disk-io.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. static struct extent_io_ops btree_extent_io_ops;
  47. static void end_workqueue_fn(struct btrfs_work *work);
  48. static void free_fs_root(struct btrfs_root *root);
  49. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  50. int read_only);
  51. static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  52. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  53. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  54. struct btrfs_root *root);
  55. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  56. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  57. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  58. struct extent_io_tree *dirty_pages,
  59. int mark);
  60. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  61. struct extent_io_tree *pinned_extents);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. int error;
  98. };
  99. /*
  100. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  101. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  102. * the level the eb occupies in the tree.
  103. *
  104. * Different roots are used for different purposes and may nest inside each
  105. * other and they require separate keysets. As lockdep keys should be
  106. * static, assign keysets according to the purpose of the root as indicated
  107. * by btrfs_root->objectid. This ensures that all special purpose roots
  108. * have separate keysets.
  109. *
  110. * Lock-nesting across peer nodes is always done with the immediate parent
  111. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  112. * subclass to avoid triggering lockdep warning in such cases.
  113. *
  114. * The key is set by the readpage_end_io_hook after the buffer has passed
  115. * csum validation but before the pages are unlocked. It is also set by
  116. * btrfs_init_new_buffer on freshly allocated blocks.
  117. *
  118. * We also add a check to make sure the highest level of the tree is the
  119. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  120. * needs update as well.
  121. */
  122. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  123. # if BTRFS_MAX_LEVEL != 8
  124. # error
  125. # endif
  126. static struct btrfs_lockdep_keyset {
  127. u64 id; /* root objectid */
  128. const char *name_stem; /* lock name stem */
  129. char names[BTRFS_MAX_LEVEL + 1][20];
  130. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  131. } btrfs_lockdep_keysets[] = {
  132. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  133. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  134. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  135. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  136. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  137. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  138. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  139. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  140. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  141. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  142. { .id = 0, .name_stem = "tree" },
  143. };
  144. void __init btrfs_init_lockdep(void)
  145. {
  146. int i, j;
  147. /* initialize lockdep class names */
  148. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  149. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  150. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  151. snprintf(ks->names[j], sizeof(ks->names[j]),
  152. "btrfs-%s-%02d", ks->name_stem, j);
  153. }
  154. }
  155. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  156. int level)
  157. {
  158. struct btrfs_lockdep_keyset *ks;
  159. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  160. /* find the matching keyset, id 0 is the default entry */
  161. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  162. if (ks->id == objectid)
  163. break;
  164. lockdep_set_class_and_name(&eb->lock,
  165. &ks->keys[level], ks->names[level]);
  166. }
  167. #endif
  168. /*
  169. * extents on the btree inode are pretty simple, there's one extent
  170. * that covers the entire device
  171. */
  172. static struct extent_map *btree_get_extent(struct inode *inode,
  173. struct page *page, size_t pg_offset, u64 start, u64 len,
  174. int create)
  175. {
  176. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  177. struct extent_map *em;
  178. int ret;
  179. read_lock(&em_tree->lock);
  180. em = lookup_extent_mapping(em_tree, start, len);
  181. if (em) {
  182. em->bdev =
  183. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  184. read_unlock(&em_tree->lock);
  185. goto out;
  186. }
  187. read_unlock(&em_tree->lock);
  188. em = alloc_extent_map();
  189. if (!em) {
  190. em = ERR_PTR(-ENOMEM);
  191. goto out;
  192. }
  193. em->start = 0;
  194. em->len = (u64)-1;
  195. em->block_len = (u64)-1;
  196. em->block_start = 0;
  197. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  198. write_lock(&em_tree->lock);
  199. ret = add_extent_mapping(em_tree, em);
  200. if (ret == -EEXIST) {
  201. u64 failed_start = em->start;
  202. u64 failed_len = em->len;
  203. free_extent_map(em);
  204. em = lookup_extent_mapping(em_tree, start, len);
  205. if (em) {
  206. ret = 0;
  207. } else {
  208. em = lookup_extent_mapping(em_tree, failed_start,
  209. failed_len);
  210. ret = -EIO;
  211. }
  212. } else if (ret) {
  213. free_extent_map(em);
  214. em = NULL;
  215. }
  216. write_unlock(&em_tree->lock);
  217. if (ret)
  218. em = ERR_PTR(ret);
  219. out:
  220. return em;
  221. }
  222. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  223. {
  224. return crc32c(seed, data, len);
  225. }
  226. void btrfs_csum_final(u32 crc, char *result)
  227. {
  228. put_unaligned_le32(~crc, result);
  229. }
  230. /*
  231. * compute the csum for a btree block, and either verify it or write it
  232. * into the csum field of the block.
  233. */
  234. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  235. int verify)
  236. {
  237. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  238. char *result = NULL;
  239. unsigned long len;
  240. unsigned long cur_len;
  241. unsigned long offset = BTRFS_CSUM_SIZE;
  242. char *kaddr;
  243. unsigned long map_start;
  244. unsigned long map_len;
  245. int err;
  246. u32 crc = ~(u32)0;
  247. unsigned long inline_result;
  248. len = buf->len - offset;
  249. while (len > 0) {
  250. err = map_private_extent_buffer(buf, offset, 32,
  251. &kaddr, &map_start, &map_len);
  252. if (err)
  253. return 1;
  254. cur_len = min(len, map_len - (offset - map_start));
  255. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  256. crc, cur_len);
  257. len -= cur_len;
  258. offset += cur_len;
  259. }
  260. if (csum_size > sizeof(inline_result)) {
  261. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  262. if (!result)
  263. return 1;
  264. } else {
  265. result = (char *)&inline_result;
  266. }
  267. btrfs_csum_final(crc, result);
  268. if (verify) {
  269. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  270. u32 val;
  271. u32 found = 0;
  272. memcpy(&found, result, csum_size);
  273. read_extent_buffer(buf, &val, 0, csum_size);
  274. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  275. "failed on %llu wanted %X found %X "
  276. "level %d\n",
  277. root->fs_info->sb->s_id,
  278. (unsigned long long)buf->start, val, found,
  279. btrfs_header_level(buf));
  280. if (result != (char *)&inline_result)
  281. kfree(result);
  282. return 1;
  283. }
  284. } else {
  285. write_extent_buffer(buf, result, 0, csum_size);
  286. }
  287. if (result != (char *)&inline_result)
  288. kfree(result);
  289. return 0;
  290. }
  291. /*
  292. * we can't consider a given block up to date unless the transid of the
  293. * block matches the transid in the parent node's pointer. This is how we
  294. * detect blocks that either didn't get written at all or got written
  295. * in the wrong place.
  296. */
  297. static int verify_parent_transid(struct extent_io_tree *io_tree,
  298. struct extent_buffer *eb, u64 parent_transid)
  299. {
  300. struct extent_state *cached_state = NULL;
  301. int ret;
  302. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  303. return 0;
  304. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  305. 0, &cached_state);
  306. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  307. btrfs_header_generation(eb) == parent_transid) {
  308. ret = 0;
  309. goto out;
  310. }
  311. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  312. "found %llu\n",
  313. (unsigned long long)eb->start,
  314. (unsigned long long)parent_transid,
  315. (unsigned long long)btrfs_header_generation(eb));
  316. ret = 1;
  317. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  318. out:
  319. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  320. &cached_state, GFP_NOFS);
  321. return ret;
  322. }
  323. /*
  324. * helper to read a given tree block, doing retries as required when
  325. * the checksums don't match and we have alternate mirrors to try.
  326. */
  327. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  328. struct extent_buffer *eb,
  329. u64 start, u64 parent_transid)
  330. {
  331. struct extent_io_tree *io_tree;
  332. int ret;
  333. int num_copies = 0;
  334. int mirror_num = 0;
  335. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  336. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  337. while (1) {
  338. ret = read_extent_buffer_pages(io_tree, eb, start,
  339. WAIT_COMPLETE,
  340. btree_get_extent, mirror_num);
  341. if (!ret &&
  342. !verify_parent_transid(io_tree, eb, parent_transid))
  343. return ret;
  344. /*
  345. * This buffer's crc is fine, but its contents are corrupted, so
  346. * there is no reason to read the other copies, they won't be
  347. * any less wrong.
  348. */
  349. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  350. return ret;
  351. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  352. eb->start, eb->len);
  353. if (num_copies == 1)
  354. return ret;
  355. mirror_num++;
  356. if (mirror_num > num_copies)
  357. return ret;
  358. }
  359. return -EIO;
  360. }
  361. /*
  362. * checksum a dirty tree block before IO. This has extra checks to make sure
  363. * we only fill in the checksum field in the first page of a multi-page block
  364. */
  365. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  366. {
  367. struct extent_io_tree *tree;
  368. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  369. u64 found_start;
  370. unsigned long len;
  371. struct extent_buffer *eb;
  372. int ret = -EIO;
  373. tree = &BTRFS_I(page->mapping->host)->io_tree;
  374. if (page->private == EXTENT_PAGE_PRIVATE) {
  375. WARN_ON(1);
  376. goto out;
  377. }
  378. if (!page->private) {
  379. WARN_ON(1);
  380. goto out;
  381. }
  382. len = page->private >> 2;
  383. WARN_ON(len == 0);
  384. eb = alloc_extent_buffer(tree, start, len, page);
  385. if (eb == NULL) {
  386. WARN_ON(1);
  387. ret = -ENOMEM;
  388. goto out;
  389. }
  390. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  391. btrfs_header_generation(eb));
  392. if (ret) {
  393. btrfs_printk(root->fs_info, KERN_WARNING
  394. "Failed to checksum dirty buffer @ %llu[%lu]\n",
  395. start, len);
  396. goto err;
  397. }
  398. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  399. ret = -EIO;
  400. found_start = btrfs_header_bytenr(eb);
  401. if (found_start != start) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. if (eb->first_page != page) {
  406. WARN_ON(1);
  407. goto err;
  408. }
  409. if (!PageUptodate(page)) {
  410. WARN_ON(1);
  411. goto err;
  412. }
  413. csum_tree_block(root, eb, 0);
  414. ret = 0;
  415. err:
  416. free_extent_buffer(eb);
  417. out:
  418. return ret;
  419. }
  420. static int check_tree_block_fsid(struct btrfs_root *root,
  421. struct extent_buffer *eb)
  422. {
  423. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  424. u8 fsid[BTRFS_UUID_SIZE];
  425. int ret = 1;
  426. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  427. BTRFS_FSID_SIZE);
  428. while (fs_devices) {
  429. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  430. ret = 0;
  431. break;
  432. }
  433. fs_devices = fs_devices->seed;
  434. }
  435. return ret;
  436. }
  437. #define CORRUPT(reason, eb, root, slot) \
  438. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  439. "root=%llu, slot=%d\n", reason, \
  440. (unsigned long long)btrfs_header_bytenr(eb), \
  441. (unsigned long long)root->objectid, slot)
  442. static noinline int check_leaf(struct btrfs_root *root,
  443. struct extent_buffer *leaf)
  444. {
  445. struct btrfs_key key;
  446. struct btrfs_key leaf_key;
  447. u32 nritems = btrfs_header_nritems(leaf);
  448. int slot;
  449. if (nritems == 0)
  450. return 0;
  451. /* Check the 0 item */
  452. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  453. BTRFS_LEAF_DATA_SIZE(root)) {
  454. CORRUPT("invalid item offset size pair", leaf, root, 0);
  455. return -EIO;
  456. }
  457. /*
  458. * Check to make sure each items keys are in the correct order and their
  459. * offsets make sense. We only have to loop through nritems-1 because
  460. * we check the current slot against the next slot, which verifies the
  461. * next slot's offset+size makes sense and that the current's slot
  462. * offset is correct.
  463. */
  464. for (slot = 0; slot < nritems - 1; slot++) {
  465. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  466. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  467. /* Make sure the keys are in the right order */
  468. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  469. CORRUPT("bad key order", leaf, root, slot);
  470. return -EIO;
  471. }
  472. /*
  473. * Make sure the offset and ends are right, remember that the
  474. * item data starts at the end of the leaf and grows towards the
  475. * front.
  476. */
  477. if (btrfs_item_offset_nr(leaf, slot) !=
  478. btrfs_item_end_nr(leaf, slot + 1)) {
  479. CORRUPT("slot offset bad", leaf, root, slot);
  480. return -EIO;
  481. }
  482. /*
  483. * Check to make sure that we don't point outside of the leaf,
  484. * just incase all the items are consistent to eachother, but
  485. * all point outside of the leaf.
  486. */
  487. if (btrfs_item_end_nr(leaf, slot) >
  488. BTRFS_LEAF_DATA_SIZE(root)) {
  489. CORRUPT("slot end outside of leaf", leaf, root, slot);
  490. return -EIO;
  491. }
  492. }
  493. return 0;
  494. }
  495. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  496. struct extent_state *state)
  497. {
  498. struct extent_io_tree *tree;
  499. u64 found_start;
  500. int found_level;
  501. unsigned long len;
  502. struct extent_buffer *eb;
  503. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  504. int ret = 0;
  505. tree = &BTRFS_I(page->mapping->host)->io_tree;
  506. if (page->private == EXTENT_PAGE_PRIVATE)
  507. goto out;
  508. if (!page->private)
  509. goto out;
  510. len = page->private >> 2;
  511. WARN_ON(len == 0);
  512. eb = alloc_extent_buffer(tree, start, len, page);
  513. if (eb == NULL) {
  514. ret = -EIO;
  515. goto out;
  516. }
  517. found_start = btrfs_header_bytenr(eb);
  518. if (found_start != start) {
  519. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  520. "%llu %llu\n",
  521. (unsigned long long)found_start,
  522. (unsigned long long)eb->start);
  523. ret = -EIO;
  524. goto err;
  525. }
  526. if (eb->first_page != page) {
  527. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  528. eb->first_page->index, page->index);
  529. WARN_ON(1);
  530. ret = -EIO;
  531. goto err;
  532. }
  533. if (check_tree_block_fsid(root, eb)) {
  534. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  535. (unsigned long long)eb->start);
  536. ret = -EIO;
  537. goto err;
  538. }
  539. found_level = btrfs_header_level(eb);
  540. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  541. eb, found_level);
  542. ret = csum_tree_block(root, eb, 1);
  543. if (ret) {
  544. ret = -EIO;
  545. goto err;
  546. }
  547. /*
  548. * If this is a leaf block and it is corrupt, set the corrupt bit so
  549. * that we don't try and read the other copies of this block, just
  550. * return -EIO.
