fs_enet-main.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/phy.h>
  38. #include <linux/vmalloc.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/irq.h>
  41. #include <asm/uaccess.h>
  42. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  43. #include <asm/of_platform.h>
  44. #endif
  45. #include "fs_enet.h"
  46. /*************************************************/
  47. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  48. static char version[] __devinitdata =
  49. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  50. #endif
  51. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  52. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  53. MODULE_LICENSE("GPL");
  54. MODULE_VERSION(DRV_MODULE_VERSION);
  55. static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  56. module_param(fs_enet_debug, int, 0);
  57. MODULE_PARM_DESC(fs_enet_debug,
  58. "Freescale bitmapped debugging message enable value");
  59. #ifdef CONFIG_NET_POLL_CONTROLLER
  60. static void fs_enet_netpoll(struct net_device *dev);
  61. #endif
  62. static void fs_set_multicast_list(struct net_device *dev)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. (*fep->ops->set_multicast_list)(dev);
  66. }
  67. static void skb_align(struct sk_buff *skb, int align)
  68. {
  69. int off = ((unsigned long)skb->data) & (align - 1);
  70. if (off)
  71. skb_reserve(skb, align - off);
  72. }
  73. /* NAPI receive function */
  74. static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
  75. {
  76. struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  77. struct net_device *dev = fep->ndev;
  78. const struct fs_platform_info *fpi = fep->fpi;
  79. cbd_t __iomem *bdp;
  80. struct sk_buff *skb, *skbn, *skbt;
  81. int received = 0;
  82. u16 pkt_len, sc;
  83. int curidx;
  84. /*
  85. * First, grab all of the stats for the incoming packet.
  86. * These get messed up if we get called due to a busy condition.
  87. */
  88. bdp = fep->cur_rx;
  89. /* clear RX status bits for napi*/
  90. (*fep->ops->napi_clear_rx_event)(dev);
  91. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  92. curidx = bdp - fep->rx_bd_base;
  93. /*
  94. * Since we have allocated space to hold a complete frame,
  95. * the last indicator should be set.
  96. */
  97. if ((sc & BD_ENET_RX_LAST) == 0)
  98. printk(KERN_WARNING DRV_MODULE_NAME
  99. ": %s rcv is not +last\n",
  100. dev->name);
  101. /*
  102. * Check for errors.
  103. */
  104. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  105. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  106. fep->stats.rx_errors++;
  107. /* Frame too long or too short. */
  108. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  109. fep->stats.rx_length_errors++;
  110. /* Frame alignment */
  111. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  112. fep->stats.rx_frame_errors++;
  113. /* CRC Error */
  114. if (sc & BD_ENET_RX_CR)
  115. fep->stats.rx_crc_errors++;
  116. /* FIFO overrun */
  117. if (sc & BD_ENET_RX_OV)
  118. fep->stats.rx_crc_errors++;
  119. skb = fep->rx_skbuff[curidx];
  120. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  121. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  122. DMA_FROM_DEVICE);
  123. skbn = skb;
  124. } else {
  125. skb = fep->rx_skbuff[curidx];
  126. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  127. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  128. DMA_FROM_DEVICE);
  129. /*
  130. * Process the incoming frame.
  131. */
  132. fep->stats.rx_packets++;
  133. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  134. fep->stats.rx_bytes += pkt_len + 4;
  135. if (pkt_len <= fpi->rx_copybreak) {
  136. /* +2 to make IP header L1 cache aligned */
  137. skbn = dev_alloc_skb(pkt_len + 2);
  138. if (skbn != NULL) {
  139. skb_reserve(skbn, 2); /* align IP header */
  140. skb_copy_from_linear_data(skb,
  141. skbn->data, pkt_len);
  142. /* swap */
  143. skbt = skb;
  144. skb = skbn;
  145. skbn = skbt;
  146. }
  147. } else {
  148. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  149. if (skbn)
  150. skb_align(skbn, ENET_RX_ALIGN);
  151. }
  152. if (skbn != NULL) {
  153. skb_put(skb, pkt_len); /* Make room */
  154. skb->protocol = eth_type_trans(skb, dev);
  155. received++;
  156. netif_receive_skb(skb);
  157. } else {
  158. printk(KERN_WARNING DRV_MODULE_NAME
  159. ": %s Memory squeeze, dropping packet.\n",
  160. dev->name);
  161. fep->stats.rx_dropped++;
  162. skbn = skb;
  163. }
  164. }
  165. fep->rx_skbuff[curidx] = skbn;
  166. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  167. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  168. DMA_FROM_DEVICE));
  169. CBDW_DATLEN(bdp, 0);
  170. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  171. /*
  172. * Update BD pointer to next entry.
  173. */
  174. if ((sc & BD_ENET_RX_WRAP) == 0)
  175. bdp++;
  176. else
  177. bdp = fep->rx_bd_base;
  178. (*fep->ops->rx_bd_done)(dev);
  179. if (received >= budget)
  180. break;
  181. }
  182. fep->cur_rx = bdp;
  183. if (received < budget) {
  184. /* done */
  185. netif_rx_complete(dev, napi);
  186. (*fep->ops->napi_enable_rx)(dev);
  187. }
  188. return received;
  189. }
  190. /* non NAPI receive function */
  191. static int fs_enet_rx_non_napi(struct net_device *dev)
  192. {
  193. struct fs_enet_private *fep = netdev_priv(dev);
  194. const struct fs_platform_info *fpi = fep->fpi;
  195. cbd_t __iomem *bdp;
  196. struct sk_buff *skb, *skbn, *skbt;
  197. int received = 0;
  198. u16 pkt_len, sc;
  199. int curidx;
  200. /*
  201. * First, grab all of the stats for the incoming packet.
