  1602. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1603. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1604. m, con->in_middle_crc, m->footer.middle_crc);
  1605. return -EBADMSG;
  1606. }
  1607. if (do_datacrc &&
  1608. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1609. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1610. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1611. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1612. return -EBADMSG;
  1613. }
  1614. return 1; /* done! */
  1615. }
  1616. /*
  1617. * Process message. This happens in the worker thread. The callback should
  1618. * be careful not to do anything that waits on other incoming messages or it
  1619. * may deadlock.
  1620. */
  1621. static void process_message(struct ceph_connection *con)
  1622. {
  1623. struct ceph_msg *msg;
  1624. BUG_ON(con->in_msg->con != con);
  1625. con->in_msg->con = NULL;
  1626. msg = con->in_msg;
  1627. con->in_msg = NULL;
  1628. con->ops->put(con);
  1629. /* if first message, set peer_name */
  1630. if (con->peer_name.type == 0)
  1631. con->peer_name = msg->hdr.src;
  1632. con->in_seq++;
  1633. mutex_unlock(&con->mutex);
  1634. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1635. msg, le64_to_cpu(msg->hdr.seq),
  1636. ENTITY_NAME(msg->hdr.src),
  1637. le16_to_cpu(msg->hdr.type),
  1638. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1639. le32_to_cpu(msg->hdr.front_len),
  1640. le32_to_cpu(msg->hdr.data_len),
  1641. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1642. con->ops->dispatch(con, msg);
  1643. mutex_lock(&con->mutex);
  1644. prepare_read_tag(con);
  1645. }
  1646. /*
  1647. * Write something to the socket. Called in a worker thread when the
  1648. * socket appears to be writeable and we have something ready to send.
  1649. */
  1650. static int try_write(struct ceph_connection *con)
  1651. {
  1652. int ret = 1;
  1653. dout("try_write start %p state %lu\n", con, con->state);
  1654. more:
  1655. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1656. /* open the socket first? */
  1657. if (con->sock == NULL) {
  1658. clear_bit(NEGOTIATING, &con->state);
  1659. set_bit(CONNECTING, &con->state);
  1660. con_out_kvec_reset(con);
  1661. prepare_write_banner(con);
  1662. ret = prepare_write_connect(con);
  1663. if (ret < 0)
  1664. goto out;
  1665. prepare_read_banner(con);
  1666. BUG_ON(con->in_msg);
  1667. con->in_tag = CEPH_MSGR_TAG_READY;
  1668. dout("try_write initiating connect on %p new state %lu\n",
  1669. con, con->state);
  1670. ret = ceph_tcp_connect(con);
  1671. if (ret < 0) {
  1672. con->error_msg = "connect error";
  1673. goto out;
  1674. }
  1675. }
  1676. more_kvec:
  1677. /* kvec data queued? */
  1678. if (con->out_skip) {
  1679. ret = write_partial_skip(con);
  1680. if (ret <= 0)
  1681. goto out;
  1682. }
  1683. if (con->out_kvec_left) {
  1684. ret = write_partial_kvec(con);
  1685. if (ret <= 0)
  1686. goto out;
  1687. }
  1688. /* msg pages? */
  1689. if (con->out_msg) {
  1690. if (con->out_msg_done) {
  1691. ceph_msg_put(con->out_msg);
  1692. con->out_msg = NULL; /* we're done with this one */
  1693. goto do_next;
  1694. }
  1695. ret = write_partial_msg_pages(con);
  1696. if (ret == 1)
  1697. goto more_kvec; /* we need to send the footer, too! */
  1698. if (ret == 0)
  1699. goto out;
  1700. if (ret < 0) {
  1701. dout("try_write write_partial_msg_pages err %d\n",
  1702. ret);
  1703. goto out;
  1704. }
  1705. }
  1706. do_next:
  1707. if (!test_bit(CONNECTING, &con->state)) {
  1708. /* is anything else pending? */
  1709. if (!list_empty(&con->out_queue)) {
  1710. prepare_write_message(con);
  1711. goto more;
  1712. }
  1713. if (con->in_seq > con->in_seq_acked) {
  1714. prepare_write_ack(con);
  1715. goto more;
  1716. }
  1717. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
  1718. prepare_write_keepalive(con);
  1719. goto more;
  1720. }
  1721. }
  1722. /* Nothing to do! */
  1723. clear_bit(WRITE_PENDING, &con->flags);
  1724. dout("try_write nothing else to write.\n");
  1725. ret = 0;
  1726. out:
  1727. dout("try_write done on %p ret %d\n", con, ret);
  1728. return ret;
  1729. }
  1730. /*
  1731. * Read what we can from the socket.
