mmu.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #undef MMU_DEBUG
  28. #undef AUDIT
  29. #ifdef AUDIT
  30. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  31. #else
  32. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  33. #endif
  34. #ifdef MMU_DEBUG
  35. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  36. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  37. #else
  38. #define pgprintk(x...) do { } while (0)
  39. #define rmap_printk(x...) do { } while (0)
  40. #endif
  41. #if defined(MMU_DEBUG) || defined(AUDIT)
  42. static int dbg = 1;
  43. #endif
  44. #ifndef MMU_DEBUG
  45. #define ASSERT(x) do { } while (0)
  46. #else
  47. #define ASSERT(x) \
  48. if (!(x)) { \
  49. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  50. __FILE__, __LINE__, #x); \
  51. }
  52. #endif
  53. #define PT64_PT_BITS 9
  54. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  55. #define PT32_PT_BITS 10
  56. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  57. #define PT_WRITABLE_SHIFT 1
  58. #define PT_PRESENT_MASK (1ULL << 0)
  59. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  60. #define PT_USER_MASK (1ULL << 2)
  61. #define PT_PWT_MASK (1ULL << 3)
  62. #define PT_PCD_MASK (1ULL << 4)
  63. #define PT_ACCESSED_MASK (1ULL << 5)
  64. #define PT_DIRTY_MASK (1ULL << 6)
  65. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  66. #define PT_PAT_MASK (1ULL << 7)
  67. #define PT_GLOBAL_MASK (1ULL << 8)
  68. #define PT64_NX_MASK (1ULL << 63)
  69. #define PT_PAT_SHIFT 7
  70. #define PT_DIR_PAT_SHIFT 12
  71. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  72. #define PT32_DIR_PSE36_SIZE 4
  73. #define PT32_DIR_PSE36_SHIFT 13
  74. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  75. #define PT32_PTE_COPY_MASK \
  76. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  77. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  81. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  82. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  83. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  84. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  85. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  86. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  87. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  88. #define PT64_LEVEL_BITS 9
  89. #define PT64_LEVEL_SHIFT(level) \
  90. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  91. #define PT64_LEVEL_MASK(level) \
  92. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  93. #define PT64_INDEX(address, level)\
  94. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  95. #define PT32_LEVEL_BITS 10
  96. #define PT32_LEVEL_SHIFT(level) \
  97. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  98. #define PT32_LEVEL_MASK(level) \
  99. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  100. #define PT32_INDEX(address, level)\
  101. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  102. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  103. #define PT64_DIR_BASE_ADDR_MASK \
  104. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  105. #define PT32_BASE_ADDR_MASK PAGE_MASK
  106. #define PT32_DIR_BASE_ADDR_MASK \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  108. #define PFERR_PRESENT_MASK (1U << 0)
  109. #define PFERR_WRITE_MASK (1U << 1)
  110. #define PFERR_USER_MASK (1U << 2)
  111. #define PFERR_FETCH_MASK (1U << 4)
  112. #define PT64_ROOT_LEVEL 4
  113. #define PT32_ROOT_LEVEL 2
  114. #define PT32E_ROOT_LEVEL 3
  115. #define PT_DIRECTORY_LEVEL 2
  116. #define PT_PAGE_TABLE_LEVEL 1
  117. #define RMAP_EXT 4
  118. struct kvm_rmap_desc {
  119. u64 *shadow_ptes[RMAP_EXT];
  120. struct kvm_rmap_desc *more;
  121. };
  122. static struct kmem_cache *pte_chain_cache;
  123. static struct kmem_cache *rmap_desc_cache;
  124. static int is_write_protection(struct kvm_vcpu *vcpu)
  125. {
  126. return vcpu->cr0 & CR0_WP_MASK;
  127. }
  128. static int is_cpuid_PSE36(void)
  129. {
  130. return 1;
  131. }
  132. static int is_nx(struct kvm_vcpu *vcpu)
  133. {
  134. return vcpu->shadow_efer & EFER_NX;
  135. }
  136. static int is_present_pte(unsigned long pte)
  137. {
  138. return pte & PT_PRESENT_MASK;
  139. }
  140. static int is_writeble_pte(unsigned long pte)
  141. {
  142. return pte & PT_WRITABLE_MASK;
  143. }
  144. static int is_io_pte(unsigned long pte)
  145. {
  146. return pte & PT_SHADOW_IO_MARK;
  147. }
  148. static int is_rmap_pte(u64 pte)
  149. {
  150. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  151. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  152. }
  153. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  154. struct kmem_cache *base_cache, int min,
  155. gfp_t gfp_flags)
  156. {
  157. void *obj;
  158. if (cache->nobjs >= min)
  159. return 0;
  160. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  161. obj = kmem_cache_zalloc(base_cache, gfp_flags);
  162. if (!obj)
  163. return -ENOMEM;
  164. cache->objects[cache->nobjs++] = obj;
  165. }
  166. return 0;
  167. }
  168. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  169. {
  170. while (mc->nobjs)
  171. kfree(mc->objects[--mc->nobjs]);
  172. }
  173. static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
  174. {
  175. int r;
  176. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  177. pte_chain_cache, 4, gfp_flags);
  178. if (r)
  179. goto out;
  180. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  181. rmap_desc_cache, 1, gfp_flags);
  182. out:
  183. return r;