  202. * These get messed up if we get called due to a busy condition.
  203. */
  204. bdp = fep->cur_rx;
  205. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  206. curidx = bdp - fep->rx_bd_base;
  207. /*
  208. * Since we have allocated space to hold a complete frame,
  209. * the last indicator should be set.
  210. */
  211. if ((sc & BD_ENET_RX_LAST) == 0)
  212. printk(KERN_WARNING DRV_MODULE_NAME
  213. ": %s rcv is not +last\n",
  214. dev->name);
  215. /*
  216. * Check for errors.
  217. */
  218. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  219. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  220. fep->stats.rx_errors++;
  221. /* Frame too long or too short. */
  222. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  223. fep->stats.rx_length_errors++;
  224. /* Frame alignment */
  225. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  226. fep->stats.rx_frame_errors++;
  227. /* CRC Error */
  228. if (sc & BD_ENET_RX_CR)
  229. fep->stats.rx_crc_errors++;
  230. /* FIFO overrun */
  231. if (sc & BD_ENET_RX_OV)
  232. fep->stats.rx_crc_errors++;
  233. skb = fep->rx_skbuff[curidx];
  234. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  235. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  236. DMA_FROM_DEVICE);
  237. skbn = skb;
  238. } else {
  239. skb = fep->rx_skbuff[curidx];
  240. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  241. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  242. DMA_FROM_DEVICE);
  243. /*
  244. * Process the incoming frame.
  245. */
  246. fep->stats.rx_packets++;
  247. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  248. fep->stats.rx_bytes += pkt_len + 4;
  249. if (pkt_len <= fpi->rx_copybreak) {
  250. /* +2 to make IP header L1 cache aligned */
  251. skbn = dev_alloc_skb(pkt_len + 2);
  252. if (skbn != NULL) {
  253. skb_reserve(skbn, 2); /* align IP header */
  254. skb_copy_from_linear_data(skb,
  255. skbn->data, pkt_len);
  256. /* swap */
  257. skbt = skb;
  258. skb = skbn;
  259. skbn = skbt;
  260. }
  261. } else {
  262. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  263. if (skbn)
  264. skb_align(skbn, ENET_RX_ALIGN);
  265. }
  266. if (skbn != NULL) {
  267. skb_put(skb, pkt_len); /* Make room */
  268. skb->protocol = eth_type_trans(skb, dev);
  269. received++;
  270. netif_rx(skb);
  271. } else {
  272. printk(KERN_WARNING DRV_MODULE_NAME
  273. ": %s Memory squeeze, dropping packet.\n",
  274. dev->name);
  275. fep->stats.rx_dropped++;
  276. skbn = skb;
  277. }
  278. }
  279. fep->rx_skbuff[curidx] = skbn;
  280. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  281. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  282. DMA_FROM_DEVICE));
  283. CBDW_DATLEN(bdp, 0);
  284. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  285. /*
  286. * Update BD pointer to next entry.
  287. */
  288. if ((sc & BD_ENET_RX_WRAP) == 0)
  289. bdp++;
  290. else
  291. bdp = fep->rx_bd_base;
  292. (*fep->ops->rx_bd_done)(dev);
  293. }
  294. fep->cur_rx = bdp;
  295. return 0;
  296. }
  297. static void fs_enet_tx(struct net_device *dev)
  298. {
  299. struct fs_enet_private *fep = netdev_priv(dev);
  300. cbd_t __iomem *bdp;
  301. struct sk_buff *skb;
  302. int dirtyidx, do_wake, do_restart;
  303. u16 sc;
  304. spin_lock(&fep->tx_lock);
  305. bdp = fep->dirty_tx;
  306. do_wake = do_restart = 0;
  307. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  308. dirtyidx = bdp - fep->tx_bd_base;
  309. if (fep->tx_free == fep->tx_ring)
  310. break;
  311. skb = fep->tx_skbuff[dirtyidx];
  312. /*
  313. * Check for errors.
  314. */
  315. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  316. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  317. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  318. fep->stats.tx_heartbeat_errors++;
  319. if (sc & BD_ENET_TX_LC) /* Late collision */
  320. fep->stats.tx_window_errors++;
  321. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  322. fep->stats.tx_aborted_errors++;
  323. if (sc & BD_ENET_TX_UN) /* Underrun */
  324. fep->stats.tx_fifo_errors++;
  325. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  326. fep->stats.tx_carrier_errors++;
  327. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  328. fep->stats.tx_errors++;
  329. do_restart = 1;
  330. }
  331. } else
  332. fep->stats.tx_packets++;
  333. if (sc & BD_ENET_TX_READY)
  334. printk(KERN_WARNING DRV_MODULE_NAME
  335. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  336. dev->name);
  337. /*
  338. * Deferred means some collisions occurred during transmit,
  339. * but we eventually sent the packet OK.
  340. */
  341. if (sc & BD_ENET_TX_DEF)
  342. fep->stats.collisions++;
  343. /* unmap */
  344. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  345. skb->len, DMA_TO_DEVICE);
  346. /*
  347. * Free the sk buffer associated with this last transmit.
  348. */
  349. dev_kfree_skb_irq(skb);
  350. fep->tx_skbuff[dirtyidx] = NULL;
  351. /*
  352. * Update pointer to next buffer descriptor to be transmitted.
