s2io.c 232 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.10"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. {"alarm_transceiver_temp_high"},
  262. {"alarm_transceiver_temp_low"},
  263. {"alarm_laser_bias_current_high"},
  264. {"alarm_laser_bias_current_low"},
  265. {"alarm_laser_output_power_high"},
  266. {"alarm_laser_output_power_low"},
  267. {"warn_transceiver_temp_high"},
  268. {"warn_transceiver_temp_low"},
  269. {"warn_laser_bias_current_high"},
  270. {"warn_laser_bias_current_low"},
  271. {"warn_laser_output_power_high"},
  272. {"warn_laser_output_power_low"},
  273. {"lro_aggregated_pkts"},
  274. {"lro_flush_both_count"},
  275. {"lro_out_of_sequence_pkts"},
  276. {"lro_flush_due_to_max_pkts"},
  277. {"lro_avg_aggr_pkts"},
  278. {"mem_alloc_fail_cnt"},
  279. {"pci_map_fail_cnt"},
  280. {"watchdog_timer_cnt"},
  281. {"mem_allocated"},
  282. {"mem_freed"},
  283. {"link_up_cnt"},
  284. {"link_down_cnt"},
  285. {"link_up_time"},
  286. {"link_down_time"},
  287. {"tx_tcode_buf_abort_cnt"},
  288. {"tx_tcode_desc_abort_cnt"},
  289. {"tx_tcode_parity_err_cnt"},
  290. {"tx_tcode_link_loss_cnt"},
  291. {"tx_tcode_list_proc_err_cnt"},
  292. {"rx_tcode_parity_err_cnt"},
  293. {"rx_tcode_abort_cnt"},
  294. {"rx_tcode_parity_abort_cnt"},
  295. {"rx_tcode_rda_fail_cnt"},
  296. {"rx_tcode_unkn_prot_cnt"},
  297. {"rx_tcode_fcs_err_cnt"},
  298. {"rx_tcode_buf_size_err_cnt"},
  299. {"rx_tcode_rxd_corrupt_cnt"},
  300. {"rx_tcode_unkn_err_cnt"},
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  320. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  321. ETH_GSTRING_LEN
  322. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  323. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  324. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  325. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  326. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  327. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  328. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  329. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  330. init_timer(&timer); \
  331. timer.function = handle; \
  332. timer.data = (unsigned long) arg; \
  333. mod_timer(&timer, (jiffies + exp)) \
  334. /* copy mac addr to def_mac_addr array */
  335. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  336. {
  337. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  338. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  339. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  340. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  341. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  342. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  343. }
  344. /* Add the vlan */
  345. static void s2io_vlan_rx_register(struct net_device *dev,
  346. struct vlan_group *grp)
  347. {
  348. struct s2io_nic *nic = dev->priv;
  349. unsigned long flags;
  350. spin_lock_irqsave(&nic->tx_lock, flags);
  351. nic->vlgrp = grp;
  352. spin_unlock_irqrestore(&nic->tx_lock, flags);
  353. }
  354. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  355. static int vlan_strip_flag;
  356. /*
  357. * Constants to be programmed into the Xena's registers, to configure
  358. * the XAUI.
  359. */
  360. #define END_SIGN 0x0
  361. static const u64 herc_act_dtx_cfg[] = {
  362. /* Set address */
  363. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  364. /* Write data */
  365. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  366. /* Set address */
  367. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  368. /* Write data */
  369. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  370. /* Set address */
  371. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  372. /* Write data */
  373. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  374. /* Set address */
  375. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  376. /* Write data */
  377. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  378. /* Done */
  379. END_SIGN
  380. };
  381. static const u64 xena_dtx_cfg[] = {
  382. /* Set address */
  383. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  384. /* Write data */
  385. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  386. /* Set address */
  387. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  388. /* Write data */
  389. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  390. /* Set address */
  391. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  392. /* Write data */
  393. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  394. END_SIGN
  395. };
  396. /*
  397. * Constants for Fixing the MacAddress problem seen mostly on
  398. * Alpha machines.
  399. */
  400. static const u64 fix_mac[] = {
  401. 0x0060000000000000ULL, 0x0060600000000000ULL,
  402. 0x0040600000000000ULL, 0x0000600000000000ULL,
  403. 0x0020600000000000ULL, 0x0060600000000000ULL,
  404. 0x0020600000000000ULL, 0x0060600000000000ULL,
  405. 0x0020600000000000ULL, 0x0060600000000000ULL,
  406. 0x0020600000000000ULL, 0x0060600000000000ULL,
  407. 0x0020600000000000ULL, 0x0060600000000000ULL,
  408. 0x0020600000000000ULL, 0x0060600000000000ULL,
  409. 0x0020600000000000ULL, 0x0060600000000000ULL,
  410. 0x0020600000000000ULL, 0x0060600000000000ULL,
  411. 0x0020600000000000ULL, 0x0060600000000000ULL,
  412. 0x0020600000000000ULL, 0x0060600000000000ULL,
  413. 0x0020600000000000ULL, 0x0000600000000000ULL,
  414. 0x0040600000000000ULL, 0x0060600000000000ULL,
  415. END_SIGN
  416. };
  417. MODULE_LICENSE("GPL");
  418. MODULE_VERSION(DRV_VERSION);
  419. /* Module Loadable parameters. */
  420. S2IO_PARM_INT(tx_fifo_num, 1);
  421. S2IO_PARM_INT(rx_ring_num, 1);
  422. S2IO_PARM_INT(rx_ring_mode, 1);
  423. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  424. S2IO_PARM_INT(rmac_pause_time, 0x100);
  425. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  426. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  427. S2IO_PARM_INT(shared_splits, 0);
  428. S2IO_PARM_INT(tmac_util_period, 5);
  429. S2IO_PARM_INT(rmac_util_period, 5);
  430. S2IO_PARM_INT(l3l4hdr_size, 128);
  431. /* Frequency of Rx desc syncs expressed as power of 2 */
  432. S2IO_PARM_INT(rxsync_frequency, 3);
  433. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  434. S2IO_PARM_INT(intr_type, 2);
  435. /* Large receive offload feature */
  436. static unsigned int lro_enable;
  437. module_param_named(lro, lro_enable, uint, 0);
  438. /* Max pkts to be aggregated by LRO at one time. If not specified,
  439. * aggregation happens until we hit max IP pkt size(64K)
  440. */
  441. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  442. S2IO_PARM_INT(indicate_max_pkts, 0);
  443. S2IO_PARM_INT(napi, 1);
  444. S2IO_PARM_INT(ufo, 0);
  445. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  446. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  447. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  448. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  449. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  450. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  451. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  452. module_param_array(tx_fifo_len, uint, NULL, 0);
  453. module_param_array(rx_ring_sz, uint, NULL, 0);
  454. module_param_array(rts_frm_len, uint, NULL, 0);
  455. /*
  456. * S2IO device table.
  457. * This table lists all the devices that this driver supports.
  458. */
  459. static struct pci_device_id s2io_tbl[] __devinitdata = {
  460. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  461. PCI_ANY_ID, PCI_ANY_ID},
  462. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  463. PCI_ANY_ID, PCI_ANY_ID},
  464. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  465. PCI_ANY_ID, PCI_ANY_ID},
  466. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  467. PCI_ANY_ID, PCI_ANY_ID},
  468. {0,}
  469. };
  470. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  471. static struct pci_error_handlers s2io_err_handler = {
  472. .error_detected = s2io_io_error_detected,
  473. .slot_reset = s2io_io_slot_reset,
  474. .resume = s2io_io_resume,
  475. };
  476. static struct pci_driver s2io_driver = {
  477. .name = "S2IO",
  478. .id_table = s2io_tbl,
  479. .probe = s2io_init_nic,
  480. .remove = __devexit_p(s2io_rem_nic),
  481. .err_handler = &s2io_err_handler,
  482. };
  483. /* A simplifier macro used both by init and free shared_mem Fns(). */
  484. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  485. /**
  486. * init_shared_mem - Allocation and Initialization of Memory
  487. * @nic: Device private variable.
  488. * Description: The function allocates all the memory areas shared
  489. * between the NIC and the driver. This includes Tx descriptors,
  490. * Rx descriptors and the statistics block.
  491. */
  492. static int init_shared_mem(struct s2io_nic *nic)
  493. {
  494. u32 size;
  495. void *tmp_v_addr, *tmp_v_addr_next;
  496. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  497. struct RxD_block *pre_rxd_blk = NULL;
  498. int i, j, blk_cnt;
  499. int lst_size, lst_per_page;
  500. struct net_device *dev = nic->dev;
  501. unsigned long tmp;
  502. struct buffAdd *ba;
  503. struct mac_info *mac_control;
  504. struct config_param *config;
  505. unsigned long long mem_allocated = 0;
  506. mac_control = &nic->mac_control;
  507. config = &nic->config;
  508. /* Allocation and initialization of TXDLs in FIOFs */
  509. size = 0;
  510. for (i = 0; i < config->tx_fifo_num; i++) {
  511. size += config->tx_cfg[i].fifo_len;
  512. }
  513. if (size > MAX_AVAILABLE_TXDS) {
  514. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  515. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  516. return -EINVAL;
  517. }
  518. lst_size = (sizeof(struct TxD) * config->max_txds);
  519. lst_per_page = PAGE_SIZE / lst_size;
  520. for (i = 0; i < config->tx_fifo_num; i++) {
  521. int fifo_len = config->tx_cfg[i].fifo_len;
  522. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  523. mac_control->fifos[i].list_info = kzalloc(list_holder_size,
  524. GFP_KERNEL);
  525. if (!mac_control->fifos[i].list_info) {
  526. DBG_PRINT(INFO_DBG,
  527. "Malloc failed for list_info\n");
  528. return -ENOMEM;
  529. }
  530. mem_allocated += list_holder_size;
  531. }
  532. for (i = 0; i < config->tx_fifo_num; i++) {
  533. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  534. lst_per_page);
  535. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  536. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  537. config->tx_cfg[i].fifo_len - 1;
  538. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  539. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  540. config->tx_cfg[i].fifo_len - 1;
  541. mac_control->fifos[i].fifo_no = i;
  542. mac_control->fifos[i].nic = nic;
  543. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  544. for (j = 0; j < page_num; j++) {
  545. int k = 0;
  546. dma_addr_t tmp_p;
  547. void *tmp_v;
  548. tmp_v = pci_alloc_consistent(nic->pdev,
  549. PAGE_SIZE, &tmp_p);
  550. if (!tmp_v) {
  551. DBG_PRINT(INFO_DBG,
  552. "pci_alloc_consistent ");
  553. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  554. return -ENOMEM;
  555. }
  556. /* If we got a zero DMA address(can happen on
  557. * certain platforms like PPC), reallocate.
  558. * Store virtual address of page we don't want,
  559. * to be freed later.
  560. */
  561. if (!tmp_p) {
  562. mac_control->zerodma_virt_addr = tmp_v;
  563. DBG_PRINT(INIT_DBG,
  564. "%s: Zero DMA address for TxDL. ", dev->name);
  565. DBG_PRINT(INIT_DBG,
  566. "Virtual address %p\n", tmp_v);
  567. tmp_v = pci_alloc_consistent(nic->pdev,
  568. PAGE_SIZE, &tmp_p);
  569. if (!tmp_v) {
  570. DBG_PRINT(INFO_DBG,
  571. "pci_alloc_consistent ");
  572. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  573. return -ENOMEM;
  574. }
  575. mem_allocated += PAGE_SIZE;
  576. }
  577. while (k < lst_per_page) {
  578. int l = (j * lst_per_page) + k;
  579. if (l == config->tx_cfg[i].fifo_len)
  580. break;
  581. mac_control->fifos[i].list_info[l].list_virt_addr =
  582. tmp_v + (k * lst_size);
  583. mac_control->fifos[i].list_info[l].list_phy_addr =
  584. tmp_p + (k * lst_size);
  585. k++;
  586. }
  587. }
  588. }
  589. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  590. if (!nic->ufo_in_band_v)
  591. return -ENOMEM;
  592. mem_allocated += (size * sizeof(u64));
  593. /* Allocation and initialization of RXDs in Rings */
  594. size = 0;
  595. for (i = 0; i < config->rx_ring_num; i++) {
  596. if (config->rx_cfg[i].num_rxd %
  597. (rxd_count[nic->rxd_mode] + 1)) {
  598. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  599. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  600. i);
  601. DBG_PRINT(ERR_DBG, "RxDs per Block");
  602. return FAILURE;
  603. }
  604. size += config->rx_cfg[i].num_rxd;
  605. mac_control->rings[i].block_count =
  606. config->rx_cfg[i].num_rxd /
  607. (rxd_count[nic->rxd_mode] + 1 );
  608. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  609. mac_control->rings[i].block_count;
  610. }
  611. if (nic->rxd_mode == RXD_MODE_1)
  612. size = (size * (sizeof(struct RxD1)));
  613. else
  614. size = (size * (sizeof(struct RxD3)));
  615. for (i = 0; i < config->rx_ring_num; i++) {
  616. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  617. mac_control->rings[i].rx_curr_get_info.offset = 0;
  618. mac_control->rings[i].rx_curr_get_info.ring_len =
  619. config->rx_cfg[i].num_rxd - 1;
  620. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  621. mac_control->rings[i].rx_curr_put_info.offset = 0;
  622. mac_control->rings[i].rx_curr_put_info.ring_len =
  623. config->rx_cfg[i].num_rxd - 1;
  624. mac_control->rings[i].nic = nic;
  625. mac_control->rings[i].ring_no = i;
  626. blk_cnt = config->rx_cfg[i].num_rxd /
  627. (rxd_count[nic->rxd_mode] + 1);
  628. /* Allocating all the Rx blocks */
  629. for (j = 0; j < blk_cnt; j++) {
  630. struct rx_block_info *rx_blocks;
  631. int l;
  632. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  633. size = SIZE_OF_BLOCK; //size is always page size
  634. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  635. &tmp_p_addr);
  636. if (tmp_v_addr == NULL) {
  637. /*
  638. * In case of failure, free_shared_mem()
  639. * is called, which should free any
  640. * memory that was alloced till the
  641. * failure happened.
  642. */
  643. rx_blocks->block_virt_addr = tmp_v_addr;
  644. return -ENOMEM;
  645. }
  646. mem_allocated += size;
  647. memset(tmp_v_addr, 0, size);
  648. rx_blocks->block_virt_addr = tmp_v_addr;
  649. rx_blocks->block_dma_addr = tmp_p_addr;
  650. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  651. rxd_count[nic->rxd_mode],
  652. GFP_KERNEL);
  653. if (!rx_blocks->rxds)
  654. return -ENOMEM;
  655. mem_allocated +=
  656. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  657. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  658. rx_blocks->rxds[l].virt_addr =
  659. rx_blocks->block_virt_addr +
  660. (rxd_size[nic->rxd_mode] * l);
  661. rx_blocks->rxds[l].dma_addr =
  662. rx_blocks->block_dma_addr +
  663. (rxd_size[nic->rxd_mode] * l);
  664. }
  665. }
  666. /* Interlinking all Rx Blocks */
  667. for (j = 0; j < blk_cnt; j++) {
  668. tmp_v_addr =
  669. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  670. tmp_v_addr_next =
  671. mac_control->rings[i].rx_blocks[(j + 1) %
  672. blk_cnt].block_virt_addr;
  673. tmp_p_addr =
  674. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  675. tmp_p_addr_next =
  676. mac_control->rings[i].rx_blocks[(j + 1) %
  677. blk_cnt].block_dma_addr;
  678. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  679. pre_rxd_blk->reserved_2_pNext_RxD_block =
  680. (unsigned long) tmp_v_addr_next;
  681. pre_rxd_blk->pNext_RxD_Blk_physical =
  682. (u64) tmp_p_addr_next;
  683. }
  684. }
  685. if (nic->rxd_mode == RXD_MODE_3B) {
  686. /*
  687. * Allocation of Storages for buffer addresses in 2BUFF mode
  688. * and the buffers as well.
  689. */
  690. for (i = 0; i < config->rx_ring_num; i++) {
  691. blk_cnt = config->rx_cfg[i].num_rxd /
  692. (rxd_count[nic->rxd_mode]+ 1);
  693. mac_control->rings[i].ba =
  694. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  695. GFP_KERNEL);
  696. if (!mac_control->rings[i].ba)
  697. return -ENOMEM;
  698. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  699. for (j = 0; j < blk_cnt; j++) {
  700. int k = 0;
  701. mac_control->rings[i].ba[j] =
  702. kmalloc((sizeof(struct buffAdd) *
  703. (rxd_count[nic->rxd_mode] + 1)),
  704. GFP_KERNEL);
  705. if (!mac_control->rings[i].ba[j])
  706. return -ENOMEM;
  707. mem_allocated += (sizeof(struct buffAdd) * \
  708. (rxd_count[nic->rxd_mode] + 1));
  709. while (k != rxd_count[nic->rxd_mode]) {
  710. ba = &mac_control->rings[i].ba[j][k];
  711. ba->ba_0_org = (void *) kmalloc
  712. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  713. if (!ba->ba_0_org)
  714. return -ENOMEM;
  715. mem_allocated +=
  716. (BUF0_LEN + ALIGN_SIZE);
  717. tmp = (unsigned long)ba->ba_0_org;
  718. tmp += ALIGN_SIZE;
  719. tmp &= ~((unsigned long) ALIGN_SIZE);
  720. ba->ba_0 = (void *) tmp;
  721. ba->ba_1_org = (void *) kmalloc
  722. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  723. if (!ba->ba_1_org)
  724. return -ENOMEM;
  725. mem_allocated
  726. += (BUF1_LEN + ALIGN_SIZE);
  727. tmp = (unsigned long) ba->ba_1_org;
  728. tmp += ALIGN_SIZE;
  729. tmp &= ~((unsigned long) ALIGN_SIZE);
  730. ba->ba_1 = (void *) tmp;
  731. k++;
  732. }
  733. }
  734. }
  735. }
  736. /* Allocation and initialization of Statistics block */
  737. size = sizeof(struct stat_block);
  738. mac_control->stats_mem = pci_alloc_consistent
  739. (nic->pdev, size, &mac_control->stats_mem_phy);
  740. if (!mac_control->stats_mem) {
  741. /*
  742. * In case of failure, free_shared_mem() is called, which
  743. * should free any memory that was alloced till the
  744. * failure happened.
  745. */
  746. return -ENOMEM;
  747. }
  748. mem_allocated += size;
  749. mac_control->stats_mem_sz = size;
  750. tmp_v_addr = mac_control->stats_mem;
  751. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  752. memset(tmp_v_addr, 0, size);
  753. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  754. (unsigned long long) tmp_p_addr);
  755. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  756. return SUCCESS;
  757. }
  758. /**
  759. * free_shared_mem - Free the allocated Memory
  760. * @nic: Device private variable.
  761. * Description: This function is to free all memory locations allocated by
  762. * the init_shared_mem() function and return it to the kernel.
  763. */
  764. static void free_shared_mem(struct s2io_nic *nic)
  765. {
  766. int i, j, blk_cnt, size;
  767. u32 ufo_size = 0;
  768. void *tmp_v_addr;
  769. dma_addr_t tmp_p_addr;
  770. struct mac_info *mac_control;
  771. struct config_param *config;
  772. int lst_size, lst_per_page;
  773. struct net_device *dev;
  774. int page_num = 0;
  775. if (!nic)
  776. return;
  777. dev = nic->dev;
  778. mac_control = &nic->mac_control;
  779. config = &nic->config;
  780. lst_size = (sizeof(struct TxD) * config->max_txds);
  781. lst_per_page = PAGE_SIZE / lst_size;
  782. for (i = 0; i < config->tx_fifo_num; i++) {
  783. ufo_size += config->tx_cfg[i].fifo_len;
  784. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  785. lst_per_page);
  786. for (j = 0; j < page_num; j++) {
  787. int mem_blks = (j * lst_per_page);
  788. if (!mac_control->fifos[i].list_info)
  789. return;
  790. if (!mac_control->fifos[i].list_info[mem_blks].
  791. list_virt_addr)
  792. break;
  793. pci_free_consistent(nic->pdev, PAGE_SIZE,
  794. mac_control->fifos[i].
  795. list_info[mem_blks].
  796. list_virt_addr,
  797. mac_control->fifos[i].
  798. list_info[mem_blks].
  799. list_phy_addr);
  800. nic->mac_control.stats_info->sw_stat.mem_freed
  801. += PAGE_SIZE;
  802. }
  803. /* If we got a zero DMA address during allocation,
  804. * free the page now
  805. */
  806. if (mac_control->zerodma_virt_addr) {
  807. pci_free_consistent(nic->pdev, PAGE_SIZE,
  808. mac_control->zerodma_virt_addr,
  809. (dma_addr_t)0);
  810. DBG_PRINT(INIT_DBG,
  811. "%s: Freeing TxDL with zero DMA addr. ",
  812. dev->name);
  813. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  814. mac_control->zerodma_virt_addr);
  815. nic->mac_control.stats_info->sw_stat.mem_freed
  816. += PAGE_SIZE;
  817. }
  818. kfree(mac_control->fifos[i].list_info);
  819. nic->mac_control.stats_info->sw_stat.mem_freed +=
  820. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  821. }
  822. size = SIZE_OF_BLOCK;
  823. for (i = 0; i < config->rx_ring_num; i++) {
  824. blk_cnt = mac_control->rings[i].block_count;
  825. for (j = 0; j < blk_cnt; j++) {
  826. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  827. block_virt_addr;
  828. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  829. block_dma_addr;
  830. if (tmp_v_addr == NULL)
  831. break;
  832. pci_free_consistent(nic->pdev, size,
  833. tmp_v_addr, tmp_p_addr);
  834. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  835. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  836. nic->mac_control.stats_info->sw_stat.mem_freed +=
  837. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  838. }
  839. }
  840. if (nic->rxd_mode == RXD_MODE_3B) {
  841. /* Freeing buffer storage addresses in 2BUFF mode. */
  842. for (i = 0; i < config->rx_ring_num; i++) {
  843. blk_cnt = config->rx_cfg[i].num_rxd /
  844. (rxd_count[nic->rxd_mode] + 1);
  845. for (j = 0; j < blk_cnt; j++) {
  846. int k = 0;
  847. if (!mac_control->rings[i].ba[j])
  848. continue;
  849. while (k != rxd_count[nic->rxd_mode]) {
  850. struct buffAdd *ba =
  851. &mac_control->rings[i].ba[j][k];
  852. kfree(ba->ba_0_org);
  853. nic->mac_control.stats_info->sw_stat.\
  854. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  855. kfree(ba->ba_1_org);
  856. nic->mac_control.stats_info->sw_stat.\
  857. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  858. k++;
  859. }
  860. kfree(mac_control->rings[i].ba[j]);
  861. nic->mac_control.stats_info->sw_stat.mem_freed +=
  862. (sizeof(struct buffAdd) *
  863. (rxd_count[nic->rxd_mode] + 1));
  864. }
  865. kfree(mac_control->rings[i].ba);
  866. nic->mac_control.stats_info->sw_stat.mem_freed +=
  867. (sizeof(struct buffAdd *) * blk_cnt);
  868. }
  869. }
  870. if (mac_control->stats_mem) {
  871. pci_free_consistent(nic->pdev,
  872. mac_control->stats_mem_sz,
  873. mac_control->stats_mem,
  874. mac_control->stats_mem_phy);
  875. nic->mac_control.stats_info->sw_stat.mem_freed +=
  876. mac_control->stats_mem_sz;
  877. }
  878. if (nic->ufo_in_band_v) {
  879. kfree(nic->ufo_in_band_v);
  880. nic->mac_control.stats_info->sw_stat.mem_freed
  881. += (ufo_size * sizeof(u64));
  882. }
  883. }
  884. /**
  885. * s2io_verify_pci_mode -
  886. */
  887. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  888. {
  889. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  890. register u64 val64 = 0;
  891. int mode;
  892. val64 = readq(&bar0->pci_mode);
  893. mode = (u8)GET_PCI_MODE(val64);
  894. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  895. return -1; /* Unknown PCI mode */
  896. return mode;
  897. }
  898. #define NEC_VENID 0x1033
  899. #define NEC_DEVID 0x0125
  900. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  901. {
  902. struct pci_dev *tdev = NULL;
  903. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  904. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  905. if (tdev->bus == s2io_pdev->bus->parent)
  906. pci_dev_put(tdev);
  907. return 1;
  908. }
  909. }
  910. return 0;
  911. }
  912. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  913. /**
  914. * s2io_print_pci_mode -
  915. */
  916. static int s2io_print_pci_mode(struct s2io_nic *nic)
  917. {
  918. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  919. register u64 val64 = 0;
  920. int mode;
  921. struct config_param *config = &nic->config;
  922. val64 = readq(&bar0->pci_mode);
  923. mode = (u8)GET_PCI_MODE(val64);
  924. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  925. return -1; /* Unknown PCI mode */
  926. config->bus_speed = bus_speed[mode];
  927. if (s2io_on_nec_bridge(nic->pdev)) {
  928. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  929. nic->dev->name);
  930. return mode;
  931. }
  932. if (val64 & PCI_MODE_32_BITS) {
  933. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  934. } else {
  935. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  936. }
  937. switch(mode) {
  938. case PCI_MODE_PCI_33:
  939. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  940. break;
  941. case PCI_MODE_PCI_66:
  942. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  943. break;
  944. case PCI_MODE_PCIX_M1_66:
  945. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  946. break;
  947. case PCI_MODE_PCIX_M1_100:
  948. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  949. break;
  950. case PCI_MODE_PCIX_M1_133:
  951. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  952. break;
  953. case PCI_MODE_PCIX_M2_66:
  954. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  955. break;
  956. case PCI_MODE_PCIX_M2_100:
  957. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  958. break;
  959. case PCI_MODE_PCIX_M2_133:
  960. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  961. break;
  962. default:
  963. return -1; /* Unsupported bus speed */
  964. }
  965. return mode;
  966. }
  967. /**
  968. * init_nic - Initialization of hardware
  969. * @nic: device peivate variable
  970. * Description: The function sequentially configures every block
  971. * of the H/W from their reset values.
  972. * Return Value: SUCCESS on success and
  973. * '-1' on failure (endian settings incorrect).
  974. */
  975. static int init_nic(struct s2io_nic *nic)
  976. {
  977. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  978. struct net_device *dev = nic->dev;
  979. register u64 val64 = 0;
  980. void __iomem *add;
  981. u32 time;
  982. int i, j;
  983. struct mac_info *mac_control;
  984. struct config_param *config;
  985. int dtx_cnt = 0;
  986. unsigned long long mem_share;
  987. int mem_size;
  988. mac_control = &nic->mac_control;
  989. config = &nic->config;
  990. /* to set the swapper controle on the card */
  991. if(s2io_set_swapper(nic)) {
  992. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  993. return -EIO;
  994. }
  995. /*
  996. * Herc requires EOI to be removed from reset before XGXS, so..
  997. */
  998. if (nic->device_type & XFRAME_II_DEVICE) {
  999. val64 = 0xA500000000ULL;
  1000. writeq(val64, &bar0->sw_reset);
  1001. msleep(500);
  1002. val64 = readq(&bar0->sw_reset);
  1003. }
  1004. /* Remove XGXS from reset state */
  1005. val64 = 0;
  1006. writeq(val64, &bar0->sw_reset);
  1007. msleep(500);
  1008. val64 = readq(&bar0->sw_reset);
  1009. /* Ensure that it's safe to access registers by checking
  1010. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1011. */
  1012. if (nic->device_type == XFRAME_II_DEVICE) {
  1013. for (i = 0; i < 50; i++) {
  1014. val64 = readq(&bar0->adapter_status);
  1015. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1016. break;
  1017. msleep(10);
  1018. }
  1019. if (i == 50)
  1020. return -ENODEV;
  1021. }
  1022. /* Enable Receiving broadcasts */
  1023. add = &bar0->mac_cfg;
  1024. val64 = readq(&bar0->mac_cfg);
  1025. val64 |= MAC_RMAC_BCAST_ENABLE;
  1026. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1027. writel((u32) val64, add);
  1028. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1029. writel((u32) (val64 >> 32), (add + 4));
  1030. /* Read registers in all blocks */
  1031. val64 = readq(&bar0->mac_int_mask);
  1032. val64 = readq(&bar0->mc_int_mask);
  1033. val64 = readq(&bar0->xgxs_int_mask);
  1034. /* Set MTU */
  1035. val64 = dev->mtu;
  1036. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1037. if (nic->device_type & XFRAME_II_DEVICE) {
  1038. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1039. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1040. &bar0->dtx_control, UF);
  1041. if (dtx_cnt & 0x1)
  1042. msleep(1); /* Necessary!! */
  1043. dtx_cnt++;
  1044. }
  1045. } else {
  1046. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1047. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1048. &bar0->dtx_control, UF);
  1049. val64 = readq(&bar0->dtx_control);
  1050. dtx_cnt++;
  1051. }
  1052. }
  1053. /* Tx DMA Initialization */
  1054. val64 = 0;
  1055. writeq(val64, &bar0->tx_fifo_partition_0);
  1056. writeq(val64, &bar0->tx_fifo_partition_1);
  1057. writeq(val64, &bar0->tx_fifo_partition_2);
  1058. writeq(val64, &bar0->tx_fifo_partition_3);
  1059. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1060. val64 |=
  1061. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1062. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1063. ((i * 32) + 5), 3);
  1064. if (i == (config->tx_fifo_num - 1)) {
  1065. if (i % 2 == 0)
  1066. i++;
  1067. }
  1068. switch (i) {
  1069. case 1:
  1070. writeq(val64, &bar0->tx_fifo_partition_0);
  1071. val64 = 0;
  1072. break;
  1073. case 3:
  1074. writeq(val64, &bar0->tx_fifo_partition_1);
  1075. val64 = 0;
  1076. break;
  1077. case 5:
  1078. writeq(val64, &bar0->tx_fifo_partition_2);
  1079. val64 = 0;
  1080. break;
  1081. case 7:
  1082. writeq(val64, &bar0->tx_fifo_partition_3);
  1083. break;
  1084. }
  1085. }
  1086. /*
  1087. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1088. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1089. */
  1090. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1091. (nic->pdev->revision < 4))
  1092. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1093. val64 = readq(&bar0->tx_fifo_partition_0);
  1094. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1095. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1096. /*
  1097. * Initialization of Tx_PA_CONFIG register to ignore packet
  1098. * integrity checking.