  551. */
  552. if (found_level == 0 && check_leaf(root, eb)) {
  553. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  554. ret = -EIO;
  555. }
  556. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  557. end = eb->start + end - 1;
  558. err:
  559. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  560. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  561. btree_readahead_hook(root, eb, eb->start, ret);
  562. }
  563. free_extent_buffer(eb);
  564. out:
  565. return ret;
  566. }
  567. static int btree_io_failed_hook(struct bio *failed_bio,
  568. struct page *page, u64 start, u64 end,
  569. int mirror_num, struct extent_state *state)
  570. {
  571. struct extent_io_tree *tree;
  572. unsigned long len;
  573. struct extent_buffer *eb;
  574. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  575. tree = &BTRFS_I(page->mapping->host)->io_tree;
  576. if (page->private == EXTENT_PAGE_PRIVATE)
  577. goto out;
  578. if (!page->private)
  579. goto out;
  580. len = page->private >> 2;
  581. WARN_ON(len == 0);
  582. eb = alloc_extent_buffer(tree, start, len, page);
  583. if (eb == NULL)
  584. goto out;
  585. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  586. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  587. btree_readahead_hook(root, eb, eb->start, -EIO);
  588. }
  589. free_extent_buffer(eb);
  590. out:
  591. return -EIO; /* we fixed nothing */
  592. }
  593. static void end_workqueue_bio(struct bio *bio, int err)
  594. {
  595. struct end_io_wq *end_io_wq = bio->bi_private;
  596. struct btrfs_fs_info *fs_info;
  597. fs_info = end_io_wq->info;
  598. end_io_wq->error = err;
  599. end_io_wq->work.func = end_workqueue_fn;
  600. end_io_wq->work.flags = 0;
  601. if (bio->bi_rw & REQ_WRITE) {
  602. if (end_io_wq->metadata == 1)
  603. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  604. &end_io_wq->work);
  605. else if (end_io_wq->metadata == 2)
  606. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  607. &end_io_wq->work);
  608. else
  609. btrfs_queue_worker(&fs_info->endio_write_workers,
  610. &end_io_wq->work);
  611. } else {
  612. if (end_io_wq->metadata)
  613. btrfs_queue_worker(&fs_info->endio_meta_workers,
  614. &end_io_wq->work);
  615. else
  616. btrfs_queue_worker(&fs_info->endio_workers,
  617. &end_io_wq->work);
  618. }
  619. }
  620. /*
  621. * For the metadata arg you want
  622. *
  623. * 0 - if data
  624. * 1 - if normal metadta
  625. * 2 - if writing to the free space cache area
  626. */
  627. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  628. int metadata)
  629. {
  630. struct end_io_wq *end_io_wq;
  631. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  632. if (!end_io_wq)
  633. return -ENOMEM;
  634. end_io_wq->private = bio->bi_private;
  635. end_io_wq->end_io = bio->bi_end_io;
  636. end_io_wq->info = info;
  637. end_io_wq->error = 0;
  638. end_io_wq->bio = bio;
  639. end_io_wq->metadata = metadata;
  640. bio->bi_private = end_io_wq;
  641. bio->bi_end_io = end_workqueue_bio;
  642. return 0;
  643. }
  644. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  645. {
  646. unsigned long limit = min_t(unsigned long,
  647. info->workers.max_workers,
  648. info->fs_devices->open_devices);
  649. return 256 * limit;
  650. }
  651. static void run_one_async_start(struct btrfs_work *work)
  652. {
  653. struct async_submit_bio *async;
  654. int ret;
  655. async = container_of(work, struct async_submit_bio, work);
  656. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  657. async->mirror_num, async->bio_flags,
  658. async->bio_offset);
  659. if (ret)
  660. async->error = ret;
  661. }
  662. static void run_one_async_done(struct btrfs_work *work)
  663. {
  664. struct btrfs_fs_info *fs_info;
  665. struct async_submit_bio *async;
  666. int limit;
  667. async = container_of(work, struct async_submit_bio, work);
  668. fs_info = BTRFS_I(async->inode)->root->fs_info;
  669. limit = btrfs_async_submit_limit(fs_info);
  670. limit = limit * 2 / 3;
  671. atomic_dec(&fs_info->nr_async_submits);
  672. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  673. waitqueue_active(&fs_info->async_submit_wait))
  674. wake_up(&fs_info->async_submit_wait);
  675. /* If an error occured we just want to clean up the bio and move on */
  676. if (async->error) {
  677. bio_endio(async->bio, async->error);
  678. return;
  679. }
  680. async->submit_bio_done(async->inode, async->rw, async->bio,
  681. async->mirror_num, async->bio_flags,
  682. async->bio_offset);
  683. }
  684. static void run_one_async_free(struct btrfs_work *work)
  685. {
  686. struct async_submit_bio *async;
  687. async = container_of(work, struct async_submit_bio, work);
  688. kfree(async);
  689. }
  690. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  691. int rw, struct bio *bio, int mirror_num,
  692. unsigned long bio_flags,
  693. u64 bio_offset,
  694. extent_submit_bio_hook_t *submit_bio_start,
  695. extent_submit_bio_hook_t *submit_bio_done)
  696. {
  697. struct async_submit_bio *async;
  698. async = kmalloc(sizeof(*async), GFP_NOFS);
  699. if (!async)
  700. return -ENOMEM;
  701. async->inode = inode;
  702. async->rw = rw;
  703. async->bio = bio;
  704. async->mirror_num = mirror_num;
  705. async->submit_bio_start = submit_bio_start;
  706. async->submit_bio_done = submit_bio_done;
  707. async->work.func = run_one_async_start;
  708. async->work.ordered_func = run_one_async_done;
  709. async->work.ordered_free = run_one_async_free;
  710. async->work.flags = 0;
  711. async->bio_flags = bio_flags;
  712. async->bio_offset = bio_offset;
  713. async->error = 0;
  714. atomic_inc(&fs_info->nr_async_submits);
  715. if (rw & REQ_SYNC)
  716. btrfs_set_work_high_prio(&async->work);
  717. btrfs_queue_worker(&fs_info->workers, &async->work);
  718. while (atomic_read(&fs_info->async_submit_draining) &&
  719. atomic_read(&fs_info->nr_async_submits)) {
  720. wait_event(fs_info->async_submit_wait,
  721. (atomic_read(&fs_info->nr_async_submits) == 0));
  722. }
  723. return 0;
  724. }
  725. static int btree_csum_one_bio(struct bio *bio)
  726. {
  727. struct bio_vec *bvec = bio->bi_io_vec;
  728. int bio_index = 0;
  729. struct btrfs_root *root;
  730. int ret = 0;
  731. WARN_ON(bio->bi_vcnt <= 0);
  732. while (bio_index < bio->bi_vcnt) {
  733. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  734. ret = csum_dirty_buffer(root, bvec->bv_page);
  735. if (ret)
  736. break;
  737. bio_index++;
  738. bvec++;
  739. }
  740. return ret;
  741. }
  742. static int __btree_submit_bio_start(struct inode *inode, int rw,
  743. struct bio *bio, int mirror_num,
  744. unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. /*
  748. * when we're called for a write, we're already in the async
  749. * submission context. Just jump into btrfs_map_bio
  750. */
  751. return btree_csum_one_bio(bio);
  752. }
  753. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  754. int mirror_num, unsigned long bio_flags,
  755. u64 bio_offset)
  756. {
  757. /*
  758. * when we're called for a write, we're already in the async
  759. * submission context. Just jump into btrfs_map_bio
  760. */
  761. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  762. }
  763. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  764. int mirror_num, unsigned long bio_flags,
  765. u64 bio_offset)
  766. {
  767. int ret;
  768. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1);
  769. if (ret)
  770. return ret;
  771. if (!(rw & REQ_WRITE)) {
  772. /*
  773. * called for a read, do the setup so that checksum validation
  774. * can happen in the async kernel threads
  775. */
  776. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  777. mirror_num, 0);
  778. }
  779. /*
  780. * kthread helpers are used to submit writes so that checksumming
  781. * can happen in parallel across all CPUs
  782. */
  783. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  784. inode, rw, bio, mirror_num, 0,
  785. bio_offset,
  786. __btree_submit_bio_start,
  787. __btree_submit_bio_done);
  788. }
  789. #ifdef CONFIG_MIGRATION
  790. static int btree_migratepage(struct address_space *mapping,
  791. struct page *newpage, struct page *page,
  792. enum migrate_mode mode)
  793. {
  794. /*
  795. * we can't safely write a btree page from here,
  796. * we haven't done the locking hook
  797. */
  798. if (PageDirty(page))
  799. return -EAGAIN;
  800. /*
  801. * Buffers may be managed in a filesystem specific way.
  802. * We must have no buffers or drop them.
  803. */
  804. if (page_has_private(page) &&
  805. !try_to_release_page(page, GFP_KERNEL))
  806. return -EAGAIN;
  807. return migrate_page(mapping, newpage, page, mode);
  808. }
  809. #endif
  810. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  811. {
  812. struct extent_io_tree *tree;
  813. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  814. struct extent_buffer *eb;
  815. int was_dirty;
  816. tree = &BTRFS_I(page->mapping->host)->io_tree;
  817. if (!(current->flags & PF_MEMALLOC)) {
  818. return extent_write_full_page(tree, page,
  819. btree_get_extent, wbc);
  820. }
  821. redirty_page_for_writepage(wbc, page);
  822. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  823. WARN_ON(!eb);
  824. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  825. if (!was_dirty) {
  826. spin_lock(&root->fs_info->delalloc_lock);
  827. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  828. spin_unlock(&root->fs_info->delalloc_lock);
  829. }
  830. free_extent_buffer(eb);
  831. unlock_page(page);
  832. return 0;
  833. }
  834. static int btree_writepages(struct address_space *mapping,
  835. struct writeback_control *wbc)
  836. {
  837. struct extent_io_tree *tree;
  838. tree = &BTRFS_I(mapping->host)->io_tree;
  839. if (wbc->sync_mode == WB_SYNC_NONE) {
  840. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  841. u64 num_dirty;
  842. unsigned long thresh = 32 * 1024 * 1024;
  843. if (wbc->for_kupdate)
  844. return 0;
  845. /* this is a bit racy, but that's ok */
  846. num_dirty = root->fs_info->dirty_metadata_bytes;
  847. if (num_dirty < thresh)
  848. return 0;
  849. }
  850. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  851. }
  852. static int btree_readpage(struct file *file, struct page *page)
  853. {
  854. struct extent_io_tree *tree;
  855. tree = &BTRFS_I(page->mapping->host)->io_tree;
  856. return extent_read_full_page(tree, page, btree_get_extent, 0);
  857. }
  858. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  859. {
  860. struct extent_io_tree *tree;
  861. struct extent_map_tree *map;
  862. int ret;
  863. if (PageWriteback(page) || PageDirty(page))
  864. return 0;
  865. tree = &BTRFS_I(page->mapping->host)->io_tree;
  866. map = &BTRFS_I(page->mapping->host)->extent_tree;
  867. /*
  868. * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
  869. * slab allocation from alloc_extent_state down the callchain where
  870. * it'd hit a BUG_ON as those flags are not allowed.