  353. */
  354. if ((sc & BD_ENET_TX_WRAP) == 0)
  355. bdp++;
  356. else
  357. bdp = fep->tx_bd_base;
  358. /*
  359. * Since we have freed up a buffer, the ring is no longer
  360. * full.
  361. */
  362. if (!fep->tx_free++)
  363. do_wake = 1;
  364. }
  365. fep->dirty_tx = bdp;
  366. if (do_restart)
  367. (*fep->ops->tx_restart)(dev);
  368. spin_unlock(&fep->tx_lock);
  369. if (do_wake)
  370. netif_wake_queue(dev);
  371. }
  372. /*
  373. * The interrupt handler.
  374. * This is called from the MPC core interrupt.
  375. */
  376. static irqreturn_t
  377. fs_enet_interrupt(int irq, void *dev_id)
  378. {
  379. struct net_device *dev = dev_id;
  380. struct fs_enet_private *fep;
  381. const struct fs_platform_info *fpi;
  382. u32 int_events;
  383. u32 int_clr_events;
  384. int nr, napi_ok;
  385. int handled;
  386. fep = netdev_priv(dev);
  387. fpi = fep->fpi;
  388. nr = 0;
  389. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  390. nr++;
  391. int_clr_events = int_events;
  392. if (fpi->use_napi)
  393. int_clr_events &= ~fep->ev_napi_rx;
  394. (*fep->ops->clear_int_events)(dev, int_clr_events);
  395. if (int_events & fep->ev_err)
  396. (*fep->ops->ev_error)(dev, int_events);
  397. if (int_events & fep->ev_rx) {
  398. if (!fpi->use_napi)
  399. fs_enet_rx_non_napi(dev);
  400. else {
  401. napi_ok = napi_schedule_prep(&fep->napi);
  402. (*fep->ops->napi_disable_rx)(dev);
  403. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  404. /* NOTE: it is possible for FCCs in NAPI mode */
  405. /* to submit a spurious interrupt while in poll */
  406. if (napi_ok)
  407. __netif_rx_schedule(dev, &fep->napi);
  408. }
  409. }
  410. if (int_events & fep->ev_tx)
  411. fs_enet_tx(dev);
  412. }
  413. handled = nr > 0;
  414. return IRQ_RETVAL(handled);
  415. }
  416. void fs_init_bds(struct net_device *dev)
  417. {
  418. struct fs_enet_private *fep = netdev_priv(dev);
  419. cbd_t __iomem *bdp;
  420. struct sk_buff *skb;
  421. int i;
  422. fs_cleanup_bds(dev);
  423. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  424. fep->tx_free = fep->tx_ring;
  425. fep->cur_rx = fep->rx_bd_base;
  426. /*
  427. * Initialize the receive buffer descriptors.
  428. */
  429. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  430. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  431. if (skb == NULL) {
  432. printk(KERN_WARNING DRV_MODULE_NAME
  433. ": %s Memory squeeze, unable to allocate skb\n",
  434. dev->name);
  435. break;
  436. }
  437. skb_align(skb, ENET_RX_ALIGN);
  438. fep->rx_skbuff[i] = skb;
  439. CBDW_BUFADDR(bdp,
  440. dma_map_single(fep->dev, skb->data,
  441. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  442. DMA_FROM_DEVICE));
  443. CBDW_DATLEN(bdp, 0); /* zero */
  444. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  445. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  446. }
  447. /*
  448. * if we failed, fillup remainder
  449. */
  450. for (; i < fep->rx_ring; i++, bdp++) {
  451. fep->rx_skbuff[i] = NULL;
  452. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  453. }
  454. /*
  455. * ...and the same for transmit.
  456. */
  457. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  458. fep->tx_skbuff[i] = NULL;
  459. CBDW_BUFADDR(bdp, 0);
  460. CBDW_DATLEN(bdp, 0);
  461. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  462. }
  463. }
  464. void fs_cleanup_bds(struct net_device *dev)
  465. {
  466. struct fs_enet_private *fep = netdev_priv(dev);
  467. struct sk_buff *skb;
  468. cbd_t __iomem *bdp;
  469. int i;
  470. /*
  471. * Reset SKB transmit buffers.
  472. */
  473. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  474. if ((skb = fep->tx_skbuff[i]) == NULL)
  475. continue;
  476. /* unmap */
  477. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  478. skb->len, DMA_TO_DEVICE);
  479. fep->tx_skbuff[i] = NULL;
  480. dev_kfree_skb(skb);
  481. }
  482. /*
  483. * Reset SKB receive buffers
  484. */
  485. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  486. if ((skb = fep->rx_skbuff[i]) == NULL)
  487. continue;
  488. /* unmap */
  489. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  490. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  491. DMA_FROM_DEVICE);
  492. fep->rx_skbuff[i] = NULL;
  493. dev_kfree_skb(skb);
  494. }
  495. }
  496. /**********************************************************************************/
  497. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  498. {
  499. struct fs_enet_private *fep = netdev_priv(dev);
  500. cbd_t __iomem *bdp;
  501. int curidx;
  502. u16 sc;
  503. unsigned long flags;
  504. spin_lock_irqsave(&fep->tx_lock, flags);
  505. /*
  506. * Fill in a Tx ring entry
  507. */
  508. bdp = fep->cur_tx;
  509. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  510. netif_stop_queue(dev);
  511. spin_unlock_irqrestore(&fep->tx_lock, flags);
  512. /*
  513. * Ooops. All transmit buffers are full. Bail out.
  514. * This should not happen, since the tx queue should be stopped.