  1099. */
  1100. val64 = readq(&bar0->tx_pa_cfg);
  1101. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1102. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1103. writeq(val64, &bar0->tx_pa_cfg);
  1104. /* Rx DMA intialization. */
  1105. val64 = 0;
  1106. for (i = 0; i < config->rx_ring_num; i++) {
  1107. val64 |=
  1108. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1109. 3);
  1110. }
  1111. writeq(val64, &bar0->rx_queue_priority);
  1112. /*
  1113. * Allocating equal share of memory to all the
  1114. * configured Rings.
  1115. */
  1116. val64 = 0;
  1117. if (nic->device_type & XFRAME_II_DEVICE)
  1118. mem_size = 32;
  1119. else
  1120. mem_size = 64;
  1121. for (i = 0; i < config->rx_ring_num; i++) {
  1122. switch (i) {
  1123. case 0:
  1124. mem_share = (mem_size / config->rx_ring_num +
  1125. mem_size % config->rx_ring_num);
  1126. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1127. continue;
  1128. case 1:
  1129. mem_share = (mem_size / config->rx_ring_num);
  1130. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1131. continue;
  1132. case 2:
  1133. mem_share = (mem_size / config->rx_ring_num);
  1134. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1135. continue;
  1136. case 3:
  1137. mem_share = (mem_size / config->rx_ring_num);
  1138. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1139. continue;
  1140. case 4:
  1141. mem_share = (mem_size / config->rx_ring_num);
  1142. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1143. continue;
  1144. case 5:
  1145. mem_share = (mem_size / config->rx_ring_num);
  1146. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1147. continue;
  1148. case 6:
  1149. mem_share = (mem_size / config->rx_ring_num);
  1150. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1151. continue;
  1152. case 7:
  1153. mem_share = (mem_size / config->rx_ring_num);
  1154. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1155. continue;
  1156. }
  1157. }
  1158. writeq(val64, &bar0->rx_queue_cfg);
  1159. /*
  1160. * Filling Tx round robin registers
  1161. * as per the number of FIFOs
  1162. */
  1163. switch (config->tx_fifo_num) {
  1164. case 1:
  1165. val64 = 0x0000000000000000ULL;
  1166. writeq(val64, &bar0->tx_w_round_robin_0);
  1167. writeq(val64, &bar0->tx_w_round_robin_1);
  1168. writeq(val64, &bar0->tx_w_round_robin_2);
  1169. writeq(val64, &bar0->tx_w_round_robin_3);
  1170. writeq(val64, &bar0->tx_w_round_robin_4);
  1171. break;
  1172. case 2:
  1173. val64 = 0x0000010000010000ULL;
  1174. writeq(val64, &bar0->tx_w_round_robin_0);
  1175. val64 = 0x0100000100000100ULL;
  1176. writeq(val64, &bar0->tx_w_round_robin_1);
  1177. val64 = 0x0001000001000001ULL;
  1178. writeq(val64, &bar0->tx_w_round_robin_2);
  1179. val64 = 0x0000010000010000ULL;
  1180. writeq(val64, &bar0->tx_w_round_robin_3);
  1181. val64 = 0x0100000000000000ULL;
  1182. writeq(val64, &bar0->tx_w_round_robin_4);
  1183. break;
  1184. case 3:
  1185. val64 = 0x0001000102000001ULL;
  1186. writeq(val64, &bar0->tx_w_round_robin_0);
  1187. val64 = 0x0001020000010001ULL;
  1188. writeq(val64, &bar0->tx_w_round_robin_1);
  1189. val64 = 0x0200000100010200ULL;
  1190. writeq(val64, &bar0->tx_w_round_robin_2);
  1191. val64 = 0x0001000102000001ULL;
  1192. writeq(val64, &bar0->tx_w_round_robin_3);
  1193. val64 = 0x0001020000000000ULL;
  1194. writeq(val64, &bar0->tx_w_round_robin_4);
  1195. break;
  1196. case 4:
  1197. val64 = 0x0001020300010200ULL;
  1198. writeq(val64, &bar0->tx_w_round_robin_0);
  1199. val64 = 0x0100000102030001ULL;
  1200. writeq(val64, &bar0->tx_w_round_robin_1);
  1201. val64 = 0x0200010000010203ULL;
  1202. writeq(val64, &bar0->tx_w_round_robin_2);
  1203. val64 = 0x0001020001000001ULL;
  1204. writeq(val64, &bar0->tx_w_round_robin_3);
  1205. val64 = 0x0203000100000000ULL;
  1206. writeq(val64, &bar0->tx_w_round_robin_4);
  1207. break;
  1208. case 5:
  1209. val64 = 0x0001000203000102ULL;
  1210. writeq(val64, &bar0->tx_w_round_robin_0);
  1211. val64 = 0x0001020001030004ULL;
  1212. writeq(val64, &bar0->tx_w_round_robin_1);
  1213. val64 = 0x0001000203000102ULL;
  1214. writeq(val64, &bar0->tx_w_round_robin_2);
  1215. val64 = 0x0001020001030004ULL;
  1216. writeq(val64, &bar0->tx_w_round_robin_3);
  1217. val64 = 0x0001000000000000ULL;
  1218. writeq(val64, &bar0->tx_w_round_robin_4);
  1219. break;
  1220. case 6:
  1221. val64 = 0x0001020304000102ULL;
  1222. writeq(val64, &bar0->tx_w_round_robin_0);
  1223. val64 = 0x0304050001020001ULL;
  1224. writeq(val64, &bar0->tx_w_round_robin_1);
  1225. val64 = 0x0203000100000102ULL;
  1226. writeq(val64, &bar0->tx_w_round_robin_2);
  1227. val64 = 0x0304000102030405ULL;
  1228. writeq(val64, &bar0->tx_w_round_robin_3);
  1229. val64 = 0x0001000200000000ULL;
  1230. writeq(val64, &bar0->tx_w_round_robin_4);
  1231. break;
  1232. case 7:
  1233. val64 = 0x0001020001020300ULL;
  1234. writeq(val64, &bar0->tx_w_round_robin_0);
  1235. val64 = 0x0102030400010203ULL;
  1236. writeq(val64, &bar0->tx_w_round_robin_1);
  1237. val64 = 0x0405060001020001ULL;
  1238. writeq(val64, &bar0->tx_w_round_robin_2);
  1239. val64 = 0x0304050000010200ULL;
  1240. writeq(val64, &bar0->tx_w_round_robin_3);
  1241. val64 = 0x0102030000000000ULL;
  1242. writeq(val64, &bar0->tx_w_round_robin_4);
  1243. break;
  1244. case 8:
  1245. val64 = 0x0001020300040105ULL;
  1246. writeq(val64, &bar0->tx_w_round_robin_0);
  1247. val64 = 0x0200030106000204ULL;
  1248. writeq(val64, &bar0->tx_w_round_robin_1);
  1249. val64 = 0x0103000502010007ULL;
  1250. writeq(val64, &bar0->tx_w_round_robin_2);
  1251. val64 = 0x0304010002060500ULL;
  1252. writeq(val64, &bar0->tx_w_round_robin_3);
  1253. val64 = 0x0103020400000000ULL;
  1254. writeq(val64, &bar0->tx_w_round_robin_4);
  1255. break;
  1256. }
  1257. /* Enable all configured Tx FIFO partitions */
  1258. val64 = readq(&bar0->tx_fifo_partition_0);
  1259. val64 |= (TX_FIFO_PARTITION_EN);
  1260. writeq(val64, &bar0->tx_fifo_partition_0);
  1261. /* Filling the Rx round robin registers as per the
  1262. * number of Rings and steering based on QoS.
  1263. */
  1264. switch (config->rx_ring_num) {
  1265. case 1:
  1266. val64 = 0x8080808080808080ULL;
  1267. writeq(val64, &bar0->rts_qos_steering);
  1268. break;
  1269. case 2:
  1270. val64 = 0x0000010000010000ULL;
  1271. writeq(val64, &bar0->rx_w_round_robin_0);
  1272. val64 = 0x0100000100000100ULL;
  1273. writeq(val64, &bar0->rx_w_round_robin_1);
  1274. val64 = 0x0001000001000001ULL;
  1275. writeq(val64, &bar0->rx_w_round_robin_2);
  1276. val64 = 0x0000010000010000ULL;
  1277. writeq(val64, &bar0->rx_w_round_robin_3);
  1278. val64 = 0x0100000000000000ULL;
  1279. writeq(val64, &bar0->rx_w_round_robin_4);
  1280. val64 = 0x8080808040404040ULL;
  1281. writeq(val64, &bar0->rts_qos_steering);
  1282. break;
  1283. case 3:
  1284. val64 = 0x0001000102000001ULL;
  1285. writeq(val64, &bar0->rx_w_round_robin_0);
  1286. val64 = 0x0001020000010001ULL;
  1287. writeq(val64, &bar0->rx_w_round_robin_1);
  1288. val64 = 0x0200000100010200ULL;
  1289. writeq(val64, &bar0->rx_w_round_robin_2);
  1290. val64 = 0x0001000102000001ULL;
  1291. writeq(val64, &bar0->rx_w_round_robin_3);
  1292. val64 = 0x0001020000000000ULL;
  1293. writeq(val64, &bar0->rx_w_round_robin_4);
  1294. val64 = 0x8080804040402020ULL;
  1295. writeq(val64, &bar0->rts_qos_steering);
  1296. break;
  1297. case 4:
  1298. val64 = 0x0001020300010200ULL;
  1299. writeq(val64, &bar0->rx_w_round_robin_0);
  1300. val64 = 0x0100000102030001ULL;
  1301. writeq(val64, &bar0->rx_w_round_robin_1);
  1302. val64 = 0x0200010000010203ULL;
  1303. writeq(val64, &bar0->rx_w_round_robin_2);
  1304. val64 = 0x0001020001000001ULL;
  1305. writeq(val64, &bar0->rx_w_round_robin_3);
  1306. val64 = 0x0203000100000000ULL;
  1307. writeq(val64, &bar0->rx_w_round_robin_4);
  1308. val64 = 0x8080404020201010ULL;
  1309. writeq(val64, &bar0->rts_qos_steering);
  1310. break;
  1311. case 5:
  1312. val64 = 0x0001000203000102ULL;
  1313. writeq(val64, &bar0->rx_w_round_robin_0);
  1314. val64 = 0x0001020001030004ULL;
  1315. writeq(val64, &bar0->rx_w_round_robin_1);
  1316. val64 = 0x0001000203000102ULL;
  1317. writeq(val64, &bar0->rx_w_round_robin_2);
  1318. val64 = 0x0001020001030004ULL;
  1319. writeq(val64, &bar0->rx_w_round_robin_3);
  1320. val64 = 0x0001000000000000ULL;
  1321. writeq(val64, &bar0->rx_w_round_robin_4);
  1322. val64 = 0x8080404020201008ULL;
  1323. writeq(val64, &bar0->rts_qos_steering);
  1324. break;
  1325. case 6:
  1326. val64 = 0x0001020304000102ULL;
  1327. writeq(val64, &bar0->rx_w_round_robin_0);
  1328. val64 = 0x0304050001020001ULL;
  1329. writeq(val64, &bar0->rx_w_round_robin_1);
  1330. val64 = 0x0203000100000102ULL;
  1331. writeq(val64, &bar0->rx_w_round_robin_2);
  1332. val64 = 0x0304000102030405ULL;
  1333. writeq(val64, &bar0->rx_w_round_robin_3);
  1334. val64 = 0x0001000200000000ULL;
  1335. writeq(val64, &bar0->rx_w_round_robin_4);
  1336. val64 = 0x8080404020100804ULL;
  1337. writeq(val64, &bar0->rts_qos_steering);
  1338. break;
  1339. case 7:
  1340. val64 = 0x0001020001020300ULL;
  1341. writeq(val64, &bar0->rx_w_round_robin_0);
  1342. val64 = 0x0102030400010203ULL;
  1343. writeq(val64, &bar0->rx_w_round_robin_1);
  1344. val64 = 0x0405060001020001ULL;
  1345. writeq(val64, &bar0->rx_w_round_robin_2);
  1346. val64 = 0x0304050000010200ULL;
  1347. writeq(val64, &bar0->rx_w_round_robin_3);
  1348. val64 = 0x0102030000000000ULL;
  1349. writeq(val64, &bar0->rx_w_round_robin_4);
  1350. val64 = 0x8080402010080402ULL;
  1351. writeq(val64, &bar0->rts_qos_steering);
  1352. break;
  1353. case 8:
  1354. val64 = 0x0001020300040105ULL;
  1355. writeq(val64, &bar0->rx_w_round_robin_0);
  1356. val64 = 0x0200030106000204ULL;
  1357. writeq(val64, &bar0->rx_w_round_robin_1);
  1358. val64 = 0x0103000502010007ULL;
  1359. writeq(val64, &bar0->rx_w_round_robin_2);
  1360. val64 = 0x0304010002060500ULL;
  1361. writeq(val64, &bar0->rx_w_round_robin_3);
  1362. val64 = 0x0103020400000000ULL;
  1363. writeq(val64, &bar0->rx_w_round_robin_4);
  1364. val64 = 0x8040201008040201ULL;
  1365. writeq(val64, &bar0->rts_qos_steering);
  1366. break;
  1367. }
  1368. /* UDP Fix */
  1369. val64 = 0;
  1370. for (i = 0; i < 8; i++)
  1371. writeq(val64, &bar0->rts_frm_len_n[i]);
  1372. /* Set the default rts frame length for the rings configured */
  1373. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1374. for (i = 0 ; i < config->rx_ring_num ; i++)
  1375. writeq(val64, &bar0->rts_frm_len_n[i]);
  1376. /* Set the frame length for the configured rings
  1377. * desired by the user
  1378. */
  1379. for (i = 0; i < config->rx_ring_num; i++) {
  1380. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1381. * specified frame length steering.
  1382. * If the user provides the frame length then program
  1383. * the rts_frm_len register for those values or else
  1384. * leave it as it is.
  1385. */
  1386. if (rts_frm_len[i] != 0) {
  1387. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1388. &bar0->rts_frm_len_n[i]);
  1389. }
  1390. }
  1391. /* Disable differentiated services steering logic */
  1392. for (i = 0; i < 64; i++) {
  1393. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1394. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1395. dev->name);
  1396. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1397. return -ENODEV;
  1398. }
  1399. }
  1400. /* Program statistics memory */
  1401. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1402. if (nic->device_type == XFRAME_II_DEVICE) {
  1403. val64 = STAT_BC(0x320);
  1404. writeq(val64, &bar0->stat_byte_cnt);
  1405. }
  1406. /*
  1407. * Initializing the sampling rate for the device to calculate the
  1408. * bandwidth utilization.
  1409. */
  1410. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1411. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1412. writeq(val64, &bar0->mac_link_util);
  1413. /*
  1414. * Initializing the Transmit and Receive Traffic Interrupt
  1415. * Scheme.
  1416. */
  1417. /*
  1418. * TTI Initialization. Default Tx timer gets us about
  1419. * 250 interrupts per sec. Continuous interrupts are enabled
  1420. * by default.
  1421. */
  1422. if (nic->device_type == XFRAME_II_DEVICE) {
  1423. int count = (nic->config.bus_speed * 125)/2;
  1424. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1425. } else {
  1426. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1427. }
  1428. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1429. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1430. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1431. if (use_continuous_tx_intrs)
  1432. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1433. writeq(val64, &bar0->tti_data1_mem);
  1434. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1435. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1436. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1437. writeq(val64, &bar0->tti_data2_mem);
  1438. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1439. writeq(val64, &bar0->tti_command_mem);
  1440. /*
  1441. * Once the operation completes, the Strobe bit of the command
  1442. * register will be reset. We poll for this particular condition
  1443. * We wait for a maximum of 500ms for the operation to complete,
  1444. * if it's not complete by then we return error.
  1445. */
  1446. time = 0;
  1447. while (TRUE) {
  1448. val64 = readq(&bar0->tti_command_mem);
  1449. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1450. break;
  1451. }
  1452. if (time > 10) {
  1453. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1454. dev->name);
  1455. return -ENODEV;
  1456. }
  1457. msleep(50);
  1458. time++;
  1459. }
  1460. /* RTI Initialization */
  1461. if (nic->device_type == XFRAME_II_DEVICE) {
  1462. /*
  1463. * Programmed to generate Apprx 500 Intrs per
  1464. * second
  1465. */
  1466. int count = (nic->config.bus_speed * 125)/4;
  1467. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1468. } else
  1469. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1470. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1471. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1472. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1473. writeq(val64, &bar0->rti_data1_mem);
  1474. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1475. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1476. if (nic->config.intr_type == MSI_X)
  1477. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1478. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1479. else
  1480. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1481. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1482. writeq(val64, &bar0->rti_data2_mem);
  1483. for (i = 0; i < config->rx_ring_num; i++) {
  1484. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1485. | RTI_CMD_MEM_OFFSET(i);
  1486. writeq(val64, &bar0->rti_command_mem);
  1487. /*
  1488. * Once the operation completes, the Strobe bit of the
  1489. * command register will be reset. We poll for this
  1490. * particular condition. We wait for a maximum of 500ms
  1491. * for the operation to complete, if it's not complete
  1492. * by then we return error.
  1493. */
  1494. time = 0;
  1495. while (TRUE) {
  1496. val64 = readq(&bar0->rti_command_mem);
  1497. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1498. break;
  1499. if (time > 10) {
  1500. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1501. dev->name);
  1502. return -ENODEV;
  1503. }
  1504. time++;
  1505. msleep(50);
  1506. }
  1507. }
  1508. /*
  1509. * Initializing proper values as Pause threshold into all
  1510. * the 8 Queues on Rx side.
  1511. */
  1512. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1513. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1514. /* Disable RMAC PAD STRIPPING */
  1515. add = &bar0->mac_cfg;
  1516. val64 = readq(&bar0->mac_cfg);
  1517. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1518. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1519. writel((u32) (val64), add);
  1520. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1521. writel((u32) (val64 >> 32), (add + 4));
  1522. val64 = readq(&bar0->mac_cfg);
  1523. /* Enable FCS stripping by adapter */
  1524. add = &bar0->mac_cfg;
  1525. val64 = readq(&bar0->mac_cfg);
  1526. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1527. if (nic->device_type == XFRAME_II_DEVICE)
  1528. writeq(val64, &bar0->mac_cfg);
  1529. else {
  1530. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1531. writel((u32) (val64), add);
  1532. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1533. writel((u32) (val64 >> 32), (add + 4));
  1534. }
  1535. /*
  1536. * Set the time value to be inserted in the pause frame
  1537. * generated by xena.
  1538. */
  1539. val64 = readq(&bar0->rmac_pause_cfg);
  1540. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1541. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1542. writeq(val64, &bar0->rmac_pause_cfg);
  1543. /*
  1544. * Set the Threshold Limit for Generating the pause frame
  1545. * If the amount of data in any Queue exceeds ratio of
  1546. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1547. * pause frame is generated
  1548. */
  1549. val64 = 0;
  1550. for (i = 0; i < 4; i++) {
  1551. val64 |=
  1552. (((u64) 0xFF00 | nic->mac_control.
  1553. mc_pause_threshold_q0q3)
  1554. << (i * 2 * 8));
  1555. }
  1556. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1557. val64 = 0;
  1558. for (i = 0; i < 4; i++) {
  1559. val64 |=
  1560. (((u64) 0xFF00 | nic->mac_control.
  1561. mc_pause_threshold_q4q7)
  1562. << (i * 2 * 8));
  1563. }
  1564. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1565. /*
  1566. * TxDMA will stop Read request if the number of read split has
  1567. * exceeded the limit pointed by shared_splits
  1568. */
  1569. val64 = readq(&bar0->pic_control);
  1570. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1571. writeq(val64, &bar0->pic_control);
  1572. if (nic->config.bus_speed == 266) {
  1573. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1574. writeq(0x0, &bar0->read_retry_delay);
  1575. writeq(0x0, &bar0->write_retry_delay);
  1576. }
  1577. /*
  1578. * Programming the Herc to split every write transaction
  1579. * that does not start on an ADB to reduce disconnects.
  1580. */
  1581. if (nic->device_type == XFRAME_II_DEVICE) {
  1582. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1583. MISC_LINK_STABILITY_PRD(3);
  1584. writeq(val64, &bar0->misc_control);
  1585. val64 = readq(&bar0->pic_control2);
  1586. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1587. writeq(val64, &bar0->pic_control2);
  1588. }
  1589. if (strstr(nic->product_name, "CX4")) {
  1590. val64 = TMAC_AVG_IPG(0x17);
  1591. writeq(val64, &bar0->tmac_avg_ipg);
  1592. }
  1593. return SUCCESS;
  1594. }
  1595. #define LINK_UP_DOWN_INTERRUPT 1
  1596. #define MAC_RMAC_ERR_TIMER 2
  1597. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1598. {
  1599. if (nic->config.intr_type != INTA)
  1600. return MAC_RMAC_ERR_TIMER;
  1601. if (nic->device_type == XFRAME_II_DEVICE)
  1602. return LINK_UP_DOWN_INTERRUPT;
  1603. else
  1604. return MAC_RMAC_ERR_TIMER;
  1605. }
  1606. /**
  1607. * do_s2io_write_bits - update alarm bits in alarm register
  1608. * @value: alarm bits
  1609. * @flag: interrupt status
  1610. * @addr: address value
  1611. * Description: update alarm bits in alarm register
  1612. * Return Value:
  1613. * NONE.
  1614. */
  1615. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1616. {
  1617. u64 temp64;
  1618. temp64 = readq(addr);
  1619. if(flag == ENABLE_INTRS)
  1620. temp64 &= ~((u64) value);
  1621. else
  1622. temp64 |= ((u64) value);
  1623. writeq(temp64, addr);
  1624. }
  1625. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1626. {
  1627. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1628. register u64 gen_int_mask = 0;
  1629. if (mask & TX_DMA_INTR) {
  1630. gen_int_mask |= TXDMA_INT_M;
  1631. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1632. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1633. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1634. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1635. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1636. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1637. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1638. &bar0->pfc_err_mask);
  1639. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1640. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1641. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1642. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1643. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1644. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1645. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1646. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1647. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1648. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1649. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1650. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1651. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1652. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1653. flag, &bar0->lso_err_mask);
  1654. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1655. flag, &bar0->tpa_err_mask);
  1656. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1657. }
  1658. if (mask & TX_MAC_INTR) {
  1659. gen_int_mask |= TXMAC_INT_M;
  1660. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1661. &bar0->mac_int_mask);
  1662. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1663. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1664. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1665. flag, &bar0->mac_tmac_err_mask);
  1666. }
  1667. if (mask & TX_XGXS_INTR) {
  1668. gen_int_mask |= TXXGXS_INT_M;
  1669. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1670. &bar0->xgxs_int_mask);
  1671. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1672. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1673. flag, &bar0->xgxs_txgxs_err_mask);
  1674. }
  1675. if (mask & RX_DMA_INTR) {
  1676. gen_int_mask |= RXDMA_INT_M;
  1677. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1678. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1679. flag, &bar0->rxdma_int_mask);
  1680. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1681. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1682. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1683. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1684. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1685. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1686. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1687. &bar0->prc_pcix_err_mask);
  1688. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1689. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1690. &bar0->rpa_err_mask);
  1691. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1692. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1693. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1694. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1695. flag, &bar0->rda_err_mask);
  1696. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1697. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1698. flag, &bar0->rti_err_mask);
  1699. }
  1700. if (mask & RX_MAC_INTR) {
  1701. gen_int_mask |= RXMAC_INT_M;
  1702. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1703. &bar0->mac_int_mask);
  1704. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1705. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1706. RMAC_DOUBLE_ECC_ERR |
  1707. RMAC_LINK_STATE_CHANGE_INT,
  1708. flag, &bar0->mac_rmac_err_mask);
  1709. }
  1710. if (mask & RX_XGXS_INTR)
  1711. {
  1712. gen_int_mask |= RXXGXS_INT_M;
  1713. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1714. &bar0->xgxs_int_mask);
  1715. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1716. &bar0->xgxs_rxgxs_err_mask);
  1717. }
  1718. if (mask & MC_INTR) {
  1719. gen_int_mask |= MC_INT_M;
  1720. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1721. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1722. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1723. &bar0->mc_err_mask);
  1724. }
  1725. nic->general_int_mask = gen_int_mask;
  1726. /* Remove this line when alarm interrupts are enabled */
  1727. nic->general_int_mask = 0;
  1728. }
  1729. /**
  1730. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1731. * @nic: device private variable,
  1732. * @mask: A mask indicating which Intr block must be modified and,
  1733. * @flag: A flag indicating whether to enable or disable the Intrs.
  1734. * Description: This function will either disable or enable the interrupts
  1735. * depending on the flag argument. The mask argument can be used to
  1736. * enable/disable any Intr block.
  1737. * Return Value: NONE.
  1738. */
  1739. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1740. {
  1741. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1742. register u64 temp64 = 0, intr_mask = 0;
  1743. intr_mask = nic->general_int_mask;
  1744. /* Top level interrupt classification */
  1745. /* PIC Interrupts */
  1746. if (mask & TX_PIC_INTR) {
  1747. /* Enable PIC Intrs in the general intr mask register */
  1748. intr_mask |= TXPIC_INT_M;
  1749. if (flag == ENABLE_INTRS) {
  1750. /*
  1751. * If Hercules adapter enable GPIO otherwise
  1752. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1753. * interrupts for now.
  1754. * TODO
  1755. */
  1756. if (s2io_link_fault_indication(nic) ==
  1757. LINK_UP_DOWN_INTERRUPT ) {
  1758. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1759. &bar0->pic_int_mask);
  1760. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1761. &bar0->gpio_int_mask);
  1762. } else
  1763. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1764. } else if (flag == DISABLE_INTRS) {
  1765. /*
  1766. * Disable PIC Intrs in the general
  1767. * intr mask register
  1768. */
  1769. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1770. }
  1771. }
  1772. /* Tx traffic interrupts */
  1773. if (mask & TX_TRAFFIC_INTR) {
  1774. intr_mask |= TXTRAFFIC_INT_M;
  1775. if (flag == ENABLE_INTRS) {
  1776. /*
  1777. * Enable all the Tx side interrupts
  1778. * writing 0 Enables all 64 TX interrupt levels
  1779. */
  1780. writeq(0x0, &bar0->tx_traffic_mask);
  1781. } else if (flag == DISABLE_INTRS) {
  1782. /*
  1783. * Disable Tx Traffic Intrs in the general intr mask
  1784. * register.
  1785. */
  1786. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1787. }
  1788. }
  1789. /* Rx traffic interrupts */
  1790. if (mask & RX_TRAFFIC_INTR) {
  1791. intr_mask |= RXTRAFFIC_INT_M;
  1792. if (flag == ENABLE_INTRS) {
  1793. /* writing 0 Enables all 8 RX interrupt levels */
  1794. writeq(0x0, &bar0->rx_traffic_mask);
  1795. } else if (flag == DISABLE_INTRS) {
  1796. /*
  1797. * Disable Rx Traffic Intrs in the general intr mask
  1798. * register.
  1799. */
  1800. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1801. }
  1802. }
  1803. temp64 = readq(&bar0->general_int_mask);
  1804. if (flag == ENABLE_INTRS)
  1805. temp64 &= ~((u64) intr_mask);
  1806. else
  1807. temp64 = DISABLE_ALL_INTRS;
  1808. writeq(temp64, &bar0->general_int_mask);
  1809. nic->general_int_mask = readq(&bar0->general_int_mask);
  1810. }
  1811. /**
  1812. * verify_pcc_quiescent- Checks for PCC quiescent state
  1813. * Return: 1 If PCC is quiescence
  1814. * 0 If PCC is not quiescence
  1815. */
  1816. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1817. {
  1818. int ret = 0, herc;
  1819. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1820. u64 val64 = readq(&bar0->adapter_status);
  1821. herc = (sp->device_type == XFRAME_II_DEVICE);
  1822. if (flag == FALSE) {
  1823. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1824. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1825. ret = 1;
  1826. } else {
  1827. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1828. ret = 1;
  1829. }
  1830. } else {
  1831. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1832. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1833. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1834. ret = 1;
  1835. } else {
  1836. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1837. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1838. ret = 1;
  1839. }
  1840. }
  1841. return ret;
  1842. }
  1843. /**
  1844. * verify_xena_quiescence - Checks whether the H/W is ready
  1845. * Description: Returns whether the H/W is ready to go or not. Depending
  1846. * on whether adapter enable bit was written or not the comparison
  1847. * differs and the calling function passes the input argument flag to
  1848. * indicate this.
  1849. * Return: 1 If xena is quiescence
  1850. * 0 If Xena is not quiescence
  1851. */
  1852. static int verify_xena_quiescence(struct s2io_nic *sp)
  1853. {
  1854. int mode;
  1855. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1856. u64 val64 = readq(&bar0->adapter_status);
  1857. mode = s2io_verify_pci_mode(sp);
  1858. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1859. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1860. return 0;
  1861. }
  1862. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1863. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1864. return 0;
  1865. }
  1866. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1867. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1868. return 0;
  1869. }
  1870. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1871. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1872. return 0;
  1873. }
  1874. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1875. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1876. return 0;
  1877. }
  1878. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1879. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1880. return 0;
  1881. }
  1882. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1883. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1884. return 0;
  1885. }
  1886. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1887. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1888. return 0;
  1889. }
  1890. /*
  1891. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1892. * the the P_PLL_LOCK bit in the adapter_status register will
  1893. * not be asserted.
  1894. */
  1895. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1896. sp->device_type == XFRAME_II_DEVICE && mode !=
  1897. PCI_MODE_PCI_33) {
  1898. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1899. return 0;
  1900. }
  1901. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1902. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1903. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1904. return 0;
  1905. }
  1906. return 1;
  1907. }
  1908. /**
  1909. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1910. * @sp: Pointer to device specifc structure
  1911. * Description :
  1912. * New procedure to clear mac address reading problems on Alpha platforms
  1913. *
  1914. */
  1915. static void fix_mac_address(struct s2io_nic * sp)
  1916. {
  1917. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1918. u64 val64;
  1919. int i = 0;
  1920. while (fix_mac[i] != END_SIGN) {
  1921. writeq(fix_mac[i++], &bar0->gpio_control);
  1922. udelay(10);
  1923. val64 = readq(&bar0->gpio_control);
  1924. }
  1925. }
  1926. /**
  1927. * start_nic - Turns the device on
  1928. * @nic : device private variable.
  1929. * Description:
  1930. * This function actually turns the device on. Before this function is
  1931. * called,all Registers are configured from their reset states
  1932. * and shared memory is allocated but the NIC is still quiescent. On
  1933. * calling this function, the device interrupts are cleared and the NIC is
  1934. * literally switched on by writing into the adapter control register.