  1732. */
  1733. static int try_read(struct ceph_connection *con)
  1734. {
  1735. int ret = -1;
  1736. if (!con->sock)
  1737. return 0;
  1738. if (test_bit(STANDBY, &con->state))
  1739. return 0;
  1740. dout("try_read start on %p\n", con);
  1741. more:
  1742. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1743. con->in_base_pos);
  1744. /*
  1745. * process_connect and process_message drop and re-take
  1746. * con->mutex. make sure we handle a racing close or reopen.
  1747. */
  1748. if (test_bit(CLOSED, &con->state) ||
  1749. test_bit(OPENING, &con->state)) {
  1750. ret = -EAGAIN;
  1751. goto out;
  1752. }
  1753. if (test_bit(CONNECTING, &con->state)) {
  1754. if (!test_bit(NEGOTIATING, &con->state)) {
  1755. dout("try_read connecting\n");
  1756. ret = read_partial_banner(con);
  1757. if (ret <= 0)
  1758. goto out;
  1759. ret = process_banner(con);
  1760. if (ret < 0)
  1761. goto out;
  1762. }
  1763. ret = read_partial_connect(con);
  1764. if (ret <= 0)
  1765. goto out;
  1766. ret = process_connect(con);
  1767. if (ret < 0)
  1768. goto out;
  1769. goto more;
  1770. }
  1771. if (con->in_base_pos < 0) {
  1772. /*
  1773. * skipping + discarding content.
  1774. *
  1775. * FIXME: there must be a better way to do this!
  1776. */
  1777. static char buf[SKIP_BUF_SIZE];
  1778. int skip = min((int) sizeof (buf), -con->in_base_pos);
  1779. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1780. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1781. if (ret <= 0)
  1782. goto out;
  1783. con->in_base_pos += ret;
  1784. if (con->in_base_pos)
  1785. goto more;
  1786. }
  1787. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1788. /*
  1789. * what's next?
  1790. */
  1791. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1792. if (ret <= 0)
  1793. goto out;
  1794. dout("try_read got tag %d\n", (int)con->in_tag);
  1795. switch (con->in_tag) {
  1796. case CEPH_MSGR_TAG_MSG:
  1797. prepare_read_message(con);
  1798. break;
  1799. case CEPH_MSGR_TAG_ACK:
  1800. prepare_read_ack(con);
  1801. break;
  1802. case CEPH_MSGR_TAG_CLOSE:
  1803. set_bit(CLOSED, &con->state); /* fixme */
  1804. goto out;
  1805. default:
  1806. goto bad_tag;
  1807. }
  1808. }
  1809. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1810. ret = read_partial_message(con);
  1811. if (ret <= 0) {
  1812. switch (ret) {
  1813. case -EBADMSG:
  1814. con->error_msg = "bad crc";
  1815. ret = -EIO;
  1816. break;
  1817. case -EIO:
  1818. con->error_msg = "io error";
  1819. break;
  1820. }
  1821. goto out;
  1822. }
  1823. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1824. goto more;
  1825. process_message(con);
  1826. goto more;
  1827. }
  1828. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1829. ret = read_partial_ack(con);
  1830. if (ret <= 0)
  1831. goto out;
  1832. process_ack(con);
  1833. goto more;
  1834. }
  1835. out:
  1836. dout("try_read done on %p ret %d\n", con, ret);
  1837. return ret;
  1838. bad_tag:
  1839. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1840. con->error_msg = "protocol error, garbage tag";
  1841. ret = -1;
  1842. goto out;
  1843. }
  1844. /*
  1845. * Atomically queue work on a connection. Bump @con reference to
  1846. * avoid races with connection teardown.