  184. }
  185. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  186. {
  187. int r;
  188. r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
  189. if (r < 0) {
  190. spin_unlock(&vcpu->kvm->lock);
  191. kvm_arch_ops->vcpu_put(vcpu);
  192. r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
  193. kvm_arch_ops->vcpu_load(vcpu);
  194. spin_lock(&vcpu->kvm->lock);
  195. }
  196. return r;
  197. }
  198. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  199. {
  200. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  201. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  202. }
  203. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  204. size_t size)
  205. {
  206. void *p;
  207. BUG_ON(!mc->nobjs);
  208. p = mc->objects[--mc->nobjs];
  209. memset(p, 0, size);
  210. return p;
  211. }
  212. static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
  213. {
  214. if (mc->nobjs < KVM_NR_MEM_OBJS)
  215. mc->objects[mc->nobjs++] = obj;
  216. else
  217. kfree(obj);
  218. }
  219. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  220. {
  221. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  222. sizeof(struct kvm_pte_chain));
  223. }
  224. static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
  225. struct kvm_pte_chain *pc)
  226. {
  227. mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
  228. }
  229. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  230. {
  231. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  232. sizeof(struct kvm_rmap_desc));
  233. }
  234. static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
  235. struct kvm_rmap_desc *rd)
  236. {
  237. mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
  238. }
  239. /*
  240. * Reverse mapping data structures:
  241. *
  242. * If page->private bit zero is zero, then page->private points to the
  243. * shadow page table entry that points to page_address(page).
  244. *
  245. * If page->private bit zero is one, (then page->private & ~1) points
  246. * to a struct kvm_rmap_desc containing more mappings.
  247. */
  248. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  249. {
  250. struct page *page;
  251. struct kvm_rmap_desc *desc;
  252. int i;
  253. if (!is_rmap_pte(*spte))
  254. return;
  255. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  256. if (!page_private(page)) {
  257. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  258. set_page_private(page,(unsigned long)spte);
  259. } else if (!(page_private(page) & 1)) {
  260. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  261. desc = mmu_alloc_rmap_desc(vcpu);
  262. desc->shadow_ptes[0] = (u64 *)page_private(page);
  263. desc->shadow_ptes[1] = spte;
  264. set_page_private(page,(unsigned long)desc | 1);
  265. } else {
  266. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  267. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  268. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  269. desc = desc->more;
  270. if (desc->shadow_ptes[RMAP_EXT-1]) {
  271. desc->more = mmu_alloc_rmap_desc(vcpu);
  272. desc = desc->more;
  273. }
  274. for (i = 0; desc->shadow_ptes[i]; ++i)
  275. ;
  276. desc->shadow_ptes[i] = spte;
  277. }
  278. }
  279. static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
  280. struct page *page,
  281. struct kvm_rmap_desc *desc,
  282. int i,
  283. struct kvm_rmap_desc *prev_desc)
  284. {
  285. int j;
  286. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  287. ;
  288. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  289. desc->shadow_ptes[j] = NULL;
  290. if (j != 0)
  291. return;
  292. if (!prev_desc && !desc->more)
  293. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  294. else
  295. if (prev_desc)
  296. prev_desc->more = desc->more;
  297. else
  298. set_page_private(page,(unsigned long)desc->more | 1);
  299. mmu_free_rmap_desc(vcpu, desc);
  300. }
  301. static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
  302. {
  303. struct page *page;
  304. struct kvm_rmap_desc *desc;
  305. struct kvm_rmap_desc *prev_desc;
  306. int i;
  307. if (!is_rmap_pte(*spte))
  308. return;
  309. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  310. if (!page_private(page)) {
  311. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  312. BUG();
  313. } else if (!(page_private(page) & 1)) {
  314. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  315. if ((u64 *)page_private(page) != spte) {
  316. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  317. spte, *spte);
  318. BUG();
  319. }
  320. set_page_private(page,0);
  321. } else {
  322. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  323. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  324. prev_desc = NULL;
  325. while (desc) {
  326. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  327. if (desc->shadow_ptes[i] == spte) {
  328. rmap_desc_remove_entry(vcpu, page,
  329. desc, i,
  330. prev_desc);
  331. return;
  332. }
  333. prev_desc = desc;
  334. desc = desc->more;
  335. }
  336. BUG();
  337. }
  338. }
  339. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  340. {
  341. struct kvm *kvm = vcpu->kvm;
  342. struct page *page;
  343. struct kvm_rmap_desc *desc;
  344. u64 *spte;
  345. page = gfn_to_page(kvm, gfn);
  346. BUG_ON(!page);
  347. while (page_private(page)) {
  348. if (!(page_private(page) & 1))
  349. spte = (u64 *)page_private(page);
  350. else {
  351. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  352. spte = desc->shadow_ptes[0];
  353. }