  1935. * Return Value:
  1936. * SUCCESS on success and -1 on failure.
  1937. */
  1938. static int start_nic(struct s2io_nic *nic)
  1939. {
  1940. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1941. struct net_device *dev = nic->dev;
  1942. register u64 val64 = 0;
  1943. u16 subid, i;
  1944. struct mac_info *mac_control;
  1945. struct config_param *config;
  1946. mac_control = &nic->mac_control;
  1947. config = &nic->config;
  1948. /* PRC Initialization and configuration */
  1949. for (i = 0; i < config->rx_ring_num; i++) {
  1950. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1951. &bar0->prc_rxd0_n[i]);
  1952. val64 = readq(&bar0->prc_ctrl_n[i]);
  1953. if (nic->rxd_mode == RXD_MODE_1)
  1954. val64 |= PRC_CTRL_RC_ENABLED;
  1955. else
  1956. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1957. if (nic->device_type == XFRAME_II_DEVICE)
  1958. val64 |= PRC_CTRL_GROUP_READS;
  1959. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1960. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1961. writeq(val64, &bar0->prc_ctrl_n[i]);
  1962. }
  1963. if (nic->rxd_mode == RXD_MODE_3B) {
  1964. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1965. val64 = readq(&bar0->rx_pa_cfg);
  1966. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1967. writeq(val64, &bar0->rx_pa_cfg);
  1968. }
  1969. if (vlan_tag_strip == 0) {
  1970. val64 = readq(&bar0->rx_pa_cfg);
  1971. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1972. writeq(val64, &bar0->rx_pa_cfg);
  1973. vlan_strip_flag = 0;
  1974. }
  1975. /*
  1976. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1977. * for around 100ms, which is approximately the time required
  1978. * for the device to be ready for operation.
  1979. */
  1980. val64 = readq(&bar0->mc_rldram_mrs);
  1981. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1982. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1983. val64 = readq(&bar0->mc_rldram_mrs);
  1984. msleep(100); /* Delay by around 100 ms. */
  1985. /* Enabling ECC Protection. */
  1986. val64 = readq(&bar0->adapter_control);
  1987. val64 &= ~ADAPTER_ECC_EN;
  1988. writeq(val64, &bar0->adapter_control);
  1989. /*
  1990. * Verify if the device is ready to be enabled, if so enable
  1991. * it.
  1992. */
  1993. val64 = readq(&bar0->adapter_status);
  1994. if (!verify_xena_quiescence(nic)) {
  1995. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  1996. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  1997. (unsigned long long) val64);
  1998. return FAILURE;
  1999. }
  2000. /*
  2001. * With some switches, link might be already up at this point.
  2002. * Because of this weird behavior, when we enable laser,
  2003. * we may not get link. We need to handle this. We cannot
  2004. * figure out which switch is misbehaving. So we are forced to
  2005. * make a global change.
  2006. */
  2007. /* Enabling Laser. */
  2008. val64 = readq(&bar0->adapter_control);
  2009. val64 |= ADAPTER_EOI_TX_ON;
  2010. writeq(val64, &bar0->adapter_control);
  2011. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2012. /*
  2013. * Dont see link state interrupts initally on some switches,
  2014. * so directly scheduling the link state task here.
  2015. */
  2016. schedule_work(&nic->set_link_task);
  2017. }
  2018. /* SXE-002: Initialize link and activity LED */
  2019. subid = nic->pdev->subsystem_device;
  2020. if (((subid & 0xFF) >= 0x07) &&
  2021. (nic->device_type == XFRAME_I_DEVICE)) {
  2022. val64 = readq(&bar0->gpio_control);
  2023. val64 |= 0x0000800000000000ULL;
  2024. writeq(val64, &bar0->gpio_control);
  2025. val64 = 0x0411040400000000ULL;
  2026. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2027. }
  2028. return SUCCESS;
  2029. }
  2030. /**
  2031. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2032. */
  2033. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2034. TxD *txdlp, int get_off)
  2035. {
  2036. struct s2io_nic *nic = fifo_data->nic;
  2037. struct sk_buff *skb;
  2038. struct TxD *txds;
  2039. u16 j, frg_cnt;
  2040. txds = txdlp;
  2041. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2042. pci_unmap_single(nic->pdev, (dma_addr_t)
  2043. txds->Buffer_Pointer, sizeof(u64),
  2044. PCI_DMA_TODEVICE);
  2045. txds++;
  2046. }
  2047. skb = (struct sk_buff *) ((unsigned long)
  2048. txds->Host_Control);
  2049. if (!skb) {
  2050. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2051. return NULL;
  2052. }
  2053. pci_unmap_single(nic->pdev, (dma_addr_t)
  2054. txds->Buffer_Pointer,
  2055. skb->len - skb->data_len,
  2056. PCI_DMA_TODEVICE);
  2057. frg_cnt = skb_shinfo(skb)->nr_frags;
  2058. if (frg_cnt) {
  2059. txds++;
  2060. for (j = 0; j < frg_cnt; j++, txds++) {
  2061. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2062. if (!txds->Buffer_Pointer)
  2063. break;
  2064. pci_unmap_page(nic->pdev, (dma_addr_t)
  2065. txds->Buffer_Pointer,
  2066. frag->size, PCI_DMA_TODEVICE);
  2067. }
  2068. }
  2069. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2070. return(skb);
  2071. }
  2072. /**
  2073. * free_tx_buffers - Free all queued Tx buffers
  2074. * @nic : device private variable.
  2075. * Description:
  2076. * Free all queued Tx buffers.
  2077. * Return Value: void
  2078. */
  2079. static void free_tx_buffers(struct s2io_nic *nic)
  2080. {
  2081. struct net_device *dev = nic->dev;
  2082. struct sk_buff *skb;
  2083. struct TxD *txdp;
  2084. int i, j;
  2085. struct mac_info *mac_control;
  2086. struct config_param *config;
  2087. int cnt = 0;
  2088. mac_control = &nic->mac_control;
  2089. config = &nic->config;
  2090. for (i = 0; i < config->tx_fifo_num; i++) {
  2091. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2092. txdp = (struct TxD *) \
  2093. mac_control->fifos[i].list_info[j].list_virt_addr;
  2094. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2095. if (skb) {
  2096. nic->mac_control.stats_info->sw_stat.mem_freed
  2097. += skb->truesize;
  2098. dev_kfree_skb(skb);
  2099. cnt++;
  2100. }
  2101. }
  2102. DBG_PRINT(INTR_DBG,
  2103. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2104. dev->name, cnt, i);
  2105. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2106. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2107. }
  2108. }
  2109. /**
  2110. * stop_nic - To stop the nic
  2111. * @nic ; device private variable.
  2112. * Description:
  2113. * This function does exactly the opposite of what the start_nic()
  2114. * function does. This function is called to stop the device.
  2115. * Return Value:
  2116. * void.
  2117. */
  2118. static void stop_nic(struct s2io_nic *nic)
  2119. {
  2120. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2121. register u64 val64 = 0;
  2122. u16 interruptible;
  2123. struct mac_info *mac_control;
  2124. struct config_param *config;
  2125. mac_control = &nic->mac_control;
  2126. config = &nic->config;
  2127. /* Disable all interrupts */
  2128. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2129. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2130. interruptible |= TX_PIC_INTR;
  2131. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2132. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2133. val64 = readq(&bar0->adapter_control);
  2134. val64 &= ~(ADAPTER_CNTL_EN);
  2135. writeq(val64, &bar0->adapter_control);
  2136. }
  2137. /**
  2138. * fill_rx_buffers - Allocates the Rx side skbs
  2139. * @nic: device private variable
  2140. * @ring_no: ring number
  2141. * Description:
  2142. * The function allocates Rx side skbs and puts the physical
  2143. * address of these buffers into the RxD buffer pointers, so that the NIC
  2144. * can DMA the received frame into these locations.
  2145. * The NIC supports 3 receive modes, viz
  2146. * 1. single buffer,
  2147. * 2. three buffer and
  2148. * 3. Five buffer modes.
  2149. * Each mode defines how many fragments the received frame will be split
  2150. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2151. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2152. * is split into 3 fragments. As of now only single buffer mode is
  2153. * supported.
  2154. * Return Value:
  2155. * SUCCESS on success or an appropriate -ve value on failure.
  2156. */
  2157. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2158. {
  2159. struct net_device *dev = nic->dev;
  2160. struct sk_buff *skb;
  2161. struct RxD_t *rxdp;
  2162. int off, off1, size, block_no, block_no1;
  2163. u32 alloc_tab = 0;
  2164. u32 alloc_cnt;
  2165. struct mac_info *mac_control;
  2166. struct config_param *config;
  2167. u64 tmp;
  2168. struct buffAdd *ba;
  2169. unsigned long flags;
  2170. struct RxD_t *first_rxdp = NULL;
  2171. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2172. struct RxD1 *rxdp1;
  2173. struct RxD3 *rxdp3;
  2174. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2175. mac_control = &nic->mac_control;
  2176. config = &nic->config;
  2177. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2178. atomic_read(&nic->rx_bufs_left[ring_no]);
  2179. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2180. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2181. while (alloc_tab < alloc_cnt) {
  2182. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2183. block_index;
  2184. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2185. rxdp = mac_control->rings[ring_no].
  2186. rx_blocks[block_no].rxds[off].virt_addr;
  2187. if ((block_no == block_no1) && (off == off1) &&
  2188. (rxdp->Host_Control)) {
  2189. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2190. dev->name);
  2191. DBG_PRINT(INTR_DBG, " info equated\n");
  2192. goto end;
  2193. }
  2194. if (off && (off == rxd_count[nic->rxd_mode])) {
  2195. mac_control->rings[ring_no].rx_curr_put_info.
  2196. block_index++;
  2197. if (mac_control->rings[ring_no].rx_curr_put_info.
  2198. block_index == mac_control->rings[ring_no].
  2199. block_count)
  2200. mac_control->rings[ring_no].rx_curr_put_info.
  2201. block_index = 0;
  2202. block_no = mac_control->rings[ring_no].
  2203. rx_curr_put_info.block_index;
  2204. if (off == rxd_count[nic->rxd_mode])
  2205. off = 0;
  2206. mac_control->rings[ring_no].rx_curr_put_info.
  2207. offset = off;
  2208. rxdp = mac_control->rings[ring_no].
  2209. rx_blocks[block_no].block_virt_addr;
  2210. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2211. dev->name, rxdp);
  2212. }
  2213. if(!napi) {
  2214. spin_lock_irqsave(&nic->put_lock, flags);
  2215. mac_control->rings[ring_no].put_pos =
  2216. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2217. spin_unlock_irqrestore(&nic->put_lock, flags);
  2218. } else {
  2219. mac_control->rings[ring_no].put_pos =
  2220. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2221. }
  2222. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2223. ((nic->rxd_mode == RXD_MODE_3B) &&
  2224. (rxdp->Control_2 & s2BIT(0)))) {
  2225. mac_control->rings[ring_no].rx_curr_put_info.
  2226. offset = off;
  2227. goto end;
  2228. }
  2229. /* calculate size of skb based on ring mode */
  2230. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2231. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2232. if (nic->rxd_mode == RXD_MODE_1)
  2233. size += NET_IP_ALIGN;
  2234. else
  2235. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2236. /* allocate skb */
  2237. skb = dev_alloc_skb(size);
  2238. if(!skb) {
  2239. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2240. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2241. if (first_rxdp) {
  2242. wmb();
  2243. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2244. }
  2245. nic->mac_control.stats_info->sw_stat. \
  2246. mem_alloc_fail_cnt++;
  2247. return -ENOMEM ;
  2248. }
  2249. nic->mac_control.stats_info->sw_stat.mem_allocated
  2250. += skb->truesize;
  2251. if (nic->rxd_mode == RXD_MODE_1) {
  2252. /* 1 buffer mode - normal operation mode */
  2253. rxdp1 = (struct RxD1*)rxdp;
  2254. memset(rxdp, 0, sizeof(struct RxD1));
  2255. skb_reserve(skb, NET_IP_ALIGN);
  2256. rxdp1->Buffer0_ptr = pci_map_single
  2257. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2258. PCI_DMA_FROMDEVICE);
  2259. if( (rxdp1->Buffer0_ptr == 0) ||
  2260. (rxdp1->Buffer0_ptr ==
  2261. DMA_ERROR_CODE))
  2262. goto pci_map_failed;
  2263. rxdp->Control_2 =
  2264. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2265. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2266. /*
  2267. * 2 buffer mode -
  2268. * 2 buffer mode provides 128
  2269. * byte aligned receive buffers.
  2270. */
  2271. rxdp3 = (struct RxD3*)rxdp;
  2272. /* save buffer pointers to avoid frequent dma mapping */
  2273. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2274. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2275. memset(rxdp, 0, sizeof(struct RxD3));
  2276. /* restore the buffer pointers for dma sync*/
  2277. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2278. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2279. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2280. skb_reserve(skb, BUF0_LEN);
  2281. tmp = (u64)(unsigned long) skb->data;
  2282. tmp += ALIGN_SIZE;
  2283. tmp &= ~ALIGN_SIZE;
  2284. skb->data = (void *) (unsigned long)tmp;
  2285. skb_reset_tail_pointer(skb);
  2286. if (!(rxdp3->Buffer0_ptr))
  2287. rxdp3->Buffer0_ptr =
  2288. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2289. PCI_DMA_FROMDEVICE);
  2290. else
  2291. pci_dma_sync_single_for_device(nic->pdev,
  2292. (dma_addr_t) rxdp3->Buffer0_ptr,
  2293. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2294. if( (rxdp3->Buffer0_ptr == 0) ||
  2295. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2296. goto pci_map_failed;
  2297. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2298. if (nic->rxd_mode == RXD_MODE_3B) {
  2299. /* Two buffer mode */
  2300. /*
  2301. * Buffer2 will have L3/L4 header plus
  2302. * L4 payload
  2303. */
  2304. rxdp3->Buffer2_ptr = pci_map_single
  2305. (nic->pdev, skb->data, dev->mtu + 4,
  2306. PCI_DMA_FROMDEVICE);
  2307. if( (rxdp3->Buffer2_ptr == 0) ||
  2308. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2309. goto pci_map_failed;
  2310. rxdp3->Buffer1_ptr =
  2311. pci_map_single(nic->pdev,
  2312. ba->ba_1, BUF1_LEN,
  2313. PCI_DMA_FROMDEVICE);
  2314. if( (rxdp3->Buffer1_ptr == 0) ||
  2315. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2316. pci_unmap_single
  2317. (nic->pdev,
  2318. (dma_addr_t)rxdp3->Buffer2_ptr,
  2319. dev->mtu + 4,
  2320. PCI_DMA_FROMDEVICE);
  2321. goto pci_map_failed;
  2322. }
  2323. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2324. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2325. (dev->mtu + 4);
  2326. }
  2327. rxdp->Control_2 |= s2BIT(0);
  2328. }
  2329. rxdp->Host_Control = (unsigned long) (skb);
  2330. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2331. rxdp->Control_1 |= RXD_OWN_XENA;
  2332. off++;
  2333. if (off == (rxd_count[nic->rxd_mode] + 1))
  2334. off = 0;
  2335. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2336. rxdp->Control_2 |= SET_RXD_MARKER;
  2337. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2338. if (first_rxdp) {
  2339. wmb();
  2340. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2341. }
  2342. first_rxdp = rxdp;
  2343. }
  2344. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2345. alloc_tab++;
  2346. }
  2347. end:
  2348. /* Transfer ownership of first descriptor to adapter just before
  2349. * exiting. Before that, use memory barrier so that ownership
  2350. * and other fields are seen by adapter correctly.
  2351. */
  2352. if (first_rxdp) {
  2353. wmb();
  2354. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2355. }
  2356. return SUCCESS;
  2357. pci_map_failed:
  2358. stats->pci_map_fail_cnt++;
  2359. stats->mem_freed += skb->truesize;
  2360. dev_kfree_skb_irq(skb);
  2361. return -ENOMEM;
  2362. }
  2363. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2364. {
  2365. struct net_device *dev = sp->dev;
  2366. int j;
  2367. struct sk_buff *skb;
  2368. struct RxD_t *rxdp;
  2369. struct mac_info *mac_control;
  2370. struct buffAdd *ba;
  2371. struct RxD1 *rxdp1;
  2372. struct RxD3 *rxdp3;
  2373. mac_control = &sp->mac_control;
  2374. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2375. rxdp = mac_control->rings[ring_no].
  2376. rx_blocks[blk].rxds[j].virt_addr;
  2377. skb = (struct sk_buff *)
  2378. ((unsigned long) rxdp->Host_Control);
  2379. if (!skb) {
  2380. continue;
  2381. }
  2382. if (sp->rxd_mode == RXD_MODE_1) {
  2383. rxdp1 = (struct RxD1*)rxdp;
  2384. pci_unmap_single(sp->pdev, (dma_addr_t)
  2385. rxdp1->Buffer0_ptr,
  2386. dev->mtu +
  2387. HEADER_ETHERNET_II_802_3_SIZE
  2388. + HEADER_802_2_SIZE +
  2389. HEADER_SNAP_SIZE,
  2390. PCI_DMA_FROMDEVICE);
  2391. memset(rxdp, 0, sizeof(struct RxD1));
  2392. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2393. rxdp3 = (struct RxD3*)rxdp;
  2394. ba = &mac_control->rings[ring_no].
  2395. ba[blk][j];
  2396. pci_unmap_single(sp->pdev, (dma_addr_t)
  2397. rxdp3->Buffer0_ptr,
  2398. BUF0_LEN,
  2399. PCI_DMA_FROMDEVICE);
  2400. pci_unmap_single(sp->pdev, (dma_addr_t)
  2401. rxdp3->Buffer1_ptr,
  2402. BUF1_LEN,
  2403. PCI_DMA_FROMDEVICE);
  2404. pci_unmap_single(sp->pdev, (dma_addr_t)
  2405. rxdp3->Buffer2_ptr,
  2406. dev->mtu + 4,
  2407. PCI_DMA_FROMDEVICE);
  2408. memset(rxdp, 0, sizeof(struct RxD3));
  2409. }
  2410. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2411. dev_kfree_skb(skb);
  2412. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2413. }
  2414. }
  2415. /**
  2416. * free_rx_buffers - Frees all Rx buffers
  2417. * @sp: device private variable.
  2418. * Description:
  2419. * This function will free all Rx buffers allocated by host.
  2420. * Return Value:
  2421. * NONE.
  2422. */
  2423. static void free_rx_buffers(struct s2io_nic *sp)
  2424. {
  2425. struct net_device *dev = sp->dev;
  2426. int i, blk = 0, buf_cnt = 0;
  2427. struct mac_info *mac_control;
  2428. struct config_param *config;
  2429. mac_control = &sp->mac_control;
  2430. config = &sp->config;
  2431. for (i = 0; i < config->rx_ring_num; i++) {
  2432. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2433. free_rxd_blk(sp,i,blk);
  2434. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2435. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2436. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2437. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2438. atomic_set(&sp->rx_bufs_left[i], 0);
  2439. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2440. dev->name, buf_cnt, i);
  2441. }
  2442. }
  2443. /**
  2444. * s2io_poll - Rx interrupt handler for NAPI support
  2445. * @napi : pointer to the napi structure.
  2446. * @budget : The number of packets that were budgeted to be processed
  2447. * during one pass through the 'Poll" function.
  2448. * Description:
  2449. * Comes into picture only if NAPI support has been incorporated. It does
  2450. * the same thing that rx_intr_handler does, but not in a interrupt context
  2451. * also It will process only a given number of packets.
  2452. * Return value:
  2453. * 0 on success and 1 if there are No Rx packets to be processed.
  2454. */
  2455. static int s2io_poll(struct napi_struct *napi, int budget)
  2456. {
  2457. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2458. struct net_device *dev = nic->dev;
  2459. int pkt_cnt = 0, org_pkts_to_process;
  2460. struct mac_info *mac_control;
  2461. struct config_param *config;
  2462. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2463. int i;
  2464. mac_control = &nic->mac_control;
  2465. config = &nic->config;
  2466. nic->pkts_to_process = budget;
  2467. org_pkts_to_process = nic->pkts_to_process;
  2468. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2469. readl(&bar0->rx_traffic_int);
  2470. for (i = 0; i < config->rx_ring_num; i++) {
  2471. rx_intr_handler(&mac_control->rings[i]);
  2472. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2473. if (!nic->pkts_to_process) {
  2474. /* Quota for the current iteration has been met */
  2475. goto no_rx;
  2476. }
  2477. }
  2478. netif_rx_complete(dev, napi);
  2479. for (i = 0; i < config->rx_ring_num; i++) {
  2480. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2481. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2482. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2483. break;
  2484. }
  2485. }
  2486. /* Re enable the Rx interrupts. */
  2487. writeq(0x0, &bar0->rx_traffic_mask);
  2488. readl(&bar0->rx_traffic_mask);
  2489. return pkt_cnt;
  2490. no_rx:
  2491. for (i = 0; i < config->rx_ring_num; i++) {
  2492. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2493. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2494. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2495. break;
  2496. }
  2497. }
  2498. return pkt_cnt;
  2499. }
  2500. #ifdef CONFIG_NET_POLL_CONTROLLER
  2501. /**
  2502. * s2io_netpoll - netpoll event handler entry point
  2503. * @dev : pointer to the device structure.
  2504. * Description:
  2505. * This function will be called by upper layer to check for events on the
  2506. * interface in situations where interrupts are disabled. It is used for
  2507. * specific in-kernel networking tasks, such as remote consoles and kernel
  2508. * debugging over the network (example netdump in RedHat).
  2509. */
  2510. static void s2io_netpoll(struct net_device *dev)
  2511. {
  2512. struct s2io_nic *nic = dev->priv;
  2513. struct mac_info *mac_control;
  2514. struct config_param *config;
  2515. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2516. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2517. int i;
  2518. if (pci_channel_offline(nic->pdev))
  2519. return;
  2520. disable_irq(dev->irq);
  2521. mac_control = &nic->mac_control;
  2522. config = &nic->config;
  2523. writeq(val64, &bar0->rx_traffic_int);
  2524. writeq(val64, &bar0->tx_traffic_int);
  2525. /* we need to free up the transmitted skbufs or else netpoll will
  2526. * run out of skbs and will fail and eventually netpoll application such
  2527. * as netdump will fail.
  2528. */
  2529. for (i = 0; i < config->tx_fifo_num; i++)
  2530. tx_intr_handler(&mac_control->fifos[i]);
  2531. /* check for received packet and indicate up to network */
  2532. for (i = 0; i < config->rx_ring_num; i++)
  2533. rx_intr_handler(&mac_control->rings[i]);
  2534. for (i = 0; i < config->rx_ring_num; i++) {
  2535. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2536. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2537. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2538. break;
  2539. }
  2540. }
  2541. enable_irq(dev->irq);
  2542. return;
  2543. }
  2544. #endif
  2545. /**
  2546. * rx_intr_handler - Rx interrupt handler
  2547. * @nic: device private variable.
  2548. * Description:
  2549. * If the interrupt is because of a received frame or if the
  2550. * receive ring contains fresh as yet un-processed frames,this function is
  2551. * called. It picks out the RxD at which place the last Rx processing had
  2552. * stopped and sends the skb to the OSM's Rx handler and then increments
  2553. * the offset.
  2554. * Return Value:
  2555. * NONE.
  2556. */
  2557. static void rx_intr_handler(struct ring_info *ring_data)
  2558. {
  2559. struct s2io_nic *nic = ring_data->nic;
  2560. struct net_device *dev = (struct net_device *) nic->dev;
  2561. int get_block, put_block, put_offset;
  2562. struct rx_curr_get_info get_info, put_info;
  2563. struct RxD_t *rxdp;
  2564. struct sk_buff *skb;
  2565. int pkt_cnt = 0;
  2566. int i;
  2567. struct RxD1* rxdp1;
  2568. struct RxD3* rxdp3;
  2569. spin_lock(&nic->rx_lock);
  2570. get_info = ring_data->rx_curr_get_info;
  2571. get_block = get_info.block_index;
  2572. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2573. put_block = put_info.block_index;
  2574. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2575. if (!napi) {
  2576. spin_lock(&nic->put_lock);
  2577. put_offset = ring_data->put_pos;
  2578. spin_unlock(&nic->put_lock);
  2579. } else
  2580. put_offset = ring_data->put_pos;
  2581. while (RXD_IS_UP2DT(rxdp)) {
  2582. /*
  2583. * If your are next to put index then it's
  2584. * FIFO full condition
  2585. */
  2586. if ((get_block == put_block) &&
  2587. (get_info.offset + 1) == put_info.offset) {
  2588. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2589. break;
  2590. }
  2591. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2592. if (skb == NULL) {
  2593. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2594. dev->name);
  2595. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2596. spin_unlock(&nic->rx_lock);
  2597. return;
  2598. }
  2599. if (nic->rxd_mode == RXD_MODE_1) {
  2600. rxdp1 = (struct RxD1*)rxdp;
  2601. pci_unmap_single(nic->pdev, (dma_addr_t)
  2602. rxdp1->Buffer0_ptr,
  2603. dev->mtu +
  2604. HEADER_ETHERNET_II_802_3_SIZE +
  2605. HEADER_802_2_SIZE +
  2606. HEADER_SNAP_SIZE,
  2607. PCI_DMA_FROMDEVICE);
  2608. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2609. rxdp3 = (struct RxD3*)rxdp;
  2610. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2611. rxdp3->Buffer0_ptr,
  2612. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2613. pci_unmap_single(nic->pdev, (dma_addr_t)
  2614. rxdp3->Buffer2_ptr,
  2615. dev->mtu + 4,
  2616. PCI_DMA_FROMDEVICE);
  2617. }
  2618. prefetch(skb->data);
  2619. rx_osm_handler(ring_data, rxdp);
  2620. get_info.offset++;
  2621. ring_data->rx_curr_get_info.offset = get_info.offset;
  2622. rxdp = ring_data->rx_blocks[get_block].
  2623. rxds[get_info.offset].virt_addr;
  2624. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2625. get_info.offset = 0;
  2626. ring_data->rx_curr_get_info.offset = get_info.offset;
  2627. get_block++;
  2628. if (get_block == ring_data->block_count)
  2629. get_block = 0;
  2630. ring_data->rx_curr_get_info.block_index = get_block;
  2631. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2632. }
  2633. nic->pkts_to_process -= 1;
  2634. if ((napi) && (!nic->pkts_to_process))
  2635. break;
  2636. pkt_cnt++;
  2637. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2638. break;
  2639. }
  2640. if (nic->lro) {
  2641. /* Clear all LRO sessions before exiting */
  2642. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2643. struct lro *lro = &nic->lro0_n[i];
  2644. if (lro->in_use) {
  2645. update_L3L4_header(nic, lro);
  2646. queue_rx_frame(lro->parent);
  2647. clear_lro_session(lro);
  2648. }
  2649. }
  2650. }
  2651. spin_unlock(&nic->rx_lock);
  2652. }
  2653. /**
  2654. * tx_intr_handler - Transmit interrupt handler
  2655. * @nic : device private variable
  2656. * Description:
  2657. * If an interrupt was raised to indicate DMA complete of the
  2658. * Tx packet, this function is called. It identifies the last TxD
  2659. * whose buffer was freed and frees all skbs whose data have already
  2660. * DMA'ed into the NICs internal memory.
  2661. * Return Value:
  2662. * NONE
  2663. */
  2664. static void tx_intr_handler(struct fifo_info *fifo_data)
  2665. {
  2666. struct s2io_nic *nic = fifo_data->nic;
  2667. struct net_device *dev = (struct net_device *) nic->dev;
  2668. struct tx_curr_get_info get_info, put_info;
  2669. struct sk_buff *skb;
  2670. struct TxD *txdlp;
  2671. u8 err_mask;
  2672. get_info = fifo_data->tx_curr_get_info;
  2673. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2674. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2675. list_virt_addr;
  2676. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2677. (get_info.offset != put_info.offset) &&
  2678. (txdlp->Host_Control)) {
  2679. /* Check for TxD errors */
  2680. if (txdlp->Control_1 & TXD_T_CODE) {
  2681. unsigned long long err;
  2682. err = txdlp->Control_1 & TXD_T_CODE;
  2683. if (err & 0x1) {
  2684. nic->mac_control.stats_info->sw_stat.
  2685. parity_err_cnt++;
  2686. }
  2687. /* update t_code statistics */
  2688. err_mask = err >> 48;
  2689. switch(err_mask) {
  2690. case 2:
  2691. nic->mac_control.stats_info->sw_stat.
  2692. tx_buf_abort_cnt++;
  2693. break;
  2694. case 3:
  2695. nic->mac_control.stats_info->sw_stat.
  2696. tx_desc_abort_cnt++;
  2697. break;
  2698. case 7:
  2699. nic->mac_control.stats_info->sw_stat.
  2700. tx_parity_err_cnt++;
  2701. break;
  2702. case 10:
  2703. nic->mac_control.stats_info->sw_stat.
  2704. tx_link_loss_cnt++;
  2705. break;
  2706. case 15:
  2707. nic->mac_control.stats_info->sw_stat.