  1847. */
  1848. static void queue_con(struct ceph_connection *con)
  1849. {
  1850. if (!con->ops->get(con)) {
  1851. dout("queue_con %p ref count 0\n", con);
  1852. return;
  1853. }
  1854. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1855. dout("queue_con %p - already queued\n", con);
  1856. con->ops->put(con);
  1857. } else {
  1858. dout("queue_con %p\n", con);
  1859. }
  1860. }
  1861. /*
  1862. * Do some work on a connection. Drop a connection ref when we're done.
  1863. */
  1864. static void con_work(struct work_struct *work)
  1865. {
  1866. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1867. work.work);
  1868. int ret;
  1869. mutex_lock(&con->mutex);
  1870. restart:
  1871. if (test_and_clear_bit(BACKOFF, &con->flags)) {
  1872. dout("con_work %p backing off\n", con);
  1873. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1874. round_jiffies_relative(con->delay))) {
  1875. dout("con_work %p backoff %lu\n", con, con->delay);
  1876. mutex_unlock(&con->mutex);
  1877. return;
  1878. } else {
  1879. con->ops->put(con);
  1880. dout("con_work %p FAILED to back off %lu\n", con,
  1881. con->delay);
  1882. }
  1883. }
  1884. if (test_bit(STANDBY, &con->state)) {
  1885. dout("con_work %p STANDBY\n", con);
  1886. goto done;
  1887. }
  1888. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1889. dout("con_work CLOSED\n");
  1890. con_close_socket(con);
  1891. goto done;
  1892. }
  1893. if (test_and_clear_bit(OPENING, &con->state)) {
  1894. /* reopen w/ new peer */
  1895. dout("con_work OPENING\n");
  1896. con_close_socket(con);
  1897. }
  1898. if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
  1899. goto fault;
  1900. ret = try_read(con);
  1901. if (ret == -EAGAIN)
  1902. goto restart;
  1903. if (ret < 0)
  1904. goto fault;
  1905. ret = try_write(con);
  1906. if (ret == -EAGAIN)
  1907. goto restart;
  1908. if (ret < 0)
  1909. goto fault;
  1910. done:
  1911. mutex_unlock(&con->mutex);
  1912. done_unlocked:
  1913. con->ops->put(con);
  1914. return;
  1915. fault:
  1916. mutex_unlock(&con->mutex);
  1917. ceph_fault(con); /* error/fault path */
  1918. goto done_unlocked;
  1919. }
  1920. /*
  1921. * Generic error/fault handler. A retry mechanism is used with
  1922. * exponential backoff
  1923. */
  1924. static void ceph_fault(struct ceph_connection *con)
  1925. {
  1926. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1927. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1928. dout("fault %p state %lu to peer %s\n",
  1929. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1930. if (test_bit(LOSSYTX, &con->flags)) {
  1931. dout("fault on LOSSYTX channel\n");
  1932. goto out;
  1933. }
  1934. mutex_lock(&con->mutex);
  1935. if (test_bit(CLOSED, &con->state))
  1936. goto out_unlock;
  1937. con_close_socket(con);
  1938. if (con->in_msg) {
  1939. BUG_ON(con->in_msg->con != con);
  1940. con->in_msg->con = NULL;
  1941. ceph_msg_put(con->in_msg);
  1942. con->in_msg = NULL;
  1943. con->ops->put(con);
  1944. }
  1945. /* Requeue anything that hasn't been acked */
  1946. list_splice_init(&con->out_sent, &con->out_queue);
  1947. /* If there are no messages queued or keepalive pending, place
  1948. * the connection in a STANDBY state */
  1949. if (list_empty(&con->out_queue) &&
  1950. !test_bit(KEEPALIVE_PENDING, &con->flags)) {
  1951. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1952. clear_bit(WRITE_PENDING, &con->flags);
  1953. set_bit(STANDBY, &con->state);
  1954. } else {
  1955. /* retry after a delay. */
  1956. if (con->delay == 0)
  1957. con->delay = BASE_DELAY_INTERVAL;
  1958. else if (con->delay < MAX_DELAY_INTERVAL)
  1959. con->delay *= 2;
  1960. con->ops->get(con);
  1961. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1962. round_jiffies_relative(con->delay))) {
  1963. dout("fault queued %p delay %lu\n", con, con->delay);
  1964. } else {
  1965. con->ops->put(con);
  1966. dout("fault failed to queue %p delay %lu, backoff\n",
  1967. con, con->delay);
  1968. /*
  1969. * In many cases we see a socket state change
  1970. * while con_work is running and end up
  1971. * queuing (non-delayed) work, such that we
  1972. * can't backoff with a delay. Set a flag so
  1973. * that when con_work restarts we schedule the
  1974. * delay then.