  871. */
  872. gfp_flags &= ~GFP_SLAB_BUG_MASK;
  873. ret = try_release_extent_state(map, tree, page, gfp_flags);
  874. if (!ret)
  875. return 0;
  876. ret = try_release_extent_buffer(tree, page);
  877. if (ret == 1) {
  878. ClearPagePrivate(page);
  879. set_page_private(page, 0);
  880. page_cache_release(page);
  881. }
  882. return ret;
  883. }
  884. static void btree_invalidatepage(struct page *page, unsigned long offset)
  885. {
  886. struct extent_io_tree *tree;
  887. tree = &BTRFS_I(page->mapping->host)->io_tree;
  888. extent_invalidatepage(tree, page, offset);
  889. btree_releasepage(page, GFP_NOFS);
  890. if (PagePrivate(page)) {
  891. printk(KERN_WARNING "btrfs warning page private not zero "
  892. "on page %llu\n", (unsigned long long)page_offset(page));
  893. ClearPagePrivate(page);
  894. set_page_private(page, 0);
  895. page_cache_release(page);
  896. }
  897. }
  898. static const struct address_space_operations btree_aops = {
  899. .readpage = btree_readpage,
  900. .writepage = btree_writepage,
  901. .writepages = btree_writepages,
  902. .releasepage = btree_releasepage,
  903. .invalidatepage = btree_invalidatepage,
  904. #ifdef CONFIG_MIGRATION
  905. .migratepage = btree_migratepage,
  906. #endif
  907. };
  908. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  909. u64 parent_transid)
  910. {
  911. struct extent_buffer *buf = NULL;
  912. struct inode *btree_inode = root->fs_info->btree_inode;
  913. int ret = 0;
  914. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  915. if (!buf)
  916. return 0;
  917. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  918. buf, 0, WAIT_NONE, btree_get_extent, 0);
  919. free_extent_buffer(buf);
  920. return ret;
  921. }
  922. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  923. int mirror_num, struct extent_buffer **eb)
  924. {
  925. struct extent_buffer *buf = NULL;
  926. struct inode *btree_inode = root->fs_info->btree_inode;
  927. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  928. int ret;
  929. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  930. if (!buf)
  931. return 0;
  932. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  933. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  934. btree_get_extent, mirror_num);
  935. if (ret) {
  936. free_extent_buffer(buf);
  937. return ret;
  938. }
  939. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  940. free_extent_buffer(buf);
  941. return -EIO;
  942. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  943. *eb = buf;
  944. } else {
  945. free_extent_buffer(buf);
  946. }
  947. return 0;
  948. }
  949. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  950. u64 bytenr, u32 blocksize)
  951. {
  952. struct inode *btree_inode = root->fs_info->btree_inode;
  953. struct extent_buffer *eb;
  954. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  955. bytenr, blocksize);
  956. return eb;
  957. }
  958. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  959. u64 bytenr, u32 blocksize)
  960. {
  961. struct inode *btree_inode = root->fs_info->btree_inode;
  962. struct extent_buffer *eb;
  963. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  964. bytenr, blocksize, NULL);
  965. return eb;
  966. }
  967. int btrfs_write_tree_block(struct extent_buffer *buf)
  968. {
  969. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  970. buf->start + buf->len - 1);
  971. }
  972. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  973. {
  974. return filemap_fdatawait_range(buf->first_page->mapping,
  975. buf->start, buf->start + buf->len - 1);
  976. }
  977. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  978. u32 blocksize, u64 parent_transid)
  979. {
  980. struct extent_buffer *buf = NULL;
  981. int ret;
  982. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  983. if (!buf)
  984. return NULL;
  985. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  986. if (ret == 0)
  987. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  988. return buf;
  989. }
  990. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  991. struct extent_buffer *buf)
  992. {
  993. struct inode *btree_inode = root->fs_info->btree_inode;
  994. if (btrfs_header_generation(buf) ==
  995. root->fs_info->running_transaction->transid) {
  996. btrfs_assert_tree_locked(buf);
  997. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  998. spin_lock(&root->fs_info->delalloc_lock);
  999. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  1000. root->fs_info->dirty_metadata_bytes -= buf->len;
  1001. else {
  1002. spin_unlock(&root->fs_info->delalloc_lock);
  1003. btrfs_panic(root->fs_info, -EOVERFLOW,
  1004. "Can't clear %lu bytes from "
  1005. " dirty_mdatadata_bytes (%lu)",
  1006. buf->len,
  1007. root->fs_info->dirty_metadata_bytes);
  1008. }
  1009. spin_unlock(&root->fs_info->delalloc_lock);
  1010. }
  1011. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1012. btrfs_set_lock_blocking(buf);
  1013. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  1014. buf);
  1015. }
  1016. }
  1017. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1018. u32 stripesize, struct btrfs_root *root,
  1019. struct btrfs_fs_info *fs_info,
  1020. u64 objectid)
  1021. {
  1022. root->node = NULL;
  1023. root->commit_root = NULL;
  1024. root->sectorsize = sectorsize;
  1025. root->nodesize = nodesize;
  1026. root->leafsize = leafsize;
  1027. root->stripesize = stripesize;
  1028. root->ref_cows = 0;
  1029. root->track_dirty = 0;
  1030. root->in_radix = 0;
  1031. root->orphan_item_inserted = 0;
  1032. root->orphan_cleanup_state = 0;
  1033. root->objectid = objectid;
  1034. root->last_trans = 0;
  1035. root->highest_objectid = 0;
  1036. root->name = NULL;
  1037. root->inode_tree = RB_ROOT;
  1038. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1039. root->block_rsv = NULL;
  1040. root->orphan_block_rsv = NULL;
  1041. INIT_LIST_HEAD(&root->dirty_list);
  1042. INIT_LIST_HEAD(&root->orphan_list);
  1043. INIT_LIST_HEAD(&root->root_list);
  1044. spin_lock_init(&root->orphan_lock);
  1045. spin_lock_init(&root->inode_lock);
  1046. spin_lock_init(&root->accounting_lock);
  1047. mutex_init(&root->objectid_mutex);
  1048. mutex_init(&root->log_mutex);
  1049. init_waitqueue_head(&root->log_writer_wait);
  1050. init_waitqueue_head(&root->log_commit_wait[0]);
  1051. init_waitqueue_head(&root->log_commit_wait[1]);
  1052. atomic_set(&root->log_commit[0], 0);
  1053. atomic_set(&root->log_commit[1], 0);
  1054. atomic_set(&root->log_writers, 0);
  1055. root->log_batch = 0;
  1056. root->log_transid = 0;
  1057. root->last_log_commit = 0;
  1058. extent_io_tree_init(&root->dirty_log_pages,
  1059. fs_info->btree_inode->i_mapping);
  1060. memset(&root->root_key, 0, sizeof(root->root_key));
  1061. memset(&root->root_item, 0, sizeof(root->root_item));
  1062. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1063. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1064. root->defrag_trans_start = fs_info->generation;
  1065. init_completion(&root->kobj_unregister);
  1066. root->defrag_running = 0;
  1067. root->root_key.objectid = objectid;
  1068. root->anon_dev = 0;
  1069. }
  1070. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1071. struct btrfs_fs_info *fs_info,
  1072. u64 objectid,
  1073. struct btrfs_root *root)
  1074. {
  1075. int ret;
  1076. u32 blocksize;
  1077. u64 generation;
  1078. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1079. tree_root->sectorsize, tree_root->stripesize,
  1080. root, fs_info, objectid);
  1081. ret = btrfs_find_last_root(tree_root, objectid,
  1082. &root->root_item, &root->root_key);
  1083. if (ret > 0)
  1084. return -ENOENT;
  1085. else if (ret < 0)
  1086. return ret;
  1087. generation = btrfs_root_generation(&root->root_item);
  1088. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1089. root->commit_root = NULL;
  1090. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1091. blocksize, generation);
  1092. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1093. free_extent_buffer(root->node);
  1094. root->node = NULL;
  1095. return -EIO;
  1096. }
  1097. root->commit_root = btrfs_root_node(root);
  1098. return 0;
  1099. }
  1100. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1101. {
  1102. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1103. if (root)
  1104. root->fs_info = fs_info;
  1105. return root;
  1106. }
  1107. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1108. struct btrfs_fs_info *fs_info)
  1109. {
  1110. struct btrfs_root *root;
  1111. struct btrfs_root *tree_root = fs_info->tree_root;
  1112. struct extent_buffer *leaf;
  1113. root = btrfs_alloc_root(fs_info);
  1114. if (!root)
  1115. return ERR_PTR(-ENOMEM);
  1116. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1117. tree_root->sectorsize, tree_root->stripesize,
  1118. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1119. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1120. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1121. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1122. /*
  1123. * log trees do not get reference counted because they go away
  1124. * before a real commit is actually done. They do store pointers
  1125. * to file data extents, and those reference counts still get
  1126. * updated (along with back refs to the log tree).
  1127. */
  1128. root->ref_cows = 0;
  1129. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1130. BTRFS_TREE_LOG_OBJECTID, NULL,
  1131. 0, 0, 0, 0);
  1132. if (IS_ERR(leaf)) {
  1133. kfree(root);
  1134. return ERR_CAST(leaf);
  1135. }
  1136. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1137. btrfs_set_header_bytenr(leaf, leaf->start);
  1138. btrfs_set_header_generation(leaf, trans->transid);
  1139. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1140. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1141. root->node = leaf;
  1142. write_extent_buffer(root->node, root->fs_info->fsid,
  1143. (unsigned long)btrfs_header_fsid(root->node),
  1144. BTRFS_FSID_SIZE);
  1145. btrfs_mark_buffer_dirty(root->node);
  1146. btrfs_tree_unlock(root->node);
  1147. return root;
  1148. }
  1149. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1150. struct btrfs_fs_info *fs_info)
  1151. {
  1152. struct btrfs_root *log_root;
  1153. log_root = alloc_log_tree(trans, fs_info);
  1154. if (IS_ERR(log_root))
  1155. return PTR_ERR(log_root);
  1156. WARN_ON(fs_info->log_root_tree);
  1157. fs_info->log_root_tree = log_root;
  1158. return 0;
  1159. }
  1160. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1161. struct btrfs_root *root)
  1162. {
  1163. struct btrfs_root *log_root;
  1164. struct btrfs_inode_item *inode_item;
  1165. log_root = alloc_log_tree(trans, root->fs_info);
  1166. if (IS_ERR(log_root))
  1167. return PTR_ERR(log_root);
  1168. log_root->last_trans = trans->transid;
  1169. log_root->root_key.offset = root->root_key.objectid;
  1170. inode_item = &log_root->root_item.inode;
  1171. inode_item->generation = cpu_to_le64(1);
  1172. inode_item->size = cpu_to_le64(3);
  1173. inode_item->nlink = cpu_to_le32(1);
  1174. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1175. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1176. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1177. WARN_ON(root->log_root);
  1178. root->log_root = log_root;
  1179. root->log_transid = 0;
  1180. root->last_log_commit = 0;
  1181. return 0;
  1182. }
  1183. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1184. struct btrfs_key *location)
  1185. {
  1186. struct btrfs_root *root;
  1187. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1188. struct btrfs_path *path;
  1189. struct extent_buffer *l;
  1190. u64 generation;
  1191. u32 blocksize;
  1192. int ret = 0;
  1193. root = btrfs_alloc_root(fs_info);
  1194. if (!root)
  1195. return ERR_PTR(-ENOMEM);
  1196. if (location->offset == (u64)-1) {
  1197. ret = find_and_setup_root(tree_root, fs_info,
  1198. location->objectid, root);
  1199. if (ret) {
  1200. kfree(root);
  1201. return ERR_PTR(ret);
  1202. }
  1203. goto out;
  1204. }
  1205. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1206. tree_root->sectorsize, tree_root->stripesize,
  1207. root, fs_info, location->objectid);
  1208. path = btrfs_alloc_path();
  1209. if (!path) {
  1210. kfree(root);
  1211. return ERR_PTR(-ENOMEM);
  1212. }
  1213. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1214. if (ret == 0) {
  1215. l = path->nodes[0];
  1216. read_extent_buffer(l, &root->root_item,
  1217. btrfs_item_ptr_offset(l, path->slots[0]),
  1218. sizeof(root->root_item));
  1219. memcpy(&root->root_key, location, sizeof(*location));
  1220. }
  1221. btrfs_free_path(path);
  1222. if (ret) {
  1223. kfree(root);
  1224. if (ret > 0)
  1225. ret = -ENOENT;
  1226. return ERR_PTR(ret);
  1227. }
  1228. generation = btrfs_root_generation(&root->root_item);
  1229. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1230. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1231. blocksize, generation);
  1232. root->commit_root = btrfs_root_node(root);
  1233. BUG_ON(!root->node); /* -ENOMEM */
  1234. out:
  1235. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1236. root->ref_cows = 1;
  1237. btrfs_check_and_init_root_item(&root->root_item);
  1238. }
  1239. return root;
  1240. }
  1241. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1242. struct btrfs_key *location)
  1243. {
  1244. struct btrfs_root *root;
  1245. int ret;
  1246. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1247. return fs_info->tree_root;
  1248. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1249. return fs_info->extent_root;
  1250. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1251. return fs_info->chunk_root;
  1252. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1253. return fs_info->dev_root;
  1254. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1255. return fs_info->csum_root;
  1256. again:
  1257. spin_lock(&fs_info->fs_roots_radix_lock);
  1258. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1259. (unsigned long)location->objectid);
  1260. spin_unlock(&fs_info->fs_roots_radix_lock);
  1261. if (root)
  1262. return root;
  1263. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1264. if (IS_ERR(root))
  1265. return root;
  1266. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1267. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1268. GFP_NOFS);
  1269. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1270. ret = -ENOMEM;
  1271. goto fail;
  1272. }
  1273. btrfs_init_free_ino_ctl(root);
  1274. mutex_init(&root->fs_commit_mutex);
  1275. spin_lock_init(&root->cache_lock);
  1276. init_waitqueue_head(&root->cache_wait);
  1277. ret = get_anon_bdev(&root->anon_dev);
  1278. if (ret)
  1279. goto fail;
  1280. if (btrfs_root_refs(&root->root_item) == 0) {
  1281. ret = -ENOENT;
  1282. goto fail;
  1283. }
  1284. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1285. if (ret < 0)
  1286. goto fail;
  1287. if (ret == 0)
  1288. root->orphan_item_inserted = 1;
  1289. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1290. if (ret)
  1291. goto fail;
  1292. spin_lock(&fs_info->fs_roots_radix_lock);
  1293. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1294. (unsigned long)root->root_key.objectid,
  1295. root);
  1296. if (ret == 0)
  1297. root->in_radix = 1;
  1298. spin_unlock(&fs_info->fs_roots_radix_lock);
  1299. radix_tree_preload_end();
  1300. if (ret) {
  1301. if (ret == -EEXIST) {
  1302. free_fs_root(root);
  1303. goto again;
  1304. }
  1305. goto fail;
  1306. }
  1307. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1308. root->root_key.objectid);
  1309. WARN_ON(ret);
  1310. return root;
  1311. fail:
  1312. free_fs_root(root);
  1313. return ERR_PTR(ret);
  1314. }
  1315. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1316. {
  1317. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1318. int ret = 0;
  1319. struct btrfs_device *device;
  1320. struct backing_dev_info *bdi;
  1321. rcu_read_lock();
  1322. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1323. if (!device->bdev)
  1324. continue;
  1325. bdi = blk_get_backing_dev_info(device->bdev);
  1326. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1327. ret = 1;
  1328. break;
  1329. }
  1330. }
  1331. rcu_read_unlock();
  1332. return ret;
  1333. }
  1334. /*
  1335. * If this fails, caller must call bdi_destroy() to get rid of the
  1336. * bdi again.