  2708. tx_list_proc_err_cnt++;
  2709. break;
  2710. }
  2711. }
  2712. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2713. if (skb == NULL) {
  2714. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2715. __FUNCTION__);
  2716. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2717. return;
  2718. }
  2719. /* Updating the statistics block */
  2720. nic->stats.tx_bytes += skb->len;
  2721. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2722. dev_kfree_skb_irq(skb);
  2723. get_info.offset++;
  2724. if (get_info.offset == get_info.fifo_len + 1)
  2725. get_info.offset = 0;
  2726. txdlp = (struct TxD *) fifo_data->list_info
  2727. [get_info.offset].list_virt_addr;
  2728. fifo_data->tx_curr_get_info.offset =
  2729. get_info.offset;
  2730. }
  2731. spin_lock(&nic->tx_lock);
  2732. if (netif_queue_stopped(dev))
  2733. netif_wake_queue(dev);
  2734. spin_unlock(&nic->tx_lock);
  2735. }
  2736. /**
  2737. * s2io_mdio_write - Function to write in to MDIO registers
  2738. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2739. * @addr : address value
  2740. * @value : data value
  2741. * @dev : pointer to net_device structure
  2742. * Description:
  2743. * This function is used to write values to the MDIO registers
  2744. * NONE
  2745. */
  2746. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2747. {
  2748. u64 val64 = 0x0;
  2749. struct s2io_nic *sp = dev->priv;
  2750. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2751. //address transaction
  2752. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2753. | MDIO_MMD_DEV_ADDR(mmd_type)
  2754. | MDIO_MMS_PRT_ADDR(0x0);
  2755. writeq(val64, &bar0->mdio_control);
  2756. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2757. writeq(val64, &bar0->mdio_control);
  2758. udelay(100);
  2759. //Data transaction
  2760. val64 = 0x0;
  2761. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2762. | MDIO_MMD_DEV_ADDR(mmd_type)
  2763. | MDIO_MMS_PRT_ADDR(0x0)
  2764. | MDIO_MDIO_DATA(value)
  2765. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2766. writeq(val64, &bar0->mdio_control);
  2767. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2768. writeq(val64, &bar0->mdio_control);
  2769. udelay(100);
  2770. val64 = 0x0;
  2771. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2772. | MDIO_MMD_DEV_ADDR(mmd_type)
  2773. | MDIO_MMS_PRT_ADDR(0x0)
  2774. | MDIO_OP(MDIO_OP_READ_TRANS);
  2775. writeq(val64, &bar0->mdio_control);
  2776. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2777. writeq(val64, &bar0->mdio_control);
  2778. udelay(100);
  2779. }
  2780. /**
  2781. * s2io_mdio_read - Function to write in to MDIO registers
  2782. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2783. * @addr : address value
  2784. * @dev : pointer to net_device structure
  2785. * Description:
  2786. * This function is used to read values to the MDIO registers
  2787. * NONE
  2788. */
  2789. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2790. {
  2791. u64 val64 = 0x0;
  2792. u64 rval64 = 0x0;
  2793. struct s2io_nic *sp = dev->priv;
  2794. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2795. /* address transaction */
  2796. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2797. | MDIO_MMD_DEV_ADDR(mmd_type)
  2798. | MDIO_MMS_PRT_ADDR(0x0);
  2799. writeq(val64, &bar0->mdio_control);
  2800. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2801. writeq(val64, &bar0->mdio_control);
  2802. udelay(100);
  2803. /* Data transaction */
  2804. val64 = 0x0;
  2805. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2806. | MDIO_MMD_DEV_ADDR(mmd_type)
  2807. | MDIO_MMS_PRT_ADDR(0x0)
  2808. | MDIO_OP(MDIO_OP_READ_TRANS);
  2809. writeq(val64, &bar0->mdio_control);
  2810. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2811. writeq(val64, &bar0->mdio_control);
  2812. udelay(100);
  2813. /* Read the value from regs */
  2814. rval64 = readq(&bar0->mdio_control);
  2815. rval64 = rval64 & 0xFFFF0000;
  2816. rval64 = rval64 >> 16;
  2817. return rval64;
  2818. }
  2819. /**
  2820. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2821. * @counter : couter value to be updated
  2822. * @flag : flag to indicate the status
  2823. * @type : counter type
  2824. * Description:
  2825. * This function is to check the status of the xpak counters value
  2826. * NONE
  2827. */
  2828. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2829. {
  2830. u64 mask = 0x3;
  2831. u64 val64;
  2832. int i;
  2833. for(i = 0; i <index; i++)
  2834. mask = mask << 0x2;
  2835. if(flag > 0)
  2836. {
  2837. *counter = *counter + 1;
  2838. val64 = *regs_stat & mask;
  2839. val64 = val64 >> (index * 0x2);
  2840. val64 = val64 + 1;
  2841. if(val64 == 3)
  2842. {
  2843. switch(type)
  2844. {
  2845. case 1:
  2846. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2847. "service. Excessive temperatures may "
  2848. "result in premature transceiver "
  2849. "failure \n");
  2850. break;
  2851. case 2:
  2852. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2853. "service Excessive bias currents may "
  2854. "indicate imminent laser diode "
  2855. "failure \n");
  2856. break;
  2857. case 3:
  2858. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2859. "service Excessive laser output "
  2860. "power may saturate far-end "
  2861. "receiver\n");
  2862. break;
  2863. default:
  2864. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2865. "type \n");
  2866. }
  2867. val64 = 0x0;
  2868. }
  2869. val64 = val64 << (index * 0x2);
  2870. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2871. } else {
  2872. *regs_stat = *regs_stat & (~mask);
  2873. }
  2874. }
  2875. /**
  2876. * s2io_updt_xpak_counter - Function to update the xpak counters
  2877. * @dev : pointer to net_device struct
  2878. * Description:
  2879. * This function is to upate the status of the xpak counters value
  2880. * NONE
  2881. */
  2882. static void s2io_updt_xpak_counter(struct net_device *dev)
  2883. {
  2884. u16 flag = 0x0;
  2885. u16 type = 0x0;
  2886. u16 val16 = 0x0;
  2887. u64 val64 = 0x0;
  2888. u64 addr = 0x0;
  2889. struct s2io_nic *sp = dev->priv;
  2890. struct stat_block *stat_info = sp->mac_control.stats_info;
  2891. /* Check the communication with the MDIO slave */
  2892. addr = 0x0000;
  2893. val64 = 0x0;
  2894. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2895. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2896. {
  2897. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2898. "Returned %llx\n", (unsigned long long)val64);
  2899. return;
  2900. }
  2901. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2902. if(val64 != 0x2040)
  2903. {
  2904. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2905. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2906. (unsigned long long)val64);
  2907. return;
  2908. }
  2909. /* Loading the DOM register to MDIO register */
  2910. addr = 0xA100;
  2911. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2912. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2913. /* Reading the Alarm flags */
  2914. addr = 0xA070;
  2915. val64 = 0x0;
  2916. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2917. flag = CHECKBIT(val64, 0x7);
  2918. type = 1;
  2919. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2920. &stat_info->xpak_stat.xpak_regs_stat,
  2921. 0x0, flag, type);
  2922. if(CHECKBIT(val64, 0x6))
  2923. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2924. flag = CHECKBIT(val64, 0x3);
  2925. type = 2;
  2926. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2927. &stat_info->xpak_stat.xpak_regs_stat,
  2928. 0x2, flag, type);
  2929. if(CHECKBIT(val64, 0x2))
  2930. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2931. flag = CHECKBIT(val64, 0x1);
  2932. type = 3;
  2933. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2934. &stat_info->xpak_stat.xpak_regs_stat,
  2935. 0x4, flag, type);
  2936. if(CHECKBIT(val64, 0x0))
  2937. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2938. /* Reading the Warning flags */
  2939. addr = 0xA074;
  2940. val64 = 0x0;
  2941. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2942. if(CHECKBIT(val64, 0x7))
  2943. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2944. if(CHECKBIT(val64, 0x6))
  2945. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2946. if(CHECKBIT(val64, 0x3))
  2947. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2948. if(CHECKBIT(val64, 0x2))
  2949. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2950. if(CHECKBIT(val64, 0x1))
  2951. stat_info->xpak_stat.warn_laser_output_power_high++;
  2952. if(CHECKBIT(val64, 0x0))
  2953. stat_info->xpak_stat.warn_laser_output_power_low++;
  2954. }
  2955. /**
  2956. * wait_for_cmd_complete - waits for a command to complete.
  2957. * @sp : private member of the device structure, which is a pointer to the
  2958. * s2io_nic structure.
  2959. * Description: Function that waits for a command to Write into RMAC
  2960. * ADDR DATA registers to be completed and returns either success or
  2961. * error depending on whether the command was complete or not.
  2962. * Return value:
  2963. * SUCCESS on success and FAILURE on failure.
  2964. */
  2965. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2966. int bit_state)
  2967. {
  2968. int ret = FAILURE, cnt = 0, delay = 1;
  2969. u64 val64;
  2970. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2971. return FAILURE;
  2972. do {
  2973. val64 = readq(addr);
  2974. if (bit_state == S2IO_BIT_RESET) {
  2975. if (!(val64 & busy_bit)) {
  2976. ret = SUCCESS;
  2977. break;
  2978. }
  2979. } else {
  2980. if (!(val64 & busy_bit)) {
  2981. ret = SUCCESS;
  2982. break;
  2983. }
  2984. }
  2985. if(in_interrupt())
  2986. mdelay(delay);
  2987. else
  2988. msleep(delay);
  2989. if (++cnt >= 10)
  2990. delay = 50;
  2991. } while (cnt < 20);
  2992. return ret;
  2993. }
  2994. /*
  2995. * check_pci_device_id - Checks if the device id is supported
  2996. * @id : device id
  2997. * Description: Function to check if the pci device id is supported by driver.
  2998. * Return value: Actual device id if supported else PCI_ANY_ID
  2999. */
  3000. static u16 check_pci_device_id(u16 id)
  3001. {
  3002. switch (id) {
  3003. case PCI_DEVICE_ID_HERC_WIN:
  3004. case PCI_DEVICE_ID_HERC_UNI:
  3005. return XFRAME_II_DEVICE;
  3006. case PCI_DEVICE_ID_S2IO_UNI:
  3007. case PCI_DEVICE_ID_S2IO_WIN:
  3008. return XFRAME_I_DEVICE;
  3009. default:
  3010. return PCI_ANY_ID;
  3011. }
  3012. }
  3013. /**
  3014. * s2io_reset - Resets the card.
  3015. * @sp : private member of the device structure.
  3016. * Description: Function to Reset the card. This function then also
  3017. * restores the previously saved PCI configuration space registers as
  3018. * the card reset also resets the configuration space.
  3019. * Return value:
  3020. * void.
  3021. */
  3022. static void s2io_reset(struct s2io_nic * sp)
  3023. {
  3024. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3025. u64 val64;
  3026. u16 subid, pci_cmd;
  3027. int i;
  3028. u16 val16;
  3029. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3030. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3031. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3032. __FUNCTION__, sp->dev->name);
  3033. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3034. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3035. val64 = SW_RESET_ALL;
  3036. writeq(val64, &bar0->sw_reset);
  3037. if (strstr(sp->product_name, "CX4")) {
  3038. msleep(750);
  3039. }
  3040. msleep(250);
  3041. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3042. /* Restore the PCI state saved during initialization. */
  3043. pci_restore_state(sp->pdev);
  3044. pci_read_config_word(sp->pdev, 0x2, &val16);
  3045. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3046. break;
  3047. msleep(200);
  3048. }
  3049. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3050. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3051. }
  3052. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3053. s2io_init_pci(sp);
  3054. /* Set swapper to enable I/O register access */
  3055. s2io_set_swapper(sp);
  3056. /* Restore the MSIX table entries from local variables */
  3057. restore_xmsi_data(sp);
  3058. /* Clear certain PCI/PCI-X fields after reset */
  3059. if (sp->device_type == XFRAME_II_DEVICE) {
  3060. /* Clear "detected parity error" bit */
  3061. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3062. /* Clearing PCIX Ecc status register */
  3063. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3064. /* Clearing PCI_STATUS error reflected here */
  3065. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3066. }
  3067. /* Reset device statistics maintained by OS */
  3068. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3069. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3070. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3071. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3072. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3073. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3074. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3075. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3076. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3077. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3078. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3079. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3080. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3081. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3082. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3083. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3084. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3085. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3086. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3087. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3088. /* SXE-002: Configure link and activity LED to turn it off */
  3089. subid = sp->pdev->subsystem_device;
  3090. if (((subid & 0xFF) >= 0x07) &&
  3091. (sp->device_type == XFRAME_I_DEVICE)) {
  3092. val64 = readq(&bar0->gpio_control);
  3093. val64 |= 0x0000800000000000ULL;
  3094. writeq(val64, &bar0->gpio_control);
  3095. val64 = 0x0411040400000000ULL;
  3096. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3097. }
  3098. /*
  3099. * Clear spurious ECC interrupts that would have occured on
  3100. * XFRAME II cards after reset.
  3101. */
  3102. if (sp->device_type == XFRAME_II_DEVICE) {
  3103. val64 = readq(&bar0->pcc_err_reg);
  3104. writeq(val64, &bar0->pcc_err_reg);
  3105. }
  3106. /* restore the previously assigned mac address */
  3107. do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3108. sp->device_enabled_once = FALSE;
  3109. }
  3110. /**
  3111. * s2io_set_swapper - to set the swapper controle on the card
  3112. * @sp : private member of the device structure,
  3113. * pointer to the s2io_nic structure.
  3114. * Description: Function to set the swapper control on the card
  3115. * correctly depending on the 'endianness' of the system.
  3116. * Return value:
  3117. * SUCCESS on success and FAILURE on failure.
  3118. */
  3119. static int s2io_set_swapper(struct s2io_nic * sp)
  3120. {
  3121. struct net_device *dev = sp->dev;
  3122. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3123. u64 val64, valt, valr;
  3124. /*
  3125. * Set proper endian settings and verify the same by reading
  3126. * the PIF Feed-back register.
  3127. */
  3128. val64 = readq(&bar0->pif_rd_swapper_fb);
  3129. if (val64 != 0x0123456789ABCDEFULL) {
  3130. int i = 0;
  3131. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3132. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3133. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3134. 0}; /* FE=0, SE=0 */
  3135. while(i<4) {
  3136. writeq(value[i], &bar0->swapper_ctrl);
  3137. val64 = readq(&bar0->pif_rd_swapper_fb);
  3138. if (val64 == 0x0123456789ABCDEFULL)
  3139. break;
  3140. i++;
  3141. }
  3142. if (i == 4) {
  3143. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3144. dev->name);
  3145. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3146. (unsigned long long) val64);
  3147. return FAILURE;
  3148. }
  3149. valr = value[i];
  3150. } else {
  3151. valr = readq(&bar0->swapper_ctrl);
  3152. }
  3153. valt = 0x0123456789ABCDEFULL;
  3154. writeq(valt, &bar0->xmsi_address);
  3155. val64 = readq(&bar0->xmsi_address);
  3156. if(val64 != valt) {
  3157. int i = 0;
  3158. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3159. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3160. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3161. 0}; /* FE=0, SE=0 */
  3162. while(i<4) {
  3163. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3164. writeq(valt, &bar0->xmsi_address);
  3165. val64 = readq(&bar0->xmsi_address);
  3166. if(val64 == valt)
  3167. break;
  3168. i++;
  3169. }
  3170. if(i == 4) {
  3171. unsigned long long x = val64;
  3172. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3173. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3174. return FAILURE;
  3175. }
  3176. }
  3177. val64 = readq(&bar0->swapper_ctrl);
  3178. val64 &= 0xFFFF000000000000ULL;
  3179. #ifdef __BIG_ENDIAN
  3180. /*
  3181. * The device by default set to a big endian format, so a
  3182. * big endian driver need not set anything.
  3183. */
  3184. val64 |= (SWAPPER_CTRL_TXP_FE |
  3185. SWAPPER_CTRL_TXP_SE |
  3186. SWAPPER_CTRL_TXD_R_FE |
  3187. SWAPPER_CTRL_TXD_W_FE |
  3188. SWAPPER_CTRL_TXF_R_FE |
  3189. SWAPPER_CTRL_RXD_R_FE |
  3190. SWAPPER_CTRL_RXD_W_FE |
  3191. SWAPPER_CTRL_RXF_W_FE |
  3192. SWAPPER_CTRL_XMSI_FE |
  3193. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3194. if (sp->config.intr_type == INTA)
  3195. val64 |= SWAPPER_CTRL_XMSI_SE;
  3196. writeq(val64, &bar0->swapper_ctrl);
  3197. #else
  3198. /*
  3199. * Initially we enable all bits to make it accessible by the
  3200. * driver, then we selectively enable only those bits that
  3201. * we want to set.
  3202. */
  3203. val64 |= (SWAPPER_CTRL_TXP_FE |
  3204. SWAPPER_CTRL_TXP_SE |
  3205. SWAPPER_CTRL_TXD_R_FE |
  3206. SWAPPER_CTRL_TXD_R_SE |
  3207. SWAPPER_CTRL_TXD_W_FE |
  3208. SWAPPER_CTRL_TXD_W_SE |
  3209. SWAPPER_CTRL_TXF_R_FE |
  3210. SWAPPER_CTRL_RXD_R_FE |
  3211. SWAPPER_CTRL_RXD_R_SE |
  3212. SWAPPER_CTRL_RXD_W_FE |
  3213. SWAPPER_CTRL_RXD_W_SE |
  3214. SWAPPER_CTRL_RXF_W_FE |
  3215. SWAPPER_CTRL_XMSI_FE |
  3216. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3217. if (sp->config.intr_type == INTA)
  3218. val64 |= SWAPPER_CTRL_XMSI_SE;
  3219. writeq(val64, &bar0->swapper_ctrl);
  3220. #endif
  3221. val64 = readq(&bar0->swapper_ctrl);
  3222. /*
  3223. * Verifying if endian settings are accurate by reading a
  3224. * feedback register.
  3225. */
  3226. val64 = readq(&bar0->pif_rd_swapper_fb);
  3227. if (val64 != 0x0123456789ABCDEFULL) {
  3228. /* Endian settings are incorrect, calls for another dekko. */
  3229. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3230. dev->name);
  3231. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3232. (unsigned long long) val64);
  3233. return FAILURE;
  3234. }
  3235. return SUCCESS;
  3236. }
  3237. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3238. {
  3239. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3240. u64 val64;
  3241. int ret = 0, cnt = 0;
  3242. do {
  3243. val64 = readq(&bar0->xmsi_access);
  3244. if (!(val64 & s2BIT(15)))
  3245. break;
  3246. mdelay(1);
  3247. cnt++;
  3248. } while(cnt < 5);
  3249. if (cnt == 5) {
  3250. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3251. ret = 1;
  3252. }
  3253. return ret;
  3254. }
  3255. static void restore_xmsi_data(struct s2io_nic *nic)
  3256. {
  3257. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3258. u64 val64;
  3259. int i;
  3260. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3261. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3262. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3263. val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
  3264. writeq(val64, &bar0->xmsi_access);
  3265. if (wait_for_msix_trans(nic, i)) {
  3266. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3267. continue;
  3268. }
  3269. }
  3270. }
  3271. static void store_xmsi_data(struct s2io_nic *nic)
  3272. {
  3273. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3274. u64 val64, addr, data;
  3275. int i;
  3276. /* Store and display */
  3277. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3278. val64 = (s2BIT(15) | vBIT(i, 26, 6));
  3279. writeq(val64, &bar0->xmsi_access);
  3280. if (wait_for_msix_trans(nic, i)) {
  3281. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3282. continue;
  3283. }
  3284. addr = readq(&bar0->xmsi_address);
  3285. data = readq(&bar0->xmsi_data);
  3286. if (addr && data) {
  3287. nic->msix_info[i].addr = addr;
  3288. nic->msix_info[i].data = data;
  3289. }
  3290. }
  3291. }
  3292. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3293. {
  3294. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3295. u64 tx_mat, rx_mat;
  3296. u16 msi_control; /* Temp variable */
  3297. int ret, i, j, msix_indx = 1;
  3298. nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
  3299. GFP_KERNEL);
  3300. if (!nic->entries) {
  3301. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3302. __FUNCTION__);
  3303. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3304. return -ENOMEM;
  3305. }
  3306. nic->mac_control.stats_info->sw_stat.mem_allocated
  3307. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3308. nic->s2io_entries =
  3309. kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
  3310. GFP_KERNEL);
  3311. if (!nic->s2io_entries) {
  3312. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3313. __FUNCTION__);
  3314. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3315. kfree(nic->entries);
  3316. nic->mac_control.stats_info->sw_stat.mem_freed
  3317. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3318. return -ENOMEM;
  3319. }
  3320. nic->mac_control.stats_info->sw_stat.mem_allocated
  3321. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3322. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3323. nic->entries[i].entry = i;
  3324. nic->s2io_entries[i].entry = i;
  3325. nic->s2io_entries[i].arg = NULL;
  3326. nic->s2io_entries[i].in_use = 0;
  3327. }
  3328. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3329. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3330. tx_mat |= TX_MAT_SET(i, msix_indx);
  3331. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3332. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3333. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3334. }
  3335. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3336. rx_mat = readq(&bar0->rx_mat);
  3337. for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
  3338. rx_mat |= RX_MAT_SET(j, msix_indx);
  3339. nic->s2io_entries[msix_indx].arg
  3340. = &nic->mac_control.rings[j];
  3341. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3342. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3343. }
  3344. writeq(rx_mat, &bar0->rx_mat);
  3345. nic->avail_msix_vectors = 0;
  3346. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3347. /* We fail init if error or we get less vectors than min required */
  3348. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3349. nic->avail_msix_vectors = ret;
  3350. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3351. }
  3352. if (ret) {
  3353. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3354. kfree(nic->entries);
  3355. nic->mac_control.stats_info->sw_stat.mem_freed
  3356. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3357. kfree(nic->s2io_entries);
  3358. nic->mac_control.stats_info->sw_stat.mem_freed
  3359. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3360. nic->entries = NULL;
  3361. nic->s2io_entries = NULL;
  3362. nic->avail_msix_vectors = 0;
  3363. return -ENOMEM;
  3364. }
  3365. if (!nic->avail_msix_vectors)
  3366. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3367. /*
  3368. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3369. * in the herc NIC. (Temp change, needs to be removed later)
  3370. */
  3371. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3372. msi_control |= 0x1; /* Enable MSI */
  3373. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3374. return 0;
  3375. }
  3376. /* Handle software interrupt used during MSI(X) test */
  3377. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3378. {
  3379. struct s2io_nic *sp = dev_id;
  3380. sp->msi_detected = 1;
  3381. wake_up(&sp->msi_wait);
  3382. return IRQ_HANDLED;
  3383. }
  3384. /* Test interrupt path by forcing a a software IRQ */
  3385. static int s2io_test_msi(struct s2io_nic *sp)
  3386. {
  3387. struct pci_dev *pdev = sp->pdev;
  3388. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3389. int err;
  3390. u64 val64, saved64;
  3391. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3392. sp->name, sp);
  3393. if (err) {
  3394. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3395. sp->dev->name, pci_name(pdev), pdev->irq);
  3396. return err;
  3397. }
  3398. init_waitqueue_head (&sp->msi_wait);
  3399. sp->msi_detected = 0;
  3400. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3401. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3402. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3403. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3404. writeq(val64, &bar0->scheduled_int_ctrl);
  3405. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3406. if (!sp->msi_detected) {
  3407. /* MSI(X) test failed, go back to INTx mode */
  3408. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3409. "using MSI(X) during test\n", sp->dev->name,
  3410. pci_name(pdev));
  3411. err = -EOPNOTSUPP;
  3412. }
  3413. free_irq(sp->entries[1].vector, sp);
  3414. writeq(saved64, &bar0->scheduled_int_ctrl);
  3415. return err;
  3416. }
  3417. static void remove_msix_isr(struct s2io_nic *sp)
  3418. {
  3419. int i;
  3420. u16 msi_control;
  3421. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3422. if (sp->s2io_entries[i].in_use ==
  3423. MSIX_REGISTERED_SUCCESS) {
  3424. int vector = sp->entries[i].vector;
  3425. void *arg = sp->s2io_entries[i].arg;
  3426. free_irq(vector, arg);
  3427. }
  3428. }
  3429. kfree(sp->entries);
  3430. kfree(sp->s2io_entries);
  3431. sp->entries = NULL;
  3432. sp->s2io_entries = NULL;
  3433. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3434. msi_control &= 0xFFFE; /* Disable MSI */
  3435. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3436. pci_disable_msix(sp->pdev);
  3437. }
  3438. static void remove_inta_isr(struct s2io_nic *sp)
  3439. {
  3440. struct net_device *dev = sp->dev;
  3441. free_irq(sp->pdev->irq, dev);
  3442. }
  3443. /* ********************************************************* *
  3444. * Functions defined below concern the OS part of the driver *
  3445. * ********************************************************* */
  3446. /**
  3447. * s2io_open - open entry point of the driver
  3448. * @dev : pointer to the device structure.
  3449. * Description:
  3450. * This function is the open entry point of the driver. It mainly calls a
  3451. * function to allocate Rx buffers and inserts them into the buffer
  3452. * descriptors and then enables the Rx part of the NIC.
  3453. * Return value:
  3454. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3455. * file on failure.
  3456. */
  3457. static int s2io_open(struct net_device *dev)
  3458. {
  3459. struct s2io_nic *sp = dev->priv;
  3460. int err = 0;
  3461. /*
  3462. * Make sure you have link off by default every time
  3463. * Nic is initialized
  3464. */
  3465. netif_carrier_off(dev);
  3466. sp->last_link_state = 0;
  3467. napi_enable(&sp->napi);
  3468. if (sp->config.intr_type == MSI_X) {
  3469. int ret = s2io_enable_msi_x(sp);
  3470. if (!ret) {
  3471. ret = s2io_test_msi(sp);
  3472. /* rollback MSI-X, will re-enable during add_isr() */
  3473. remove_msix_isr(sp);
  3474. }
  3475. if (ret) {
  3476. DBG_PRINT(ERR_DBG,
  3477. "%s: MSI-X requested but failed to enable\n",
  3478. dev->name);
  3479. sp->config.intr_type = INTA;
  3480. }
  3481. }
  3482. /* NAPI doesn't work well with MSI(X) */
  3483. if (sp->config.intr_type != INTA) {
  3484. if(sp->config.napi)
  3485. sp->config.napi = 0;
  3486. }
  3487. /* Initialize H/W and enable interrupts */
  3488. err = s2io_card_up(sp);
  3489. if (err) {
  3490. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3491. dev->name);
  3492. goto hw_init_failed;
  3493. }
  3494. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3495. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3496. s2io_card_down(sp);
  3497. err = -ENODEV;
  3498. goto hw_init_failed;
  3499. }
  3500. netif_start_queue(dev);
  3501. return 0;
  3502. hw_init_failed:
  3503. napi_disable(&sp->napi);
  3504. if (sp->config.intr_type == MSI_X) {
  3505. if (sp->entries) {
  3506. kfree(sp->entries);
  3507. sp->mac_control.stats_info->sw_stat.mem_freed
  3508. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3509. }
  3510. if (sp->s2io_entries) {
  3511. kfree(sp->s2io_entries);
  3512. sp->mac_control.stats_info->sw_stat.mem_freed
  3513. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3514. }
  3515. }
  3516. return err;
  3517. }
  3518. /**
  3519. * s2io_close -close entry point of the driver
  3520. * @dev : device pointer.
  3521. * Description:
  3522. * This is the stop entry point of the driver. It needs to undo exactly
  3523. * whatever was done by the open entry point,thus it's usually referred to
  3524. * as the close function.Among other things this function mainly stops the
  3525. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3526. * Return value:
  3527. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3528. * file on failure.
  3529. */
  3530. static int s2io_close(struct net_device *dev)
  3531. {
  3532. struct s2io_nic *sp = dev->priv;
  3533. /* Return if the device is already closed *
  3534. * Can happen when s2io_card_up failed in change_mtu *
  3535. */
  3536. if (!is_s2io_card_up(sp))
  3537. return 0;
  3538. netif_stop_queue(dev);
  3539. napi_disable(&sp->napi);
  3540. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3541. s2io_card_down(sp);
  3542. return 0;
  3543. }
  3544. /**
  3545. * s2io_xmit - Tx entry point of te driver
  3546. * @skb : the socket buffer containing the Tx data.
  3547. * @dev : device pointer.
  3548. * Description :
  3549. * This function is the Tx entry point of the driver. S2IO NIC supports
  3550. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3551. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3552. * not be upadted.
  3553. * Return value:
  3554. * 0 on success & 1 on failure.