  515. */
  516. printk(KERN_WARNING DRV_MODULE_NAME
  517. ": %s tx queue full!.\n", dev->name);
  518. return NETDEV_TX_BUSY;
  519. }
  520. curidx = bdp - fep->tx_bd_base;
  521. /*
  522. * Clear all of the status flags.
  523. */
  524. CBDC_SC(bdp, BD_ENET_TX_STATS);
  525. /*
  526. * Save skb pointer.
  527. */
  528. fep->tx_skbuff[curidx] = skb;
  529. fep->stats.tx_bytes += skb->len;
  530. /*
  531. * Push the data cache so the CPM does not get stale memory data.
  532. */
  533. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  534. skb->data, skb->len, DMA_TO_DEVICE));
  535. CBDW_DATLEN(bdp, skb->len);
  536. dev->trans_start = jiffies;
  537. /*
  538. * If this was the last BD in the ring, start at the beginning again.
  539. */
  540. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  541. fep->cur_tx++;
  542. else
  543. fep->cur_tx = fep->tx_bd_base;
  544. if (!--fep->tx_free)
  545. netif_stop_queue(dev);
  546. /* Trigger transmission start */
  547. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  548. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  549. /* note that while FEC does not have this bit
  550. * it marks it as available for software use
  551. * yay for hw reuse :) */
  552. if (skb->len <= 60)
  553. sc |= BD_ENET_TX_PAD;
  554. CBDS_SC(bdp, sc);
  555. (*fep->ops->tx_kickstart)(dev);
  556. spin_unlock_irqrestore(&fep->tx_lock, flags);
  557. return NETDEV_TX_OK;
  558. }
  559. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  560. irq_handler_t irqf)
  561. {
  562. struct fs_enet_private *fep = netdev_priv(dev);
  563. (*fep->ops->pre_request_irq)(dev, irq);
  564. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  565. }
  566. static void fs_free_irq(struct net_device *dev, int irq)
  567. {
  568. struct fs_enet_private *fep = netdev_priv(dev);
  569. free_irq(irq, dev);
  570. (*fep->ops->post_free_irq)(dev, irq);
  571. }
  572. static void fs_timeout(struct net_device *dev)
  573. {
  574. struct fs_enet_private *fep = netdev_priv(dev);
  575. unsigned long flags;
  576. int wake = 0;
  577. fep->stats.tx_errors++;
  578. spin_lock_irqsave(&fep->lock, flags);
  579. if (dev->flags & IFF_UP) {
  580. phy_stop(fep->phydev);
  581. (*fep->ops->stop)(dev);
  582. (*fep->ops->restart)(dev);
  583. phy_start(fep->phydev);
  584. }
  585. phy_start(fep->phydev);
  586. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  587. spin_unlock_irqrestore(&fep->lock, flags);
  588. if (wake)
  589. netif_wake_queue(dev);
  590. }
  591. /*-----------------------------------------------------------------------------
  592. * generic link-change handler - should be sufficient for most cases
  593. *-----------------------------------------------------------------------------*/
  594. static void generic_adjust_link(struct net_device *dev)
  595. {
  596. struct fs_enet_private *fep = netdev_priv(dev);
  597. struct phy_device *phydev = fep->phydev;
  598. int new_state = 0;
  599. if (phydev->link) {
  600. /* adjust to duplex mode */
  601. if (phydev->duplex != fep->oldduplex) {
  602. new_state = 1;
  603. fep->oldduplex = phydev->duplex;
  604. }
  605. if (phydev->speed != fep->oldspeed) {
  606. new_state = 1;
  607. fep->oldspeed = phydev->speed;
  608. }
  609. if (!fep->oldlink) {
  610. new_state = 1;
  611. fep->oldlink = 1;
  612. netif_schedule(dev);
  613. netif_carrier_on(dev);
  614. netif_start_queue(dev);
  615. }
  616. if (new_state)
  617. fep->ops->restart(dev);
  618. } else if (fep->oldlink) {
  619. new_state = 1;
  620. fep->oldlink = 0;
  621. fep->oldspeed = 0;
  622. fep->oldduplex = -1;
  623. netif_carrier_off(dev);
  624. netif_stop_queue(dev);
  625. }
  626. if (new_state && netif_msg_link(fep))
  627. phy_print_status(phydev);
  628. }
  629. static void fs_adjust_link(struct net_device *dev)
  630. {
  631. struct fs_enet_private *fep = netdev_priv(dev);
  632. unsigned long flags;
  633. spin_lock_irqsave(&fep->lock, flags);
  634. if(fep->ops->adjust_link)
  635. fep->ops->adjust_link(dev);
  636. else
  637. generic_adjust_link(dev);
  638. spin_unlock_irqrestore(&fep->lock, flags);
  639. }
  640. static int fs_init_phy(struct net_device *dev)
  641. {
  642. struct fs_enet_private *fep = netdev_priv(dev);
  643. struct phy_device *phydev;
  644. fep->oldlink = 0;
  645. fep->oldspeed = 0;
  646. fep->oldduplex = -1;
  647. if(fep->fpi->bus_id)
  648. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  649. PHY_INTERFACE_MODE_MII);
  650. else {
  651. printk("No phy bus ID specified in BSP code\n");
  652. return -EINVAL;
  653. }
  654. if (IS_ERR(phydev)) {
  655. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  656. return PTR_ERR(phydev);
  657. }
  658. fep->phydev = phydev;
  659. return 0;
  660. }
  661. static int fs_enet_open(struct net_device *dev)
  662. {
  663. struct fs_enet_private *fep = netdev_priv(dev);
  664. int r;
  665. int err;
  666. if (fep->fpi->use_napi)
  667. napi_enable(&fep->napi);
  668. /* Install our interrupt handler. */
  669. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  670. if (r != 0) {
  671. printk(KERN_ERR DRV_MODULE_NAME
  672. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  673. if (fep->fpi->use_napi)
  674. napi_disable(&fep->napi);
  675. return -EINVAL;
  676. }
  677. err = fs_init_phy(dev);
  678. if (err) {
  679. if (fep->fpi->use_napi)
  680. napi_disable(&fep->napi);
  681. return err;
  682. }
  683. phy_start(fep->phydev);
  684. return 0;