  1337. */
  1338. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1339. {
  1340. int err;
  1341. bdi->capabilities = BDI_CAP_MAP_COPY;
  1342. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1343. if (err)
  1344. return err;
  1345. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1346. bdi->congested_fn = btrfs_congested_fn;
  1347. bdi->congested_data = info;
  1348. return 0;
  1349. }
  1350. static int bio_ready_for_csum(struct bio *bio)
  1351. {
  1352. u64 length = 0;
  1353. u64 buf_len = 0;
  1354. u64 start = 0;
  1355. struct page *page;
  1356. struct extent_io_tree *io_tree = NULL;
  1357. struct bio_vec *bvec;
  1358. int i;
  1359. int ret;
  1360. bio_for_each_segment(bvec, bio, i) {
  1361. page = bvec->bv_page;
  1362. if (page->private == EXTENT_PAGE_PRIVATE) {
  1363. length += bvec->bv_len;
  1364. continue;
  1365. }
  1366. if (!page->private) {
  1367. length += bvec->bv_len;
  1368. continue;
  1369. }
  1370. length = bvec->bv_len;
  1371. buf_len = page->private >> 2;
  1372. start = page_offset(page) + bvec->bv_offset;
  1373. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1374. }
  1375. /* are we fully contained in this bio? */
  1376. if (buf_len <= length)
  1377. return 1;
  1378. ret = extent_range_uptodate(io_tree, start + length,
  1379. start + buf_len - 1);
  1380. return ret;
  1381. }
  1382. /*
  1383. * called by the kthread helper functions to finally call the bio end_io
  1384. * functions. This is where read checksum verification actually happens
  1385. */
  1386. static void end_workqueue_fn(struct btrfs_work *work)
  1387. {
  1388. struct bio *bio;
  1389. struct end_io_wq *end_io_wq;
  1390. struct btrfs_fs_info *fs_info;
  1391. int error;
  1392. end_io_wq = container_of(work, struct end_io_wq, work);
  1393. bio = end_io_wq->bio;
  1394. fs_info = end_io_wq->info;
  1395. /* metadata bio reads are special because the whole tree block must
  1396. * be checksummed at once. This makes sure the entire block is in
  1397. * ram and up to date before trying to verify things. For
  1398. * blocksize <= pagesize, it is basically a noop
  1399. */
  1400. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1401. !bio_ready_for_csum(bio)) {
  1402. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1403. &end_io_wq->work);
  1404. return;
  1405. }
  1406. error = end_io_wq->error;
  1407. bio->bi_private = end_io_wq->private;
  1408. bio->bi_end_io = end_io_wq->end_io;
  1409. kfree(end_io_wq);
  1410. bio_endio(bio, error);
  1411. }
  1412. static int cleaner_kthread(void *arg)
  1413. {
  1414. struct btrfs_root *root = arg;
  1415. do {
  1416. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1417. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1418. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1419. btrfs_run_delayed_iputs(root);
  1420. btrfs_clean_old_snapshots(root);
  1421. mutex_unlock(&root->fs_info->cleaner_mutex);
  1422. btrfs_run_defrag_inodes(root->fs_info);
  1423. }
  1424. if (!try_to_freeze()) {
  1425. set_current_state(TASK_INTERRUPTIBLE);
  1426. if (!kthread_should_stop())
  1427. schedule();
  1428. __set_current_state(TASK_RUNNING);
  1429. }
  1430. } while (!kthread_should_stop());
  1431. return 0;
  1432. }
  1433. static int transaction_kthread(void *arg)
  1434. {
  1435. struct btrfs_root *root = arg;
  1436. struct btrfs_trans_handle *trans;
  1437. struct btrfs_transaction *cur;
  1438. u64 transid;
  1439. unsigned long now;
  1440. unsigned long delay;
  1441. bool cannot_commit;
  1442. do {
  1443. cannot_commit = false;
  1444. delay = HZ * 30;
  1445. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1446. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1447. spin_lock(&root->fs_info->trans_lock);
  1448. cur = root->fs_info->running_transaction;
  1449. if (!cur) {
  1450. spin_unlock(&root->fs_info->trans_lock);
  1451. goto sleep;
  1452. }
  1453. now = get_seconds();
  1454. if (!cur->blocked &&
  1455. (now < cur->start_time || now - cur->start_time < 30)) {
  1456. spin_unlock(&root->fs_info->trans_lock);
  1457. delay = HZ * 5;
  1458. goto sleep;
  1459. }
  1460. transid = cur->transid;
  1461. spin_unlock(&root->fs_info->trans_lock);
  1462. /* If the file system is aborted, this will always fail. */
  1463. trans = btrfs_join_transaction(root);
  1464. if (IS_ERR(trans)) {
  1465. cannot_commit = true;
  1466. goto sleep;
  1467. }
  1468. if (transid == trans->transid) {
  1469. btrfs_commit_transaction(trans, root);
  1470. } else {
  1471. btrfs_end_transaction(trans, root);
  1472. }
  1473. sleep:
  1474. wake_up_process(root->fs_info->cleaner_kthread);
  1475. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1476. if (!try_to_freeze()) {
  1477. set_current_state(TASK_INTERRUPTIBLE);
  1478. if (!kthread_should_stop() &&
  1479. (!btrfs_transaction_blocked(root->fs_info) ||
  1480. cannot_commit))
  1481. schedule_timeout(delay);
  1482. __set_current_state(TASK_RUNNING);
  1483. }
  1484. } while (!kthread_should_stop());
  1485. return 0;
  1486. }
  1487. /*
  1488. * this will find the highest generation in the array of
  1489. * root backups. The index of the highest array is returned,
  1490. * or -1 if we can't find anything.
  1491. *
  1492. * We check to make sure the array is valid by comparing the
  1493. * generation of the latest root in the array with the generation
  1494. * in the super block. If they don't match we pitch it.
  1495. */
  1496. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1497. {
  1498. u64 cur;
  1499. int newest_index = -1;
  1500. struct btrfs_root_backup *root_backup;
  1501. int i;
  1502. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1503. root_backup = info->super_copy->super_roots + i;
  1504. cur = btrfs_backup_tree_root_gen(root_backup);
  1505. if (cur == newest_gen)
  1506. newest_index = i;
  1507. }
  1508. /* check to see if we actually wrapped around */
  1509. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1510. root_backup = info->super_copy->super_roots;
  1511. cur = btrfs_backup_tree_root_gen(root_backup);
  1512. if (cur == newest_gen)
  1513. newest_index = 0;
  1514. }
  1515. return newest_index;
  1516. }
  1517. /*
  1518. * find the oldest backup so we know where to store new entries
  1519. * in the backup array. This will set the backup_root_index
  1520. * field in the fs_info struct
  1521. */
  1522. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1523. u64 newest_gen)
  1524. {
  1525. int newest_index = -1;
  1526. newest_index = find_newest_super_backup(info, newest_gen);
  1527. /* if there was garbage in there, just move along */
  1528. if (newest_index == -1) {
  1529. info->backup_root_index = 0;
  1530. } else {
  1531. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1532. }
  1533. }
  1534. /*
  1535. * copy all the root pointers into the super backup array.
  1536. * this will bump the backup pointer by one when it is
  1537. * done
  1538. */
  1539. static void backup_super_roots(struct btrfs_fs_info *info)
  1540. {
  1541. int next_backup;
  1542. struct btrfs_root_backup *root_backup;
  1543. int last_backup;
  1544. next_backup = info->backup_root_index;
  1545. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1546. BTRFS_NUM_BACKUP_ROOTS;
  1547. /*
  1548. * just overwrite the last backup if we're at the same generation
  1549. * this happens only at umount
  1550. */
  1551. root_backup = info->super_for_commit->super_roots + last_backup;
  1552. if (btrfs_backup_tree_root_gen(root_backup) ==
  1553. btrfs_header_generation(info->tree_root->node))
  1554. next_backup = last_backup;
  1555. root_backup = info->super_for_commit->super_roots + next_backup;
  1556. /*
  1557. * make sure all of our padding and empty slots get zero filled
  1558. * regardless of which ones we use today
  1559. */
  1560. memset(root_backup, 0, sizeof(*root_backup));
  1561. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1562. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1563. btrfs_set_backup_tree_root_gen(root_backup,
  1564. btrfs_header_generation(info->tree_root->node));
  1565. btrfs_set_backup_tree_root_level(root_backup,
  1566. btrfs_header_level(info->tree_root->node));
  1567. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1568. btrfs_set_backup_chunk_root_gen(root_backup,
  1569. btrfs_header_generation(info->chunk_root->node));
  1570. btrfs_set_backup_chunk_root_level(root_backup,
  1571. btrfs_header_level(info->chunk_root->node));
  1572. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1573. btrfs_set_backup_extent_root_gen(root_backup,
  1574. btrfs_header_generation(info->extent_root->node));
  1575. btrfs_set_backup_extent_root_level(root_backup,
  1576. btrfs_header_level(info->extent_root->node));
  1577. /*
  1578. * we might commit during log recovery, which happens before we set
  1579. * the fs_root. Make sure it is valid before we fill it in.
  1580. */
  1581. if (info->fs_root && info->fs_root->node) {
  1582. btrfs_set_backup_fs_root(root_backup,
  1583. info->fs_root->node->start);
  1584. btrfs_set_backup_fs_root_gen(root_backup,
  1585. btrfs_header_generation(info->fs_root->node));
  1586. btrfs_set_backup_fs_root_level(root_backup,
  1587. btrfs_header_level(info->fs_root->node));
  1588. }
  1589. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1590. btrfs_set_backup_dev_root_gen(root_backup,
  1591. btrfs_header_generation(info->dev_root->node));
  1592. btrfs_set_backup_dev_root_level(root_backup,
  1593. btrfs_header_level(info->dev_root->node));
  1594. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1595. btrfs_set_backup_csum_root_gen(root_backup,
  1596. btrfs_header_generation(info->csum_root->node));
  1597. btrfs_set_backup_csum_root_level(root_backup,
  1598. btrfs_header_level(info->csum_root->node));
  1599. btrfs_set_backup_total_bytes(root_backup,
  1600. btrfs_super_total_bytes(info->super_copy));
  1601. btrfs_set_backup_bytes_used(root_backup,
  1602. btrfs_super_bytes_used(info->super_copy));
  1603. btrfs_set_backup_num_devices(root_backup,
  1604. btrfs_super_num_devices(info->super_copy));
  1605. /*
  1606. * if we don't copy this out to the super_copy, it won't get remembered
  1607. * for the next commit
  1608. */
  1609. memcpy(&info->super_copy->super_roots,
  1610. &info->super_for_commit->super_roots,
  1611. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1612. }
  1613. /*
  1614. * this copies info out of the root backup array and back into
  1615. * the in-memory super block. It is meant to help iterate through
  1616. * the array, so you send it the number of backups you've already
  1617. * tried and the last backup index you used.