  3555. */
  3556. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3557. {
  3558. struct s2io_nic *sp = dev->priv;
  3559. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3560. register u64 val64;
  3561. struct TxD *txdp;
  3562. struct TxFIFO_element __iomem *tx_fifo;
  3563. unsigned long flags;
  3564. u16 vlan_tag = 0;
  3565. int vlan_priority = 0;
  3566. struct mac_info *mac_control;
  3567. struct config_param *config;
  3568. int offload_type;
  3569. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3570. mac_control = &sp->mac_control;
  3571. config = &sp->config;
  3572. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3573. if (unlikely(skb->len <= 0)) {
  3574. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3575. dev_kfree_skb_any(skb);
  3576. return 0;
  3577. }
  3578. spin_lock_irqsave(&sp->tx_lock, flags);
  3579. if (!is_s2io_card_up(sp)) {
  3580. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3581. dev->name);
  3582. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3583. dev_kfree_skb(skb);
  3584. return 0;
  3585. }
  3586. queue = 0;
  3587. /* Get Fifo number to Transmit based on vlan priority */
  3588. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3589. vlan_tag = vlan_tx_tag_get(skb);
  3590. vlan_priority = vlan_tag >> 13;
  3591. queue = config->fifo_mapping[vlan_priority];
  3592. }
  3593. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3594. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3595. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3596. list_virt_addr;
  3597. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3598. /* Avoid "put" pointer going beyond "get" pointer */
  3599. if (txdp->Host_Control ||
  3600. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3601. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3602. netif_stop_queue(dev);
  3603. dev_kfree_skb(skb);
  3604. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3605. return 0;
  3606. }
  3607. offload_type = s2io_offload_type(skb);
  3608. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3609. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3610. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3611. }
  3612. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3613. txdp->Control_2 |=
  3614. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3615. TXD_TX_CKO_UDP_EN);
  3616. }
  3617. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3618. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3619. txdp->Control_2 |= config->tx_intr_type;
  3620. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3621. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3622. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3623. }
  3624. frg_len = skb->len - skb->data_len;
  3625. if (offload_type == SKB_GSO_UDP) {
  3626. int ufo_size;
  3627. ufo_size = s2io_udp_mss(skb);
  3628. ufo_size &= ~7;
  3629. txdp->Control_1 |= TXD_UFO_EN;
  3630. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3631. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3632. #ifdef __BIG_ENDIAN
  3633. sp->ufo_in_band_v[put_off] =
  3634. (u64)skb_shinfo(skb)->ip6_frag_id;
  3635. #else
  3636. sp->ufo_in_band_v[put_off] =
  3637. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3638. #endif
  3639. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3640. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3641. sp->ufo_in_band_v,
  3642. sizeof(u64), PCI_DMA_TODEVICE);
  3643. if((txdp->Buffer_Pointer == 0) ||
  3644. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3645. goto pci_map_failed;
  3646. txdp++;
  3647. }
  3648. txdp->Buffer_Pointer = pci_map_single
  3649. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3650. if((txdp->Buffer_Pointer == 0) ||
  3651. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3652. goto pci_map_failed;
  3653. txdp->Host_Control = (unsigned long) skb;
  3654. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3655. if (offload_type == SKB_GSO_UDP)
  3656. txdp->Control_1 |= TXD_UFO_EN;
  3657. frg_cnt = skb_shinfo(skb)->nr_frags;
  3658. /* For fragmented SKB. */
  3659. for (i = 0; i < frg_cnt; i++) {
  3660. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3661. /* A '0' length fragment will be ignored */
  3662. if (!frag->size)
  3663. continue;
  3664. txdp++;
  3665. txdp->Buffer_Pointer = (u64) pci_map_page
  3666. (sp->pdev, frag->page, frag->page_offset,
  3667. frag->size, PCI_DMA_TODEVICE);
  3668. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3669. if (offload_type == SKB_GSO_UDP)
  3670. txdp->Control_1 |= TXD_UFO_EN;
  3671. }
  3672. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3673. if (offload_type == SKB_GSO_UDP)
  3674. frg_cnt++; /* as Txd0 was used for inband header */
  3675. tx_fifo = mac_control->tx_FIFO_start[queue];
  3676. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3677. writeq(val64, &tx_fifo->TxDL_Pointer);
  3678. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3679. TX_FIFO_LAST_LIST);
  3680. if (offload_type)
  3681. val64 |= TX_FIFO_SPECIAL_FUNC;
  3682. writeq(val64, &tx_fifo->List_Control);
  3683. mmiowb();
  3684. put_off++;
  3685. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3686. put_off = 0;
  3687. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3688. /* Avoid "put" pointer going beyond "get" pointer */
  3689. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3690. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3691. DBG_PRINT(TX_DBG,
  3692. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3693. put_off, get_off);
  3694. netif_stop_queue(dev);
  3695. }
  3696. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3697. dev->trans_start = jiffies;
  3698. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3699. return 0;
  3700. pci_map_failed:
  3701. stats->pci_map_fail_cnt++;
  3702. netif_stop_queue(dev);
  3703. stats->mem_freed += skb->truesize;
  3704. dev_kfree_skb(skb);
  3705. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3706. return 0;
  3707. }
  3708. static void
  3709. s2io_alarm_handle(unsigned long data)
  3710. {
  3711. struct s2io_nic *sp = (struct s2io_nic *)data;
  3712. struct net_device *dev = sp->dev;
  3713. s2io_handle_errors(dev);
  3714. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3715. }
  3716. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3717. {
  3718. int rxb_size, level;
  3719. if (!sp->lro) {
  3720. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3721. level = rx_buffer_level(sp, rxb_size, rng_n);
  3722. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3723. int ret;
  3724. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3725. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3726. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3727. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3728. __FUNCTION__);
  3729. clear_bit(0, (&sp->tasklet_status));
  3730. return -1;
  3731. }
  3732. clear_bit(0, (&sp->tasklet_status));
  3733. } else if (level == LOW)
  3734. tasklet_schedule(&sp->task);
  3735. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3736. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3737. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3738. }
  3739. return 0;
  3740. }
  3741. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3742. {
  3743. struct ring_info *ring = (struct ring_info *)dev_id;
  3744. struct s2io_nic *sp = ring->nic;
  3745. if (!is_s2io_card_up(sp))
  3746. return IRQ_HANDLED;
  3747. rx_intr_handler(ring);
  3748. s2io_chk_rx_buffers(sp, ring->ring_no);
  3749. return IRQ_HANDLED;
  3750. }
  3751. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3752. {
  3753. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3754. struct s2io_nic *sp = fifo->nic;
  3755. if (!is_s2io_card_up(sp))
  3756. return IRQ_HANDLED;
  3757. tx_intr_handler(fifo);
  3758. return IRQ_HANDLED;
  3759. }
  3760. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3761. {
  3762. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3763. u64 val64;
  3764. val64 = readq(&bar0->pic_int_status);
  3765. if (val64 & PIC_INT_GPIO) {
  3766. val64 = readq(&bar0->gpio_int_reg);
  3767. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3768. (val64 & GPIO_INT_REG_LINK_UP)) {
  3769. /*
  3770. * This is unstable state so clear both up/down
  3771. * interrupt and adapter to re-evaluate the link state.
  3772. */
  3773. val64 |= GPIO_INT_REG_LINK_DOWN;
  3774. val64 |= GPIO_INT_REG_LINK_UP;
  3775. writeq(val64, &bar0->gpio_int_reg);
  3776. val64 = readq(&bar0->gpio_int_mask);
  3777. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3778. GPIO_INT_MASK_LINK_DOWN);
  3779. writeq(val64, &bar0->gpio_int_mask);
  3780. }
  3781. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3782. val64 = readq(&bar0->adapter_status);
  3783. /* Enable Adapter */
  3784. val64 = readq(&bar0->adapter_control);
  3785. val64 |= ADAPTER_CNTL_EN;
  3786. writeq(val64, &bar0->adapter_control);
  3787. val64 |= ADAPTER_LED_ON;
  3788. writeq(val64, &bar0->adapter_control);
  3789. if (!sp->device_enabled_once)
  3790. sp->device_enabled_once = 1;
  3791. s2io_link(sp, LINK_UP);
  3792. /*
  3793. * unmask link down interrupt and mask link-up
  3794. * intr
  3795. */
  3796. val64 = readq(&bar0->gpio_int_mask);
  3797. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3798. val64 |= GPIO_INT_MASK_LINK_UP;
  3799. writeq(val64, &bar0->gpio_int_mask);
  3800. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3801. val64 = readq(&bar0->adapter_status);
  3802. s2io_link(sp, LINK_DOWN);
  3803. /* Link is down so unmaks link up interrupt */
  3804. val64 = readq(&bar0->gpio_int_mask);
  3805. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3806. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3807. writeq(val64, &bar0->gpio_int_mask);
  3808. /* turn off LED */
  3809. val64 = readq(&bar0->adapter_control);
  3810. val64 = val64 &(~ADAPTER_LED_ON);
  3811. writeq(val64, &bar0->adapter_control);
  3812. }
  3813. }
  3814. val64 = readq(&bar0->gpio_int_mask);
  3815. }
  3816. /**
  3817. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3818. * @value: alarm bits
  3819. * @addr: address value
  3820. * @cnt: counter variable
  3821. * Description: Check for alarm and increment the counter
  3822. * Return Value:
  3823. * 1 - if alarm bit set
  3824. * 0 - if alarm bit is not set
  3825. */
  3826. static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3827. unsigned long long *cnt)
  3828. {
  3829. u64 val64;
  3830. val64 = readq(addr);
  3831. if ( val64 & value ) {
  3832. writeq(val64, addr);
  3833. (*cnt)++;
  3834. return 1;
  3835. }
  3836. return 0;
  3837. }
  3838. /**
  3839. * s2io_handle_errors - Xframe error indication handler
  3840. * @nic: device private variable
  3841. * Description: Handle alarms such as loss of link, single or
  3842. * double ECC errors, critical and serious errors.
  3843. * Return Value:
  3844. * NONE
  3845. */
  3846. static void s2io_handle_errors(void * dev_id)
  3847. {
  3848. struct net_device *dev = (struct net_device *) dev_id;
  3849. struct s2io_nic *sp = dev->priv;
  3850. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3851. u64 temp64 = 0,val64=0;
  3852. int i = 0;
  3853. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3854. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3855. if (!is_s2io_card_up(sp))
  3856. return;
  3857. if (pci_channel_offline(sp->pdev))
  3858. return;
  3859. memset(&sw_stat->ring_full_cnt, 0,
  3860. sizeof(sw_stat->ring_full_cnt));
  3861. /* Handling the XPAK counters update */
  3862. if(stats->xpak_timer_count < 72000) {
  3863. /* waiting for an hour */
  3864. stats->xpak_timer_count++;
  3865. } else {
  3866. s2io_updt_xpak_counter(dev);
  3867. /* reset the count to zero */
  3868. stats->xpak_timer_count = 0;
  3869. }
  3870. /* Handling link status change error Intr */
  3871. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3872. val64 = readq(&bar0->mac_rmac_err_reg);
  3873. writeq(val64, &bar0->mac_rmac_err_reg);
  3874. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3875. schedule_work(&sp->set_link_task);
  3876. }
  3877. /* In case of a serious error, the device will be Reset. */
  3878. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3879. &sw_stat->serious_err_cnt))
  3880. goto reset;
  3881. /* Check for data parity error */
  3882. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3883. &sw_stat->parity_err_cnt))
  3884. goto reset;
  3885. /* Check for ring full counter */
  3886. if (sp->device_type == XFRAME_II_DEVICE) {
  3887. val64 = readq(&bar0->ring_bump_counter1);
  3888. for (i=0; i<4; i++) {
  3889. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3890. temp64 >>= 64 - ((i+1)*16);
  3891. sw_stat->ring_full_cnt[i] += temp64;
  3892. }
  3893. val64 = readq(&bar0->ring_bump_counter2);
  3894. for (i=0; i<4; i++) {
  3895. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3896. temp64 >>= 64 - ((i+1)*16);
  3897. sw_stat->ring_full_cnt[i+4] += temp64;
  3898. }
  3899. }
  3900. val64 = readq(&bar0->txdma_int_status);
  3901. /*check for pfc_err*/
  3902. if (val64 & TXDMA_PFC_INT) {
  3903. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3904. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3905. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3906. &sw_stat->pfc_err_cnt))
  3907. goto reset;
  3908. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3909. &sw_stat->pfc_err_cnt);
  3910. }
  3911. /*check for tda_err*/
  3912. if (val64 & TXDMA_TDA_INT) {
  3913. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3914. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3915. &sw_stat->tda_err_cnt))
  3916. goto reset;
  3917. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3918. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3919. }
  3920. /*check for pcc_err*/
  3921. if (val64 & TXDMA_PCC_INT) {
  3922. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3923. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3924. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3925. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3926. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3927. &sw_stat->pcc_err_cnt))
  3928. goto reset;
  3929. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3930. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3931. }
  3932. /*check for tti_err*/
  3933. if (val64 & TXDMA_TTI_INT) {
  3934. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3935. &sw_stat->tti_err_cnt))
  3936. goto reset;
  3937. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3938. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3939. }
  3940. /*check for lso_err*/
  3941. if (val64 & TXDMA_LSO_INT) {
  3942. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3943. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3944. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3945. goto reset;
  3946. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3947. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3948. }
  3949. /*check for tpa_err*/
  3950. if (val64 & TXDMA_TPA_INT) {
  3951. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3952. &sw_stat->tpa_err_cnt))
  3953. goto reset;
  3954. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3955. &sw_stat->tpa_err_cnt);
  3956. }
  3957. /*check for sm_err*/
  3958. if (val64 & TXDMA_SM_INT) {
  3959. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3960. &sw_stat->sm_err_cnt))
  3961. goto reset;
  3962. }
  3963. val64 = readq(&bar0->mac_int_status);
  3964. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3965. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3966. &bar0->mac_tmac_err_reg,
  3967. &sw_stat->mac_tmac_err_cnt))
  3968. goto reset;
  3969. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3970. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3971. &bar0->mac_tmac_err_reg,
  3972. &sw_stat->mac_tmac_err_cnt);
  3973. }
  3974. val64 = readq(&bar0->xgxs_int_status);
  3975. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3976. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3977. &bar0->xgxs_txgxs_err_reg,
  3978. &sw_stat->xgxs_txgxs_err_cnt))
  3979. goto reset;
  3980. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3981. &bar0->xgxs_txgxs_err_reg,
  3982. &sw_stat->xgxs_txgxs_err_cnt);
  3983. }
  3984. val64 = readq(&bar0->rxdma_int_status);
  3985. if (val64 & RXDMA_INT_RC_INT_M) {
  3986. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3987. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  3988. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  3989. goto reset;
  3990. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  3991. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  3992. &sw_stat->rc_err_cnt);
  3993. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  3994. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  3995. &sw_stat->prc_pcix_err_cnt))
  3996. goto reset;
  3997. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  3998. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  3999. &sw_stat->prc_pcix_err_cnt);
  4000. }
  4001. if (val64 & RXDMA_INT_RPA_INT_M) {
  4002. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4003. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4004. goto reset;
  4005. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4006. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4007. }
  4008. if (val64 & RXDMA_INT_RDA_INT_M) {
  4009. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4010. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4011. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4012. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4013. goto reset;
  4014. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4015. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4016. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4017. }
  4018. if (val64 & RXDMA_INT_RTI_INT_M) {
  4019. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4020. &sw_stat->rti_err_cnt))
  4021. goto reset;
  4022. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4023. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4024. }
  4025. val64 = readq(&bar0->mac_int_status);
  4026. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4027. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4028. &bar0->mac_rmac_err_reg,
  4029. &sw_stat->mac_rmac_err_cnt))
  4030. goto reset;
  4031. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4032. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4033. &sw_stat->mac_rmac_err_cnt);
  4034. }
  4035. val64 = readq(&bar0->xgxs_int_status);
  4036. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4037. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4038. &bar0->xgxs_rxgxs_err_reg,
  4039. &sw_stat->xgxs_rxgxs_err_cnt))
  4040. goto reset;
  4041. }
  4042. val64 = readq(&bar0->mc_int_status);
  4043. if(val64 & MC_INT_STATUS_MC_INT) {
  4044. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4045. &sw_stat->mc_err_cnt))
  4046. goto reset;
  4047. /* Handling Ecc errors */
  4048. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4049. writeq(val64, &bar0->mc_err_reg);
  4050. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4051. sw_stat->double_ecc_errs++;
  4052. if (sp->device_type != XFRAME_II_DEVICE) {
  4053. /*
  4054. * Reset XframeI only if critical error
  4055. */
  4056. if (val64 &
  4057. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4058. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4059. goto reset;
  4060. }
  4061. } else
  4062. sw_stat->single_ecc_errs++;
  4063. }
  4064. }
  4065. return;
  4066. reset:
  4067. netif_stop_queue(dev);
  4068. schedule_work(&sp->rst_timer_task);
  4069. sw_stat->soft_reset_cnt++;
  4070. return;
  4071. }
  4072. /**
  4073. * s2io_isr - ISR handler of the device .
  4074. * @irq: the irq of the device.
  4075. * @dev_id: a void pointer to the dev structure of the NIC.
  4076. * Description: This function is the ISR handler of the device. It
  4077. * identifies the reason for the interrupt and calls the relevant
  4078. * service routines. As a contongency measure, this ISR allocates the
  4079. * recv buffers, if their numbers are below the panic value which is
  4080. * presently set to 25% of the original number of rcv buffers allocated.
  4081. * Return value:
  4082. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4083. * IRQ_NONE: will be returned if interrupt is not from our device
  4084. */
  4085. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4086. {
  4087. struct net_device *dev = (struct net_device *) dev_id;
  4088. struct s2io_nic *sp = dev->priv;
  4089. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4090. int i;
  4091. u64 reason = 0;
  4092. struct mac_info *mac_control;
  4093. struct config_param *config;
  4094. /* Pretend we handled any irq's from a disconnected card */
  4095. if (pci_channel_offline(sp->pdev))
  4096. return IRQ_NONE;
  4097. if (!is_s2io_card_up(sp))
  4098. return IRQ_NONE;
  4099. mac_control = &sp->mac_control;
  4100. config = &sp->config;
  4101. /*
  4102. * Identify the cause for interrupt and call the appropriate
  4103. * interrupt handler. Causes for the interrupt could be;
  4104. * 1. Rx of packet.
  4105. * 2. Tx complete.
  4106. * 3. Link down.
  4107. */
  4108. reason = readq(&bar0->general_int_status);
  4109. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4110. /* Nothing much can be done. Get out */
  4111. return IRQ_HANDLED;
  4112. }
  4113. if (reason & (GEN_INTR_RXTRAFFIC |
  4114. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4115. {
  4116. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4117. if (config->napi) {
  4118. if (reason & GEN_INTR_RXTRAFFIC) {
  4119. if (likely(netif_rx_schedule_prep(dev,
  4120. &sp->napi))) {
  4121. __netif_rx_schedule(dev, &sp->napi);
  4122. writeq(S2IO_MINUS_ONE,
  4123. &bar0->rx_traffic_mask);
  4124. } else
  4125. writeq(S2IO_MINUS_ONE,
  4126. &bar0->rx_traffic_int);
  4127. }
  4128. } else {
  4129. /*
  4130. * rx_traffic_int reg is an R1 register, writing all 1's
  4131. * will ensure that the actual interrupt causing bit
  4132. * get's cleared and hence a read can be avoided.
  4133. */
  4134. if (reason & GEN_INTR_RXTRAFFIC)
  4135. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4136. for (i = 0; i < config->rx_ring_num; i++)
  4137. rx_intr_handler(&mac_control->rings[i]);
  4138. }
  4139. /*
  4140. * tx_traffic_int reg is an R1 register, writing all 1's
  4141. * will ensure that the actual interrupt causing bit get's
  4142. * cleared and hence a read can be avoided.
  4143. */
  4144. if (reason & GEN_INTR_TXTRAFFIC)
  4145. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4146. for (i = 0; i < config->tx_fifo_num; i++)
  4147. tx_intr_handler(&mac_control->fifos[i]);
  4148. if (reason & GEN_INTR_TXPIC)
  4149. s2io_txpic_intr_handle(sp);
  4150. /*
  4151. * Reallocate the buffers from the interrupt handler itself.
  4152. */
  4153. if (!config->napi) {
  4154. for (i = 0; i < config->rx_ring_num; i++)
  4155. s2io_chk_rx_buffers(sp, i);
  4156. }
  4157. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4158. readl(&bar0->general_int_status);
  4159. return IRQ_HANDLED;
  4160. }
  4161. else if (!reason) {
  4162. /* The interrupt was not raised by us */
  4163. return IRQ_NONE;
  4164. }
  4165. return IRQ_HANDLED;
  4166. }
  4167. /**
  4168. * s2io_updt_stats -
  4169. */
  4170. static void s2io_updt_stats(struct s2io_nic *sp)
  4171. {
  4172. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4173. u64 val64;
  4174. int cnt = 0;
  4175. if (is_s2io_card_up(sp)) {
  4176. /* Apprx 30us on a 133 MHz bus */
  4177. val64 = SET_UPDT_CLICKS(10) |
  4178. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4179. writeq(val64, &bar0->stat_cfg);
  4180. do {
  4181. udelay(100);
  4182. val64 = readq(&bar0->stat_cfg);
  4183. if (!(val64 & s2BIT(0)))
  4184. break;
  4185. cnt++;
  4186. if (cnt == 5)
  4187. break; /* Updt failed */
  4188. } while(1);
  4189. }
  4190. }
  4191. /**
  4192. * s2io_get_stats - Updates the device statistics structure.
  4193. * @dev : pointer to the device structure.
  4194. * Description:
  4195. * This function updates the device statistics structure in the s2io_nic
  4196. * structure and returns a pointer to the same.
  4197. * Return value:
  4198. * pointer to the updated net_device_stats structure.
  4199. */
  4200. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4201. {
  4202. struct s2io_nic *sp = dev->priv;
  4203. struct mac_info *mac_control;
  4204. struct config_param *config;
  4205. mac_control = &sp->mac_control;
  4206. config = &sp->config;
  4207. /* Configure Stats for immediate updt */
  4208. s2io_updt_stats(sp);
  4209. sp->stats.tx_packets =
  4210. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4211. sp->stats.tx_errors =
  4212. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4213. sp->stats.rx_errors =
  4214. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4215. sp->stats.multicast =
  4216. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4217. sp->stats.rx_length_errors =
  4218. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4219. return (&sp->stats);
  4220. }
  4221. /**
  4222. * s2io_set_multicast - entry point for multicast address enable/disable.
  4223. * @dev : pointer to the device structure
  4224. * Description:
  4225. * This function is a driver entry point which gets called by the kernel
  4226. * whenever multicast addresses must be enabled/disabled. This also gets
  4227. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4228. * determine, if multicast address must be enabled or if promiscuous mode
  4229. * is to be disabled etc.
  4230. * Return value:
  4231. * void.
  4232. */
  4233. static void s2io_set_multicast(struct net_device *dev)
  4234. {
  4235. int i, j, prev_cnt;
  4236. struct dev_mc_list *mclist;
  4237. struct s2io_nic *sp = dev->priv;
  4238. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4239. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4240. 0xfeffffffffffULL;
  4241. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4242. void __iomem *add;
  4243. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4244. /* Enable all Multicast addresses */
  4245. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4246. &bar0->rmac_addr_data0_mem);
  4247. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4248. &bar0->rmac_addr_data1_mem);
  4249. val64 = RMAC_ADDR_CMD_MEM_WE |
  4250. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4251. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4252. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4253. /* Wait till command completes */
  4254. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4255. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4256. S2IO_BIT_RESET);
  4257. sp->m_cast_flg = 1;
  4258. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4259. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4260. /* Disable all Multicast addresses */
  4261. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4262. &bar0->rmac_addr_data0_mem);
  4263. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4264. &bar0->rmac_addr_data1_mem);
  4265. val64 = RMAC_ADDR_CMD_MEM_WE |
  4266. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4267. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4268. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4269. /* Wait till command completes */
  4270. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4271. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4272. S2IO_BIT_RESET);
  4273. sp->m_cast_flg = 0;
  4274. sp->all_multi_pos = 0;
  4275. }
  4276. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4277. /* Put the NIC into promiscuous mode */
  4278. add = &bar0->mac_cfg;
  4279. val64 = readq(&bar0->mac_cfg);
  4280. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4281. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4282. writel((u32) val64, add);
  4283. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4284. writel((u32) (val64 >> 32), (add + 4));
  4285. if (vlan_tag_strip != 1) {
  4286. val64 = readq(&bar0->rx_pa_cfg);
  4287. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4288. writeq(val64, &bar0->rx_pa_cfg);
  4289. vlan_strip_flag = 0;
  4290. }
  4291. val64 = readq(&bar0->mac_cfg);
  4292. sp->promisc_flg = 1;
  4293. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4294. dev->name);
  4295. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4296. /* Remove the NIC from promiscuous mode */
  4297. add = &bar0->mac_cfg;
  4298. val64 = readq(&bar0->mac_cfg);
  4299. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4300. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4301. writel((u32) val64, add);
  4302. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4303. writel((u32) (val64 >> 32), (add + 4));
  4304. if (vlan_tag_strip != 0) {
  4305. val64 = readq(&bar0->rx_pa_cfg);
  4306. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4307. writeq(val64, &bar0->rx_pa_cfg);
  4308. vlan_strip_flag = 1;
  4309. }
  4310. val64 = readq(&bar0->mac_cfg);
  4311. sp->promisc_flg = 0;
  4312. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4313. dev->name);
  4314. }
  4315. /* Update individual M_CAST address list */
  4316. if ((!sp->m_cast_flg) && dev->mc_count) {
  4317. if (dev->mc_count >
  4318. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4319. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4320. dev->name);
  4321. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4322. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4323. return;
  4324. }
  4325. prev_cnt = sp->mc_addr_count;
  4326. sp->mc_addr_count = dev->mc_count;
  4327. /* Clear out the previous list of Mc in the H/W. */
  4328. for (i = 0; i < prev_cnt; i++) {
  4329. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4330. &bar0->rmac_addr_data0_mem);
  4331. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4332. &bar0->rmac_addr_data1_mem);
  4333. val64 = RMAC_ADDR_CMD_MEM_WE |
  4334. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4335. RMAC_ADDR_CMD_MEM_OFFSET
  4336. (MAC_MC_ADDR_START_OFFSET + i);
  4337. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4338. /* Wait for command completes */
  4339. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4340. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4341. S2IO_BIT_RESET)) {
  4342. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4343. dev->name);
  4344. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4345. return;
  4346. }
  4347. }
  4348. /* Create the new Rx filter list and update the same in H/W. */
  4349. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4350. i++, mclist = mclist->next) {
  4351. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4352. ETH_ALEN);
  4353. mac_addr = 0;
  4354. for (j = 0; j < ETH_ALEN; j++) {
  4355. mac_addr |= mclist->dmi_addr[j];
  4356. mac_addr <<= 8;
  4357. }
  4358. mac_addr >>= 8;
  4359. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4360. &bar0->rmac_addr_data0_mem);
  4361. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4362. &bar0->rmac_addr_data1_mem);
  4363. val64 = RMAC_ADDR_CMD_MEM_WE |
  4364. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4365. RMAC_ADDR_CMD_MEM_OFFSET
  4366. (i + MAC_MC_ADDR_START_OFFSET);
  4367. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4368. /* Wait for command completes */
  4369. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4370. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4371. S2IO_BIT_RESET)) {
  4372. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4373. dev->name);
  4374. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4375. return;
  4376. }
  4377. }
  4378. }
  4379. }
  4380. /* add unicast MAC address to CAM */
  4381. static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
  4382. {
  4383. u64 val64;
  4384. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4385. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4386. &bar0->rmac_addr_data0_mem);
  4387. val64 =
  4388. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4389. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4390. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4391. /* Wait till command completes */
  4392. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4393. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4394. S2IO_BIT_RESET)) {
  4395. DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
  4396. return FAILURE;
  4397. }
  4398. return SUCCESS;
  4399. }
  4400. /**
  4401. * s2io_set_mac_addr driver entry point
  4402. */
  4403. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4404. {
  4405. struct sockaddr *addr = p;
  4406. if (!is_valid_ether_addr(addr->sa_data))
  4407. return -EINVAL;
  4408. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4409. /* store the MAC address in CAM */
  4410. return (do_s2io_prog_unicast(dev, dev->dev_addr));
  4411. }
  4412. /**
  4413. * do_s2io_prog_unicast - Programs the Xframe mac address
  4414. * @dev : pointer to the device structure.
  4415. * @addr: a uchar pointer to the new mac address which is to be set.
  4416. * Description : This procedure will program the Xframe to receive
  4417. * frames with new Mac Address
  4418. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4419. * as defined in errno.h file on failure.
  4420. */
  4421. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4422. {
  4423. struct s2io_nic *sp = dev->priv;
  4424. register u64 mac_addr = 0, perm_addr = 0;
  4425. int i;
  4426. /*
  4427. * Set the new MAC address as the new unicast filter and reflect this
  4428. * change on the device address registered with the OS. It will be
  4429. * at offset 0.
  4430. */
  4431. for (i = 0; i < ETH_ALEN; i++) {
  4432. mac_addr <<= 8;
  4433. mac_addr |= addr[i];
  4434. perm_addr <<= 8;
  4435. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4436. }
  4437. /* check if the dev_addr is different than perm_addr */
  4438. if (mac_addr == perm_addr)
  4439. return SUCCESS;
  4440. /* Update the internal structure with this new mac address */
  4441. do_s2io_copy_mac_addr(sp, 0, mac_addr);
  4442. return (do_s2io_add_unicast(sp, mac_addr, 0));
  4443. }
  4444. /**
  4445. * s2io_ethtool_sset - Sets different link parameters.
  4446. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4447. * @info: pointer to the structure with parameters given by ethtool to set
  4448. * link information.
  4449. * Description:
  4450. * The function sets different link parameters provided by the user onto
  4451. * the NIC.
  4452. * Return value:
  4453. * 0 on success.
  4454. */
  4455. static int s2io_ethtool_sset(struct net_device *dev,
  4456. struct ethtool_cmd *info)
  4457. {
  4458. struct s2io_nic *sp = dev->priv;
  4459. if ((info->autoneg == AUTONEG_ENABLE) ||
  4460. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4461. return -EINVAL;
  4462. else {
  4463. s2io_close(sp->dev);
  4464. s2io_open(sp->dev);
  4465. }
  4466. return 0;
  4467. }
  4468. /**
  4469. * s2io_ethtol_gset - Return link specific information.
  4470. * @sp : private member of the device structure, pointer to the
  4471. * s2io_nic structure.
  4472. * @info : pointer to the structure with parameters given by ethtool
  4473. * to return link information.
  4474. * Description:
  4475. * Returns link specific information like speed, duplex etc.. to ethtool.
  4476. * Return value :
  4477. * return 0 on success.
  4478. */
  4479. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4480. {
  4481. struct s2io_nic *sp = dev->priv;
  4482. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4483. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4484. info->port = PORT_FIBRE;
  4485. /* info->transceiver */
  4486. info->transceiver = XCVR_EXTERNAL;
  4487. if (netif_carrier_ok(sp->dev)) {
  4488. info->speed = 10000;
  4489. info->duplex = DUPLEX_FULL;
  4490. } else {
  4491. info->speed = -1;
  4492. info->duplex = -1;
  4493. }
  4494. info->autoneg = AUTONEG_DISABLE;
  4495. return 0;
  4496. }
  4497. /**
  4498. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4499. * @sp : private member of the device structure, which is a pointer to the
  4500. * s2io_nic structure.
  4501. * @info : pointer to the structure with parameters given by ethtool to
  4502. * return driver information.
  4503. * Description:
  4504. * Returns driver specefic information like name, version etc.. to ethtool.
  4505. * Return value:
  4506. * void
  4507. */
  4508. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4509. struct ethtool_drvinfo *info)
  4510. {
  4511. struct s2io_nic *sp = dev->priv;
  4512. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4513. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4514. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4515. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4516. info->regdump_len = XENA_REG_SPACE;
  4517. info->eedump_len = XENA_EEPROM_SPACE;
  4518. }
  4519. /**
  4520. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4521. * @sp: private member of the device structure, which is a pointer to the
  4522. * s2io_nic structure.
  4523. * @regs : pointer to the structure with parameters given by ethtool for
  4524. * dumping the registers.
  4525. * @reg_space: The input argumnet into which all the registers are dumped.
  4526. * Description:
  4527. * Dumps the entire register space of xFrame NIC into the user given
  4528. * buffer area.
  4529. * Return value :
  4530. * void .
  4531. */
  4532. static void s2io_ethtool_gregs(struct net_device *dev,
  4533. struct ethtool_regs *regs, void *space)
  4534. {
  4535. int i;
  4536. u64 reg;
  4537. u8 *reg_space = (u8 *) space;
  4538. struct s2io_nic *sp = dev->priv;
  4539. regs->len = XENA_REG_SPACE;
  4540. regs->version = sp->pdev->subsystem_device;
  4541. for (i = 0; i < regs->len; i += 8) {
  4542. reg = readq(sp->bar0 + i);
  4543. memcpy((reg_space + i), &reg, 8);
  4544. }
  4545. }
  4546. /**
  4547. * s2io_phy_id - timer function that alternates adapter LED.
  4548. * @data : address of the private member of the device structure, which
  4549. * is a pointer to the s2io_nic structure, provided as an u32.
  4550. * Description: This is actually the timer function that alternates the
  4551. * adapter LED bit of the adapter control bit to set/reset every time on
  4552. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4553. * once every second.