  685. }
  686. static int fs_enet_close(struct net_device *dev)
  687. {
  688. struct fs_enet_private *fep = netdev_priv(dev);
  689. unsigned long flags;
  690. netif_stop_queue(dev);
  691. netif_carrier_off(dev);
  692. napi_disable(&fep->napi);
  693. phy_stop(fep->phydev);
  694. spin_lock_irqsave(&fep->lock, flags);
  695. spin_lock(&fep->tx_lock);
  696. (*fep->ops->stop)(dev);
  697. spin_unlock(&fep->tx_lock);
  698. spin_unlock_irqrestore(&fep->lock, flags);
  699. /* release any irqs */
  700. phy_disconnect(fep->phydev);
  701. fep->phydev = NULL;
  702. fs_free_irq(dev, fep->interrupt);
  703. return 0;
  704. }
  705. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  706. {
  707. struct fs_enet_private *fep = netdev_priv(dev);
  708. return &fep->stats;
  709. }
  710. /*************************************************************************/
  711. static void fs_get_drvinfo(struct net_device *dev,
  712. struct ethtool_drvinfo *info)
  713. {
  714. strcpy(info->driver, DRV_MODULE_NAME);
  715. strcpy(info->version, DRV_MODULE_VERSION);
  716. }
  717. static int fs_get_regs_len(struct net_device *dev)
  718. {
  719. struct fs_enet_private *fep = netdev_priv(dev);
  720. return (*fep->ops->get_regs_len)(dev);
  721. }
  722. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  723. void *p)
  724. {
  725. struct fs_enet_private *fep = netdev_priv(dev);
  726. unsigned long flags;
  727. int r, len;
  728. len = regs->len;
  729. spin_lock_irqsave(&fep->lock, flags);
  730. r = (*fep->ops->get_regs)(dev, p, &len);
  731. spin_unlock_irqrestore(&fep->lock, flags);
  732. if (r == 0)
  733. regs->version = 0;
  734. }
  735. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  736. {
  737. struct fs_enet_private *fep = netdev_priv(dev);
  738. return phy_ethtool_gset(fep->phydev, cmd);
  739. }
  740. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  741. {
  742. struct fs_enet_private *fep = netdev_priv(dev);
  743. phy_ethtool_sset(fep->phydev, cmd);
  744. return 0;
  745. }
  746. static int fs_nway_reset(struct net_device *dev)
  747. {
  748. return 0;
  749. }
  750. static u32 fs_get_msglevel(struct net_device *dev)
  751. {
  752. struct fs_enet_private *fep = netdev_priv(dev);
  753. return fep->msg_enable;
  754. }
  755. static void fs_set_msglevel(struct net_device *dev, u32 value)
  756. {
  757. struct fs_enet_private *fep = netdev_priv(dev);
  758. fep->msg_enable = value;
  759. }
  760. static const struct ethtool_ops fs_ethtool_ops = {
  761. .get_drvinfo = fs_get_drvinfo,
  762. .get_regs_len = fs_get_regs_len,
  763. .get_settings = fs_get_settings,
  764. .set_settings = fs_set_settings,
  765. .nway_reset = fs_nway_reset,
  766. .get_link = ethtool_op_get_link,
  767. .get_msglevel = fs_get_msglevel,
  768. .set_msglevel = fs_set_msglevel,
  769. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  770. .set_sg = ethtool_op_set_sg,
  771. .get_regs = fs_get_regs,
  772. };
  773. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  774. {
  775. struct fs_enet_private *fep = netdev_priv(dev);
  776. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  777. unsigned long flags;
  778. int rc;
  779. if (!netif_running(dev))
  780. return -EINVAL;
  781. spin_lock_irqsave(&fep->lock, flags);
  782. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  783. spin_unlock_irqrestore(&fep->lock, flags);
  784. return rc;
  785. }
  786. extern int fs_mii_connect(struct net_device *dev);
  787. extern void fs_mii_disconnect(struct net_device *dev);
  788. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  789. static struct net_device *fs_init_instance(struct device *dev,
  790. struct fs_platform_info *fpi)
  791. {
  792. struct net_device *ndev = NULL;
  793. struct fs_enet_private *fep = NULL;
  794. int privsize, i, r, err = 0, registered = 0;
  795. fpi->fs_no = fs_get_id(fpi);
  796. /* guard */
  797. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  798. return ERR_PTR(-EINVAL);
  799. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  800. (fpi->rx_ring + fpi->tx_ring));
  801. ndev = alloc_etherdev(privsize);
  802. if (!ndev) {
  803. err = -ENOMEM;
  804. goto err;
  805. }
  806. fep = netdev_priv(ndev);
  807. fep->dev = dev;
  808. dev_set_drvdata(dev, ndev);
  809. fep->fpi = fpi;
  810. if (fpi->init_ioports)
  811. fpi->init_ioports((struct fs_platform_info *)fpi);
  812. #ifdef CONFIG_FS_ENET_HAS_FEC
  813. if (fs_get_fec_index(fpi->fs_no) >= 0)
  814. fep->ops = &fs_fec_ops;
  815. #endif
  816. #ifdef CONFIG_FS_ENET_HAS_SCC
  817. if (fs_get_scc_index(fpi->fs_no) >=0)
  818. fep->ops = &fs_scc_ops;
  819. #endif
  820. #ifdef CONFIG_FS_ENET_HAS_FCC
  821. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  822. fep->ops = &fs_fcc_ops;
  823. #endif
  824. if (fep->ops == NULL) {
  825. printk(KERN_ERR DRV_MODULE_NAME
  826. ": %s No matching ops found (%d).\n",
  827. ndev->name, fpi->fs_no);
  828. err = -EINVAL;
  829. goto err;
  830. }
  831. r = (*fep->ops->setup_data)(ndev);
  832. if (r != 0) {
  833. printk(KERN_ERR DRV_MODULE_NAME
  834. ": %s setup_data failed\n",
  835. ndev->name);
  836. err = r;
  837. goto err;
  838. }
  839. /* point rx_skbuff, tx_skbuff */
  840. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  841. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  842. /* init locks */
  843. spin_lock_init(&fep->lock);
  844. spin_lock_init(&fep->tx_lock);
  845. /*
  846. * Set the Ethernet address.