  1618. *
  1619. * this returns -1 when it has tried all the backups
  1620. */
  1621. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1622. struct btrfs_super_block *super,
  1623. int *num_backups_tried, int *backup_index)
  1624. {
  1625. struct btrfs_root_backup *root_backup;
  1626. int newest = *backup_index;
  1627. if (*num_backups_tried == 0) {
  1628. u64 gen = btrfs_super_generation(super);
  1629. newest = find_newest_super_backup(info, gen);
  1630. if (newest == -1)
  1631. return -1;
  1632. *backup_index = newest;
  1633. *num_backups_tried = 1;
  1634. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1635. /* we've tried all the backups, all done */
  1636. return -1;
  1637. } else {
  1638. /* jump to the next oldest backup */
  1639. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1640. BTRFS_NUM_BACKUP_ROOTS;
  1641. *backup_index = newest;
  1642. *num_backups_tried += 1;
  1643. }
  1644. root_backup = super->super_roots + newest;
  1645. btrfs_set_super_generation(super,
  1646. btrfs_backup_tree_root_gen(root_backup));
  1647. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1648. btrfs_set_super_root_level(super,
  1649. btrfs_backup_tree_root_level(root_backup));
  1650. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1651. /*
  1652. * fixme: the total bytes and num_devices need to match or we should
  1653. * need a fsck
  1654. */
  1655. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1656. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1657. return 0;
  1658. }
  1659. /* helper to cleanup tree roots */
  1660. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1661. {
  1662. free_extent_buffer(info->tree_root->node);
  1663. free_extent_buffer(info->tree_root->commit_root);
  1664. free_extent_buffer(info->dev_root->node);
  1665. free_extent_buffer(info->dev_root->commit_root);
  1666. free_extent_buffer(info->extent_root->node);
  1667. free_extent_buffer(info->extent_root->commit_root);
  1668. free_extent_buffer(info->csum_root->node);
  1669. free_extent_buffer(info->csum_root->commit_root);
  1670. info->tree_root->node = NULL;
  1671. info->tree_root->commit_root = NULL;
  1672. info->dev_root->node = NULL;
  1673. info->dev_root->commit_root = NULL;
  1674. info->extent_root->node = NULL;
  1675. info->extent_root->commit_root = NULL;
  1676. info->csum_root->node = NULL;
  1677. info->csum_root->commit_root = NULL;
  1678. if (chunk_root) {
  1679. free_extent_buffer(info->chunk_root->node);
  1680. free_extent_buffer(info->chunk_root->commit_root);
  1681. info->chunk_root->node = NULL;
  1682. info->chunk_root->commit_root = NULL;
  1683. }
  1684. }
  1685. int open_ctree(struct super_block *sb,
  1686. struct btrfs_fs_devices *fs_devices,
  1687. char *options)
  1688. {
  1689. u32 sectorsize;
  1690. u32 nodesize;
  1691. u32 leafsize;
  1692. u32 blocksize;
  1693. u32 stripesize;
  1694. u64 generation;
  1695. u64 features;
  1696. struct btrfs_key location;
  1697. struct buffer_head *bh;
  1698. struct btrfs_super_block *disk_super;
  1699. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1700. struct btrfs_root *tree_root;
  1701. struct btrfs_root *extent_root;
  1702. struct btrfs_root *csum_root;
  1703. struct btrfs_root *chunk_root;
  1704. struct btrfs_root *dev_root;
  1705. struct btrfs_root *log_tree_root;
  1706. int ret;
  1707. int err = -EINVAL;
  1708. int num_backups_tried = 0;
  1709. int backup_index = 0;
  1710. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1711. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1712. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1713. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1714. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1715. if (!tree_root || !extent_root || !csum_root ||
  1716. !chunk_root || !dev_root) {
  1717. err = -ENOMEM;
  1718. goto fail;
  1719. }
  1720. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1721. if (ret) {
  1722. err = ret;
  1723. goto fail;
  1724. }
  1725. ret = setup_bdi(fs_info, &fs_info->bdi);
  1726. if (ret) {
  1727. err = ret;
  1728. goto fail_srcu;
  1729. }
  1730. fs_info->btree_inode = new_inode(sb);
  1731. if (!fs_info->btree_inode) {
  1732. err = -ENOMEM;
  1733. goto fail_bdi;
  1734. }
  1735. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1736. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1737. INIT_LIST_HEAD(&fs_info->trans_list);
  1738. INIT_LIST_HEAD(&fs_info->dead_roots);
  1739. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1740. INIT_LIST_HEAD(&fs_info->hashers);
  1741. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1742. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1743. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1744. spin_lock_init(&fs_info->delalloc_lock);
  1745. spin_lock_init(&fs_info->trans_lock);
  1746. spin_lock_init(&fs_info->ref_cache_lock);
  1747. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1748. spin_lock_init(&fs_info->delayed_iput_lock);
  1749. spin_lock_init(&fs_info->defrag_inodes_lock);
  1750. spin_lock_init(&fs_info->free_chunk_lock);
  1751. mutex_init(&fs_info->reloc_mutex);
  1752. init_completion(&fs_info->kobj_unregister);
  1753. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1754. INIT_LIST_HEAD(&fs_info->space_info);
  1755. btrfs_mapping_init(&fs_info->mapping_tree);
  1756. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1757. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1758. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1759. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1760. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1761. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1762. atomic_set(&fs_info->nr_async_submits, 0);
  1763. atomic_set(&fs_info->async_delalloc_pages, 0);
  1764. atomic_set(&fs_info->async_submit_draining, 0);
  1765. atomic_set(&fs_info->nr_async_bios, 0);
  1766. atomic_set(&fs_info->defrag_running, 0);
  1767. fs_info->sb = sb;
  1768. fs_info->max_inline = 8192 * 1024;
  1769. fs_info->metadata_ratio = 0;
  1770. fs_info->defrag_inodes = RB_ROOT;
  1771. fs_info->trans_no_join = 0;
  1772. fs_info->free_chunk_space = 0;
  1773. /* readahead state */
  1774. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1775. spin_lock_init(&fs_info->reada_lock);
  1776. fs_info->thread_pool_size = min_t(unsigned long,
  1777. num_online_cpus() + 2, 8);
  1778. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1779. spin_lock_init(&fs_info->ordered_extent_lock);
  1780. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1781. GFP_NOFS);
  1782. if (!fs_info->delayed_root) {
  1783. err = -ENOMEM;
  1784. goto fail_iput;
  1785. }
  1786. btrfs_init_delayed_root(fs_info->delayed_root);
  1787. mutex_init(&fs_info->scrub_lock);
  1788. atomic_set(&fs_info->scrubs_running, 0);
  1789. atomic_set(&fs_info->scrub_pause_req, 0);
  1790. atomic_set(&fs_info->scrubs_paused, 0);
  1791. atomic_set(&fs_info->scrub_cancel_req, 0);
  1792. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1793. init_rwsem(&fs_info->scrub_super_lock);
  1794. fs_info->scrub_workers_refcnt = 0;
  1795. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1796. fs_info->check_integrity_print_mask = 0;
  1797. #endif
  1798. spin_lock_init(&fs_info->balance_lock);
  1799. mutex_init(&fs_info->balance_mutex);
  1800. atomic_set(&fs_info->balance_running, 0);
  1801. atomic_set(&fs_info->balance_pause_req, 0);
  1802. atomic_set(&fs_info->balance_cancel_req, 0);
  1803. fs_info->balance_ctl = NULL;
  1804. init_waitqueue_head(&fs_info->balance_wait_q);
  1805. sb->s_blocksize = 4096;
  1806. sb->s_blocksize_bits = blksize_bits(4096);
  1807. sb->s_bdi = &fs_info->bdi;
  1808. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1809. set_nlink(fs_info->btree_inode, 1);
  1810. /*
  1811. * we set the i_size on the btree inode to the max possible int.
  1812. * the real end of the address space is determined by all of
  1813. * the devices in the system
  1814. */
  1815. fs_info->btree_inode->i_size = OFFSET_MAX;
  1816. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1817. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1818. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1819. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1820. fs_info->btree_inode->i_mapping);
  1821. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1822. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1823. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1824. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1825. sizeof(struct btrfs_key));
  1826. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1827. insert_inode_hash(fs_info->btree_inode);
  1828. spin_lock_init(&fs_info->block_group_cache_lock);
  1829. fs_info->block_group_cache_tree = RB_ROOT;
  1830. extent_io_tree_init(&fs_info->freed_extents[0],
  1831. fs_info->btree_inode->i_mapping);
  1832. extent_io_tree_init(&fs_info->freed_extents[1],
  1833. fs_info->btree_inode->i_mapping);
  1834. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1835. fs_info->do_barriers = 1;
  1836. mutex_init(&fs_info->ordered_operations_mutex);
  1837. mutex_init(&fs_info->tree_log_mutex);
  1838. mutex_init(&fs_info->chunk_mutex);
  1839. mutex_init(&fs_info->transaction_kthread_mutex);
  1840. mutex_init(&fs_info->cleaner_mutex);
  1841. mutex_init(&fs_info->volume_mutex);
  1842. init_rwsem(&fs_info->extent_commit_sem);
  1843. init_rwsem(&fs_info->cleanup_work_sem);
  1844. init_rwsem(&fs_info->subvol_sem);
  1845. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1846. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1847. init_waitqueue_head(&fs_info->transaction_throttle);
  1848. init_waitqueue_head(&fs_info->transaction_wait);
  1849. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1850. init_waitqueue_head(&fs_info->async_submit_wait);
  1851. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1852. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1853. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1854. if (!bh) {
  1855. err = -EINVAL;
  1856. goto fail_alloc;
  1857. }
  1858. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1859. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1860. sizeof(*fs_info->super_for_commit));
  1861. brelse(bh);
  1862. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1863. disk_super = fs_info->super_copy;
  1864. if (!btrfs_super_root(disk_super))
  1865. goto fail_alloc;
  1866. /* check FS state, whether FS is broken. */
  1867. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1868. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1869. if (ret) {
  1870. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  1871. err = ret;
  1872. goto fail_alloc;
  1873. }
  1874. /*
  1875. * run through our array of backup supers and setup
  1876. * our ring pointer to the oldest one
  1877. */
  1878. generation = btrfs_super_generation(disk_super);
  1879. find_oldest_super_backup(fs_info, generation);
  1880. /*
  1881. * In the long term, we'll store the compression type in the super
  1882. * block, and it'll be used for per file compression control.
  1883. */
  1884. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1885. ret = btrfs_parse_options(tree_root, options);
  1886. if (ret) {
  1887. err = ret;
  1888. goto fail_alloc;
  1889. }
  1890. features = btrfs_super_incompat_flags(disk_super) &
  1891. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1892. if (features) {
  1893. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1894. "unsupported optional features (%Lx).\n",
  1895. (unsigned long long)features);
  1896. err = -EINVAL;
  1897. goto fail_alloc;
  1898. }
  1899. features = btrfs_super_incompat_flags(disk_super);
  1900. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1901. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1902. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1903. btrfs_set_super_incompat_flags(disk_super, features);
  1904. features = btrfs_super_compat_ro_flags(disk_super) &
  1905. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1906. if (!(sb->s_flags & MS_RDONLY) && features) {
  1907. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1908. "unsupported option features (%Lx).\n",
  1909. (unsigned long long)features);
  1910. err = -EINVAL;
  1911. goto fail_alloc;
  1912. }
  1913. btrfs_init_workers(&fs_info->generic_worker,
  1914. "genwork", 1, NULL);
  1915. btrfs_init_workers(&fs_info->workers, "worker",
  1916. fs_info->thread_pool_size,
  1917. &fs_info->generic_worker);
  1918. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1919. fs_info->thread_pool_size,
  1920. &fs_info->generic_worker);
  1921. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1922. min_t(u64, fs_devices->num_devices,
  1923. fs_info->thread_pool_size),
  1924. &fs_info->generic_worker);
  1925. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1926. 2, &fs_info->generic_worker);
  1927. /* a higher idle thresh on the submit workers makes it much more
  1928. * likely that bios will be send down in a sane order to the
  1929. * devices
  1930. */
  1931. fs_info->submit_workers.idle_thresh = 64;
  1932. fs_info->workers.idle_thresh = 16;
  1933. fs_info->workers.ordered = 1;
  1934. fs_info->delalloc_workers.idle_thresh = 2;
  1935. fs_info->delalloc_workers.ordered = 1;
  1936. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1937. &fs_info->generic_worker);
  1938. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1939. fs_info->thread_pool_size,
  1940. &fs_info->generic_worker);
  1941. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1942. fs_info->thread_pool_size,
  1943. &fs_info->generic_worker);
  1944. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1945. "endio-meta-write", fs_info->thread_pool_size,
  1946. &fs_info->generic_worker);
  1947. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1948. fs_info->thread_pool_size,
  1949. &fs_info->generic_worker);
  1950. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1951. 1, &fs_info->generic_worker);
  1952. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1953. fs_info->thread_pool_size,
  1954. &fs_info->generic_worker);
  1955. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1956. fs_info->thread_pool_size,
  1957. &fs_info->generic_worker);
  1958. /*
  1959. * endios are largely parallel and should have a very
  1960. * low idle thresh
  1961. */
  1962. fs_info->endio_workers.idle_thresh = 4;
  1963. fs_info->endio_meta_workers.idle_thresh = 4;
  1964. fs_info->endio_write_workers.idle_thresh = 2;
  1965. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1966. fs_info->readahead_workers.idle_thresh = 2;
  1967. /*
  1968. * btrfs_start_workers can really only fail because of ENOMEM so just
  1969. * return -ENOMEM if any of these fail.