  354. BUG_ON(!spte);
  355. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  356. != page_to_pfn(page));
  357. BUG_ON(!(*spte & PT_PRESENT_MASK));
  358. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  359. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  360. rmap_remove(vcpu, spte);
  361. kvm_arch_ops->tlb_flush(vcpu);
  362. *spte &= ~(u64)PT_WRITABLE_MASK;
  363. }
  364. }
  365. #ifdef MMU_DEBUG
  366. static int is_empty_shadow_page(hpa_t page_hpa)
  367. {
  368. u64 *pos;
  369. u64 *end;
  370. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
  371. pos != end; pos++)
  372. if (*pos != 0) {
  373. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  374. pos, *pos);
  375. return 0;
  376. }
  377. return 1;
  378. }
  379. #endif
  380. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  381. {
  382. struct kvm_mmu_page *page_head = page_header(page_hpa);
  383. ASSERT(is_empty_shadow_page(page_hpa));
  384. page_head->page_hpa = page_hpa;
  385. list_move(&page_head->link, &vcpu->free_pages);
  386. ++vcpu->kvm->n_free_mmu_pages;
  387. }
  388. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  389. {
  390. return gfn;
  391. }
  392. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  393. u64 *parent_pte)
  394. {
  395. struct kvm_mmu_page *page;
  396. if (list_empty(&vcpu->free_pages))
  397. return NULL;
  398. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  399. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  400. ASSERT(is_empty_shadow_page(page->page_hpa));
  401. page->slot_bitmap = 0;
  402. page->multimapped = 0;
  403. page->parent_pte = parent_pte;
  404. --vcpu->kvm->n_free_mmu_pages;
  405. return page;
  406. }
  407. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  408. struct kvm_mmu_page *page, u64 *parent_pte)
  409. {
  410. struct kvm_pte_chain *pte_chain;
  411. struct hlist_node *node;
  412. int i;
  413. if (!parent_pte)
  414. return;
  415. if (!page->multimapped) {
  416. u64 *old = page->parent_pte;
  417. if (!old) {
  418. page->parent_pte = parent_pte;
  419. return;
  420. }
  421. page->multimapped = 1;
  422. pte_chain = mmu_alloc_pte_chain(vcpu);
  423. INIT_HLIST_HEAD(&page->parent_ptes);
  424. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  425. pte_chain->parent_ptes[0] = old;
  426. }
  427. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  428. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  429. continue;
  430. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  431. if (!pte_chain->parent_ptes[i]) {
  432. pte_chain->parent_ptes[i] = parent_pte;
  433. return;
  434. }
  435. }
  436. pte_chain = mmu_alloc_pte_chain(vcpu);
  437. BUG_ON(!pte_chain);
  438. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  439. pte_chain->parent_ptes[0] = parent_pte;
  440. }
  441. static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
  442. struct kvm_mmu_page *page,
  443. u64 *parent_pte)
  444. {
  445. struct kvm_pte_chain *pte_chain;
  446. struct hlist_node *node;
  447. int i;
  448. if (!page->multimapped) {
  449. BUG_ON(page->parent_pte != parent_pte);
  450. page->parent_pte = NULL;
  451. return;
  452. }
  453. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  454. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  455. if (!pte_chain->parent_ptes[i])
  456. break;
  457. if (pte_chain->parent_ptes[i] != parent_pte)
  458. continue;
  459. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  460. && pte_chain->parent_ptes[i + 1]) {
  461. pte_chain->parent_ptes[i]
  462. = pte_chain->parent_ptes[i + 1];
  463. ++i;
  464. }
  465. pte_chain->parent_ptes[i] = NULL;
  466. if (i == 0) {
  467. hlist_del(&pte_chain->link);
  468. mmu_free_pte_chain(vcpu, pte_chain);
  469. if (hlist_empty(&page->parent_ptes)) {
  470. page->multimapped = 0;
  471. page->parent_pte = NULL;
  472. }
  473. }
  474. return;
  475. }
  476. BUG();
  477. }
  478. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  479. gfn_t gfn)
  480. {
  481. unsigned index;
  482. struct hlist_head *bucket;
  483. struct kvm_mmu_page *page;
  484. struct hlist_node *node;
  485. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  486. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  487. bucket = &vcpu->kvm->mmu_page_hash[index];
  488. hlist_for_each_entry(page, node, bucket, hash_link)
  489. if (page->gfn == gfn && !page->role.metaphysical) {
  490. pgprintk("%s: found role %x\n",
  491. __FUNCTION__, page->role.word);
  492. return page;
  493. }
  494. return NULL;
  495. }
  496. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  497. gfn_t gfn,
  498. gva_t gaddr,
  499. unsigned level,
  500. int metaphysical,
  501. unsigned hugepage_access,
  502. u64 *parent_pte)
  503. {
  504. union kvm_mmu_page_role role;
  505. unsigned index;
  506. unsigned quadrant;
  507. struct hlist_head *bucket;
  508. struct kvm_mmu_page *page;
  509. struct hlist_node *node;
  510. role.word = 0;
  511. role.glevels = vcpu->mmu.root_level;
  512. role.level = level;
  513. role.metaphysical = metaphysical;
  514. role.hugepage_access = hugepage_access;
  515. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  516. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  517. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  518. role.quadrant = quadrant;
  519. }
  520. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  521. gfn, role.word);
  522. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  523. bucket = &vcpu->kvm->mmu_page_hash[index];