  4554. */
  4555. static void s2io_phy_id(unsigned long data)
  4556. {
  4557. struct s2io_nic *sp = (struct s2io_nic *) data;
  4558. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4559. u64 val64 = 0;
  4560. u16 subid;
  4561. subid = sp->pdev->subsystem_device;
  4562. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4563. ((subid & 0xFF) >= 0x07)) {
  4564. val64 = readq(&bar0->gpio_control);
  4565. val64 ^= GPIO_CTRL_GPIO_0;
  4566. writeq(val64, &bar0->gpio_control);
  4567. } else {
  4568. val64 = readq(&bar0->adapter_control);
  4569. val64 ^= ADAPTER_LED_ON;
  4570. writeq(val64, &bar0->adapter_control);
  4571. }
  4572. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4573. }
  4574. /**
  4575. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4576. * @sp : private member of the device structure, which is a pointer to the
  4577. * s2io_nic structure.
  4578. * @id : pointer to the structure with identification parameters given by
  4579. * ethtool.
  4580. * Description: Used to physically identify the NIC on the system.
  4581. * The Link LED will blink for a time specified by the user for
  4582. * identification.
  4583. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4584. * identification is possible only if it's link is up.
  4585. * Return value:
  4586. * int , returns 0 on success
  4587. */
  4588. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4589. {
  4590. u64 val64 = 0, last_gpio_ctrl_val;
  4591. struct s2io_nic *sp = dev->priv;
  4592. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4593. u16 subid;
  4594. subid = sp->pdev->subsystem_device;
  4595. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4596. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4597. ((subid & 0xFF) < 0x07)) {
  4598. val64 = readq(&bar0->adapter_control);
  4599. if (!(val64 & ADAPTER_CNTL_EN)) {
  4600. printk(KERN_ERR
  4601. "Adapter Link down, cannot blink LED\n");
  4602. return -EFAULT;
  4603. }
  4604. }
  4605. if (sp->id_timer.function == NULL) {
  4606. init_timer(&sp->id_timer);
  4607. sp->id_timer.function = s2io_phy_id;
  4608. sp->id_timer.data = (unsigned long) sp;
  4609. }
  4610. mod_timer(&sp->id_timer, jiffies);
  4611. if (data)
  4612. msleep_interruptible(data * HZ);
  4613. else
  4614. msleep_interruptible(MAX_FLICKER_TIME);
  4615. del_timer_sync(&sp->id_timer);
  4616. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4617. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4618. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4619. }
  4620. return 0;
  4621. }
  4622. static void s2io_ethtool_gringparam(struct net_device *dev,
  4623. struct ethtool_ringparam *ering)
  4624. {
  4625. struct s2io_nic *sp = dev->priv;
  4626. int i,tx_desc_count=0,rx_desc_count=0;
  4627. if (sp->rxd_mode == RXD_MODE_1)
  4628. ering->rx_max_pending = MAX_RX_DESC_1;
  4629. else if (sp->rxd_mode == RXD_MODE_3B)
  4630. ering->rx_max_pending = MAX_RX_DESC_2;
  4631. ering->tx_max_pending = MAX_TX_DESC;
  4632. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4633. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4634. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4635. ering->tx_pending = tx_desc_count;
  4636. rx_desc_count = 0;
  4637. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4638. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4639. ering->rx_pending = rx_desc_count;
  4640. ering->rx_mini_max_pending = 0;
  4641. ering->rx_mini_pending = 0;
  4642. if(sp->rxd_mode == RXD_MODE_1)
  4643. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4644. else if (sp->rxd_mode == RXD_MODE_3B)
  4645. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4646. ering->rx_jumbo_pending = rx_desc_count;
  4647. }
  4648. /**
  4649. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4650. * @sp : private member of the device structure, which is a pointer to the
  4651. * s2io_nic structure.
  4652. * @ep : pointer to the structure with pause parameters given by ethtool.
  4653. * Description:
  4654. * Returns the Pause frame generation and reception capability of the NIC.
  4655. * Return value:
  4656. * void
  4657. */
  4658. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4659. struct ethtool_pauseparam *ep)
  4660. {
  4661. u64 val64;
  4662. struct s2io_nic *sp = dev->priv;
  4663. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4664. val64 = readq(&bar0->rmac_pause_cfg);
  4665. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4666. ep->tx_pause = TRUE;
  4667. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4668. ep->rx_pause = TRUE;
  4669. ep->autoneg = FALSE;
  4670. }
  4671. /**
  4672. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4673. * @sp : private member of the device structure, which is a pointer to the
  4674. * s2io_nic structure.
  4675. * @ep : pointer to the structure with pause parameters given by ethtool.
  4676. * Description:
  4677. * It can be used to set or reset Pause frame generation or reception
  4678. * support of the NIC.
  4679. * Return value:
  4680. * int, returns 0 on Success
  4681. */
  4682. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4683. struct ethtool_pauseparam *ep)
  4684. {
  4685. u64 val64;
  4686. struct s2io_nic *sp = dev->priv;
  4687. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4688. val64 = readq(&bar0->rmac_pause_cfg);
  4689. if (ep->tx_pause)
  4690. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4691. else
  4692. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4693. if (ep->rx_pause)
  4694. val64 |= RMAC_PAUSE_RX_ENABLE;
  4695. else
  4696. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4697. writeq(val64, &bar0->rmac_pause_cfg);
  4698. return 0;
  4699. }
  4700. /**
  4701. * read_eeprom - reads 4 bytes of data from user given offset.
  4702. * @sp : private member of the device structure, which is a pointer to the
  4703. * s2io_nic structure.
  4704. * @off : offset at which the data must be written
  4705. * @data : Its an output parameter where the data read at the given
  4706. * offset is stored.
  4707. * Description:
  4708. * Will read 4 bytes of data from the user given offset and return the
  4709. * read data.
  4710. * NOTE: Will allow to read only part of the EEPROM visible through the
  4711. * I2C bus.
  4712. * Return value:
  4713. * -1 on failure and 0 on success.
  4714. */
  4715. #define S2IO_DEV_ID 5
  4716. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4717. {
  4718. int ret = -1;
  4719. u32 exit_cnt = 0;
  4720. u64 val64;
  4721. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4722. if (sp->device_type == XFRAME_I_DEVICE) {
  4723. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4724. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4725. I2C_CONTROL_CNTL_START;
  4726. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4727. while (exit_cnt < 5) {
  4728. val64 = readq(&bar0->i2c_control);
  4729. if (I2C_CONTROL_CNTL_END(val64)) {
  4730. *data = I2C_CONTROL_GET_DATA(val64);
  4731. ret = 0;
  4732. break;
  4733. }
  4734. msleep(50);
  4735. exit_cnt++;
  4736. }
  4737. }
  4738. if (sp->device_type == XFRAME_II_DEVICE) {
  4739. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4740. SPI_CONTROL_BYTECNT(0x3) |
  4741. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4742. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4743. val64 |= SPI_CONTROL_REQ;
  4744. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4745. while (exit_cnt < 5) {
  4746. val64 = readq(&bar0->spi_control);
  4747. if (val64 & SPI_CONTROL_NACK) {
  4748. ret = 1;
  4749. break;
  4750. } else if (val64 & SPI_CONTROL_DONE) {
  4751. *data = readq(&bar0->spi_data);
  4752. *data &= 0xffffff;
  4753. ret = 0;
  4754. break;
  4755. }
  4756. msleep(50);
  4757. exit_cnt++;
  4758. }
  4759. }
  4760. return ret;
  4761. }
  4762. /**
  4763. * write_eeprom - actually writes the relevant part of the data value.
  4764. * @sp : private member of the device structure, which is a pointer to the
  4765. * s2io_nic structure.
  4766. * @off : offset at which the data must be written
  4767. * @data : The data that is to be written
  4768. * @cnt : Number of bytes of the data that are actually to be written into
  4769. * the Eeprom. (max of 3)
  4770. * Description:
  4771. * Actually writes the relevant part of the data value into the Eeprom
  4772. * through the I2C bus.
  4773. * Return value:
  4774. * 0 on success, -1 on failure.
  4775. */
  4776. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4777. {
  4778. int exit_cnt = 0, ret = -1;
  4779. u64 val64;
  4780. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4781. if (sp->device_type == XFRAME_I_DEVICE) {
  4782. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4783. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4784. I2C_CONTROL_CNTL_START;
  4785. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4786. while (exit_cnt < 5) {
  4787. val64 = readq(&bar0->i2c_control);
  4788. if (I2C_CONTROL_CNTL_END(val64)) {
  4789. if (!(val64 & I2C_CONTROL_NACK))
  4790. ret = 0;
  4791. break;
  4792. }
  4793. msleep(50);
  4794. exit_cnt++;
  4795. }
  4796. }
  4797. if (sp->device_type == XFRAME_II_DEVICE) {
  4798. int write_cnt = (cnt == 8) ? 0 : cnt;
  4799. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4800. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4801. SPI_CONTROL_BYTECNT(write_cnt) |
  4802. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4803. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4804. val64 |= SPI_CONTROL_REQ;
  4805. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4806. while (exit_cnt < 5) {
  4807. val64 = readq(&bar0->spi_control);
  4808. if (val64 & SPI_CONTROL_NACK) {
  4809. ret = 1;
  4810. break;
  4811. } else if (val64 & SPI_CONTROL_DONE) {
  4812. ret = 0;
  4813. break;
  4814. }
  4815. msleep(50);
  4816. exit_cnt++;
  4817. }
  4818. }
  4819. return ret;
  4820. }
  4821. static void s2io_vpd_read(struct s2io_nic *nic)
  4822. {
  4823. u8 *vpd_data;
  4824. u8 data;
  4825. int i=0, cnt, fail = 0;
  4826. int vpd_addr = 0x80;
  4827. if (nic->device_type == XFRAME_II_DEVICE) {
  4828. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4829. vpd_addr = 0x80;
  4830. }
  4831. else {
  4832. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4833. vpd_addr = 0x50;
  4834. }
  4835. strcpy(nic->serial_num, "NOT AVAILABLE");
  4836. vpd_data = kmalloc(256, GFP_KERNEL);
  4837. if (!vpd_data) {
  4838. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4839. return;
  4840. }
  4841. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4842. for (i = 0; i < 256; i +=4 ) {
  4843. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4844. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4845. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4846. for (cnt = 0; cnt <5; cnt++) {
  4847. msleep(2);
  4848. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4849. if (data == 0x80)
  4850. break;
  4851. }
  4852. if (cnt >= 5) {
  4853. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4854. fail = 1;
  4855. break;
  4856. }
  4857. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4858. (u32 *)&vpd_data[i]);
  4859. }
  4860. if(!fail) {
  4861. /* read serial number of adapter */
  4862. for (cnt = 0; cnt < 256; cnt++) {
  4863. if ((vpd_data[cnt] == 'S') &&
  4864. (vpd_data[cnt+1] == 'N') &&
  4865. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4866. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4867. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4868. vpd_data[cnt+2]);
  4869. break;
  4870. }
  4871. }
  4872. }
  4873. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4874. memset(nic->product_name, 0, vpd_data[1]);
  4875. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4876. }
  4877. kfree(vpd_data);
  4878. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4879. }
  4880. /**
  4881. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4882. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4883. * @eeprom : pointer to the user level structure provided by ethtool,
  4884. * containing all relevant information.
  4885. * @data_buf : user defined value to be written into Eeprom.
  4886. * Description: Reads the values stored in the Eeprom at given offset
  4887. * for a given length. Stores these values int the input argument data
  4888. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4889. * Return value:
  4890. * int 0 on success
  4891. */
  4892. static int s2io_ethtool_geeprom(struct net_device *dev,
  4893. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4894. {
  4895. u32 i, valid;
  4896. u64 data;
  4897. struct s2io_nic *sp = dev->priv;
  4898. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4899. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4900. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4901. for (i = 0; i < eeprom->len; i += 4) {
  4902. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4903. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4904. return -EFAULT;
  4905. }
  4906. valid = INV(data);
  4907. memcpy((data_buf + i), &valid, 4);
  4908. }
  4909. return 0;
  4910. }
  4911. /**
  4912. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4913. * @sp : private member of the device structure, which is a pointer to the
  4914. * s2io_nic structure.
  4915. * @eeprom : pointer to the user level structure provided by ethtool,
  4916. * containing all relevant information.
  4917. * @data_buf ; user defined value to be written into Eeprom.
  4918. * Description:
  4919. * Tries to write the user provided value in the Eeprom, at the offset
  4920. * given by the user.
  4921. * Return value:
  4922. * 0 on success, -EFAULT on failure.
  4923. */
  4924. static int s2io_ethtool_seeprom(struct net_device *dev,
  4925. struct ethtool_eeprom *eeprom,
  4926. u8 * data_buf)
  4927. {
  4928. int len = eeprom->len, cnt = 0;
  4929. u64 valid = 0, data;
  4930. struct s2io_nic *sp = dev->priv;
  4931. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4932. DBG_PRINT(ERR_DBG,
  4933. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4934. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4935. eeprom->magic);
  4936. return -EFAULT;
  4937. }
  4938. while (len) {
  4939. data = (u32) data_buf[cnt] & 0x000000FF;
  4940. if (data) {
  4941. valid = (u32) (data << 24);
  4942. } else
  4943. valid = data;
  4944. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4945. DBG_PRINT(ERR_DBG,
  4946. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4947. DBG_PRINT(ERR_DBG,
  4948. "write into the specified offset\n");
  4949. return -EFAULT;
  4950. }
  4951. cnt++;
  4952. len--;
  4953. }
  4954. return 0;
  4955. }
  4956. /**
  4957. * s2io_register_test - reads and writes into all clock domains.
  4958. * @sp : private member of the device structure, which is a pointer to the
  4959. * s2io_nic structure.
  4960. * @data : variable that returns the result of each of the test conducted b
  4961. * by the driver.
  4962. * Description:
  4963. * Read and write into all clock domains. The NIC has 3 clock domains,
  4964. * see that registers in all the three regions are accessible.
  4965. * Return value:
  4966. * 0 on success.
  4967. */
  4968. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4969. {
  4970. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4971. u64 val64 = 0, exp_val;
  4972. int fail = 0;
  4973. val64 = readq(&bar0->pif_rd_swapper_fb);
  4974. if (val64 != 0x123456789abcdefULL) {
  4975. fail = 1;
  4976. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4977. }
  4978. val64 = readq(&bar0->rmac_pause_cfg);
  4979. if (val64 != 0xc000ffff00000000ULL) {
  4980. fail = 1;
  4981. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4982. }
  4983. val64 = readq(&bar0->rx_queue_cfg);
  4984. if (sp->device_type == XFRAME_II_DEVICE)
  4985. exp_val = 0x0404040404040404ULL;
  4986. else
  4987. exp_val = 0x0808080808080808ULL;
  4988. if (val64 != exp_val) {
  4989. fail = 1;
  4990. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4991. }
  4992. val64 = readq(&bar0->xgxs_efifo_cfg);
  4993. if (val64 != 0x000000001923141EULL) {
  4994. fail = 1;
  4995. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4996. }
  4997. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4998. writeq(val64, &bar0->xmsi_data);
  4999. val64 = readq(&bar0->xmsi_data);
  5000. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5001. fail = 1;
  5002. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  5003. }
  5004. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5005. writeq(val64, &bar0->xmsi_data);
  5006. val64 = readq(&bar0->xmsi_data);
  5007. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5008. fail = 1;
  5009. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5010. }
  5011. *data = fail;
  5012. return fail;
  5013. }
  5014. /**
  5015. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5016. * @sp : private member of the device structure, which is a pointer to the
  5017. * s2io_nic structure.
  5018. * @data:variable that returns the result of each of the test conducted by
  5019. * the driver.
  5020. * Description:
  5021. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5022. * register.
  5023. * Return value:
  5024. * 0 on success.
  5025. */
  5026. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5027. {
  5028. int fail = 0;
  5029. u64 ret_data, org_4F0, org_7F0;
  5030. u8 saved_4F0 = 0, saved_7F0 = 0;
  5031. struct net_device *dev = sp->dev;
  5032. /* Test Write Error at offset 0 */
  5033. /* Note that SPI interface allows write access to all areas
  5034. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5035. */
  5036. if (sp->device_type == XFRAME_I_DEVICE)
  5037. if (!write_eeprom(sp, 0, 0, 3))
  5038. fail = 1;
  5039. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5040. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5041. saved_4F0 = 1;
  5042. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5043. saved_7F0 = 1;
  5044. /* Test Write at offset 4f0 */
  5045. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5046. fail = 1;
  5047. if (read_eeprom(sp, 0x4F0, &ret_data))
  5048. fail = 1;
  5049. if (ret_data != 0x012345) {
  5050. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5051. "Data written %llx Data read %llx\n",
  5052. dev->name, (unsigned long long)0x12345,
  5053. (unsigned long long)ret_data);
  5054. fail = 1;
  5055. }
  5056. /* Reset the EEPROM data go FFFF */
  5057. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5058. /* Test Write Request Error at offset 0x7c */
  5059. if (sp->device_type == XFRAME_I_DEVICE)
  5060. if (!write_eeprom(sp, 0x07C, 0, 3))
  5061. fail = 1;
  5062. /* Test Write Request at offset 0x7f0 */
  5063. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5064. fail = 1;
  5065. if (read_eeprom(sp, 0x7F0, &ret_data))
  5066. fail = 1;
  5067. if (ret_data != 0x012345) {
  5068. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5069. "Data written %llx Data read %llx\n",
  5070. dev->name, (unsigned long long)0x12345,
  5071. (unsigned long long)ret_data);
  5072. fail = 1;
  5073. }
  5074. /* Reset the EEPROM data go FFFF */
  5075. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5076. if (sp->device_type == XFRAME_I_DEVICE) {
  5077. /* Test Write Error at offset 0x80 */
  5078. if (!write_eeprom(sp, 0x080, 0, 3))
  5079. fail = 1;
  5080. /* Test Write Error at offset 0xfc */
  5081. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5082. fail = 1;
  5083. /* Test Write Error at offset 0x100 */
  5084. if (!write_eeprom(sp, 0x100, 0, 3))
  5085. fail = 1;
  5086. /* Test Write Error at offset 4ec */
  5087. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5088. fail = 1;
  5089. }
  5090. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5091. if (saved_4F0)
  5092. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5093. if (saved_7F0)
  5094. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5095. *data = fail;
  5096. return fail;
  5097. }
  5098. /**
  5099. * s2io_bist_test - invokes the MemBist test of the card .
  5100. * @sp : private member of the device structure, which is a pointer to the
  5101. * s2io_nic structure.
  5102. * @data:variable that returns the result of each of the test conducted by
  5103. * the driver.
  5104. * Description:
  5105. * This invokes the MemBist test of the card. We give around
  5106. * 2 secs time for the Test to complete. If it's still not complete
  5107. * within this peiod, we consider that the test failed.
  5108. * Return value:
  5109. * 0 on success and -1 on failure.
  5110. */
  5111. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5112. {
  5113. u8 bist = 0;
  5114. int cnt = 0, ret = -1;
  5115. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5116. bist |= PCI_BIST_START;
  5117. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5118. while (cnt < 20) {
  5119. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5120. if (!(bist & PCI_BIST_START)) {
  5121. *data = (bist & PCI_BIST_CODE_MASK);
  5122. ret = 0;
  5123. break;
  5124. }
  5125. msleep(100);
  5126. cnt++;
  5127. }
  5128. return ret;
  5129. }
  5130. /**
  5131. * s2io-link_test - verifies the link state of the nic
  5132. * @sp ; private member of the device structure, which is a pointer to the
  5133. * s2io_nic structure.
  5134. * @data: variable that returns the result of each of the test conducted by
  5135. * the driver.
  5136. * Description:
  5137. * The function verifies the link state of the NIC and updates the input
  5138. * argument 'data' appropriately.
  5139. * Return value:
  5140. * 0 on success.
  5141. */
  5142. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5143. {
  5144. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5145. u64 val64;
  5146. val64 = readq(&bar0->adapter_status);
  5147. if(!(LINK_IS_UP(val64)))
  5148. *data = 1;
  5149. else
  5150. *data = 0;
  5151. return *data;
  5152. }
  5153. /**
  5154. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5155. * @sp - private member of the device structure, which is a pointer to the
  5156. * s2io_nic structure.
  5157. * @data - variable that returns the result of each of the test
  5158. * conducted by the driver.
  5159. * Description:
  5160. * This is one of the offline test that tests the read and write
  5161. * access to the RldRam chip on the NIC.
  5162. * Return value:
  5163. * 0 on success.
  5164. */
  5165. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5166. {
  5167. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5168. u64 val64;
  5169. int cnt, iteration = 0, test_fail = 0;
  5170. val64 = readq(&bar0->adapter_control);
  5171. val64 &= ~ADAPTER_ECC_EN;
  5172. writeq(val64, &bar0->adapter_control);
  5173. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5174. val64 |= MC_RLDRAM_TEST_MODE;
  5175. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5176. val64 = readq(&bar0->mc_rldram_mrs);
  5177. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5178. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5179. val64 |= MC_RLDRAM_MRS_ENABLE;
  5180. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5181. while (iteration < 2) {
  5182. val64 = 0x55555555aaaa0000ULL;
  5183. if (iteration == 1) {
  5184. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5185. }
  5186. writeq(val64, &bar0->mc_rldram_test_d0);
  5187. val64 = 0xaaaa5a5555550000ULL;
  5188. if (iteration == 1) {
  5189. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5190. }
  5191. writeq(val64, &bar0->mc_rldram_test_d1);
  5192. val64 = 0x55aaaaaaaa5a0000ULL;
  5193. if (iteration == 1) {
  5194. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5195. }
  5196. writeq(val64, &bar0->mc_rldram_test_d2);
  5197. val64 = (u64) (0x0000003ffffe0100ULL);
  5198. writeq(val64, &bar0->mc_rldram_test_add);
  5199. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5200. MC_RLDRAM_TEST_GO;
  5201. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5202. for (cnt = 0; cnt < 5; cnt++) {
  5203. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5204. if (val64 & MC_RLDRAM_TEST_DONE)
  5205. break;
  5206. msleep(200);
  5207. }
  5208. if (cnt == 5)
  5209. break;
  5210. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5211. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5212. for (cnt = 0; cnt < 5; cnt++) {
  5213. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5214. if (val64 & MC_RLDRAM_TEST_DONE)
  5215. break;
  5216. msleep(500);
  5217. }
  5218. if (cnt == 5)
  5219. break;
  5220. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5221. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5222. test_fail = 1;
  5223. iteration++;
  5224. }
  5225. *data = test_fail;
  5226. /* Bring the adapter out of test mode */
  5227. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5228. return test_fail;
  5229. }
  5230. /**
  5231. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5232. * @sp : private member of the device structure, which is a pointer to the
  5233. * s2io_nic structure.
  5234. * @ethtest : pointer to a ethtool command specific structure that will be
  5235. * returned to the user.
  5236. * @data : variable that returns the result of each of the test
  5237. * conducted by the driver.
  5238. * Description:
  5239. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5240. * the health of the card.
  5241. * Return value:
  5242. * void
  5243. */
  5244. static void s2io_ethtool_test(struct net_device *dev,
  5245. struct ethtool_test *ethtest,
  5246. uint64_t * data)
  5247. {
  5248. struct s2io_nic *sp = dev->priv;
  5249. int orig_state = netif_running(sp->dev);
  5250. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5251. /* Offline Tests. */
  5252. if (orig_state)
  5253. s2io_close(sp->dev);
  5254. if (s2io_register_test(sp, &data[0]))
  5255. ethtest->flags |= ETH_TEST_FL_FAILED;
  5256. s2io_reset(sp);
  5257. if (s2io_rldram_test(sp, &data[3]))
  5258. ethtest->flags |= ETH_TEST_FL_FAILED;
  5259. s2io_reset(sp);
  5260. if (s2io_eeprom_test(sp, &data[1]))
  5261. ethtest->flags |= ETH_TEST_FL_FAILED;
  5262. if (s2io_bist_test(sp, &data[4]))
  5263. ethtest->flags |= ETH_TEST_FL_FAILED;
  5264. if (orig_state)
  5265. s2io_open(sp->dev);
  5266. data[2] = 0;
  5267. } else {
  5268. /* Online Tests. */
  5269. if (!orig_state) {
  5270. DBG_PRINT(ERR_DBG,
  5271. "%s: is not up, cannot run test\n",
  5272. dev->name);
  5273. data[0] = -1;
  5274. data[1] = -1;
  5275. data[2] = -1;
  5276. data[3] = -1;
  5277. data[4] = -1;
  5278. }
  5279. if (s2io_link_test(sp, &data[2]))
  5280. ethtest->flags |= ETH_TEST_FL_FAILED;
  5281. data[0] = 0;
  5282. data[1] = 0;
  5283. data[3] = 0;
  5284. data[4] = 0;
  5285. }
  5286. }
  5287. static void s2io_get_ethtool_stats(struct net_device *dev,
  5288. struct ethtool_stats *estats,
  5289. u64 * tmp_stats)
  5290. {
  5291. int i = 0, k;
  5292. struct s2io_nic *sp = dev->priv;
  5293. struct stat_block *stat_info = sp->mac_control.stats_info;
  5294. s2io_updt_stats(sp);
  5295. tmp_stats[i++] =
  5296. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5297. le32_to_cpu(stat_info->tmac_frms);
  5298. tmp_stats[i++] =
  5299. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5300. le32_to_cpu(stat_info->tmac_data_octets);
  5301. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5302. tmp_stats[i++] =
  5303. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5304. le32_to_cpu(stat_info->tmac_mcst_frms);
  5305. tmp_stats[i++] =
  5306. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5307. le32_to_cpu(stat_info->tmac_bcst_frms);
  5308. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5309. tmp_stats[i++] =
  5310. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5311. le32_to_cpu(stat_info->tmac_ttl_octets);
  5312. tmp_stats[i++] =
  5313. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5314. le32_to_cpu(stat_info->tmac_ucst_frms);
  5315. tmp_stats[i++] =
  5316. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5317. le32_to_cpu(stat_info->tmac_nucst_frms);
  5318. tmp_stats[i++] =
  5319. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5320. le32_to_cpu(stat_info->tmac_any_err_frms);
  5321. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5322. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5323. tmp_stats[i++] =
  5324. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5325. le32_to_cpu(stat_info->tmac_vld_ip);
  5326. tmp_stats[i++] =
  5327. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5328. le32_to_cpu(stat_info->tmac_drop_ip);
  5329. tmp_stats[i++] =
  5330. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5331. le32_to_cpu(stat_info->tmac_icmp);
  5332. tmp_stats[i++] =
  5333. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5334. le32_to_cpu(stat_info->tmac_rst_tcp);
  5335. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5336. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5337. le32_to_cpu(stat_info->tmac_udp);
  5338. tmp_stats[i++] =
  5339. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5340. le32_to_cpu(stat_info->rmac_vld_frms);
  5341. tmp_stats[i++] =
  5342. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5343. le32_to_cpu(stat_info->rmac_data_octets);
  5344. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5345. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5346. tmp_stats[i++] =
  5347. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5348. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5349. tmp_stats[i++] =
  5350. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5351. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5352. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5353. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5354. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5355. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5356. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5357. tmp_stats[i++] =
  5358. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5359. le32_to_cpu(stat_info->rmac_ttl_octets);
  5360. tmp_stats[i++] =
  5361. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5362. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5363. tmp_stats[i++] =
  5364. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5365. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5366. tmp_stats[i++] =
  5367. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5368. le32_to_cpu(stat_info->rmac_discarded_frms);
  5369. tmp_stats[i++] =
  5370. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5371. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5372. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5373. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5374. tmp_stats[i++] =
  5375. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5376. le32_to_cpu(stat_info->rmac_usized_frms);
  5377. tmp_stats[i++] =
  5378. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5379. le32_to_cpu(stat_info->rmac_osized_frms);
  5380. tmp_stats[i++] =
  5381. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5382. le32_to_cpu(stat_info->rmac_frag_frms);
  5383. tmp_stats[i++] =
  5384. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5385. le32_to_cpu(stat_info->rmac_jabber_frms);
  5386. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5387. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5388. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5389. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5390. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5391. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5392. tmp_stats[i++] =
  5393. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5394. le32_to_cpu(stat_info->rmac_ip);
  5395. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5396. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5397. tmp_stats[i++] =
  5398. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5399. le32_to_cpu(stat_info->rmac_drop_ip);
  5400. tmp_stats[i++] =
  5401. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5402. le32_to_cpu(stat_info->rmac_icmp);
  5403. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5404. tmp_stats[i++] =
  5405. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5406. le32_to_cpu(stat_info->rmac_udp);
  5407. tmp_stats[i++] =
  5408. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5409. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5410. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5411. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5412. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5413. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5414. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5415. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5416. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5417. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5418. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5419. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5420. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5421. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5422. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5423. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5424. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5425. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5426. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5427. tmp_stats[i++] =
  5428. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5429. le32_to_cpu(stat_info->rmac_pause_cnt);
  5430. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5431. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5432. tmp_stats[i++] =
  5433. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5434. le32_to_cpu(stat_info->rmac_accepted_ip);
  5435. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5436. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5437. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5438. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5439. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5440. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5441. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5442. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5443. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5444. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5445. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5446. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5447. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5448. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5449. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5450. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5451. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5452. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5453. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5454. /* Enhanced statistics exist only for Hercules */
  5455. if(sp->device_type == XFRAME_II_DEVICE) {
  5456. tmp_stats[i++] =
  5457. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5458. tmp_stats[i++] =
  5459. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5460. tmp_stats[i++] =
  5461. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5462. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5463. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5464. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5465. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5466. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5467. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5468. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5469. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5470. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5471. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5472. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5473. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5474. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5475. }
  5476. tmp_stats[i++] = 0;
  5477. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5478. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5479. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5480. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5481. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5482. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5483. for (k = 0; k < MAX_RX_RINGS; k++)
  5484. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5485. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5486. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5487. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5488. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5489. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5490. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5491. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5492. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5493. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5494. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5495. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5496. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5497. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5498. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5499. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5500. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5501. if (stat_info->sw_stat.num_aggregations) {
  5502. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5503. int count = 0;
  5504. /*
  5505. * Since 64-bit divide does not work on all platforms,
  5506. * do repeated subtraction.