  1970. */
  1971. ret = btrfs_start_workers(&fs_info->workers);
  1972. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1973. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1974. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1975. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1976. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1977. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1978. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1979. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1980. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1981. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1982. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1983. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1984. if (ret) {
  1985. ret = -ENOMEM;
  1986. goto fail_sb_buffer;
  1987. }
  1988. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1989. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1990. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1991. nodesize = btrfs_super_nodesize(disk_super);
  1992. leafsize = btrfs_super_leafsize(disk_super);
  1993. sectorsize = btrfs_super_sectorsize(disk_super);
  1994. stripesize = btrfs_super_stripesize(disk_super);
  1995. tree_root->nodesize = nodesize;
  1996. tree_root->leafsize = leafsize;
  1997. tree_root->sectorsize = sectorsize;
  1998. tree_root->stripesize = stripesize;
  1999. sb->s_blocksize = sectorsize;
  2000. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2001. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  2002. sizeof(disk_super->magic))) {
  2003. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2004. goto fail_sb_buffer;
  2005. }
  2006. if (sectorsize < PAGE_SIZE) {
  2007. printk(KERN_WARNING "btrfs: Incompatible sector size "
  2008. "found on %s\n", sb->s_id);
  2009. goto fail_sb_buffer;
  2010. }
  2011. mutex_lock(&fs_info->chunk_mutex);
  2012. ret = btrfs_read_sys_array(tree_root);
  2013. mutex_unlock(&fs_info->chunk_mutex);
  2014. if (ret) {
  2015. printk(KERN_WARNING "btrfs: failed to read the system "
  2016. "array on %s\n", sb->s_id);
  2017. goto fail_sb_buffer;
  2018. }
  2019. blocksize = btrfs_level_size(tree_root,
  2020. btrfs_super_chunk_root_level(disk_super));
  2021. generation = btrfs_super_chunk_root_generation(disk_super);
  2022. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2023. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2024. chunk_root->node = read_tree_block(chunk_root,
  2025. btrfs_super_chunk_root(disk_super),
  2026. blocksize, generation);
  2027. BUG_ON(!chunk_root->node); /* -ENOMEM */
  2028. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2029. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2030. sb->s_id);
  2031. goto fail_tree_roots;
  2032. }
  2033. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2034. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2035. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2036. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2037. BTRFS_UUID_SIZE);
  2038. ret = btrfs_read_chunk_tree(chunk_root);
  2039. if (ret) {
  2040. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2041. sb->s_id);
  2042. goto fail_tree_roots;
  2043. }
  2044. btrfs_close_extra_devices(fs_devices);
  2045. if (!fs_devices->latest_bdev) {
  2046. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2047. sb->s_id);
  2048. goto fail_tree_roots;
  2049. }
  2050. retry_root_backup:
  2051. blocksize = btrfs_level_size(tree_root,
  2052. btrfs_super_root_level(disk_super));
  2053. generation = btrfs_super_generation(disk_super);
  2054. tree_root->node = read_tree_block(tree_root,
  2055. btrfs_super_root(disk_super),
  2056. blocksize, generation);
  2057. if (!tree_root->node ||
  2058. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2059. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2060. sb->s_id);
  2061. goto recovery_tree_root;
  2062. }
  2063. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2064. tree_root->commit_root = btrfs_root_node(tree_root);
  2065. ret = find_and_setup_root(tree_root, fs_info,
  2066. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2067. if (ret)
  2068. goto recovery_tree_root;
  2069. extent_root->track_dirty = 1;
  2070. ret = find_and_setup_root(tree_root, fs_info,
  2071. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2072. if (ret)
  2073. goto recovery_tree_root;
  2074. dev_root->track_dirty = 1;
  2075. ret = find_and_setup_root(tree_root, fs_info,
  2076. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2077. if (ret)
  2078. goto recovery_tree_root;
  2079. csum_root->track_dirty = 1;
  2080. fs_info->generation = generation;
  2081. fs_info->last_trans_committed = generation;
  2082. ret = btrfs_init_space_info(fs_info);
  2083. if (ret) {
  2084. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2085. goto fail_block_groups;
  2086. }
  2087. ret = btrfs_read_block_groups(extent_root);
  2088. if (ret) {
  2089. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2090. goto fail_block_groups;
  2091. }
  2092. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2093. "btrfs-cleaner");
  2094. if (IS_ERR(fs_info->cleaner_kthread))
  2095. goto fail_block_groups;
  2096. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2097. tree_root,
  2098. "btrfs-transaction");
  2099. if (IS_ERR(fs_info->transaction_kthread))
  2100. goto fail_cleaner;
  2101. if (!btrfs_test_opt(tree_root, SSD) &&
  2102. !btrfs_test_opt(tree_root, NOSSD) &&
  2103. !fs_info->fs_devices->rotating) {
  2104. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2105. "mode\n");
  2106. btrfs_set_opt(fs_info->mount_opt, SSD);
  2107. }
  2108. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2109. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2110. ret = btrfsic_mount(tree_root, fs_devices,
  2111. btrfs_test_opt(tree_root,
  2112. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2113. 1 : 0,
  2114. fs_info->check_integrity_print_mask);
  2115. if (ret)
  2116. printk(KERN_WARNING "btrfs: failed to initialize"
  2117. " integrity check module %s\n", sb->s_id);
  2118. }
  2119. #endif
  2120. /* do not make disk changes in broken FS */
  2121. if (btrfs_super_log_root(disk_super) != 0 &&
  2122. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2123. u64 bytenr = btrfs_super_log_root(disk_super);
  2124. if (fs_devices->rw_devices == 0) {
  2125. printk(KERN_WARNING "Btrfs log replay required "
  2126. "on RO media\n");
  2127. err = -EIO;
  2128. goto fail_trans_kthread;
  2129. }
  2130. blocksize =
  2131. btrfs_level_size(tree_root,
  2132. btrfs_super_log_root_level(disk_super));
  2133. log_tree_root = btrfs_alloc_root(fs_info);
  2134. if (!log_tree_root) {
  2135. err = -ENOMEM;
  2136. goto fail_trans_kthread;
  2137. }
  2138. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2139. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2140. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2141. blocksize,
  2142. generation + 1);
  2143. /* returns with log_tree_root freed on success */
  2144. ret = btrfs_recover_log_trees(log_tree_root);
  2145. if (ret) {
  2146. btrfs_error(tree_root->fs_info, ret,
  2147. "Failed to recover log tree");
  2148. free_extent_buffer(log_tree_root->node);
  2149. kfree(log_tree_root);
  2150. goto fail_trans_kthread;
  2151. }
  2152. if (sb->s_flags & MS_RDONLY) {
  2153. ret = btrfs_commit_super(tree_root);
  2154. if (ret)
  2155. goto fail_trans_kthread;
  2156. }
  2157. }
  2158. ret = btrfs_find_orphan_roots(tree_root);
  2159. if (ret)
  2160. goto fail_trans_kthread;
  2161. if (!(sb->s_flags & MS_RDONLY)) {
  2162. ret = btrfs_cleanup_fs_roots(fs_info);
  2163. if (ret) {
  2164. }
  2165. ret = btrfs_recover_relocation(tree_root);
  2166. if (ret < 0) {
  2167. printk(KERN_WARNING
  2168. "btrfs: failed to recover relocation\n");
  2169. err = -EINVAL;
  2170. goto fail_trans_kthread;
  2171. }
  2172. }
  2173. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2174. location.type = BTRFS_ROOT_ITEM_KEY;
  2175. location.offset = (u64)-1;
  2176. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2177. if (!fs_info->fs_root)
  2178. goto fail_trans_kthread;
  2179. if (IS_ERR(fs_info->fs_root)) {
  2180. err = PTR_ERR(fs_info->fs_root);
  2181. goto fail_trans_kthread;
  2182. }
  2183. if (!(sb->s_flags & MS_RDONLY)) {
  2184. down_read(&fs_info->cleanup_work_sem);
  2185. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2186. if (!err)
  2187. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2188. up_read(&fs_info->cleanup_work_sem);
  2189. if (!err)
  2190. err = btrfs_recover_balance(fs_info->tree_root);
  2191. if (err) {
  2192. close_ctree(tree_root);
  2193. return err;
  2194. }
  2195. }
  2196. return 0;
  2197. fail_trans_kthread:
  2198. kthread_stop(fs_info->transaction_kthread);
  2199. fail_cleaner:
  2200. kthread_stop(fs_info->cleaner_kthread);
  2201. /*
  2202. * make sure we're done with the btree inode before we stop our
  2203. * kthreads
  2204. */
  2205. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2206. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2207. fail_block_groups:
  2208. btrfs_free_block_groups(fs_info);
  2209. fail_tree_roots:
  2210. free_root_pointers(fs_info, 1);
  2211. fail_sb_buffer:
  2212. btrfs_stop_workers(&fs_info->generic_worker);
  2213. btrfs_stop_workers(&fs_info->readahead_workers);
  2214. btrfs_stop_workers(&fs_info->fixup_workers);
  2215. btrfs_stop_workers(&fs_info->delalloc_workers);
  2216. btrfs_stop_workers(&fs_info->workers);
  2217. btrfs_stop_workers(&fs_info->endio_workers);
  2218. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2219. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2220. btrfs_stop_workers(&fs_info->endio_write_workers);
  2221. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2222. btrfs_stop_workers(&fs_info->submit_workers);
  2223. btrfs_stop_workers(&fs_info->delayed_workers);
  2224. btrfs_stop_workers(&fs_info->caching_workers);
  2225. fail_alloc:
  2226. fail_iput:
  2227. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2228. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2229. iput(fs_info->btree_inode);
  2230. fail_bdi:
  2231. bdi_destroy(&fs_info->bdi);
  2232. fail_srcu:
  2233. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2234. fail:
  2235. btrfs_close_devices(fs_info->fs_devices);
  2236. return err;
  2237. recovery_tree_root:
  2238. if (!btrfs_test_opt(tree_root, RECOVERY))
  2239. goto fail_tree_roots;
  2240. free_root_pointers(fs_info, 0);
  2241. /* don't use the log in recovery mode, it won't be valid */
  2242. btrfs_set_super_log_root(disk_super, 0);
  2243. /* we can't trust the free space cache either */
  2244. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2245. ret = next_root_backup(fs_info, fs_info->super_copy,
  2246. &num_backups_tried, &backup_index);
  2247. if (ret == -1)
  2248. goto fail_block_groups;
  2249. goto retry_root_backup;
  2250. }
  2251. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2252. {
  2253. char b[BDEVNAME_SIZE];
  2254. if (uptodate) {
  2255. set_buffer_uptodate(bh);
  2256. } else {
  2257. printk_ratelimited(KERN_WARNING "lost page write due to "
  2258. "I/O error on %s\n",
  2259. bdevname(bh->b_bdev, b));
  2260. /* note, we dont' set_buffer_write_io_error because we have
  2261. * our own ways of dealing with the IO errors
  2262. */
  2263. clear_buffer_uptodate(bh);
  2264. }
  2265. unlock_buffer(bh);
  2266. put_bh(bh);
  2267. }
  2268. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2269. {
  2270. struct buffer_head *bh;
  2271. struct buffer_head *latest = NULL;
  2272. struct btrfs_super_block *super;
  2273. int i;
  2274. u64 transid = 0;
  2275. u64 bytenr;
  2276. /* we would like to check all the supers, but that would make
  2277. * a btrfs mount succeed after a mkfs from a different FS.
  2278. * So, we need to add a special mount option to scan for
  2279. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2280. */
  2281. for (i = 0; i < 1; i++) {
  2282. bytenr = btrfs_sb_offset(i);
  2283. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2284. break;
  2285. bh = __bread(bdev, bytenr / 4096, 4096);
  2286. if (!bh)
  2287. continue;
  2288. super = (struct btrfs_super_block *)bh->b_data;
  2289. if (btrfs_super_bytenr(super) != bytenr ||
  2290. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2291. sizeof(super->magic))) {
  2292. brelse(bh);
  2293. continue;
  2294. }
  2295. if (!latest || btrfs_super_generation(super) > transid) {
  2296. brelse(latest);
  2297. latest = bh;
  2298. transid = btrfs_super_generation(super);
  2299. } else {
  2300. brelse(bh);
  2301. }
  2302. }
  2303. return latest;
  2304. }
  2305. /*
  2306. * this should be called twice, once with wait == 0 and
  2307. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2308. * we write are pinned.
  2309. *
  2310. * They are released when wait == 1 is done.
  2311. * max_mirrors must be the same for both runs, and it indicates how
  2312. * many supers on this one device should be written.
  2313. *
  2314. * max_mirrors == 0 means to write them all.
  2315. */
  2316. static int write_dev_supers(struct btrfs_device *device,
  2317. struct btrfs_super_block *sb,
  2318. int do_barriers, int wait, int max_mirrors)
  2319. {
  2320. struct buffer_head *bh;
  2321. int i;
  2322. int ret;
  2323. int errors = 0;
  2324. u32 crc;
  2325. u64 bytenr;
  2326. if (max_mirrors == 0)
  2327. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2328. for (i = 0; i < max_mirrors; i++) {
  2329. bytenr = btrfs_sb_offset(i);
  2330. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2331. break;
  2332. if (wait) {
  2333. bh = __find_get_block(device->bdev, bytenr / 4096,
  2334. BTRFS_SUPER_INFO_SIZE);
  2335. BUG_ON(!bh);
  2336. wait_on_buffer(bh);
  2337. if (!buffer_uptodate(bh))
  2338. errors++;
  2339. /* drop our reference */
  2340. brelse(bh);
  2341. /* drop the reference from the wait == 0 run */
  2342. brelse(bh);
  2343. continue;
  2344. } else {
  2345. btrfs_set_super_bytenr(sb, bytenr);
  2346. crc = ~(u32)0;
  2347. crc = btrfs_csum_data(NULL, (char *)sb +
  2348. BTRFS_CSUM_SIZE, crc,
  2349. BTRFS_SUPER_INFO_SIZE -
  2350. BTRFS_CSUM_SIZE);
  2351. btrfs_csum_final(crc, sb->csum);
  2352. /*
  2353. * one reference for us, and we leave it for the
  2354. * caller
  2355. */
  2356. bh = __getblk(device->bdev, bytenr / 4096,
  2357. BTRFS_SUPER_INFO_SIZE);
  2358. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2359. /* one reference for submit_bh */
  2360. get_bh(bh);
  2361. set_buffer_uptodate(bh);
  2362. lock_buffer(bh);
  2363. bh->b_end_io = btrfs_end_buffer_write_sync;
  2364. }
  2365. /*
  2366. * we fua the first super. The others we allow
  2367. * to go down lazy.
  2368. */
  2369. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2370. if (ret)
  2371. errors++;
  2372. }
  2373. return errors < i ? 0 : -1;
  2374. }
  2375. /*
  2376. * endio for the write_dev_flush, this will wake anyone waiting
  2377. * for the barrier when it is done
  2378. */
  2379. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2380. {
  2381. if (err) {
  2382. if (err == -EOPNOTSUPP)
  2383. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2384. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2385. }
  2386. if (bio->bi_private)
  2387. complete(bio->bi_private);
  2388. bio_put(bio);
  2389. }
  2390. /*
  2391. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2392. * sent down. With wait == 1, it waits for the previous flush.