  1975. */
  1976. set_bit(BACKOFF, &con->flags);
  1977. }
  1978. }
  1979. out_unlock:
  1980. mutex_unlock(&con->mutex);
  1981. out:
  1982. /*
  1983. * in case we faulted due to authentication, invalidate our
  1984. * current tickets so that we can get new ones.
  1985. */
  1986. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1987. dout("calling invalidate_authorizer()\n");
  1988. con->ops->invalidate_authorizer(con);
  1989. }
  1990. if (con->ops->fault)
  1991. con->ops->fault(con);
  1992. }
  1993. /*
  1994. * initialize a new messenger instance
  1995. */
  1996. void ceph_messenger_init(struct ceph_messenger *msgr,
  1997. struct ceph_entity_addr *myaddr,
  1998. u32 supported_features,
  1999. u32 required_features,
  2000. bool nocrc)
  2001. {
  2002. msgr->supported_features = supported_features;
  2003. msgr->required_features = required_features;
  2004. spin_lock_init(&msgr->global_seq_lock);
  2005. if (myaddr)
  2006. msgr->inst.addr = *myaddr;
  2007. /* select a random nonce */
  2008. msgr->inst.addr.type = 0;
  2009. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  2010. encode_my_addr(msgr);
  2011. msgr->nocrc = nocrc;
  2012. dout("%s %p\n", __func__, msgr);
  2013. }
  2014. EXPORT_SYMBOL(ceph_messenger_init);
  2015. static void clear_standby(struct ceph_connection *con)
  2016. {
  2017. /* come back from STANDBY? */
  2018. if (test_and_clear_bit(STANDBY, &con->state)) {
  2019. mutex_lock(&con->mutex);
  2020. dout("clear_standby %p and ++connect_seq\n", con);
  2021. con->connect_seq++;
  2022. WARN_ON(test_bit(WRITE_PENDING, &con->flags));
  2023. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
  2024. mutex_unlock(&con->mutex);
  2025. }
  2026. }
  2027. /*
  2028. * Queue up an outgoing message on the given connection.