  5507. */
  5508. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5509. tmp -= stat_info->sw_stat.num_aggregations;
  5510. count++;
  5511. }
  5512. tmp_stats[i++] = count;
  5513. }
  5514. else
  5515. tmp_stats[i++] = 0;
  5516. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5517. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5518. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5519. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5520. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5521. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5522. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5523. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5524. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5525. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5526. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5527. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5528. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5529. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5530. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5531. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5532. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5533. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5534. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5535. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5536. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5537. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5538. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5539. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5540. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5541. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5542. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5543. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5544. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5545. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5546. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5547. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5548. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5549. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5550. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5551. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5552. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5553. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5554. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5555. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5556. }
  5557. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5558. {
  5559. return (XENA_REG_SPACE);
  5560. }
  5561. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5562. {
  5563. struct s2io_nic *sp = dev->priv;
  5564. return (sp->rx_csum);
  5565. }
  5566. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5567. {
  5568. struct s2io_nic *sp = dev->priv;
  5569. if (data)
  5570. sp->rx_csum = 1;
  5571. else
  5572. sp->rx_csum = 0;
  5573. return 0;
  5574. }
  5575. static int s2io_get_eeprom_len(struct net_device *dev)
  5576. {
  5577. return (XENA_EEPROM_SPACE);
  5578. }
  5579. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5580. {
  5581. struct s2io_nic *sp = dev->priv;
  5582. switch (sset) {
  5583. case ETH_SS_TEST:
  5584. return S2IO_TEST_LEN;
  5585. case ETH_SS_STATS:
  5586. switch(sp->device_type) {
  5587. case XFRAME_I_DEVICE:
  5588. return XFRAME_I_STAT_LEN;
  5589. case XFRAME_II_DEVICE:
  5590. return XFRAME_II_STAT_LEN;
  5591. default:
  5592. return 0;
  5593. }
  5594. default:
  5595. return -EOPNOTSUPP;
  5596. }
  5597. }
  5598. static void s2io_ethtool_get_strings(struct net_device *dev,
  5599. u32 stringset, u8 * data)
  5600. {
  5601. int stat_size = 0;
  5602. struct s2io_nic *sp = dev->priv;
  5603. switch (stringset) {
  5604. case ETH_SS_TEST:
  5605. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5606. break;
  5607. case ETH_SS_STATS:
  5608. stat_size = sizeof(ethtool_xena_stats_keys);
  5609. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5610. if(sp->device_type == XFRAME_II_DEVICE) {
  5611. memcpy(data + stat_size,
  5612. &ethtool_enhanced_stats_keys,
  5613. sizeof(ethtool_enhanced_stats_keys));
  5614. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5615. }
  5616. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5617. sizeof(ethtool_driver_stats_keys));
  5618. }
  5619. }
  5620. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5621. {
  5622. if (data)
  5623. dev->features |= NETIF_F_IP_CSUM;
  5624. else
  5625. dev->features &= ~NETIF_F_IP_CSUM;
  5626. return 0;
  5627. }
  5628. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5629. {
  5630. return (dev->features & NETIF_F_TSO) != 0;
  5631. }
  5632. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5633. {
  5634. if (data)
  5635. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5636. else
  5637. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5638. return 0;
  5639. }
  5640. static const struct ethtool_ops netdev_ethtool_ops = {
  5641. .get_settings = s2io_ethtool_gset,
  5642. .set_settings = s2io_ethtool_sset,
  5643. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5644. .get_regs_len = s2io_ethtool_get_regs_len,
  5645. .get_regs = s2io_ethtool_gregs,
  5646. .get_link = ethtool_op_get_link,
  5647. .get_eeprom_len = s2io_get_eeprom_len,
  5648. .get_eeprom = s2io_ethtool_geeprom,
  5649. .set_eeprom = s2io_ethtool_seeprom,
  5650. .get_ringparam = s2io_ethtool_gringparam,
  5651. .get_pauseparam = s2io_ethtool_getpause_data,
  5652. .set_pauseparam = s2io_ethtool_setpause_data,
  5653. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5654. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5655. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5656. .set_sg = ethtool_op_set_sg,
  5657. .get_tso = s2io_ethtool_op_get_tso,
  5658. .set_tso = s2io_ethtool_op_set_tso,
  5659. .set_ufo = ethtool_op_set_ufo,
  5660. .self_test = s2io_ethtool_test,
  5661. .get_strings = s2io_ethtool_get_strings,
  5662. .phys_id = s2io_ethtool_idnic,
  5663. .get_ethtool_stats = s2io_get_ethtool_stats,
  5664. .get_sset_count = s2io_get_sset_count,
  5665. };
  5666. /**
  5667. * s2io_ioctl - Entry point for the Ioctl
  5668. * @dev : Device pointer.
  5669. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5670. * a proprietary structure used to pass information to the driver.
  5671. * @cmd : This is used to distinguish between the different commands that
  5672. * can be passed to the IOCTL functions.
  5673. * Description:
  5674. * Currently there are no special functionality supported in IOCTL, hence
  5675. * function always return EOPNOTSUPPORTED
  5676. */
  5677. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5678. {
  5679. return -EOPNOTSUPP;
  5680. }
  5681. /**
  5682. * s2io_change_mtu - entry point to change MTU size for the device.
  5683. * @dev : device pointer.
  5684. * @new_mtu : the new MTU size for the device.
  5685. * Description: A driver entry point to change MTU size for the device.
  5686. * Before changing the MTU the device must be stopped.
  5687. * Return value:
  5688. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5689. * file on failure.
  5690. */
  5691. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5692. {
  5693. struct s2io_nic *sp = dev->priv;
  5694. int ret = 0;
  5695. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5696. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5697. dev->name);
  5698. return -EPERM;
  5699. }
  5700. dev->mtu = new_mtu;
  5701. if (netif_running(dev)) {
  5702. s2io_card_down(sp);
  5703. netif_stop_queue(dev);
  5704. ret = s2io_card_up(sp);
  5705. if (ret) {
  5706. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5707. __FUNCTION__);
  5708. return ret;
  5709. }
  5710. if (netif_queue_stopped(dev))
  5711. netif_wake_queue(dev);
  5712. } else { /* Device is down */
  5713. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5714. u64 val64 = new_mtu;
  5715. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5716. }
  5717. return ret;
  5718. }
  5719. /**
  5720. * s2io_tasklet - Bottom half of the ISR.
  5721. * @dev_adr : address of the device structure in dma_addr_t format.
  5722. * Description:
  5723. * This is the tasklet or the bottom half of the ISR. This is
  5724. * an extension of the ISR which is scheduled by the scheduler to be run
  5725. * when the load on the CPU is low. All low priority tasks of the ISR can
  5726. * be pushed into the tasklet. For now the tasklet is used only to
  5727. * replenish the Rx buffers in the Rx buffer descriptors.
  5728. * Return value:
  5729. * void.
  5730. */
  5731. static void s2io_tasklet(unsigned long dev_addr)
  5732. {
  5733. struct net_device *dev = (struct net_device *) dev_addr;
  5734. struct s2io_nic *sp = dev->priv;
  5735. int i, ret;
  5736. struct mac_info *mac_control;
  5737. struct config_param *config;
  5738. mac_control = &sp->mac_control;
  5739. config = &sp->config;
  5740. if (!TASKLET_IN_USE) {
  5741. for (i = 0; i < config->rx_ring_num; i++) {
  5742. ret = fill_rx_buffers(sp, i);
  5743. if (ret == -ENOMEM) {
  5744. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5745. dev->name);
  5746. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5747. break;
  5748. } else if (ret == -EFILL) {
  5749. DBG_PRINT(INFO_DBG,
  5750. "%s: Rx Ring %d is full\n",
  5751. dev->name, i);
  5752. break;
  5753. }
  5754. }
  5755. clear_bit(0, (&sp->tasklet_status));
  5756. }
  5757. }
  5758. /**
  5759. * s2io_set_link - Set the LInk status
  5760. * @data: long pointer to device private structue
  5761. * Description: Sets the link status for the adapter
  5762. */
  5763. static void s2io_set_link(struct work_struct *work)
  5764. {
  5765. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5766. struct net_device *dev = nic->dev;
  5767. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5768. register u64 val64;
  5769. u16 subid;
  5770. rtnl_lock();
  5771. if (!netif_running(dev))
  5772. goto out_unlock;
  5773. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5774. /* The card is being reset, no point doing anything */
  5775. goto out_unlock;
  5776. }
  5777. subid = nic->pdev->subsystem_device;
  5778. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5779. /*
  5780. * Allow a small delay for the NICs self initiated
  5781. * cleanup to complete.
  5782. */
  5783. msleep(100);
  5784. }
  5785. val64 = readq(&bar0->adapter_status);
  5786. if (LINK_IS_UP(val64)) {
  5787. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5788. if (verify_xena_quiescence(nic)) {
  5789. val64 = readq(&bar0->adapter_control);
  5790. val64 |= ADAPTER_CNTL_EN;
  5791. writeq(val64, &bar0->adapter_control);
  5792. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5793. nic->device_type, subid)) {
  5794. val64 = readq(&bar0->gpio_control);
  5795. val64 |= GPIO_CTRL_GPIO_0;
  5796. writeq(val64, &bar0->gpio_control);
  5797. val64 = readq(&bar0->gpio_control);
  5798. } else {
  5799. val64 |= ADAPTER_LED_ON;
  5800. writeq(val64, &bar0->adapter_control);
  5801. }
  5802. nic->device_enabled_once = TRUE;
  5803. } else {
  5804. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5805. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5806. netif_stop_queue(dev);
  5807. }
  5808. }
  5809. val64 = readq(&bar0->adapter_control);
  5810. val64 |= ADAPTER_LED_ON;
  5811. writeq(val64, &bar0->adapter_control);
  5812. s2io_link(nic, LINK_UP);
  5813. } else {
  5814. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5815. subid)) {
  5816. val64 = readq(&bar0->gpio_control);
  5817. val64 &= ~GPIO_CTRL_GPIO_0;
  5818. writeq(val64, &bar0->gpio_control);
  5819. val64 = readq(&bar0->gpio_control);
  5820. }
  5821. /* turn off LED */
  5822. val64 = readq(&bar0->adapter_control);
  5823. val64 = val64 &(~ADAPTER_LED_ON);
  5824. writeq(val64, &bar0->adapter_control);
  5825. s2io_link(nic, LINK_DOWN);
  5826. }
  5827. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5828. out_unlock:
  5829. rtnl_unlock();
  5830. }
  5831. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5832. struct buffAdd *ba,
  5833. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5834. u64 *temp2, int size)
  5835. {
  5836. struct net_device *dev = sp->dev;
  5837. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5838. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5839. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5840. /* allocate skb */
  5841. if (*skb) {
  5842. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5843. /*
  5844. * As Rx frame are not going to be processed,
  5845. * using same mapped address for the Rxd
  5846. * buffer pointer
  5847. */
  5848. rxdp1->Buffer0_ptr = *temp0;
  5849. } else {
  5850. *skb = dev_alloc_skb(size);
  5851. if (!(*skb)) {
  5852. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5853. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5854. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5855. sp->mac_control.stats_info->sw_stat. \
  5856. mem_alloc_fail_cnt++;
  5857. return -ENOMEM ;
  5858. }
  5859. sp->mac_control.stats_info->sw_stat.mem_allocated
  5860. += (*skb)->truesize;
  5861. /* storing the mapped addr in a temp variable
  5862. * such it will be used for next rxd whose
  5863. * Host Control is NULL
  5864. */
  5865. rxdp1->Buffer0_ptr = *temp0 =
  5866. pci_map_single( sp->pdev, (*skb)->data,
  5867. size - NET_IP_ALIGN,
  5868. PCI_DMA_FROMDEVICE);
  5869. if( (rxdp1->Buffer0_ptr == 0) ||
  5870. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5871. goto memalloc_failed;
  5872. }
  5873. rxdp->Host_Control = (unsigned long) (*skb);
  5874. }
  5875. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5876. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5877. /* Two buffer Mode */
  5878. if (*skb) {
  5879. rxdp3->Buffer2_ptr = *temp2;
  5880. rxdp3->Buffer0_ptr = *temp0;
  5881. rxdp3->Buffer1_ptr = *temp1;
  5882. } else {
  5883. *skb = dev_alloc_skb(size);
  5884. if (!(*skb)) {
  5885. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5886. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5887. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5888. sp->mac_control.stats_info->sw_stat. \
  5889. mem_alloc_fail_cnt++;
  5890. return -ENOMEM;
  5891. }
  5892. sp->mac_control.stats_info->sw_stat.mem_allocated
  5893. += (*skb)->truesize;
  5894. rxdp3->Buffer2_ptr = *temp2 =
  5895. pci_map_single(sp->pdev, (*skb)->data,
  5896. dev->mtu + 4,
  5897. PCI_DMA_FROMDEVICE);
  5898. if( (rxdp3->Buffer2_ptr == 0) ||
  5899. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5900. goto memalloc_failed;
  5901. }
  5902. rxdp3->Buffer0_ptr = *temp0 =
  5903. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5904. PCI_DMA_FROMDEVICE);
  5905. if( (rxdp3->Buffer0_ptr == 0) ||
  5906. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5907. pci_unmap_single (sp->pdev,
  5908. (dma_addr_t)rxdp3->Buffer2_ptr,
  5909. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5910. goto memalloc_failed;
  5911. }
  5912. rxdp->Host_Control = (unsigned long) (*skb);
  5913. /* Buffer-1 will be dummy buffer not used */
  5914. rxdp3->Buffer1_ptr = *temp1 =
  5915. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5916. PCI_DMA_FROMDEVICE);
  5917. if( (rxdp3->Buffer1_ptr == 0) ||
  5918. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5919. pci_unmap_single (sp->pdev,
  5920. (dma_addr_t)rxdp3->Buffer0_ptr,
  5921. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5922. pci_unmap_single (sp->pdev,
  5923. (dma_addr_t)rxdp3->Buffer2_ptr,
  5924. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5925. goto memalloc_failed;
  5926. }
  5927. }
  5928. }
  5929. return 0;
  5930. memalloc_failed:
  5931. stats->pci_map_fail_cnt++;
  5932. stats->mem_freed += (*skb)->truesize;
  5933. dev_kfree_skb(*skb);
  5934. return -ENOMEM;
  5935. }
  5936. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5937. int size)
  5938. {
  5939. struct net_device *dev = sp->dev;
  5940. if (sp->rxd_mode == RXD_MODE_1) {
  5941. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5942. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5943. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5944. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5945. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5946. }
  5947. }
  5948. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5949. {
  5950. int i, j, k, blk_cnt = 0, size;
  5951. struct mac_info * mac_control = &sp->mac_control;
  5952. struct config_param *config = &sp->config;
  5953. struct net_device *dev = sp->dev;
  5954. struct RxD_t *rxdp = NULL;
  5955. struct sk_buff *skb = NULL;
  5956. struct buffAdd *ba = NULL;
  5957. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5958. /* Calculate the size based on ring mode */
  5959. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5960. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5961. if (sp->rxd_mode == RXD_MODE_1)
  5962. size += NET_IP_ALIGN;
  5963. else if (sp->rxd_mode == RXD_MODE_3B)
  5964. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5965. for (i = 0; i < config->rx_ring_num; i++) {
  5966. blk_cnt = config->rx_cfg[i].num_rxd /
  5967. (rxd_count[sp->rxd_mode] +1);
  5968. for (j = 0; j < blk_cnt; j++) {
  5969. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5970. rxdp = mac_control->rings[i].
  5971. rx_blocks[j].rxds[k].virt_addr;
  5972. if(sp->rxd_mode == RXD_MODE_3B)
  5973. ba = &mac_control->rings[i].ba[j][k];
  5974. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5975. &skb,(u64 *)&temp0_64,
  5976. (u64 *)&temp1_64,
  5977. (u64 *)&temp2_64,
  5978. size) == ENOMEM) {
  5979. return 0;
  5980. }
  5981. set_rxd_buffer_size(sp, rxdp, size);
  5982. wmb();
  5983. /* flip the Ownership bit to Hardware */
  5984. rxdp->Control_1 |= RXD_OWN_XENA;
  5985. }
  5986. }
  5987. }
  5988. return 0;
  5989. }
  5990. static int s2io_add_isr(struct s2io_nic * sp)
  5991. {
  5992. int ret = 0;
  5993. struct net_device *dev = sp->dev;
  5994. int err = 0;
  5995. if (sp->config.intr_type == MSI_X)
  5996. ret = s2io_enable_msi_x(sp);
  5997. if (ret) {
  5998. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5999. sp->config.intr_type = INTA;
  6000. }
  6001. /* Store the values of the MSIX table in the struct s2io_nic structure */
  6002. store_xmsi_data(sp);
  6003. /* After proper initialization of H/W, register ISR */
  6004. if (sp->config.intr_type == MSI_X) {
  6005. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  6006. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6007. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6008. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6009. dev->name, i);
  6010. err = request_irq(sp->entries[i].vector,
  6011. s2io_msix_fifo_handle, 0, sp->desc[i],
  6012. sp->s2io_entries[i].arg);
  6013. /* If either data or addr is zero print it */
  6014. if(!(sp->msix_info[i].addr &&
  6015. sp->msix_info[i].data)) {
  6016. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6017. "Data:0x%lx\n",sp->desc[i],
  6018. (unsigned long long)
  6019. sp->msix_info[i].addr,
  6020. (unsigned long)
  6021. ntohl(sp->msix_info[i].data));
  6022. } else {
  6023. msix_tx_cnt++;
  6024. }
  6025. } else {
  6026. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6027. dev->name, i);
  6028. err = request_irq(sp->entries[i].vector,
  6029. s2io_msix_ring_handle, 0, sp->desc[i],
  6030. sp->s2io_entries[i].arg);
  6031. /* If either data or addr is zero print it */
  6032. if(!(sp->msix_info[i].addr &&
  6033. sp->msix_info[i].data)) {
  6034. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6035. "Data:0x%lx\n",sp->desc[i],
  6036. (unsigned long long)
  6037. sp->msix_info[i].addr,
  6038. (unsigned long)
  6039. ntohl(sp->msix_info[i].data));
  6040. } else {
  6041. msix_rx_cnt++;
  6042. }
  6043. }
  6044. if (err) {
  6045. remove_msix_isr(sp);
  6046. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6047. "failed\n", dev->name, i);
  6048. DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
  6049. dev->name);
  6050. sp->config.intr_type = INTA;
  6051. break;
  6052. }
  6053. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6054. }
  6055. if (!err) {
  6056. printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
  6057. msix_tx_cnt);
  6058. printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
  6059. msix_rx_cnt);
  6060. }
  6061. }
  6062. if (sp->config.intr_type == INTA) {
  6063. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6064. sp->name, dev);
  6065. if (err) {
  6066. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6067. dev->name);
  6068. return -1;
  6069. }
  6070. }
  6071. return 0;
  6072. }
  6073. static void s2io_rem_isr(struct s2io_nic * sp)
  6074. {
  6075. if (sp->config.intr_type == MSI_X)
  6076. remove_msix_isr(sp);
  6077. else
  6078. remove_inta_isr(sp);
  6079. }
  6080. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6081. {
  6082. int cnt = 0;
  6083. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6084. unsigned long flags;
  6085. register u64 val64 = 0;
  6086. if (!is_s2io_card_up(sp))
  6087. return;
  6088. del_timer_sync(&sp->alarm_timer);
  6089. /* If s2io_set_link task is executing, wait till it completes. */
  6090. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6091. msleep(50);
  6092. }
  6093. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6094. /* disable Tx and Rx traffic on the NIC */
  6095. if (do_io)
  6096. stop_nic(sp);
  6097. s2io_rem_isr(sp);
  6098. /* Kill tasklet. */
  6099. tasklet_kill(&sp->task);
  6100. /* Check if the device is Quiescent and then Reset the NIC */
  6101. while(do_io) {
  6102. /* As per the HW requirement we need to replenish the
  6103. * receive buffer to avoid the ring bump. Since there is
  6104. * no intention of processing the Rx frame at this pointwe are
  6105. * just settting the ownership bit of rxd in Each Rx
  6106. * ring to HW and set the appropriate buffer size
  6107. * based on the ring mode
  6108. */
  6109. rxd_owner_bit_reset(sp);
  6110. val64 = readq(&bar0->adapter_status);
  6111. if (verify_xena_quiescence(sp)) {
  6112. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6113. break;
  6114. }
  6115. msleep(50);
  6116. cnt++;
  6117. if (cnt == 10) {
  6118. DBG_PRINT(ERR_DBG,
  6119. "s2io_close:Device not Quiescent ");
  6120. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6121. (unsigned long long) val64);
  6122. break;
  6123. }
  6124. }
  6125. if (do_io)
  6126. s2io_reset(sp);
  6127. spin_lock_irqsave(&sp->tx_lock, flags);
  6128. /* Free all Tx buffers */
  6129. free_tx_buffers(sp);
  6130. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6131. /* Free all Rx buffers */
  6132. spin_lock_irqsave(&sp->rx_lock, flags);
  6133. free_rx_buffers(sp);
  6134. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6135. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6136. }
  6137. static void s2io_card_down(struct s2io_nic * sp)
  6138. {
  6139. do_s2io_card_down(sp, 1);
  6140. }
  6141. static int s2io_card_up(struct s2io_nic * sp)
  6142. {
  6143. int i, ret = 0;
  6144. struct mac_info *mac_control;
  6145. struct config_param *config;
  6146. struct net_device *dev = (struct net_device *) sp->dev;
  6147. u16 interruptible;
  6148. /* Initialize the H/W I/O registers */
  6149. ret = init_nic(sp);
  6150. if (ret != 0) {
  6151. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6152. dev->name);
  6153. if (ret != -EIO)
  6154. s2io_reset(sp);
  6155. return ret;
  6156. }
  6157. /*
  6158. * Initializing the Rx buffers. For now we are considering only 1
  6159. * Rx ring and initializing buffers into 30 Rx blocks
  6160. */
  6161. mac_control = &sp->mac_control;
  6162. config = &sp->config;
  6163. for (i = 0; i < config->rx_ring_num; i++) {
  6164. if ((ret = fill_rx_buffers(sp, i))) {
  6165. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6166. dev->name);
  6167. s2io_reset(sp);
  6168. free_rx_buffers(sp);
  6169. return -ENOMEM;
  6170. }
  6171. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6172. atomic_read(&sp->rx_bufs_left[i]));
  6173. }
  6174. /* Maintain the state prior to the open */
  6175. if (sp->promisc_flg)
  6176. sp->promisc_flg = 0;
  6177. if (sp->m_cast_flg) {
  6178. sp->m_cast_flg = 0;
  6179. sp->all_multi_pos= 0;
  6180. }
  6181. /* Setting its receive mode */
  6182. s2io_set_multicast(dev);
  6183. if (sp->lro) {
  6184. /* Initialize max aggregatable pkts per session based on MTU */
  6185. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6186. /* Check if we can use(if specified) user provided value */
  6187. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6188. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6189. }
  6190. /* Enable Rx Traffic and interrupts on the NIC */
  6191. if (start_nic(sp)) {
  6192. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6193. s2io_reset(sp);
  6194. free_rx_buffers(sp);
  6195. return -ENODEV;
  6196. }
  6197. /* Add interrupt service routine */
  6198. if (s2io_add_isr(sp) != 0) {
  6199. if (sp->config.intr_type == MSI_X)
  6200. s2io_rem_isr(sp);
  6201. s2io_reset(sp);
  6202. free_rx_buffers(sp);
  6203. return -ENODEV;
  6204. }
  6205. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6206. /* Enable tasklet for the device */
  6207. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6208. /* Enable select interrupts */
  6209. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6210. if (sp->config.intr_type != INTA)
  6211. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6212. else {
  6213. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6214. interruptible |= TX_PIC_INTR;
  6215. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6216. }
  6217. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6218. return 0;
  6219. }
  6220. /**
  6221. * s2io_restart_nic - Resets the NIC.
  6222. * @data : long pointer to the device private structure
  6223. * Description:
  6224. * This function is scheduled to be run by the s2io_tx_watchdog
  6225. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6226. * the run time of the watch dog routine which is run holding a
  6227. * spin lock.
  6228. */
  6229. static void s2io_restart_nic(struct work_struct *work)
  6230. {
  6231. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6232. struct net_device *dev = sp->dev;
  6233. rtnl_lock();
  6234. if (!netif_running(dev))
  6235. goto out_unlock;
  6236. s2io_card_down(sp);
  6237. if (s2io_card_up(sp)) {
  6238. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6239. dev->name);
  6240. }
  6241. netif_wake_queue(dev);
  6242. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6243. dev->name);
  6244. out_unlock:
  6245. rtnl_unlock();
  6246. }
  6247. /**
  6248. * s2io_tx_watchdog - Watchdog for transmit side.
  6249. * @dev : Pointer to net device structure
  6250. * Description:
  6251. * This function is triggered if the Tx Queue is stopped
  6252. * for a pre-defined amount of time when the Interface is still up.
  6253. * If the Interface is jammed in such a situation, the hardware is
  6254. * reset (by s2io_close) and restarted again (by s2io_open) to
  6255. * overcome any problem that might have been caused in the hardware.
  6256. * Return value:
  6257. * void
  6258. */
  6259. static void s2io_tx_watchdog(struct net_device *dev)
  6260. {
  6261. struct s2io_nic *sp = dev->priv;
  6262. if (netif_carrier_ok(dev)) {
  6263. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6264. schedule_work(&sp->rst_timer_task);
  6265. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6266. }
  6267. }
  6268. /**
  6269. * rx_osm_handler - To perform some OS related operations on SKB.
  6270. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6271. * @skb : the socket buffer pointer.
  6272. * @len : length of the packet
  6273. * @cksum : FCS checksum of the frame.
  6274. * @ring_no : the ring from which this RxD was extracted.
  6275. * Description:
  6276. * This function is called by the Rx interrupt serivce routine to perform
  6277. * some OS related operations on the SKB before passing it to the upper
  6278. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6279. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6280. * to the upper layer. If the checksum is wrong, it increments the Rx
  6281. * packet error count, frees the SKB and returns error.
  6282. * Return value:
  6283. * SUCCESS on success and -1 on failure.
  6284. */
  6285. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6286. {
  6287. struct s2io_nic *sp = ring_data->nic;
  6288. struct net_device *dev = (struct net_device *) sp->dev;
  6289. struct sk_buff *skb = (struct sk_buff *)
  6290. ((unsigned long) rxdp->Host_Control);
  6291. int ring_no = ring_data->ring_no;
  6292. u16 l3_csum, l4_csum;
  6293. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6294. struct lro *lro;
  6295. u8 err_mask;
  6296. skb->dev = dev;
  6297. if (err) {
  6298. /* Check for parity error */
  6299. if (err & 0x1) {
  6300. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6301. }
  6302. err_mask = err >> 48;
  6303. switch(err_mask) {
  6304. case 1:
  6305. sp->mac_control.stats_info->sw_stat.
  6306. rx_parity_err_cnt++;
  6307. break;
  6308. case 2:
  6309. sp->mac_control.stats_info->sw_stat.
  6310. rx_abort_cnt++;
  6311. break;
  6312. case 3:
  6313. sp->mac_control.stats_info->sw_stat.
  6314. rx_parity_abort_cnt++;
  6315. break;
  6316. case 4:
  6317. sp->mac_control.stats_info->sw_stat.
  6318. rx_rda_fail_cnt++;
  6319. break;
  6320. case 5:
  6321. sp->mac_control.stats_info->sw_stat.
  6322. rx_unkn_prot_cnt++;
  6323. break;
  6324. case 6:
  6325. sp->mac_control.stats_info->sw_stat.
  6326. rx_fcs_err_cnt++;
  6327. break;
  6328. case 7:
  6329. sp->mac_control.stats_info->sw_stat.
  6330. rx_buf_size_err_cnt++;
  6331. break;
  6332. case 8:
  6333. sp->mac_control.stats_info->sw_stat.
  6334. rx_rxd_corrupt_cnt++;
  6335. break;
  6336. case 15:
  6337. sp->mac_control.stats_info->sw_stat.
  6338. rx_unkn_err_cnt++;
  6339. break;
  6340. }
  6341. /*
  6342. * Drop the packet if bad transfer code. Exception being
  6343. * 0x5, which could be due to unsupported IPv6 extension header.
  6344. * In this case, we let stack handle the packet.
  6345. * Note that in this case, since checksum will be incorrect,
  6346. * stack will validate the same.
  6347. */
  6348. if (err_mask != 0x5) {
  6349. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6350. dev->name, err_mask);
  6351. sp->stats.rx_crc_errors++;
  6352. sp->mac_control.stats_info->sw_stat.mem_freed
  6353. += skb->truesize;
  6354. dev_kfree_skb(skb);
  6355. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6356. rxdp->Host_Control = 0;
  6357. return 0;
  6358. }
  6359. }
  6360. /* Updating statistics */
  6361. sp->stats.rx_packets++;
  6362. rxdp->Host_Control = 0;
  6363. if (sp->rxd_mode == RXD_MODE_1) {
  6364. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6365. sp->stats.rx_bytes += len;
  6366. skb_put(skb, len);
  6367. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6368. int get_block = ring_data->rx_curr_get_info.block_index;
  6369. int get_off = ring_data->rx_curr_get_info.offset;
  6370. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6371. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6372. unsigned char *buff = skb_push(skb, buf0_len);
  6373. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6374. sp->stats.rx_bytes += buf0_len + buf2_len;
  6375. memcpy(buff, ba->ba_0, buf0_len);
  6376. skb_put(skb, buf2_len);
  6377. }
  6378. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6379. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6380. (sp->rx_csum)) {
  6381. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6382. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6383. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6384. /*
  6385. * NIC verifies if the Checksum of the received
  6386. * frame is Ok or not and accordingly returns
  6387. * a flag in the RxD.
  6388. */
  6389. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6390. if (sp->lro) {
  6391. u32 tcp_len;
  6392. u8 *tcp;
  6393. int ret = 0;
  6394. ret = s2io_club_tcp_session(skb->data, &tcp,
  6395. &tcp_len, &lro,
  6396. rxdp, sp);
  6397. switch (ret) {
  6398. case 3: /* Begin anew */
  6399. lro->parent = skb;
  6400. goto aggregate;
  6401. case 1: /* Aggregate */
  6402. {
  6403. lro_append_pkt(sp, lro,
  6404. skb, tcp_len);
  6405. goto aggregate;
  6406. }
  6407. case 4: /* Flush session */
  6408. {
  6409. lro_append_pkt(sp, lro,
  6410. skb, tcp_len);
  6411. queue_rx_frame(lro->parent);
  6412. clear_lro_session(lro);
  6413. sp->mac_control.stats_info->
  6414. sw_stat.flush_max_pkts++;
  6415. goto aggregate;
  6416. }
  6417. case 2: /* Flush both */
  6418. lro->parent->data_len =
  6419. lro->frags_len;
  6420. sp->mac_control.stats_info->
  6421. sw_stat.sending_both++;
  6422. queue_rx_frame(lro->parent);
  6423. clear_lro_session(lro);
  6424. goto send_up;
  6425. case 0: /* sessions exceeded */
  6426. case -1: /* non-TCP or not
  6427. * L2 aggregatable
  6428. */
  6429. case 5: /*
  6430. * First pkt in session not
  6431. * L3/L4 aggregatable
  6432. */
  6433. break;
  6434. default:
  6435. DBG_PRINT(ERR_DBG,
  6436. "%s: Samadhana!!\n",
  6437. __FUNCTION__);
  6438. BUG();
  6439. }
  6440. }
  6441. } else {
  6442. /*
  6443. * Packet with erroneous checksum, let the
  6444. * upper layers deal with it.