  2393. *
  2394. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2395. * capable
  2396. */
  2397. static int write_dev_flush(struct btrfs_device *device, int wait)
  2398. {
  2399. struct bio *bio;
  2400. int ret = 0;
  2401. if (device->nobarriers)
  2402. return 0;
  2403. if (wait) {
  2404. bio = device->flush_bio;
  2405. if (!bio)
  2406. return 0;
  2407. wait_for_completion(&device->flush_wait);
  2408. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2409. printk("btrfs: disabling barriers on dev %s\n",
  2410. device->name);
  2411. device->nobarriers = 1;
  2412. }
  2413. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2414. ret = -EIO;
  2415. }
  2416. /* drop the reference from the wait == 0 run */
  2417. bio_put(bio);
  2418. device->flush_bio = NULL;
  2419. return ret;
  2420. }
  2421. /*
  2422. * one reference for us, and we leave it for the
  2423. * caller
  2424. */
  2425. device->flush_bio = NULL;;
  2426. bio = bio_alloc(GFP_NOFS, 0);
  2427. if (!bio)
  2428. return -ENOMEM;
  2429. bio->bi_end_io = btrfs_end_empty_barrier;
  2430. bio->bi_bdev = device->bdev;
  2431. init_completion(&device->flush_wait);
  2432. bio->bi_private = &device->flush_wait;
  2433. device->flush_bio = bio;
  2434. bio_get(bio);
  2435. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2436. return 0;
  2437. }
  2438. /*
  2439. * send an empty flush down to each device in parallel,
  2440. * then wait for them
  2441. */
  2442. static int barrier_all_devices(struct btrfs_fs_info *info)
  2443. {
  2444. struct list_head *head;
  2445. struct btrfs_device *dev;
  2446. int errors = 0;
  2447. int ret;
  2448. /* send down all the barriers */
  2449. head = &info->fs_devices->devices;
  2450. list_for_each_entry_rcu(dev, head, dev_list) {
  2451. if (!dev->bdev) {
  2452. errors++;
  2453. continue;
  2454. }
  2455. if (!dev->in_fs_metadata || !dev->writeable)
  2456. continue;
  2457. ret = write_dev_flush(dev, 0);
  2458. if (ret)
  2459. errors++;
  2460. }
  2461. /* wait for all the barriers */
  2462. list_for_each_entry_rcu(dev, head, dev_list) {
  2463. if (!dev->bdev) {
  2464. errors++;
  2465. continue;
  2466. }
  2467. if (!dev->in_fs_metadata || !dev->writeable)
  2468. continue;
  2469. ret = write_dev_flush(dev, 1);
  2470. if (ret)
  2471. errors++;
  2472. }
  2473. if (errors)
  2474. return -EIO;
  2475. return 0;
  2476. }
  2477. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2478. {
  2479. struct list_head *head;
  2480. struct btrfs_device *dev;
  2481. struct btrfs_super_block *sb;
  2482. struct btrfs_dev_item *dev_item;
  2483. int ret;
  2484. int do_barriers;
  2485. int max_errors;
  2486. int total_errors = 0;
  2487. u64 flags;
  2488. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2489. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2490. backup_super_roots(root->fs_info);
  2491. sb = root->fs_info->super_for_commit;
  2492. dev_item = &sb->dev_item;
  2493. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2494. head = &root->fs_info->fs_devices->devices;
  2495. if (do_barriers)
  2496. barrier_all_devices(root->fs_info);
  2497. list_for_each_entry_rcu(dev, head, dev_list) {
  2498. if (!dev->bdev) {
  2499. total_errors++;
  2500. continue;
  2501. }
  2502. if (!dev->in_fs_metadata || !dev->writeable)
  2503. continue;
  2504. btrfs_set_stack_device_generation(dev_item, 0);
  2505. btrfs_set_stack_device_type(dev_item, dev->type);
  2506. btrfs_set_stack_device_id(dev_item, dev->devid);
  2507. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2508. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2509. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2510. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2511. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2512. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2513. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2514. flags = btrfs_super_flags(sb);
  2515. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2516. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2517. if (ret)
  2518. total_errors++;
  2519. }
  2520. if (total_errors > max_errors) {
  2521. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2522. total_errors);
  2523. /* This shouldn't happen. FUA is masked off if unsupported */
  2524. BUG();
  2525. }
  2526. total_errors = 0;
  2527. list_for_each_entry_rcu(dev, head, dev_list) {
  2528. if (!dev->bdev)
  2529. continue;
  2530. if (!dev->in_fs_metadata || !dev->writeable)
  2531. continue;
  2532. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2533. if (ret)
  2534. total_errors++;
  2535. }
  2536. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2537. if (total_errors > max_errors) {
  2538. btrfs_error(root->fs_info, -EIO,
  2539. "%d errors while writing supers", total_errors);
  2540. return -EIO;
  2541. }
  2542. return 0;
  2543. }
  2544. int write_ctree_super(struct btrfs_trans_handle *trans,
  2545. struct btrfs_root *root, int max_mirrors)
  2546. {
  2547. int ret;
  2548. ret = write_all_supers(root, max_mirrors);
  2549. return ret;
  2550. }
  2551. /* Kill all outstanding I/O */
  2552. void btrfs_abort_devices(struct btrfs_root *root)
  2553. {
  2554. struct list_head *head;
  2555. struct btrfs_device *dev;
  2556. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2557. head = &root->fs_info->fs_devices->devices;
  2558. list_for_each_entry_rcu(dev, head, dev_list) {
  2559. blk_abort_queue(dev->bdev->bd_disk->queue);
  2560. }
  2561. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2562. }
  2563. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2564. {
  2565. spin_lock(&fs_info->fs_roots_radix_lock);
  2566. radix_tree_delete(&fs_info->fs_roots_radix,
  2567. (unsigned long)root->root_key.objectid);
  2568. spin_unlock(&fs_info->fs_roots_radix_lock);
  2569. if (btrfs_root_refs(&root->root_item) == 0)
  2570. synchronize_srcu(&fs_info->subvol_srcu);
  2571. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2572. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2573. free_fs_root(root);
  2574. }
  2575. static void free_fs_root(struct btrfs_root *root)
  2576. {
  2577. iput(root->cache_inode);
  2578. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2579. if (root->anon_dev)
  2580. free_anon_bdev(root->anon_dev);
  2581. free_extent_buffer(root->node);
  2582. free_extent_buffer(root->commit_root);
  2583. kfree(root->free_ino_ctl);
  2584. kfree(root->free_ino_pinned);
  2585. kfree(root->name);
  2586. kfree(root);
  2587. }
  2588. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  2589. {
  2590. int ret;
  2591. struct btrfs_root *gang[8];
  2592. int i;
  2593. while (!list_empty(&fs_info->dead_roots)) {
  2594. gang[0] = list_entry(fs_info->dead_roots.next,
  2595. struct btrfs_root, root_list);
  2596. list_del(&gang[0]->root_list);
  2597. if (gang[0]->in_radix) {
  2598. btrfs_free_fs_root(fs_info, gang[0]);
  2599. } else {
  2600. free_extent_buffer(gang[0]->node);
  2601. free_extent_buffer(gang[0]->commit_root);
  2602. kfree(gang[0]);
  2603. }
  2604. }
  2605. while (1) {
  2606. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2607. (void **)gang, 0,
  2608. ARRAY_SIZE(gang));
  2609. if (!ret)
  2610. break;
  2611. for (i = 0; i < ret; i++)
  2612. btrfs_free_fs_root(fs_info, gang[i]);
  2613. }
  2614. }
  2615. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2616. {
  2617. u64 root_objectid = 0;
  2618. struct btrfs_root *gang[8];
  2619. int i;
  2620. int ret;
  2621. while (1) {
  2622. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2623. (void **)gang, root_objectid,
  2624. ARRAY_SIZE(gang));
  2625. if (!ret)
  2626. break;
  2627. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2628. for (i = 0; i < ret; i++) {
  2629. int err;
  2630. root_objectid = gang[i]->root_key.objectid;
  2631. err = btrfs_orphan_cleanup(gang[i]);
  2632. if (err)
  2633. return err;
  2634. }
  2635. root_objectid++;
  2636. }
  2637. return 0;
  2638. }
  2639. int btrfs_commit_super(struct btrfs_root *root)
  2640. {
  2641. struct btrfs_trans_handle *trans;
  2642. int ret;
  2643. mutex_lock(&root->fs_info->cleaner_mutex);
  2644. btrfs_run_delayed_iputs(root);
  2645. btrfs_clean_old_snapshots(root);
  2646. mutex_unlock(&root->fs_info->cleaner_mutex);
  2647. /* wait until ongoing cleanup work done */
  2648. down_write(&root->fs_info->cleanup_work_sem);
  2649. up_write(&root->fs_info->cleanup_work_sem);
  2650. trans = btrfs_join_transaction(root);
  2651. if (IS_ERR(trans))
  2652. return PTR_ERR(trans);
  2653. ret = btrfs_commit_transaction(trans, root);
  2654. if (ret)
  2655. return ret;
  2656. /* run commit again to drop the original snapshot */
  2657. trans = btrfs_join_transaction(root);
  2658. if (IS_ERR(trans))
  2659. return PTR_ERR(trans);
  2660. ret = btrfs_commit_transaction(trans, root);
  2661. if (ret)
  2662. return ret;
  2663. ret = btrfs_write_and_wait_transaction(NULL, root);
  2664. if (ret) {
  2665. btrfs_error(root->fs_info, ret,
  2666. "Failed to sync btree inode to disk.");
  2667. return ret;
  2668. }
  2669. ret = write_ctree_super(NULL, root, 0);
  2670. return ret;
  2671. }
  2672. int close_ctree(struct btrfs_root *root)
  2673. {
  2674. struct btrfs_fs_info *fs_info = root->fs_info;
  2675. int ret;
  2676. fs_info->closing = 1;
  2677. smp_mb();
  2678. /* pause restriper - we want to resume on mount */
  2679. btrfs_pause_balance(root->fs_info);
  2680. btrfs_scrub_cancel(root);
  2681. /* wait for any defraggers to finish */
  2682. wait_event(fs_info->transaction_wait,
  2683. (atomic_read(&fs_info->defrag_running) == 0));
  2684. /* clear out the rbtree of defraggable inodes */
  2685. btrfs_run_defrag_inodes(fs_info);
  2686. /*
  2687. * Here come 2 situations when btrfs is broken to flip readonly:
  2688. *
  2689. * 1. when btrfs flips readonly somewhere else before
  2690. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2691. * and btrfs will skip to write sb directly to keep
  2692. * ERROR state on disk.
  2693. *
  2694. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2695. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2696. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2697. * btrfs will cleanup all FS resources first and write sb then.
  2698. */
  2699. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2700. ret = btrfs_commit_super(root);
  2701. if (ret)
  2702. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2703. }
  2704. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2705. ret = btrfs_error_commit_super(root);
  2706. if (ret)
  2707. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2708. }
  2709. btrfs_put_block_group_cache(fs_info);
  2710. kthread_stop(fs_info->transaction_kthread);
  2711. kthread_stop(fs_info->cleaner_kthread);
  2712. fs_info->closing = 2;
  2713. smp_mb();
  2714. if (fs_info->delalloc_bytes) {
  2715. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2716. (unsigned long long)fs_info->delalloc_bytes);
  2717. }
  2718. if (fs_info->total_ref_cache_size) {
  2719. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2720. (unsigned long long)fs_info->total_ref_cache_size);
  2721. }
  2722. free_extent_buffer(fs_info->extent_root->node);
  2723. free_extent_buffer(fs_info->extent_root->commit_root);
  2724. free_extent_buffer(fs_info->tree_root->node);
  2725. free_extent_buffer(fs_info->tree_root->commit_root);
  2726. free_extent_buffer(fs_info->chunk_root->node);
  2727. free_extent_buffer(fs_info->chunk_root->commit_root);
  2728. free_extent_buffer(fs_info->dev_root->node);
  2729. free_extent_buffer(fs_info->dev_root->commit_root);
  2730. free_extent_buffer(fs_info->csum_root->node);
  2731. free_extent_buffer(fs_info->csum_root->commit_root);
  2732. btrfs_free_block_groups(fs_info);
  2733. del_fs_roots(fs_info);
  2734. iput(fs_info->btree_inode);
  2735. btrfs_stop_workers(&fs_info->generic_worker);
  2736. btrfs_stop_workers(&fs_info->fixup_workers);
  2737. btrfs_stop_workers(&fs_info->delalloc_workers);
  2738. btrfs_stop_workers(&fs_info->workers);
  2739. btrfs_stop_workers(&fs_info->endio_workers);
  2740. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2741. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2742. btrfs_stop_workers(&fs_info->endio_write_workers);
  2743. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2744. btrfs_stop_workers(&fs_info->submit_workers);
  2745. btrfs_stop_workers(&fs_info->delayed_workers);
  2746. btrfs_stop_workers(&fs_info->caching_workers);
  2747. btrfs_stop_workers(&fs_info->readahead_workers);
  2748. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2749. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  2750. btrfsic_unmount(root, fs_info->fs_devices);
  2751. #endif
  2752. btrfs_close_devices(fs_info->fs_devices);
  2753. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2754. bdi_destroy(&fs_info->bdi);
  2755. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2756. return 0;
  2757. }
  2758. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2759. {
  2760. int ret;
  2761. struct inode *btree_inode = buf->first_page->mapping->host;
  2762. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2763. NULL);
  2764. if (!ret)
  2765. return ret;
  2766. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2767. parent_transid);
  2768. return !ret;
  2769. }
  2770. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2771. {
  2772. struct inode *btree_inode = buf->first_page->mapping->host;
  2773. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2774. buf);
  2775. }
  2776. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2777. {
  2778. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2779. u64 transid = btrfs_header_generation(buf);
  2780. struct inode *btree_inode = root->fs_info->btree_inode;
  2781. int was_dirty;
  2782. btrfs_assert_tree_locked(buf);
  2783. if (transid != root->fs_info->generation) {
  2784. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2785. "found %llu running %llu\n",
  2786. (unsigned long long)buf->start,
  2787. (unsigned long long)transid,
  2788. (unsigned long long)root->fs_info->generation);
  2789. WARN_ON(1);
  2790. }
  2791. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2792. buf);
  2793. if (!was_dirty) {
  2794. spin_lock(&root->fs_info->delalloc_lock);
  2795. root->fs_info->dirty_metadata_bytes += buf->len;