  2029. */
  2030. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  2031. {
  2032. if (test_bit(CLOSED, &con->state)) {
  2033. dout("con_send %p closed, dropping %p\n", con, msg);
  2034. ceph_msg_put(msg);
  2035. return;
  2036. }
  2037. /* set src+dst */
  2038. msg->hdr.src = con->msgr->inst.name;
  2039. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  2040. msg->needs_out_seq = true;
  2041. /* queue */
  2042. mutex_lock(&con->mutex);
  2043. BUG_ON(msg->con != NULL);
  2044. msg->con = con->ops->get(con);
  2045. BUG_ON(msg->con == NULL);
  2046. BUG_ON(!list_empty(&msg->list_head));
  2047. list_add_tail(&msg->list_head, &con->out_queue);
  2048. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  2049. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  2050. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  2051. le32_to_cpu(msg->hdr.front_len),
  2052. le32_to_cpu(msg->hdr.middle_len),
  2053. le32_to_cpu(msg->hdr.data_len));
  2054. mutex_unlock(&con->mutex);
  2055. /* if there wasn't anything waiting to send before, queue
  2056. * new work */
  2057. clear_standby(con);
  2058. if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2059. queue_con(con);
  2060. }
  2061. EXPORT_SYMBOL(ceph_con_send);
  2062. /*
  2063. * Revoke a message that was previously queued for send
  2064. */
  2065. void ceph_msg_revoke(struct ceph_msg *msg)
  2066. {
  2067. struct ceph_connection *con = msg->con;
  2068. if (!con)
  2069. return; /* Message not in our possession */
  2070. mutex_lock(&con->mutex);
  2071. if (!list_empty(&msg->list_head)) {
  2072. dout("%s %p msg %p - was on queue\n", __func__, con, msg);
  2073. list_del_init(&msg->list_head);
  2074. BUG_ON(msg->con == NULL);
  2075. msg->con->ops->put(msg->con);
  2076. msg->con = NULL;
  2077. msg->hdr.seq = 0;
  2078. ceph_msg_put(msg);
  2079. }
  2080. if (con->out_msg == msg) {
  2081. dout("%s %p msg %p - was sending\n", __func__, con, msg);
  2082. con->out_msg = NULL;
  2083. if (con->out_kvec_is_msg) {
  2084. con->out_skip = con->out_kvec_bytes;
  2085. con->out_kvec_is_msg = false;
  2086. }
  2087. msg->hdr.seq = 0;
  2088. ceph_msg_put(msg);
  2089. }
  2090. mutex_unlock(&con->mutex);
  2091. }
  2092. /*
  2093. * Revoke a message that we may be reading data into
  2094. */
  2095. void ceph_msg_revoke_incoming(struct ceph_msg *msg)
  2096. {
  2097. struct ceph_connection *con;
  2098. BUG_ON(msg == NULL);
  2099. if (!msg->con) {
  2100. dout("%s msg %p null con\n", __func__, msg);
  2101. return; /* Message not in our possession */
  2102. }
  2103. con = msg->con;
  2104. mutex_lock(&con->mutex);
  2105. if (con->in_msg == msg) {
  2106. unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
  2107. unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2108. unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
  2109. /* skip rest of message */
  2110. dout("%s %p msg %p revoked\n", __func__, con, msg);
  2111. con->in_base_pos = con->in_base_pos -
  2112. sizeof(struct ceph_msg_header) -
  2113. front_len -
  2114. middle_len -
  2115. data_len -
  2116. sizeof(struct ceph_msg_footer);
  2117. ceph_msg_put(con->in_msg);
  2118. con->in_msg = NULL;
  2119. con->in_tag = CEPH_MSGR_TAG_READY;
  2120. con->in_seq++;
  2121. } else {
  2122. dout("%s %p in_msg %p msg %p no-op\n",
  2123. __func__, con, con->in_msg, msg);
  2124. }
  2125. mutex_unlock(&con->mutex);
  2126. }
  2127. /*
  2128. * Queue a keepalive byte to ensure the tcp connection is alive.
  2129. */
  2130. void ceph_con_keepalive(struct ceph_connection *con)
  2131. {
  2132. dout("con_keepalive %p\n", con);
  2133. clear_standby(con);
  2134. if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
  2135. test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
  2136. queue_con(con);
  2137. }
  2138. EXPORT_SYMBOL(ceph_con_keepalive);
  2139. /*
  2140. * construct a new message with given type, size
  2141. * the new msg has a ref count of 1.