  6445. */
  6446. skb->ip_summed = CHECKSUM_NONE;
  6447. }
  6448. } else {
  6449. skb->ip_summed = CHECKSUM_NONE;
  6450. }
  6451. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6452. if (!sp->lro) {
  6453. skb->protocol = eth_type_trans(skb, dev);
  6454. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6455. vlan_strip_flag)) {
  6456. /* Queueing the vlan frame to the upper layer */
  6457. if (napi)
  6458. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6459. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6460. else
  6461. vlan_hwaccel_rx(skb, sp->vlgrp,
  6462. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6463. } else {
  6464. if (napi)
  6465. netif_receive_skb(skb);
  6466. else
  6467. netif_rx(skb);
  6468. }
  6469. } else {
  6470. send_up:
  6471. queue_rx_frame(skb);
  6472. }
  6473. dev->last_rx = jiffies;
  6474. aggregate:
  6475. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6476. return SUCCESS;
  6477. }
  6478. /**
  6479. * s2io_link - stops/starts the Tx queue.
  6480. * @sp : private member of the device structure, which is a pointer to the
  6481. * s2io_nic structure.
  6482. * @link : inidicates whether link is UP/DOWN.
  6483. * Description:
  6484. * This function stops/starts the Tx queue depending on whether the link
  6485. * status of the NIC is is down or up. This is called by the Alarm
  6486. * interrupt handler whenever a link change interrupt comes up.
  6487. * Return value:
  6488. * void.
  6489. */
  6490. static void s2io_link(struct s2io_nic * sp, int link)
  6491. {
  6492. struct net_device *dev = (struct net_device *) sp->dev;
  6493. if (link != sp->last_link_state) {
  6494. if (link == LINK_DOWN) {
  6495. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6496. netif_carrier_off(dev);
  6497. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6498. sp->mac_control.stats_info->sw_stat.link_up_time =
  6499. jiffies - sp->start_time;
  6500. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6501. } else {
  6502. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6503. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6504. sp->mac_control.stats_info->sw_stat.link_down_time =
  6505. jiffies - sp->start_time;
  6506. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6507. netif_carrier_on(dev);
  6508. }
  6509. }
  6510. sp->last_link_state = link;
  6511. sp->start_time = jiffies;
  6512. }
  6513. /**
  6514. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6515. * @sp : private member of the device structure, which is a pointer to the
  6516. * s2io_nic structure.
  6517. * Description:
  6518. * This function initializes a few of the PCI and PCI-X configuration registers
  6519. * with recommended values.
  6520. * Return value:
  6521. * void
  6522. */
  6523. static void s2io_init_pci(struct s2io_nic * sp)
  6524. {
  6525. u16 pci_cmd = 0, pcix_cmd = 0;
  6526. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6527. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6528. &(pcix_cmd));
  6529. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6530. (pcix_cmd | 1));
  6531. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6532. &(pcix_cmd));
  6533. /* Set the PErr Response bit in PCI command register. */
  6534. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6535. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6536. (pci_cmd | PCI_COMMAND_PARITY));
  6537. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6538. }
  6539. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6540. {
  6541. if ( tx_fifo_num > 8) {
  6542. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6543. "supported\n");
  6544. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6545. tx_fifo_num = 8;
  6546. }
  6547. if ( rx_ring_num > 8) {
  6548. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6549. "supported\n");
  6550. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6551. rx_ring_num = 8;
  6552. }
  6553. if (*dev_intr_type != INTA)
  6554. napi = 0;
  6555. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6556. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6557. "Defaulting to INTA\n");
  6558. *dev_intr_type = INTA;
  6559. }
  6560. if ((*dev_intr_type == MSI_X) &&
  6561. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6562. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6563. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6564. "Defaulting to INTA\n");
  6565. *dev_intr_type = INTA;
  6566. }
  6567. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6568. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6569. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6570. rx_ring_mode = 1;
  6571. }
  6572. return SUCCESS;
  6573. }
  6574. /**
  6575. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6576. * or Traffic class respectively.
  6577. * @nic: device peivate variable
  6578. * Description: The function configures the receive steering to
  6579. * desired receive ring.
  6580. * Return Value: SUCCESS on success and
  6581. * '-1' on failure (endian settings incorrect).
  6582. */
  6583. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6584. {
  6585. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6586. register u64 val64 = 0;
  6587. if (ds_codepoint > 63)
  6588. return FAILURE;
  6589. val64 = RTS_DS_MEM_DATA(ring);
  6590. writeq(val64, &bar0->rts_ds_mem_data);
  6591. val64 = RTS_DS_MEM_CTRL_WE |
  6592. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6593. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6594. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6595. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6596. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6597. S2IO_BIT_RESET);
  6598. }
  6599. /**
  6600. * s2io_init_nic - Initialization of the adapter .
  6601. * @pdev : structure containing the PCI related information of the device.
  6602. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6603. * Description:
  6604. * The function initializes an adapter identified by the pci_dec structure.
  6605. * All OS related initialization including memory and device structure and
  6606. * initlaization of the device private variable is done. Also the swapper
  6607. * control register is initialized to enable read and write into the I/O
  6608. * registers of the device.
  6609. * Return value:
  6610. * returns 0 on success and negative on failure.
  6611. */
  6612. static int __devinit
  6613. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6614. {
  6615. struct s2io_nic *sp;
  6616. struct net_device *dev;
  6617. int i, j, ret;
  6618. int dma_flag = FALSE;
  6619. u32 mac_up, mac_down;
  6620. u64 val64 = 0, tmp64 = 0;
  6621. struct XENA_dev_config __iomem *bar0 = NULL;
  6622. u16 subid;
  6623. struct mac_info *mac_control;
  6624. struct config_param *config;
  6625. int mode;
  6626. u8 dev_intr_type = intr_type;
  6627. DECLARE_MAC_BUF(mac);
  6628. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6629. return ret;
  6630. if ((ret = pci_enable_device(pdev))) {
  6631. DBG_PRINT(ERR_DBG,
  6632. "s2io_init_nic: pci_enable_device failed\n");
  6633. return ret;
  6634. }
  6635. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6636. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6637. dma_flag = TRUE;
  6638. if (pci_set_consistent_dma_mask
  6639. (pdev, DMA_64BIT_MASK)) {
  6640. DBG_PRINT(ERR_DBG,
  6641. "Unable to obtain 64bit DMA for \
  6642. consistent allocations\n");
  6643. pci_disable_device(pdev);
  6644. return -ENOMEM;
  6645. }
  6646. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6647. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6648. } else {
  6649. pci_disable_device(pdev);
  6650. return -ENOMEM;
  6651. }
  6652. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6653. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6654. pci_disable_device(pdev);
  6655. return -ENODEV;
  6656. }
  6657. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6658. if (dev == NULL) {
  6659. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6660. pci_disable_device(pdev);
  6661. pci_release_regions(pdev);
  6662. return -ENODEV;
  6663. }
  6664. pci_set_master(pdev);
  6665. pci_set_drvdata(pdev, dev);
  6666. SET_NETDEV_DEV(dev, &pdev->dev);
  6667. /* Private member variable initialized to s2io NIC structure */
  6668. sp = dev->priv;
  6669. memset(sp, 0, sizeof(struct s2io_nic));
  6670. sp->dev = dev;
  6671. sp->pdev = pdev;
  6672. sp->high_dma_flag = dma_flag;
  6673. sp->device_enabled_once = FALSE;
  6674. if (rx_ring_mode == 1)
  6675. sp->rxd_mode = RXD_MODE_1;
  6676. if (rx_ring_mode == 2)
  6677. sp->rxd_mode = RXD_MODE_3B;
  6678. sp->config.intr_type = dev_intr_type;
  6679. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6680. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6681. sp->device_type = XFRAME_II_DEVICE;
  6682. else
  6683. sp->device_type = XFRAME_I_DEVICE;
  6684. sp->lro = lro_enable;
  6685. /* Initialize some PCI/PCI-X fields of the NIC. */
  6686. s2io_init_pci(sp);
  6687. /*
  6688. * Setting the device configuration parameters.
  6689. * Most of these parameters can be specified by the user during
  6690. * module insertion as they are module loadable parameters. If
  6691. * these parameters are not not specified during load time, they
  6692. * are initialized with default values.
  6693. */
  6694. mac_control = &sp->mac_control;
  6695. config = &sp->config;
  6696. config->napi = napi;
  6697. /* Tx side parameters. */
  6698. config->tx_fifo_num = tx_fifo_num;
  6699. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6700. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6701. config->tx_cfg[i].fifo_priority = i;
  6702. }
  6703. /* mapping the QoS priority to the configured fifos */
  6704. for (i = 0; i < MAX_TX_FIFOS; i++)
  6705. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6706. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6707. for (i = 0; i < config->tx_fifo_num; i++) {
  6708. config->tx_cfg[i].f_no_snoop =
  6709. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6710. if (config->tx_cfg[i].fifo_len < 65) {
  6711. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6712. break;
  6713. }
  6714. }
  6715. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6716. config->max_txds = MAX_SKB_FRAGS + 2;
  6717. /* Rx side parameters. */
  6718. config->rx_ring_num = rx_ring_num;
  6719. for (i = 0; i < MAX_RX_RINGS; i++) {
  6720. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6721. (rxd_count[sp->rxd_mode] + 1);
  6722. config->rx_cfg[i].ring_priority = i;
  6723. }
  6724. for (i = 0; i < rx_ring_num; i++) {
  6725. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6726. config->rx_cfg[i].f_no_snoop =
  6727. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6728. }
  6729. /* Setting Mac Control parameters */
  6730. mac_control->rmac_pause_time = rmac_pause_time;
  6731. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6732. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6733. /* Initialize Ring buffer parameters. */
  6734. for (i = 0; i < config->rx_ring_num; i++)
  6735. atomic_set(&sp->rx_bufs_left[i], 0);
  6736. /* initialize the shared memory used by the NIC and the host */
  6737. if (init_shared_mem(sp)) {
  6738. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6739. dev->name);
  6740. ret = -ENOMEM;
  6741. goto mem_alloc_failed;
  6742. }
  6743. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6744. pci_resource_len(pdev, 0));
  6745. if (!sp->bar0) {
  6746. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6747. dev->name);
  6748. ret = -ENOMEM;
  6749. goto bar0_remap_failed;
  6750. }
  6751. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6752. pci_resource_len(pdev, 2));
  6753. if (!sp->bar1) {
  6754. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6755. dev->name);
  6756. ret = -ENOMEM;
  6757. goto bar1_remap_failed;
  6758. }
  6759. dev->irq = pdev->irq;
  6760. dev->base_addr = (unsigned long) sp->bar0;
  6761. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6762. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6763. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6764. (sp->bar1 + (j * 0x00020000));
  6765. }
  6766. /* Driver entry points */
  6767. dev->open = &s2io_open;
  6768. dev->stop = &s2io_close;
  6769. dev->hard_start_xmit = &s2io_xmit;
  6770. dev->get_stats = &s2io_get_stats;
  6771. dev->set_multicast_list = &s2io_set_multicast;
  6772. dev->do_ioctl = &s2io_ioctl;
  6773. dev->set_mac_address = &s2io_set_mac_addr;
  6774. dev->change_mtu = &s2io_change_mtu;
  6775. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6776. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6777. dev->vlan_rx_register = s2io_vlan_rx_register;
  6778. /*
  6779. * will use eth_mac_addr() for dev->set_mac_address
  6780. * mac address will be set every time dev->open() is called
  6781. */
  6782. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6783. #ifdef CONFIG_NET_POLL_CONTROLLER
  6784. dev->poll_controller = s2io_netpoll;
  6785. #endif
  6786. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6787. if (sp->high_dma_flag == TRUE)
  6788. dev->features |= NETIF_F_HIGHDMA;
  6789. dev->features |= NETIF_F_TSO;
  6790. dev->features |= NETIF_F_TSO6;
  6791. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6792. dev->features |= NETIF_F_UFO;
  6793. dev->features |= NETIF_F_HW_CSUM;
  6794. }
  6795. dev->tx_timeout = &s2io_tx_watchdog;
  6796. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6797. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6798. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6799. pci_save_state(sp->pdev);
  6800. /* Setting swapper control on the NIC, for proper reset operation */
  6801. if (s2io_set_swapper(sp)) {
  6802. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6803. dev->name);
  6804. ret = -EAGAIN;
  6805. goto set_swap_failed;
  6806. }
  6807. /* Verify if the Herc works on the slot its placed into */
  6808. if (sp->device_type & XFRAME_II_DEVICE) {
  6809. mode = s2io_verify_pci_mode(sp);
  6810. if (mode < 0) {
  6811. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6812. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6813. ret = -EBADSLT;
  6814. goto set_swap_failed;
  6815. }
  6816. }
  6817. /* Not needed for Herc */
  6818. if (sp->device_type & XFRAME_I_DEVICE) {
  6819. /*
  6820. * Fix for all "FFs" MAC address problems observed on
  6821. * Alpha platforms
  6822. */
  6823. fix_mac_address(sp);
  6824. s2io_reset(sp);
  6825. }
  6826. /*
  6827. * MAC address initialization.
  6828. * For now only one mac address will be read and used.
  6829. */
  6830. bar0 = sp->bar0;
  6831. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6832. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6833. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6834. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6835. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6836. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6837. mac_down = (u32) tmp64;
  6838. mac_up = (u32) (tmp64 >> 32);
  6839. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6840. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6841. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6842. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6843. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6844. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6845. /* Set the factory defined MAC address initially */
  6846. dev->addr_len = ETH_ALEN;
  6847. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6848. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  6849. /* Store the values of the MSIX table in the s2io_nic structure */
  6850. store_xmsi_data(sp);
  6851. /* reset Nic and bring it to known state */
  6852. s2io_reset(sp);
  6853. /*
  6854. * Initialize the tasklet status and link state flags
  6855. * and the card state parameter
  6856. */
  6857. sp->tasklet_status = 0;
  6858. sp->state = 0;
  6859. /* Initialize spinlocks */
  6860. spin_lock_init(&sp->tx_lock);
  6861. if (!napi)
  6862. spin_lock_init(&sp->put_lock);
  6863. spin_lock_init(&sp->rx_lock);
  6864. /*
  6865. * SXE-002: Configure link and activity LED to init state
  6866. * on driver load.
  6867. */
  6868. subid = sp->pdev->subsystem_device;
  6869. if ((subid & 0xFF) >= 0x07) {
  6870. val64 = readq(&bar0->gpio_control);
  6871. val64 |= 0x0000800000000000ULL;
  6872. writeq(val64, &bar0->gpio_control);
  6873. val64 = 0x0411040400000000ULL;
  6874. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6875. val64 = readq(&bar0->gpio_control);
  6876. }
  6877. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6878. if (register_netdev(dev)) {
  6879. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6880. ret = -ENODEV;
  6881. goto register_failed;
  6882. }
  6883. s2io_vpd_read(sp);
  6884. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6885. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6886. sp->product_name, pdev->revision);
  6887. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6888. s2io_driver_version);
  6889. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  6890. dev->name, print_mac(mac, dev->dev_addr));
  6891. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6892. if (sp->device_type & XFRAME_II_DEVICE) {
  6893. mode = s2io_print_pci_mode(sp);
  6894. if (mode < 0) {
  6895. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6896. ret = -EBADSLT;
  6897. unregister_netdev(dev);
  6898. goto set_swap_failed;
  6899. }
  6900. }
  6901. switch(sp->rxd_mode) {
  6902. case RXD_MODE_1:
  6903. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6904. dev->name);
  6905. break;
  6906. case RXD_MODE_3B:
  6907. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6908. dev->name);
  6909. break;
  6910. }
  6911. if (napi)
  6912. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6913. switch(sp->config.intr_type) {
  6914. case INTA:
  6915. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6916. break;
  6917. case MSI_X:
  6918. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6919. break;
  6920. }
  6921. if (sp->lro)
  6922. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6923. dev->name);
  6924. if (ufo)
  6925. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6926. " enabled\n", dev->name);
  6927. /* Initialize device name */
  6928. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6929. /*
  6930. * Make Link state as off at this point, when the Link change
  6931. * interrupt comes the state will be automatically changed to
  6932. * the right state.
  6933. */
  6934. netif_carrier_off(dev);
  6935. return 0;
  6936. register_failed:
  6937. set_swap_failed:
  6938. iounmap(sp->bar1);
  6939. bar1_remap_failed:
  6940. iounmap(sp->bar0);
  6941. bar0_remap_failed:
  6942. mem_alloc_failed:
  6943. free_shared_mem(sp);
  6944. pci_disable_device(pdev);
  6945. pci_release_regions(pdev);
  6946. pci_set_drvdata(pdev, NULL);
  6947. free_netdev(dev);
  6948. return ret;
  6949. }
  6950. /**
  6951. * s2io_rem_nic - Free the PCI device
  6952. * @pdev: structure containing the PCI related information of the device.
  6953. * Description: This function is called by the Pci subsystem to release a
  6954. * PCI device and free up all resource held up by the device. This could
  6955. * be in response to a Hot plug event or when the driver is to be removed
  6956. * from memory.
  6957. */
  6958. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6959. {
  6960. struct net_device *dev =
  6961. (struct net_device *) pci_get_drvdata(pdev);
  6962. struct s2io_nic *sp;
  6963. if (dev == NULL) {
  6964. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6965. return;
  6966. }
  6967. flush_scheduled_work();
  6968. sp = dev->priv;
  6969. unregister_netdev(dev);
  6970. free_shared_mem(sp);
  6971. iounmap(sp->bar0);
  6972. iounmap(sp->bar1);
  6973. pci_release_regions(pdev);
  6974. pci_set_drvdata(pdev, NULL);
  6975. free_netdev(dev);
  6976. pci_disable_device(pdev);
  6977. }
  6978. /**
  6979. * s2io_starter - Entry point for the driver
  6980. * Description: This function is the entry point for the driver. It verifies
  6981. * the module loadable parameters and initializes PCI configuration space.
  6982. */
  6983. static int __init s2io_starter(void)
  6984. {
  6985. return pci_register_driver(&s2io_driver);
  6986. }
  6987. /**
  6988. * s2io_closer - Cleanup routine for the driver
  6989. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  6990. */
  6991. static __exit void s2io_closer(void)
  6992. {
  6993. pci_unregister_driver(&s2io_driver);
  6994. DBG_PRINT(INIT_DBG, "cleanup done\n");
  6995. }
  6996. module_init(s2io_starter);
  6997. module_exit(s2io_closer);
  6998. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  6999. struct tcphdr **tcp, struct RxD_t *rxdp)
  7000. {
  7001. int ip_off;
  7002. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7003. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7004. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7005. __FUNCTION__);
  7006. return -1;
  7007. }
  7008. /* TODO:
  7009. * By default the VLAN field in the MAC is stripped by the card, if this
  7010. * feature is turned off in rx_pa_cfg register, then the ip_off field
  7011. * has to be shifted by a further 2 bytes
  7012. */
  7013. switch (l2_type) {
  7014. case 0: /* DIX type */
  7015. case 4: /* DIX type with VLAN */
  7016. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7017. break;
  7018. /* LLC, SNAP etc are considered non-mergeable */
  7019. default:
  7020. return -1;
  7021. }
  7022. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7023. ip_len = (u8)((*ip)->ihl);
  7024. ip_len <<= 2;
  7025. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7026. return 0;
  7027. }
  7028. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7029. struct tcphdr *tcp)
  7030. {
  7031. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7032. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7033. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7034. return -1;
  7035. return 0;
  7036. }
  7037. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7038. {
  7039. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7040. }
  7041. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7042. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7043. {
  7044. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7045. lro->l2h = l2h;
  7046. lro->iph = ip;
  7047. lro->tcph = tcp;
  7048. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7049. lro->tcp_ack = ntohl(tcp->ack_seq);
  7050. lro->sg_num = 1;
  7051. lro->total_len = ntohs(ip->tot_len);
  7052. lro->frags_len = 0;
  7053. /*
  7054. * check if we saw TCP timestamp. Other consistency checks have
  7055. * already been done.
  7056. */
  7057. if (tcp->doff == 8) {
  7058. u32 *ptr;
  7059. ptr = (u32 *)(tcp+1);
  7060. lro->saw_ts = 1;
  7061. lro->cur_tsval = *(ptr+1);
  7062. lro->cur_tsecr = *(ptr+2);
  7063. }
  7064. lro->in_use = 1;
  7065. }
  7066. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7067. {
  7068. struct iphdr *ip = lro->iph;
  7069. struct tcphdr *tcp = lro->tcph;
  7070. __sum16 nchk;
  7071. struct stat_block *statinfo = sp->mac_control.stats_info;
  7072. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7073. /* Update L3 header */
  7074. ip->tot_len = htons(lro->total_len);
  7075. ip->check = 0;
  7076. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7077. ip->check = nchk;
  7078. /* Update L4 header */
  7079. tcp->ack_seq = lro->tcp_ack;
  7080. tcp->window = lro->window;
  7081. /* Update tsecr field if this session has timestamps enabled */
  7082. if (lro->saw_ts) {
  7083. u32 *ptr = (u32 *)(tcp + 1);
  7084. *(ptr+2) = lro->cur_tsecr;
  7085. }
  7086. /* Update counters required for calculation of
  7087. * average no. of packets aggregated.
  7088. */
  7089. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7090. statinfo->sw_stat.num_aggregations++;
  7091. }
  7092. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7093. struct tcphdr *tcp, u32 l4_pyld)
  7094. {
  7095. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7096. lro->total_len += l4_pyld;
  7097. lro->frags_len += l4_pyld;
  7098. lro->tcp_next_seq += l4_pyld;
  7099. lro->sg_num++;
  7100. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7101. lro->tcp_ack = tcp->ack_seq;
  7102. lro->window = tcp->window;
  7103. if (lro->saw_ts) {
  7104. u32 *ptr;
  7105. /* Update tsecr and tsval from this packet */
  7106. ptr = (u32 *) (tcp + 1);
  7107. lro->cur_tsval = *(ptr + 1);
  7108. lro->cur_tsecr = *(ptr + 2);
  7109. }
  7110. }
  7111. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7112. struct tcphdr *tcp, u32 tcp_pyld_len)
  7113. {
  7114. u8 *ptr;
  7115. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7116. if (!tcp_pyld_len) {
  7117. /* Runt frame or a pure ack */
  7118. return -1;
  7119. }
  7120. if (ip->ihl != 5) /* IP has options */
  7121. return -1;
  7122. /* If we see CE codepoint in IP header, packet is not mergeable */
  7123. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7124. return -1;
  7125. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7126. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7127. tcp->ece || tcp->cwr || !tcp->ack) {
  7128. /*
  7129. * Currently recognize only the ack control word and
  7130. * any other control field being set would result in
  7131. * flushing the LRO session
  7132. */
  7133. return -1;
  7134. }
  7135. /*
  7136. * Allow only one TCP timestamp option. Don't aggregate if
  7137. * any other options are detected.
  7138. */
  7139. if (tcp->doff != 5 && tcp->doff != 8)
  7140. return -1;
  7141. if (tcp->doff == 8) {
  7142. ptr = (u8 *)(tcp + 1);
  7143. while (*ptr == TCPOPT_NOP)
  7144. ptr++;
  7145. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7146. return -1;
  7147. /* Ensure timestamp value increases monotonically */
  7148. if (l_lro)
  7149. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7150. return -1;
  7151. /* timestamp echo reply should be non-zero */
  7152. if (*((u32 *)(ptr+6)) == 0)
  7153. return -1;
  7154. }
  7155. return 0;
  7156. }
  7157. static int
  7158. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7159. struct RxD_t *rxdp, struct s2io_nic *sp)
  7160. {
  7161. struct iphdr *ip;
  7162. struct tcphdr *tcph;
  7163. int ret = 0, i;
  7164. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7165. rxdp))) {
  7166. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7167. ip->saddr, ip->daddr);
  7168. } else {
  7169. return ret;
  7170. }
  7171. tcph = (struct tcphdr *)*tcp;
  7172. *tcp_len = get_l4_pyld_length(ip, tcph);
  7173. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7174. struct lro *l_lro = &sp->lro0_n[i];
  7175. if (l_lro->in_use) {
  7176. if (check_for_socket_match(l_lro, ip, tcph))
  7177. continue;
  7178. /* Sock pair matched */
  7179. *lro = l_lro;
  7180. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7181. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7182. "0x%x, actual 0x%x\n", __FUNCTION__,
  7183. (*lro)->tcp_next_seq,
  7184. ntohl(tcph->seq));
  7185. sp->mac_control.stats_info->
  7186. sw_stat.outof_sequence_pkts++;
  7187. ret = 2;
  7188. break;
  7189. }
  7190. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7191. ret = 1; /* Aggregate */
  7192. else
  7193. ret = 2; /* Flush both */
  7194. break;
  7195. }
  7196. }
  7197. if (ret == 0) {
  7198. /* Before searching for available LRO objects,
  7199. * check if the pkt is L3/L4 aggregatable. If not
  7200. * don't create new LRO session. Just send this
  7201. * packet up.
  7202. */
  7203. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7204. return 5;
  7205. }
  7206. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7207. struct lro *l_lro = &sp->lro0_n[i];
  7208. if (!(l_lro->in_use)) {
  7209. *lro = l_lro;
  7210. ret = 3; /* Begin anew */
  7211. break;
  7212. }
  7213. }
  7214. }
  7215. if (ret == 0) { /* sessions exceeded */
  7216. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7217. __FUNCTION__);
  7218. *lro = NULL;
  7219. return ret;
  7220. }
  7221. switch (ret) {
  7222. case 3:
  7223. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7224. break;
  7225. case 2:
  7226. update_L3L4_header(sp, *lro);
  7227. break;
  7228. case 1:
  7229. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7230. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7231. update_L3L4_header(sp, *lro);
  7232. ret = 4; /* Flush the LRO */
  7233. }
  7234. break;
  7235. default:
  7236. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7237. __FUNCTION__);
  7238. break;
  7239. }
  7240. return ret;
  7241. }
  7242. static void clear_lro_session(struct lro *lro)
  7243. {
  7244. static u16 lro_struct_size = sizeof(struct lro);
  7245. memset(lro, 0, lro_struct_size);
  7246. }
  7247. static void queue_rx_frame(struct sk_buff *skb)
  7248. {
  7249. struct net_device *dev = skb->dev;
  7250. skb->protocol = eth_type_trans(skb, dev);
  7251. if (napi)
  7252. netif_receive_skb(skb);
  7253. else
  7254. netif_rx(skb);
  7255. }
  7256. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7257. struct sk_buff *skb,
  7258. u32 tcp_len)
  7259. {
  7260. struct sk_buff *first = lro->parent;
  7261. first->len += tcp_len;
  7262. first->data_len = lro->frags_len;
  7263. skb_pull(skb, (skb->len - tcp_len));
  7264. if (skb_shinfo(first)->frag_list)
  7265. lro->last_frag->next = skb;
  7266. else
  7267. skb_shinfo(first)->frag_list = skb;
  7268. first->truesize += skb->truesize;
  7269. lro->last_frag = skb;
  7270. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7271. return;
  7272. }
  7273. /**
  7274. * s2io_io_error_detected - called when PCI error is detected
  7275. * @pdev: Pointer to PCI device
  7276. * @state: The current pci connection state
  7277. *
  7278. * This function is called after a PCI bus error affecting
  7279. * this device has been detected.
  7280. */
  7281. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7282. pci_channel_state_t state)
  7283. {
  7284. struct net_device *netdev = pci_get_drvdata(pdev);
  7285. struct s2io_nic *sp = netdev->priv;
  7286. netif_device_detach(netdev);
  7287. if (netif_running(netdev)) {
  7288. /* Bring down the card, while avoiding PCI I/O */
  7289. do_s2io_card_down(sp, 0);
  7290. }
  7291. pci_disable_device(pdev);
  7292. return PCI_ERS_RESULT_NEED_RESET;
  7293. }
  7294. /**
  7295. * s2io_io_slot_reset - called after the pci bus has been reset.
  7296. * @pdev: Pointer to PCI device
  7297. *
  7298. * Restart the card from scratch, as if from a cold-boot.
  7299. * At this point, the card has exprienced a hard reset,
  7300. * followed by fixups by BIOS, and has its config space
  7301. * set up identically to what it was at cold boot.
  7302. */
  7303. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7304. {
  7305. struct net_device *netdev = pci_get_drvdata(pdev);
  7306. struct s2io_nic *sp = netdev->priv;
  7307. if (pci_enable_device(pdev)) {
  7308. printk(KERN_ERR "s2io: "
  7309. "Cannot re-enable PCI device after reset.\n");
  7310. return PCI_ERS_RESULT_DISCONNECT;
  7311. }
  7312. pci_set_master(pdev);
  7313. s2io_reset(sp);
  7314. return PCI_ERS_RESULT_RECOVERED;
  7315. }
  7316. /**
  7317. * s2io_io_resume - called when traffic can start flowing again.
  7318. * @pdev: Pointer to PCI device
  7319. *
  7320. * This callback is called when the error recovery driver tells
  7321. * us that its OK to resume normal operation.
  7322. */
  7323. static void s2io_io_resume(struct pci_dev *pdev)
  7324. {
  7325. struct net_device *netdev = pci_get_drvdata(pdev);
  7326. struct s2io_nic *sp = netdev->priv;
  7327. if (netif_running(netdev)) {
  7328. if (s2io_card_up(sp)) {
  7329. printk(KERN_ERR "s2io: "
  7330. "Can't bring device back up after reset.\n");
  7331. return;
  7332. }
  7333. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7334. s2io_card_down(sp);
  7335. printk(KERN_ERR "s2io: "
  7336. "Can't resetore mac addr after reset.\n");
  7337. return;
  7338. }
  7339. }
  7340. netif_device_attach(netdev);
  7341. netif_wake_queue(netdev);
  7342. }