  847. */
  848. for (i = 0; i < 6; i++)
  849. ndev->dev_addr[i] = fpi->macaddr[i];
  850. r = (*fep->ops->allocate_bd)(ndev);
  851. if (fep->ring_base == NULL) {
  852. printk(KERN_ERR DRV_MODULE_NAME
  853. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  854. err = r;
  855. goto err;
  856. }
  857. /*
  858. * Set receive and transmit descriptor base.
  859. */
  860. fep->rx_bd_base = fep->ring_base;
  861. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  862. /* initialize ring size variables */
  863. fep->tx_ring = fpi->tx_ring;
  864. fep->rx_ring = fpi->rx_ring;
  865. /*
  866. * The FEC Ethernet specific entries in the device structure.
  867. */
  868. ndev->open = fs_enet_open;
  869. ndev->hard_start_xmit = fs_enet_start_xmit;
  870. ndev->tx_timeout = fs_timeout;
  871. ndev->watchdog_timeo = 2 * HZ;
  872. ndev->stop = fs_enet_close;
  873. ndev->get_stats = fs_enet_get_stats;
  874. ndev->set_multicast_list = fs_set_multicast_list;
  875. #ifdef CONFIG_NET_POLL_CONTROLLER
  876. ndev->poll_controller = fs_enet_netpoll;
  877. #endif
  878. netif_napi_add(ndev, &fep->napi,
  879. fs_enet_rx_napi, fpi->napi_weight);
  880. ndev->ethtool_ops = &fs_ethtool_ops;
  881. ndev->do_ioctl = fs_ioctl;
  882. init_timer(&fep->phy_timer_list);
  883. netif_carrier_off(ndev);
  884. err = register_netdev(ndev);
  885. if (err != 0) {
  886. printk(KERN_ERR DRV_MODULE_NAME
  887. ": %s register_netdev failed.\n", ndev->name);
  888. goto err;
  889. }
  890. registered = 1;
  891. return ndev;
  892. err:
  893. if (ndev != NULL) {
  894. if (registered)
  895. unregister_netdev(ndev);
  896. if (fep != NULL) {
  897. (*fep->ops->free_bd)(ndev);
  898. (*fep->ops->cleanup_data)(ndev);
  899. }
  900. free_netdev(ndev);
  901. }
  902. dev_set_drvdata(dev, NULL);
  903. return ERR_PTR(err);
  904. }
  905. static int fs_cleanup_instance(struct net_device *ndev)
  906. {
  907. struct fs_enet_private *fep;
  908. const struct fs_platform_info *fpi;
  909. struct device *dev;
  910. if (ndev == NULL)
  911. return -EINVAL;
  912. fep = netdev_priv(ndev);
  913. if (fep == NULL)
  914. return -EINVAL;
  915. fpi = fep->fpi;
  916. unregister_netdev(ndev);
  917. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  918. (void __force *)fep->ring_base, fep->ring_mem_addr);
  919. /* reset it */
  920. (*fep->ops->cleanup_data)(ndev);
  921. dev = fep->dev;
  922. if (dev != NULL) {
  923. dev_set_drvdata(dev, NULL);
  924. fep->dev = NULL;
  925. }
  926. free_netdev(ndev);
  927. return 0;
  928. }
  929. #endif
  930. /**************************************************************************************/
  931. /* handy pointer to the immap */
  932. void __iomem *fs_enet_immap = NULL;
  933. static int setup_immap(void)
  934. {
  935. #ifdef CONFIG_CPM1
  936. fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
  937. WARN_ON(!fs_enet_immap);
  938. #elif defined(CONFIG_CPM2)
  939. fs_enet_immap = cpm2_immr;
  940. #endif
  941. return 0;
  942. }
  943. static void cleanup_immap(void)
  944. {
  945. #if defined(CONFIG_CPM1)
  946. iounmap(fs_enet_immap);
  947. #endif
  948. }
  949. /**************************************************************************************/
  950. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  951. static int __devinit find_phy(struct device_node *np,
  952. struct fs_platform_info *fpi)
  953. {
  954. struct device_node *phynode, *mdionode;
  955. struct resource res;
  956. int ret = 0, len;
  957. const u32 *data = of_get_property(np, "phy-handle", &len);
  958. if (!data || len != 4)
  959. return -EINVAL;
  960. phynode = of_find_node_by_phandle(*data);
  961. if (!phynode)
  962. return -EINVAL;
  963. mdionode = of_get_parent(phynode);
  964. if (!mdionode)
  965. goto out_put_phy;
  966. ret = of_address_to_resource(mdionode, 0, &res);
  967. if (ret)
  968. goto out_put_mdio;
  969. data = of_get_property(phynode, "reg", &len);
  970. if (!data || len != 4)
  971. goto out_put_mdio;
  972. snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);
  973. out_put_mdio:
  974. of_node_put(mdionode);
  975. out_put_phy:
  976. of_node_put(phynode);
  977. return ret;
  978. }
  979. #ifdef CONFIG_FS_ENET_HAS_FEC
  980. #define IS_FEC(match) ((match)->data == &fs_fec_ops)
  981. #else
  982. #define IS_FEC(match) 0
  983. #endif
  984. static int __devinit fs_enet_probe(struct of_device *ofdev,
  985. const struct of_device_id *match)
  986. {
  987. struct net_device *ndev;
  988. struct fs_enet_private *fep;
  989. struct fs_platform_info *fpi;
  990. const u32 *data;
  991. const u8 *mac_addr;
  992. int privsize, len, ret = -ENODEV;
  993. fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
  994. if (!fpi)
  995. return -ENOMEM;
  996. if (!IS_FEC(match)) {
  997. data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
  998. if (!data || len != 4)
  999. goto out_free_fpi;
  1000. fpi->cp_command = *data;
  1001. }
  1002. fpi->rx_ring = 32;
  1003. fpi->tx_ring = 32;
  1004. fpi->rx_copybreak = 240;
  1005. fpi->use_napi = 1;
  1006. fpi->napi_weight = 17;
  1007. ret = find_phy(ofdev->node, fpi);
  1008. if (ret)
  1009. goto out_free_fpi;
  1010. privsize = sizeof(*fep) +
  1011. sizeof(struct sk_buff **) *
  1012. (fpi->rx_ring + fpi->tx_ring);
  1013. ndev = alloc_etherdev(privsize);
  1014. if (!ndev) {
  1015. ret = -ENOMEM;
  1016. goto out_free_fpi;
  1017. }
  1018. dev_set_drvdata(&ofdev->dev, ndev);
  1019. fep = netdev_priv(ndev);
  1020. fep->dev = &ofdev->dev;
  1021. fep->ndev = ndev;
  1022. fep->fpi = fpi;
  1023. fep->ops = match->data;
  1024. ret = fep->ops->setup_data(ndev);
  1025. if (ret)
  1026. goto out_free_dev;
  1027. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  1028. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  1029. spin_lock_init(&fep->lock);
  1030. spin_lock_init(&fep->tx_lock);
  1031. mac_addr = of_get_mac_address(ofdev->node);
  1032. if (mac_addr)
  1033. memcpy(ndev->dev_addr, mac_addr, 6);
  1034. ret = fep->ops->allocate_bd(ndev);
  1035. if (ret)
  1036. goto out_cleanup_data;
  1037. fep->rx_bd_base = fep->ring_base;
  1038. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  1039. fep->tx_ring = fpi->tx_ring;
  1040. fep->rx_ring = fpi->rx_ring;
  1041. ndev->open = fs_enet_open;
  1042. ndev->hard_start_xmit = fs_enet_start_xmit;
  1043. ndev->tx_timeout = fs_timeout;
  1044. ndev->watchdog_timeo = 2 * HZ;
  1045. ndev->stop = fs_enet_close;
  1046. ndev->get_stats = fs_enet_get_stats;
  1047. ndev->set_multicast_list = fs_set_multicast_list;
  1048. if (fpi->use_napi)
  1049. netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
  1050. fpi->napi_weight);
  1051. ndev->ethtool_ops = &fs_ethtool_ops;
  1052. ndev->do_ioctl = fs_ioctl;
  1053. init_timer(&fep->phy_timer_list);
  1054. netif_carrier_off(ndev);
  1055. ret = register_netdev(ndev);
  1056. if (ret)
  1057. goto out_free_bd;
  1058. printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
  1059. ndev->name,
  1060. ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
  1061. ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
  1062. return 0;
  1063. out_free_bd:
  1064. fep->ops->free_bd(ndev);
  1065. out_cleanup_data:
  1066. fep->ops->cleanup_data(ndev);
  1067. out_free_dev:
  1068. free_netdev(ndev);
  1069. dev_set_drvdata(&ofdev->dev, NULL);
  1070. out_free_fpi:
  1071. kfree(fpi);
  1072. return ret;
  1073. }
  1074. static int fs_enet_remove(struct of_device *ofdev)
  1075. {
  1076. struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
  1077. struct fs_enet_private *fep = netdev_priv(ndev);
  1078. unregister_netdev(ndev);
  1079. fep->ops->free_bd(ndev);
  1080. fep->ops->cleanup_data(ndev);
  1081. dev_set_drvdata(fep->dev, NULL);
  1082. free_netdev(ndev);
  1083. return 0;
  1084. }
  1085. static struct of_device_id fs_enet_match[] = {
  1086. #ifdef CONFIG_FS_ENET_HAS_SCC
  1087. {
  1088. .compatible = "fsl,cpm1-scc-enet",
  1089. .data = (void *)&fs_scc_ops,
  1090. },
  1091. #endif
  1092. #ifdef CONFIG_FS_ENET_HAS_FCC
  1093. {
  1094. .compatible = "fsl,cpm2-fcc-enet",
  1095. .data = (void *)&fs_fcc_ops,
  1096. },
  1097. #endif
  1098. #ifdef CONFIG_FS_ENET_HAS_FEC