  2142. */
  2143. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2144. bool can_fail)
  2145. {
  2146. struct ceph_msg *m;
  2147. m = kmalloc(sizeof(*m), flags);
  2148. if (m == NULL)
  2149. goto out;
  2150. kref_init(&m->kref);
  2151. m->con = NULL;
  2152. INIT_LIST_HEAD(&m->list_head);
  2153. m->hdr.tid = 0;
  2154. m->hdr.type = cpu_to_le16(type);
  2155. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2156. m->hdr.version = 0;
  2157. m->hdr.front_len = cpu_to_le32(front_len);
  2158. m->hdr.middle_len = 0;
  2159. m->hdr.data_len = 0;
  2160. m->hdr.data_off = 0;
  2161. m->hdr.reserved = 0;
  2162. m->footer.front_crc = 0;
  2163. m->footer.middle_crc = 0;
  2164. m->footer.data_crc = 0;
  2165. m->footer.flags = 0;
  2166. m->front_max = front_len;
  2167. m->front_is_vmalloc = false;
  2168. m->more_to_follow = false;
  2169. m->ack_stamp = 0;
  2170. m->pool = NULL;
  2171. /* middle */
  2172. m->middle = NULL;
  2173. /* data */
  2174. m->nr_pages = 0;
  2175. m->page_alignment = 0;
  2176. m->pages = NULL;
  2177. m->pagelist = NULL;
  2178. m->bio = NULL;
  2179. m->bio_iter = NULL;
  2180. m->bio_seg = 0;
  2181. m->trail = NULL;
  2182. /* front */
  2183. if (front_len) {
  2184. if (front_len > PAGE_CACHE_SIZE) {
  2185. m->front.iov_base = __vmalloc(front_len, flags,
  2186. PAGE_KERNEL);
  2187. m->front_is_vmalloc = true;
  2188. } else {
  2189. m->front.iov_base = kmalloc(front_len, flags);
  2190. }
  2191. if (m->front.iov_base == NULL) {
  2192. dout("ceph_msg_new can't allocate %d bytes\n",
  2193. front_len);
  2194. goto out2;
  2195. }
  2196. } else {
  2197. m->front.iov_base = NULL;
  2198. }
  2199. m->front.iov_len = front_len;
  2200. dout("ceph_msg_new %p front %d\n", m, front_len);
  2201. return m;
  2202. out2:
  2203. ceph_msg_put(m);
  2204. out:
  2205. if (!can_fail) {
  2206. pr_err("msg_new can't create type %d front %d\n", type,
  2207. front_len);
  2208. WARN_ON(1);
  2209. } else {
  2210. dout("msg_new can't create type %d front %d\n", type,
  2211. front_len);
  2212. }
  2213. return NULL;
  2214. }
  2215. EXPORT_SYMBOL(ceph_msg_new);
  2216. /*
  2217. * Allocate "middle" portion of a message, if it is needed and wasn't
  2218. * allocated by alloc_msg. This allows us to read a small fixed-size
  2219. * per-type header in the front and then gracefully fail (i.e.,
  2220. * propagate the error to the caller based on info in the front) when
  2221. * the middle is too large.
  2222. */
  2223. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2224. {
  2225. int type = le16_to_cpu(msg->hdr.type);
  2226. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2227. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2228. ceph_msg_type_name(type), middle_len);
  2229. BUG_ON(!middle_len);
  2230. BUG_ON(msg->middle);
  2231. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2232. if (!msg->middle)
  2233. return -ENOMEM;
  2234. return 0;
  2235. }
  2236. /*
  2237. * Allocate a message for receiving an incoming message on a
  2238. * connection, and save the result in con->in_msg. Uses the
  2239. * connection's private alloc_msg op if available.
  2240. *
  2241. * Returns true if the message should be skipped, false otherwise.
  2242. * If true is returned (skip message), con->in_msg will be NULL.
  2243. * If false is returned, con->in_msg will contain a pointer to the
  2244. * newly-allocated message, or NULL in case of memory exhaustion.