  524. hlist_for_each_entry(page, node, bucket, hash_link)
  525. if (page->gfn == gfn && page->role.word == role.word) {
  526. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  527. pgprintk("%s: found\n", __FUNCTION__);
  528. return page;
  529. }
  530. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  531. if (!page)
  532. return page;
  533. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  534. page->gfn = gfn;
  535. page->role = role;
  536. hlist_add_head(&page->hash_link, bucket);
  537. if (!metaphysical)
  538. rmap_write_protect(vcpu, gfn);
  539. return page;
  540. }
  541. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  542. struct kvm_mmu_page *page)
  543. {
  544. unsigned i;
  545. u64 *pt;
  546. u64 ent;
  547. pt = __va(page->page_hpa);
  548. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  549. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  550. if (pt[i] & PT_PRESENT_MASK)
  551. rmap_remove(vcpu, &pt[i]);
  552. pt[i] = 0;
  553. }
  554. kvm_arch_ops->tlb_flush(vcpu);
  555. return;
  556. }
  557. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  558. ent = pt[i];
  559. pt[i] = 0;
  560. if (!(ent & PT_PRESENT_MASK))
  561. continue;
  562. ent &= PT64_BASE_ADDR_MASK;
  563. mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
  564. }
  565. }
  566. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  567. struct kvm_mmu_page *page,
  568. u64 *parent_pte)
  569. {
  570. mmu_page_remove_parent_pte(vcpu, page, parent_pte);
  571. }
  572. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  573. struct kvm_mmu_page *page)
  574. {
  575. u64 *parent_pte;
  576. while (page->multimapped || page->parent_pte) {
  577. if (!page->multimapped)
  578. parent_pte = page->parent_pte;
  579. else {
  580. struct kvm_pte_chain *chain;
  581. chain = container_of(page->parent_ptes.first,
  582. struct kvm_pte_chain, link);
  583. parent_pte = chain->parent_ptes[0];
  584. }
  585. BUG_ON(!parent_pte);
  586. kvm_mmu_put_page(vcpu, page, parent_pte);
  587. *parent_pte = 0;
  588. }
  589. kvm_mmu_page_unlink_children(vcpu, page);
  590. if (!page->root_count) {
  591. hlist_del(&page->hash_link);
  592. kvm_mmu_free_page(vcpu, page->page_hpa);
  593. } else
  594. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  595. }
  596. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  597. {
  598. unsigned index;
  599. struct hlist_head *bucket;
  600. struct kvm_mmu_page *page;
  601. struct hlist_node *node, *n;
  602. int r;
  603. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  604. r = 0;
  605. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  606. bucket = &vcpu->kvm->mmu_page_hash[index];
  607. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  608. if (page->gfn == gfn && !page->role.metaphysical) {
  609. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  610. page->role.word);
  611. kvm_mmu_zap_page(vcpu, page);
  612. r = 1;
  613. }
  614. return r;
  615. }
  616. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  617. {
  618. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  619. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  620. __set_bit(slot, &page_head->slot_bitmap);
  621. }
  622. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  623. {
  624. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  625. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  626. }
  627. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  628. {
  629. struct page *page;
  630. ASSERT((gpa & HPA_ERR_MASK) == 0);
  631. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  632. if (!page)
  633. return gpa | HPA_ERR_MASK;
  634. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  635. | (gpa & (PAGE_SIZE-1));
  636. }
  637. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  638. {
  639. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  640. if (gpa == UNMAPPED_GVA)
  641. return UNMAPPED_GVA;
  642. return gpa_to_hpa(vcpu, gpa);
  643. }
  644. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  645. {
  646. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  647. if (gpa == UNMAPPED_GVA)
  648. return NULL;
  649. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  650. }
  651. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  652. {
  653. }
  654. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  655. {
  656. int level = PT32E_ROOT_LEVEL;
  657. hpa_t table_addr = vcpu->mmu.root_hpa;
  658. for (; ; level--) {
  659. u32 index = PT64_INDEX(v, level);
  660. u64 *table;
  661. u64 pte;
  662. ASSERT(VALID_PAGE(table_addr));
  663. table = __va(table_addr);
  664. if (level == 1) {
  665. pte = table[index];
  666. if (is_present_pte(pte) && is_writeble_pte(pte))
  667. return 0;
  668. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  669. page_header_update_slot(vcpu->kvm, table, v);
  670. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  671. PT_USER_MASK;
  672. rmap_add(vcpu, &table[index]);
  673. return 0;
  674. }
  675. if (table[index] == 0) {
  676. struct kvm_mmu_page *new_table;
  677. gfn_t pseudo_gfn;
  678. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  679. >> PAGE_SHIFT;
  680. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  681. v, level - 1,
  682. 1, 0, &table[index]);
  683. if (!new_table) {
  684. pgprintk("nonpaging_map: ENOMEM\n");
  685. return -ENOMEM;
  686. }
  687. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  688. | PT_WRITABLE_MASK | PT_USER_MASK;
  689. }
  690. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  691. }