  1099. {
  1100. .compatible = "fsl,pq1-fec-enet",
  1101. .data = (void *)&fs_fec_ops,
  1102. },
  1103. #endif
  1104. {}
  1105. };
  1106. static struct of_platform_driver fs_enet_driver = {
  1107. .name = "fs_enet",
  1108. .match_table = fs_enet_match,
  1109. .probe = fs_enet_probe,
  1110. .remove = fs_enet_remove,
  1111. };
  1112. static int __init fs_init(void)
  1113. {
  1114. int r = setup_immap();
  1115. if (r != 0)
  1116. return r;
  1117. r = of_register_platform_driver(&fs_enet_driver);
  1118. if (r != 0)
  1119. goto out;
  1120. return 0;
  1121. out:
  1122. cleanup_immap();
  1123. return r;
  1124. }
  1125. static void __exit fs_cleanup(void)
  1126. {
  1127. of_unregister_platform_driver(&fs_enet_driver);
  1128. cleanup_immap();
  1129. }
  1130. #else
  1131. static int __devinit fs_enet_probe(struct device *dev)
  1132. {
  1133. struct net_device *ndev;
  1134. /* no fixup - no device */
  1135. if (dev->platform_data == NULL) {
  1136. printk(KERN_INFO "fs_enet: "
  1137. "probe called with no platform data; "
  1138. "remove unused devices\n");
  1139. return -ENODEV;
  1140. }
  1141. ndev = fs_init_instance(dev, dev->platform_data);
  1142. if (IS_ERR(ndev))
  1143. return PTR_ERR(ndev);
  1144. return 0;
  1145. }
  1146. static int fs_enet_remove(struct device *dev)
  1147. {
  1148. return fs_cleanup_instance(dev_get_drvdata(dev));
  1149. }
  1150. static struct device_driver fs_enet_fec_driver = {
  1151. .name = "fsl-cpm-fec",
  1152. .bus = &platform_bus_type,
  1153. .probe = fs_enet_probe,
  1154. .remove = fs_enet_remove,
  1155. #ifdef CONFIG_PM
  1156. /* .suspend = fs_enet_suspend, TODO */
  1157. /* .resume = fs_enet_resume, TODO */
  1158. #endif
  1159. };
  1160. static struct device_driver fs_enet_scc_driver = {
  1161. .name = "fsl-cpm-scc",
  1162. .bus = &platform_bus_type,
  1163. .probe = fs_enet_probe,
  1164. .remove = fs_enet_remove,
  1165. #ifdef CONFIG_PM
  1166. /* .suspend = fs_enet_suspend, TODO */
  1167. /* .resume = fs_enet_resume, TODO */
  1168. #endif
  1169. };
  1170. static struct device_driver fs_enet_fcc_driver = {
  1171. .name = "fsl-cpm-fcc",
  1172. .bus = &platform_bus_type,
  1173. .probe = fs_enet_probe,
  1174. .remove = fs_enet_remove,
  1175. #ifdef CONFIG_PM
  1176. /* .suspend = fs_enet_suspend, TODO */
  1177. /* .resume = fs_enet_resume, TODO */
  1178. #endif
  1179. };
  1180. static int __init fs_init(void)
  1181. {
  1182. int r;
  1183. printk(KERN_INFO
  1184. "%s", version);
  1185. r = setup_immap();
  1186. if (r != 0)
  1187. return r;
  1188. #ifdef CONFIG_FS_ENET_HAS_FCC
  1189. /* let's insert mii stuff */
  1190. r = fs_enet_mdio_bb_init();
  1191. if (r != 0) {
  1192. printk(KERN_ERR DRV_MODULE_NAME
  1193. "BB PHY init failed.\n");
  1194. return r;
  1195. }
  1196. r = driver_register(&fs_enet_fcc_driver);
  1197. if (r != 0)
  1198. goto err;
  1199. #endif
  1200. #ifdef CONFIG_FS_ENET_HAS_FEC
  1201. r = fs_enet_mdio_fec_init();
  1202. if (r != 0) {
  1203. printk(KERN_ERR DRV_MODULE_NAME
  1204. "FEC PHY init failed.\n");
  1205. return r;
  1206. }
  1207. r = driver_register(&fs_enet_fec_driver);
  1208. if (r != 0)
  1209. goto err;
  1210. #endif
  1211. #ifdef CONFIG_FS_ENET_HAS_SCC
  1212. r = driver_register(&fs_enet_scc_driver);
  1213. if (r != 0)
  1214. goto err;
  1215. #endif
  1216. return 0;
  1217. err:
  1218. cleanup_immap();
  1219. return r;
  1220. }
  1221. static void __exit fs_cleanup(void)
  1222. {
  1223. driver_unregister(&fs_enet_fec_driver);
  1224. driver_unregister(&fs_enet_fcc_driver);
  1225. driver_unregister(&fs_enet_scc_driver);
  1226. cleanup_immap();
  1227. }
  1228. #endif
  1229. #ifdef CONFIG_NET_POLL_CONTROLLER
  1230. static void fs_enet_netpoll(struct net_device *dev)
  1231. {
  1232. disable_irq(dev->irq);
  1233. fs_enet_interrupt(dev->irq, dev, NULL);
  1234. enable_irq(dev->irq);
  1235. }
  1236. #endif
  1237. /**************************************************************************************/
  1238. module_init(fs_init);
  1239. module_exit(fs_cleanup);