  2245. */
  2246. static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
  2247. struct ceph_msg_header *hdr)
  2248. {
  2249. int type = le16_to_cpu(hdr->type);
  2250. int front_len = le32_to_cpu(hdr->front_len);
  2251. int middle_len = le32_to_cpu(hdr->middle_len);
  2252. int ret;
  2253. BUG_ON(con->in_msg != NULL);
  2254. if (con->ops->alloc_msg) {
  2255. int skip = 0;
  2256. mutex_unlock(&con->mutex);
  2257. con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
  2258. mutex_lock(&con->mutex);
  2259. if (con->in_msg) {
  2260. con->in_msg->con = con->ops->get(con);
  2261. BUG_ON(con->in_msg->con == NULL);
  2262. }
  2263. if (skip)
  2264. con->in_msg = NULL;
  2265. if (!con->in_msg)
  2266. return skip != 0;
  2267. }
  2268. if (!con->in_msg) {
  2269. con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2270. if (!con->in_msg) {
  2271. pr_err("unable to allocate msg type %d len %d\n",
  2272. type, front_len);
  2273. return false;
  2274. }
  2275. con->in_msg->con = con->ops->get(con);
  2276. BUG_ON(con->in_msg->con == NULL);
  2277. con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
  2278. }
  2279. memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2280. if (middle_len && !con->in_msg->middle) {
  2281. ret = ceph_alloc_middle(con, con->in_msg);
  2282. if (ret < 0) {
  2283. ceph_msg_put(con->in_msg);
  2284. con->in_msg = NULL;
  2285. }
  2286. }
  2287. return false;
  2288. }
  2289. /*
  2290. * Free a generically kmalloc'd message.
  2291. */
  2292. void ceph_msg_kfree(struct ceph_msg *m)
  2293. {
  2294. dout("msg_kfree %p\n", m);
  2295. if (m->front_is_vmalloc)
  2296. vfree(m->front.iov_base);
  2297. else
  2298. kfree(m->front.iov_base);
  2299. kfree(m);
  2300. }
  2301. /*
  2302. * Drop a msg ref. Destroy as needed.
  2303. */
  2304. void ceph_msg_last_put(struct kref *kref)
  2305. {
  2306. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2307. dout("ceph_msg_put last one on %p\n", m);
  2308. WARN_ON(!list_empty(&m->list_head));
  2309. /* drop middle, data, if any */
  2310. if (m->middle) {
  2311. ceph_buffer_put(m->middle);
  2312. m->middle = NULL;
  2313. }
  2314. m->nr_pages = 0;
  2315. m->pages = NULL;
  2316. if (m->pagelist) {
  2317. ceph_pagelist_release(m->pagelist);
  2318. kfree(m->pagelist);
  2319. m->pagelist = NULL;
  2320. }
  2321. m->trail = NULL;
  2322. if (m->pool)
  2323. ceph_msgpool_put(m->pool, m);
  2324. else
  2325. ceph_msg_kfree(m);
  2326. }
  2327. EXPORT_SYMBOL(ceph_msg_last_put);
  2328. void ceph_msg_dump(struct ceph_msg *msg)
  2329. {
  2330. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2331. msg->front_max, msg->nr_pages);
  2332. print_hex_dump(KERN_DEBUG, "header: ",
  2333. DUMP_PREFIX_OFFSET, 16, 1,
  2334. &msg->hdr, sizeof(msg->hdr), true);
  2335. print_hex_dump(KERN_DEBUG, " front: ",
  2336. DUMP_PREFIX_OFFSET, 16, 1,
  2337. msg->front.iov_base, msg->front.iov_len, true);
  2338. if (msg->middle)
  2339. print_hex_dump(KERN_DEBUG, "middle: ",
  2340. DUMP_PREFIX_OFFSET, 16, 1,
  2341. msg->middle->vec.iov_base,
  2342. msg->middle->vec.iov_len, true);
  2343. print_hex_dump(KERN_DEBUG, "footer: ",
  2344. DUMP_PREFIX_OFFSET, 16, 1,
  2345. &msg->footer, sizeof(msg->footer), true);
  2346. }
  2347. EXPORT_SYMBOL(ceph_msg_dump);