  692. }
  693. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  694. {
  695. int i;
  696. struct kvm_mmu_page *page;
  697. #ifdef CONFIG_X86_64
  698. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  699. hpa_t root = vcpu->mmu.root_hpa;
  700. ASSERT(VALID_PAGE(root));
  701. page = page_header(root);
  702. --page->root_count;
  703. vcpu->mmu.root_hpa = INVALID_PAGE;
  704. return;
  705. }
  706. #endif
  707. for (i = 0; i < 4; ++i) {
  708. hpa_t root = vcpu->mmu.pae_root[i];
  709. if (root) {
  710. ASSERT(VALID_PAGE(root));
  711. root &= PT64_BASE_ADDR_MASK;
  712. page = page_header(root);
  713. --page->root_count;
  714. }
  715. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  716. }
  717. vcpu->mmu.root_hpa = INVALID_PAGE;
  718. }
  719. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  720. {
  721. int i;
  722. gfn_t root_gfn;
  723. struct kvm_mmu_page *page;
  724. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  725. #ifdef CONFIG_X86_64
  726. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  727. hpa_t root = vcpu->mmu.root_hpa;
  728. ASSERT(!VALID_PAGE(root));
  729. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  730. PT64_ROOT_LEVEL, 0, 0, NULL);
  731. root = page->page_hpa;
  732. ++page->root_count;
  733. vcpu->mmu.root_hpa = root;
  734. return;
  735. }
  736. #endif
  737. for (i = 0; i < 4; ++i) {
  738. hpa_t root = vcpu->mmu.pae_root[i];
  739. ASSERT(!VALID_PAGE(root));
  740. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  741. if (!is_present_pte(vcpu->pdptrs[i])) {
  742. vcpu->mmu.pae_root[i] = 0;
  743. continue;
  744. }
  745. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  746. } else if (vcpu->mmu.root_level == 0)
  747. root_gfn = 0;
  748. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  749. PT32_ROOT_LEVEL, !is_paging(vcpu),
  750. 0, NULL);
  751. root = page->page_hpa;
  752. ++page->root_count;
  753. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  754. }
  755. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  756. }
  757. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  758. {
  759. return vaddr;
  760. }
  761. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  762. u32 error_code)
  763. {
  764. gpa_t addr = gva;
  765. hpa_t paddr;
  766. int r;
  767. r = mmu_topup_memory_caches(vcpu);
  768. if (r)
  769. return r;
  770. ASSERT(vcpu);
  771. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  772. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  773. if (is_error_hpa(paddr))
  774. return 1;
  775. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  776. }
  777. static void nonpaging_free(struct kvm_vcpu *vcpu)
  778. {
  779. mmu_free_roots(vcpu);
  780. }
  781. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  782. {
  783. struct kvm_mmu *context = &vcpu->mmu;
  784. context->new_cr3 = nonpaging_new_cr3;
  785. context->page_fault = nonpaging_page_fault;
  786. context->gva_to_gpa = nonpaging_gva_to_gpa;
  787. context->free = nonpaging_free;
  788. context->root_level = 0;
  789. context->shadow_root_level = PT32E_ROOT_LEVEL;
  790. mmu_alloc_roots(vcpu);
  791. ASSERT(VALID_PAGE(context->root_hpa));
  792. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  793. return 0;
  794. }
  795. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  796. {
  797. ++vcpu->stat.tlb_flush;
  798. kvm_arch_ops->tlb_flush(vcpu);
  799. }
  800. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  801. {
  802. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  803. mmu_free_roots(vcpu);
  804. if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
  805. kvm_mmu_free_some_pages(vcpu);
  806. mmu_alloc_roots(vcpu);
  807. kvm_mmu_flush_tlb(vcpu);
  808. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  809. }
  810. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  811. u64 *shadow_pte,
  812. gpa_t gaddr,
  813. int dirty,
  814. u64 access_bits,
  815. gfn_t gfn)
  816. {
  817. hpa_t paddr;
  818. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  819. if (!dirty)
  820. access_bits &= ~PT_WRITABLE_MASK;
  821. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  822. *shadow_pte |= access_bits;
  823. if (is_error_hpa(paddr)) {
  824. *shadow_pte |= gaddr;
  825. *shadow_pte |= PT_SHADOW_IO_MARK;
  826. *shadow_pte &= ~PT_PRESENT_MASK;
  827. return;
  828. }
  829. *shadow_pte |= paddr;
  830. if (access_bits & PT_WRITABLE_MASK) {
  831. struct kvm_mmu_page *shadow;
  832. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  833. if (shadow) {
  834. pgprintk("%s: found shadow page for %lx, marking ro\n",
  835. __FUNCTION__, gfn);
  836. access_bits &= ~PT_WRITABLE_MASK;
  837. if (is_writeble_pte(*shadow_pte)) {
  838. *shadow_pte &= ~PT_WRITABLE_MASK;
  839. kvm_arch_ops->tlb_flush(vcpu);
  840. }
  841. }
  842. }
  843. if (access_bits & PT_WRITABLE_MASK)
  844. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  845. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  846. rmap_add(vcpu, shadow_pte);
  847. }
  848. static void inject_page_fault(struct kvm_vcpu *vcpu,
  849. u64 addr,
  850. u32 err_code)
  851. {
  852. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  853. }
  854. static inline int fix_read_pf(u64 *shadow_ent)
  855. {
  856. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  857. !(*shadow_ent & PT_USER_MASK)) {
  858. /*
  859. * If supervisor write protect is disabled, we shadow kernel
  860. * pages as user pages so we can trap the write access.