  2796. spin_unlock(&root->fs_info->delalloc_lock);
  2797. }
  2798. }
  2799. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2800. {
  2801. /*
  2802. * looks as though older kernels can get into trouble with
  2803. * this code, they end up stuck in balance_dirty_pages forever
  2804. */
  2805. u64 num_dirty;
  2806. unsigned long thresh = 32 * 1024 * 1024;
  2807. if (current->flags & PF_MEMALLOC)
  2808. return;
  2809. btrfs_balance_delayed_items(root);
  2810. num_dirty = root->fs_info->dirty_metadata_bytes;
  2811. if (num_dirty > thresh) {
  2812. balance_dirty_pages_ratelimited_nr(
  2813. root->fs_info->btree_inode->i_mapping, 1);
  2814. }
  2815. return;
  2816. }
  2817. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2818. {
  2819. /*
  2820. * looks as though older kernels can get into trouble with
  2821. * this code, they end up stuck in balance_dirty_pages forever
  2822. */
  2823. u64 num_dirty;
  2824. unsigned long thresh = 32 * 1024 * 1024;
  2825. if (current->flags & PF_MEMALLOC)
  2826. return;
  2827. num_dirty = root->fs_info->dirty_metadata_bytes;
  2828. if (num_dirty > thresh) {
  2829. balance_dirty_pages_ratelimited_nr(
  2830. root->fs_info->btree_inode->i_mapping, 1);
  2831. }
  2832. return;
  2833. }
  2834. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2835. {
  2836. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2837. int ret;
  2838. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2839. if (ret == 0)
  2840. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2841. return ret;
  2842. }
  2843. static int btree_lock_page_hook(struct page *page, void *data,
  2844. void (*flush_fn)(void *))
  2845. {
  2846. struct inode *inode = page->mapping->host;
  2847. struct btrfs_root *root = BTRFS_I(inode)->root;
  2848. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2849. struct extent_buffer *eb;
  2850. unsigned long len;
  2851. u64 bytenr = page_offset(page);
  2852. if (page->private == EXTENT_PAGE_PRIVATE)
  2853. goto out;
  2854. len = page->private >> 2;
  2855. eb = find_extent_buffer(io_tree, bytenr, len);
  2856. if (!eb)
  2857. goto out;
  2858. if (!btrfs_try_tree_write_lock(eb)) {
  2859. flush_fn(data);
  2860. btrfs_tree_lock(eb);
  2861. }
  2862. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2863. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2864. spin_lock(&root->fs_info->delalloc_lock);
  2865. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2866. root->fs_info->dirty_metadata_bytes -= eb->len;
  2867. else
  2868. WARN_ON(1);
  2869. spin_unlock(&root->fs_info->delalloc_lock);
  2870. }
  2871. btrfs_tree_unlock(eb);
  2872. free_extent_buffer(eb);
  2873. out:
  2874. if (!trylock_page(page)) {
  2875. flush_fn(data);
  2876. lock_page(page);
  2877. }
  2878. return 0;
  2879. }
  2880. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2881. int read_only)
  2882. {
  2883. if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
  2884. printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
  2885. return -EINVAL;
  2886. }
  2887. if (read_only)
  2888. return 0;
  2889. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2890. printk(KERN_WARNING "warning: mount fs with errors, "
  2891. "running btrfsck is recommended\n");
  2892. }
  2893. return 0;
  2894. }
  2895. int btrfs_error_commit_super(struct btrfs_root *root)
  2896. {
  2897. int ret;
  2898. mutex_lock(&root->fs_info->cleaner_mutex);
  2899. btrfs_run_delayed_iputs(root);
  2900. mutex_unlock(&root->fs_info->cleaner_mutex);
  2901. down_write(&root->fs_info->cleanup_work_sem);
  2902. up_write(&root->fs_info->cleanup_work_sem);
  2903. /* cleanup FS via transaction */
  2904. btrfs_cleanup_transaction(root);
  2905. ret = write_ctree_super(NULL, root, 0);
  2906. return ret;
  2907. }
  2908. static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2909. {
  2910. struct btrfs_inode *btrfs_inode;
  2911. struct list_head splice;
  2912. INIT_LIST_HEAD(&splice);
  2913. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2914. spin_lock(&root->fs_info->ordered_extent_lock);
  2915. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2916. while (!list_empty(&splice)) {
  2917. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2918. ordered_operations);
  2919. list_del_init(&btrfs_inode->ordered_operations);
  2920. btrfs_invalidate_inodes(btrfs_inode->root);
  2921. }
  2922. spin_unlock(&root->fs_info->ordered_extent_lock);
  2923. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2924. }
  2925. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2926. {
  2927. struct list_head splice;
  2928. struct btrfs_ordered_extent *ordered;
  2929. struct inode *inode;
  2930. INIT_LIST_HEAD(&splice);
  2931. spin_lock(&root->fs_info->ordered_extent_lock);
  2932. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2933. while (!list_empty(&splice)) {
  2934. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2935. root_extent_list);
  2936. list_del_init(&ordered->root_extent_list);
  2937. atomic_inc(&ordered->refs);
  2938. /* the inode may be getting freed (in sys_unlink path). */
  2939. inode = igrab(ordered->inode);
  2940. spin_unlock(&root->fs_info->ordered_extent_lock);
  2941. if (inode)
  2942. iput(inode);
  2943. atomic_set(&ordered->refs, 1);
  2944. btrfs_put_ordered_extent(ordered);
  2945. spin_lock(&root->fs_info->ordered_extent_lock);
  2946. }
  2947. spin_unlock(&root->fs_info->ordered_extent_lock);
  2948. }
  2949. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2950. struct btrfs_root *root)
  2951. {
  2952. struct rb_node *node;
  2953. struct btrfs_delayed_ref_root *delayed_refs;
  2954. struct btrfs_delayed_ref_node *ref;
  2955. int ret = 0;
  2956. delayed_refs = &trans->delayed_refs;
  2957. again:
  2958. spin_lock(&delayed_refs->lock);
  2959. if (delayed_refs->num_entries == 0) {
  2960. spin_unlock(&delayed_refs->lock);
  2961. printk(KERN_INFO "delayed_refs has NO entry\n");
  2962. return ret;
  2963. }
  2964. node = rb_first(&delayed_refs->root);
  2965. while (node) {
  2966. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2967. node = rb_next(node);
  2968. ref->in_tree = 0;
  2969. rb_erase(&ref->rb_node, &delayed_refs->root);
  2970. delayed_refs->num_entries--;
  2971. atomic_set(&ref->refs, 1);
  2972. if (btrfs_delayed_ref_is_head(ref)) {
  2973. struct btrfs_delayed_ref_head *head;
  2974. head = btrfs_delayed_node_to_head(ref);
  2975. spin_unlock(&delayed_refs->lock);
  2976. mutex_lock(&head->mutex);
  2977. kfree(head->extent_op);
  2978. delayed_refs->num_heads--;
  2979. if (list_empty(&head->cluster))
  2980. delayed_refs->num_heads_ready--;
  2981. list_del_init(&head->cluster);
  2982. mutex_unlock(&head->mutex);
  2983. btrfs_put_delayed_ref(ref);
  2984. goto again;
  2985. }
  2986. spin_unlock(&delayed_refs->lock);
  2987. btrfs_put_delayed_ref(ref);
  2988. cond_resched();
  2989. spin_lock(&delayed_refs->lock);
  2990. }
  2991. spin_unlock(&delayed_refs->lock);
  2992. return ret;
  2993. }
  2994. static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2995. {
  2996. struct btrfs_pending_snapshot *snapshot;
  2997. struct list_head splice;
  2998. INIT_LIST_HEAD(&splice);
  2999. list_splice_init(&t->pending_snapshots, &splice);
  3000. while (!list_empty(&splice)) {
  3001. snapshot = list_entry(splice.next,
  3002. struct btrfs_pending_snapshot,
  3003. list);
  3004. list_del_init(&snapshot->list);
  3005. kfree(snapshot);
  3006. }
  3007. }
  3008. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3009. {
  3010. struct btrfs_inode *btrfs_inode;
  3011. struct list_head splice;
  3012. INIT_LIST_HEAD(&splice);
  3013. spin_lock(&root->fs_info->delalloc_lock);
  3014. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3015. while (!list_empty(&splice)) {
  3016. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3017. delalloc_inodes);
  3018. list_del_init(&btrfs_inode->delalloc_inodes);
  3019. btrfs_invalidate_inodes(btrfs_inode->root);
  3020. }
  3021. spin_unlock(&root->fs_info->delalloc_lock);
  3022. }
  3023. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3024. struct extent_io_tree *dirty_pages,
  3025. int mark)
  3026. {
  3027. int ret;
  3028. struct page *page;
  3029. struct inode *btree_inode = root->fs_info->btree_inode;
  3030. struct extent_buffer *eb;
  3031. u64 start = 0;
  3032. u64 end;
  3033. u64 offset;
  3034. unsigned long index;
  3035. while (1) {
  3036. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3037. mark);
  3038. if (ret)
  3039. break;
  3040. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3041. while (start <= end) {
  3042. index = start >> PAGE_CACHE_SHIFT;
  3043. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  3044. page = find_get_page(btree_inode->i_mapping, index);
  3045. if (!page)
  3046. continue;
  3047. offset = page_offset(page);
  3048. spin_lock(&dirty_pages->buffer_lock);
  3049. eb = radix_tree_lookup(
  3050. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  3051. offset >> PAGE_CACHE_SHIFT);
  3052. spin_unlock(&dirty_pages->buffer_lock);
  3053. if (eb) {
  3054. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3055. &eb->bflags);
  3056. atomic_set(&eb->refs, 1);
  3057. }
  3058. if (PageWriteback(page))
  3059. end_page_writeback(page);
  3060. lock_page(page);
  3061. if (PageDirty(page)) {
  3062. clear_page_dirty_for_io(page);
  3063. spin_lock_irq(&page->mapping->tree_lock);
  3064. radix_tree_tag_clear(&page->mapping->page_tree,
  3065. page_index(page),
  3066. PAGECACHE_TAG_DIRTY);
  3067. spin_unlock_irq(&page->mapping->tree_lock);
  3068. }
  3069. page->mapping->a_ops->invalidatepage(page, 0);
  3070. unlock_page(page);
  3071. }
  3072. }
  3073. return ret;
  3074. }
  3075. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3076. struct extent_io_tree *pinned_extents)
  3077. {
  3078. struct extent_io_tree *unpin;
  3079. u64 start;
  3080. u64 end;
  3081. int ret;
  3082. unpin = pinned_extents;
  3083. while (1) {
  3084. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3085. EXTENT_DIRTY);
  3086. if (ret)
  3087. break;
  3088. /* opt_discard */
  3089. if (btrfs_test_opt(root, DISCARD))
  3090. ret = btrfs_error_discard_extent(root, start,
  3091. end + 1 - start,
  3092. NULL);
  3093. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3094. btrfs_error_unpin_extent_range(root, start, end);
  3095. cond_resched();
  3096. }
  3097. return 0;
  3098. }
  3099. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3100. struct btrfs_root *root)
  3101. {
  3102. btrfs_destroy_delayed_refs(cur_trans, root);
  3103. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3104. cur_trans->dirty_pages.dirty_bytes);
  3105. /* FIXME: cleanup wait for commit */
  3106. cur_trans->in_commit = 1;
  3107. cur_trans->blocked = 1;
  3108. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3109. wake_up(&root->fs_info->transaction_blocked_wait);
  3110. cur_trans->blocked = 0;
  3111. if (waitqueue_active(&root->fs_info->transaction_wait))
  3112. wake_up(&root->fs_info->transaction_wait);
  3113. cur_trans->commit_done = 1;
  3114. if (waitqueue_active(&cur_trans->commit_wait))
  3115. wake_up(&cur_trans->commit_wait);
  3116. btrfs_destroy_pending_snapshots(cur_trans);
  3117. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3118. EXTENT_DIRTY);
  3119. /*
  3120. memset(cur_trans, 0, sizeof(*cur_trans));
  3121. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3122. */
  3123. }
  3124. int btrfs_cleanup_transaction(struct btrfs_root *root)
  3125. {
  3126. struct btrfs_transaction *t;
  3127. LIST_HEAD(list);
  3128. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3129. spin_lock(&root->fs_info->trans_lock);
  3130. list_splice_init(&root->fs_info->trans_list, &list);
  3131. root->fs_info->trans_no_join = 1;
  3132. spin_unlock(&root->fs_info->trans_lock);
  3133. while (!list_empty(&list)) {
  3134. t = list_entry(list.next, struct btrfs_transaction, list);
  3135. if (!t)
  3136. break;
  3137. btrfs_destroy_ordered_operations(root);
  3138. btrfs_destroy_ordered_extents(root);
  3139. btrfs_destroy_delayed_refs(t, root);
  3140. btrfs_block_rsv_release(root,
  3141. &root->fs_info->trans_block_rsv,
  3142. t->dirty_pages.dirty_bytes);
  3143. /* FIXME: cleanup wait for commit */
  3144. t->in_commit = 1;
  3145. t->blocked = 1;
  3146. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3147. wake_up(&root->fs_info->transaction_blocked_wait);
  3148. t->blocked = 0;
  3149. if (waitqueue_active(&root->fs_info->transaction_wait))
  3150. wake_up(&root->fs_info->transaction_wait);
  3151. t->commit_done = 1;
  3152. if (waitqueue_active(&t->commit_wait))
  3153. wake_up(&t->commit_wait);
  3154. btrfs_destroy_pending_snapshots(t);
  3155. btrfs_destroy_delalloc_inodes(root);
  3156. spin_lock(&root->fs_info->trans_lock);
  3157. root->fs_info->running_transaction = NULL;
  3158. spin_unlock(&root->fs_info->trans_lock);
  3159. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3160. EXTENT_DIRTY);
  3161. btrfs_destroy_pinned_extent(root,
  3162. root->fs_info->pinned_extents);
  3163. atomic_set(&t->use_count, 0);
  3164. list_del_init(&t->list);
  3165. memset(t, 0, sizeof(*t));
  3166. kmem_cache_free(btrfs_transaction_cachep, t);
  3167. }
  3168. spin_lock(&root->fs_info->trans_lock);
  3169. root->fs_info->trans_no_join = 0;
  3170. spin_unlock(&root->fs_info->trans_lock);
  3171. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3172. return 0;
  3173. }
  3174. static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
  3175. u64 start, u64 end,
  3176. struct extent_state *state)
  3177. {
  3178. struct super_block *sb = page->mapping->host->i_sb;
  3179. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  3180. btrfs_error(fs_info, -EIO,
  3181. "Error occured while writing out btree at %llu", start);
  3182. return -EIO;
  3183. }
  3184. static struct extent_io_ops btree_extent_io_ops = {
  3185. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3186. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3187. .readpage_io_failed_hook = btree_io_failed_hook,
  3188. .submit_bio_hook = btree_submit_bio_hook,
  3189. /* note we're sharing with inode.c for the merge bio hook */
  3190. .merge_bio_hook = btrfs_merge_bio_hook,
  3191. .writepage_io_failed_hook = btree_writepage_io_failed_hook,
  3192. };