  861. */
  862. *shadow_ent |= PT_USER_MASK;
  863. *shadow_ent &= ~PT_WRITABLE_MASK;
  864. return 1;
  865. }
  866. return 0;
  867. }
  868. static void paging_free(struct kvm_vcpu *vcpu)
  869. {
  870. nonpaging_free(vcpu);
  871. }
  872. #define PTTYPE 64
  873. #include "paging_tmpl.h"
  874. #undef PTTYPE
  875. #define PTTYPE 32
  876. #include "paging_tmpl.h"
  877. #undef PTTYPE
  878. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  879. {
  880. struct kvm_mmu *context = &vcpu->mmu;
  881. ASSERT(is_pae(vcpu));
  882. context->new_cr3 = paging_new_cr3;
  883. context->page_fault = paging64_page_fault;
  884. context->gva_to_gpa = paging64_gva_to_gpa;
  885. context->free = paging_free;
  886. context->root_level = level;
  887. context->shadow_root_level = level;
  888. mmu_alloc_roots(vcpu);
  889. ASSERT(VALID_PAGE(context->root_hpa));
  890. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  891. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  892. return 0;
  893. }
  894. static int paging64_init_context(struct kvm_vcpu *vcpu)
  895. {
  896. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  897. }
  898. static int paging32_init_context(struct kvm_vcpu *vcpu)
  899. {
  900. struct kvm_mmu *context = &vcpu->mmu;
  901. context->new_cr3 = paging_new_cr3;
  902. context->page_fault = paging32_page_fault;
  903. context->gva_to_gpa = paging32_gva_to_gpa;
  904. context->free = paging_free;
  905. context->root_level = PT32_ROOT_LEVEL;
  906. context->shadow_root_level = PT32E_ROOT_LEVEL;
  907. mmu_alloc_roots(vcpu);
  908. ASSERT(VALID_PAGE(context->root_hpa));
  909. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  910. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  911. return 0;
  912. }
  913. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  914. {
  915. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  916. }
  917. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  918. {
  919. ASSERT(vcpu);
  920. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  921. if (!is_paging(vcpu))
  922. return nonpaging_init_context(vcpu);
  923. else if (is_long_mode(vcpu))
  924. return paging64_init_context(vcpu);
  925. else if (is_pae(vcpu))
  926. return paging32E_init_context(vcpu);
  927. else
  928. return paging32_init_context(vcpu);
  929. }
  930. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  931. {
  932. ASSERT(vcpu);
  933. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  934. vcpu->mmu.free(vcpu);
  935. vcpu->mmu.root_hpa = INVALID_PAGE;
  936. }
  937. }
  938. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  939. {
  940. int r;
  941. destroy_kvm_mmu(vcpu);
  942. r = init_kvm_mmu(vcpu);
  943. if (r < 0)
  944. goto out;
  945. r = mmu_topup_memory_caches(vcpu);
  946. out:
  947. return r;
  948. }
  949. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  950. struct kvm_mmu_page *page,
  951. u64 *spte)
  952. {
  953. u64 pte;
  954. struct kvm_mmu_page *child;
  955. pte = *spte;
  956. if (is_present_pte(pte)) {
  957. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  958. rmap_remove(vcpu, spte);
  959. else {
  960. child = page_header(pte & PT64_BASE_ADDR_MASK);
  961. mmu_page_remove_parent_pte(vcpu, child, spte);
  962. }
  963. }
  964. *spte = 0;
  965. }
  966. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  967. const u8 *old, const u8 *new, int bytes)
  968. {
  969. gfn_t gfn = gpa >> PAGE_SHIFT;
  970. struct kvm_mmu_page *page;
  971. struct hlist_node *node, *n;
  972. struct hlist_head *bucket;
  973. unsigned index;
  974. u64 *spte;
  975. unsigned offset = offset_in_page(gpa);
  976. unsigned pte_size;
  977. unsigned page_offset;
  978. unsigned misaligned;
  979. unsigned quadrant;
  980. int level;
  981. int flooded = 0;
  982. int npte;
  983. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  984. if (gfn == vcpu->last_pt_write_gfn) {
  985. ++vcpu->last_pt_write_count;
  986. if (vcpu->last_pt_write_count >= 3)
  987. flooded = 1;
  988. } else {
  989. vcpu->last_pt_write_gfn = gfn;
  990. vcpu->last_pt_write_count = 1;
  991. }
  992. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  993. bucket = &vcpu->kvm->mmu_page_hash[index];
  994. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  995. if (page->gfn != gfn || page->role.metaphysical)
  996. continue;
  997. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  998. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  999. misaligned |= bytes < 4;
  1000. if (misaligned || flooded) {
  1001. /*
  1002. * Misaligned accesses are too much trouble to fix
  1003. * up; also, they usually indicate a page is not used
  1004. * as a page table.
  1005. *
  1006. * If we're seeing too many writes to a page,
  1007. * it may no longer be a page table, or we may be
  1008. * forking, in which case it is better to unmap the
  1009. * page.
  1010. */
  1011. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1012. gpa, bytes, page->role.word);
  1013. kvm_mmu_zap_page(vcpu, page);
  1014. continue;
  1015. }
  1016. page_offset = offset;
  1017. level = page->role.level;
  1018. npte = 1;
  1019. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1020. page_offset <<= 1; /* 32->64 */
  1021. /*
  1022. * A 32-bit pde maps 4MB while the shadow pdes map
  1023. * only 2MB. So we need to double the offset again
  1024. * and zap two pdes instead of one.
  1025. */
  1026. if (level == PT32_ROOT_LEVEL) {
  1027. page_offset &= ~7; /* kill rounding error */
  1028. page_offset <<= 1;
  1029. npte = 2;
  1030. }
  1031. quadrant = page_offset >> PAGE_SHIFT;
  1032. page_offset &= ~PAGE_MASK;
  1033. if (quadrant != page->role.quadrant)
  1034. continue;
  1035. }
  1036. spte = __va(page->page_hpa);
  1037. spte += page_offset / sizeof(*spte);
  1038. while (npte--) {
  1039. mmu_pte_write_zap_pte(vcpu, page, spte);
  1040. ++spte;
  1041. }
  1042. }
  1043. }
  1044. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1045. {
  1046. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1047. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1048. }
  1049. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1050. {
  1051. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1052. struct kvm_mmu_page *page;
  1053. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1054. struct kvm_mmu_page, link);
  1055. kvm_mmu_zap_page(vcpu, page);
  1056. }
  1057. }
  1058. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  1059. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1060. {
  1061. struct kvm_mmu_page *page;
  1062. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1063. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1064. struct kvm_mmu_page, link);
  1065. kvm_mmu_zap_page(vcpu, page);
  1066. }
  1067. while (!list_empty(&vcpu->free_pages)) {
  1068. page = list_entry(vcpu->free_pages.next,
  1069. struct kvm_mmu_page, link);
  1070. list_del(&page->link);
  1071. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  1072. page->page_hpa = INVALID_PAGE;
  1073. }
  1074. free_page((unsigned long)vcpu->mmu.pae_root);
  1075. }
  1076. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1077. {
  1078. struct page *page;
  1079. int i;
  1080. ASSERT(vcpu);
  1081. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  1082. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  1083. INIT_LIST_HEAD(&page_header->link);
  1084. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  1085. goto error_1;
  1086. set_page_private(page, (unsigned long)page_header);
  1087. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  1088. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  1089. list_add(&page_header->link, &vcpu->free_pages);
  1090. ++vcpu->kvm->n_free_mmu_pages;
  1091. }
  1092. /*
  1093. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1094. * Therefore we need to allocate shadow page tables in the first
  1095. * 4GB of memory, which happens to fit the DMA32 zone.
  1096. */
  1097. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1098. if (!page)
  1099. goto error_1;
  1100. vcpu->mmu.pae_root = page_address(page);
  1101. for (i = 0; i < 4; ++i)
  1102. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1103. return 0;
  1104. error_1:
  1105. free_mmu_pages(vcpu);
  1106. return -ENOMEM;
  1107. }
  1108. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1109. {
  1110. ASSERT(vcpu);
  1111. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1112. ASSERT(list_empty(&vcpu->free_pages));
  1113. return alloc_mmu_pages(vcpu);
  1114. }
  1115. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1116. {
  1117. ASSERT(vcpu);
  1118. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1119. ASSERT(!list_empty(&vcpu->free_pages));
  1120. return init_kvm_mmu(vcpu);
  1121. }
  1122. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1123. {
  1124. ASSERT(vcpu);
  1125. destroy_kvm_mmu(vcpu);
  1126. free_mmu_pages(vcpu);
  1127. mmu_free_memory_caches(vcpu);
  1128. }
  1129. void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  1130. {
  1131. struct kvm *kvm = vcpu->kvm;
  1132. struct kvm_mmu_page *page;
  1133. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1134. int i;
  1135. u64 *pt;
  1136. if (!test_bit(slot, &page->slot_bitmap))
  1137. continue;
  1138. pt = __va(page->page_hpa);
  1139. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1140. /* avoid RMW */
  1141. if (pt[i] & PT_WRITABLE_MASK) {
  1142. rmap_remove(vcpu, &pt[i]);
  1143. pt[i] &= ~PT_WRITABLE_MASK;
  1144. }
  1145. }
  1146. }
  1147. void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
  1148. {
  1149. destroy_kvm_mmu(vcpu);
  1150. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1151. struct kvm_mmu_page *page;
  1152. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1153. struct kvm_mmu_page, link);
  1154. kvm_mmu_zap_page(vcpu, page);
  1155. }
  1156. mmu_free_memory_caches(vcpu);
  1157. kvm_arch_ops->tlb_flush(vcpu);
  1158. init_kvm_mmu(vcpu);
  1159. }
  1160. void kvm_mmu_module_exit(void)
  1161. {
  1162. if (pte_chain_cache)
  1163. kmem_cache_destroy(pte_chain_cache);
  1164. if (rmap_desc_cache)
  1165. kmem_cache_destroy(rmap_desc_cache);
  1166. }
  1167. int kvm_mmu_module_init(void)
  1168. {
  1169. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1170. sizeof(struct kvm_pte_chain),
  1171. 0, 0, NULL, NULL);
  1172. if (!pte_chain_cache)
  1173. goto nomem;
  1174. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1175. sizeof(struct kvm_rmap_desc),
  1176. 0, 0, NULL, NULL);
  1177. if (!rmap_desc_cache)
  1178. goto nomem;
  1179. return 0;
  1180. nomem:
  1181. kvm_mmu_module_exit();
  1182. return -ENOMEM;
  1183. }
  1184. #ifdef AUDIT
  1185. static const char *audit_msg;
  1186. static gva_t canonicalize(gva_t gva)
  1187. {
  1188. #ifdef CONFIG_X86_64
  1189. gva = (long long)(gva << 16) >> 16;
  1190. #endif
  1191. return gva;
  1192. }
  1193. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1194. gva_t va, int level)
  1195. {
  1196. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1197. int i;
  1198. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1199. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1200. u64 ent = pt[i];
  1201. if (!(ent & PT_PRESENT_MASK))
  1202. continue;
  1203. va = canonicalize(va);
  1204. if (level > 1)
  1205. audit_mappings_page(vcpu, ent, va, level - 1);
  1206. else {
  1207. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1208. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1209. if ((ent & PT_PRESENT_MASK)
  1210. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1211. printk(KERN_ERR "audit error: (%s) levels %d"
  1212. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1213. audit_msg, vcpu->mmu.root_level,
  1214. va, gpa, hpa, ent);
  1215. }
  1216. }
  1217. }
  1218. static void audit_mappings(struct kvm_vcpu *vcpu)
  1219. {
  1220. unsigned i;
  1221. if (vcpu->mmu.root_level == 4)
  1222. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1223. else
  1224. for (i = 0; i < 4; ++i)
  1225. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1226. audit_mappings_page(vcpu,
  1227. vcpu->mmu.pae_root[i],
  1228. i << 30,
  1229. 2);
  1230. }
  1231. static int count_rmaps(struct kvm_vcpu *vcpu)
  1232. {
  1233. int nmaps = 0;
  1234. int i, j, k;
  1235. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1236. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1237. struct kvm_rmap_desc *d;
  1238. for (j = 0; j < m->npages; ++j) {
  1239. struct page *page = m->phys_mem[j];
  1240. if (!page->private)
  1241. continue;
  1242. if (!(page->private & 1)) {
  1243. ++nmaps;
  1244. continue;
  1245. }
  1246. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1247. while (d) {
  1248. for (k = 0; k < RMAP_EXT; ++k)
  1249. if (d->shadow_ptes[k])
  1250. ++nmaps;
  1251. else
  1252. break;
  1253. d = d->more;
  1254. }
  1255. }
  1256. }
  1257. return nmaps;
  1258. }
  1259. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1260. {
  1261. int nmaps = 0;
  1262. struct kvm_mmu_page *page;
  1263. int i;
  1264. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1265. u64 *pt = __va(page->page_hpa);
  1266. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1267. continue;
  1268. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1269. u64 ent = pt[i];
  1270. if (!(ent & PT_PRESENT_MASK))
  1271. continue;
  1272. if (!(ent & PT_WRITABLE_MASK))
  1273. continue;
  1274. ++nmaps;
  1275. }
  1276. }
  1277. return nmaps;
  1278. }
  1279. static void audit_rmap(struct kvm_vcpu *vcpu)
  1280. {
  1281. int n_rmap = count_rmaps(vcpu);
  1282. int n_actual = count_writable_mappings(vcpu);
  1283. if (n_rmap != n_actual)
  1284. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1285. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1286. }
  1287. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1288. {
  1289. struct kvm_mmu_page *page;
  1290. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1291. hfn_t hfn;
  1292. struct page *pg;
  1293. if (page->role.metaphysical)
  1294. continue;
  1295. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1296. >> PAGE_SHIFT;
  1297. pg = pfn_to_page(hfn);
  1298. if (pg->private)
  1299. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1300. " mappings: gfn %lx role %x\n",
  1301. __FUNCTION__, audit_msg, page->gfn,
  1302. page->role.word);
  1303. }
  1304. }
  1305. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1306. {
  1307. int olddbg = dbg;
  1308. dbg = 0;
  1309. audit_msg = msg;
  1310. audit_rmap(vcpu);
  1311. audit_write_protection(vcpu);
  1312. audit_mappings(vcpu);
  1313. dbg = olddbg;
  1314. }
  1315. #endif