intel_display.c 210 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include <linux/slab.h>
  31. #include <linux/vgaarb.h>
  32. #include "drmP.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "i915_trace.h"
  37. #include "drm_dp_helper.h"
  38. #include "drm_crtc_helper.h"
  39. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  40. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  41. static void intel_update_watermarks(struct drm_device *dev);
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. typedef struct {
  45. /* given values */
  46. int n;
  47. int m1, m2;
  48. int p1, p2;
  49. /* derived values */
  50. int dot;
  51. int vco;
  52. int m;
  53. int p;
  54. } intel_clock_t;
  55. typedef struct {
  56. int min, max;
  57. } intel_range_t;
  58. typedef struct {
  59. int dot_limit;
  60. int p2_slow, p2_fast;
  61. } intel_p2_t;
  62. #define INTEL_P2_NUM 2
  63. typedef struct intel_limit intel_limit_t;
  64. struct intel_limit {
  65. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  66. intel_p2_t p2;
  67. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  68. int, int, intel_clock_t *);
  69. };
  70. /* FDI */
  71. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  72. static bool
  73. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  74. int target, int refclk, intel_clock_t *best_clock);
  75. static bool
  76. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *best_clock);
  78. static bool
  79. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  80. int target, int refclk, intel_clock_t *best_clock);
  81. static bool
  82. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  83. int target, int refclk, intel_clock_t *best_clock);
  84. static inline u32 /* units of 100MHz */
  85. intel_fdi_link_freq(struct drm_device *dev)
  86. {
  87. if (IS_GEN5(dev)) {
  88. struct drm_i915_private *dev_priv = dev->dev_private;
  89. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  90. } else
  91. return 27;
  92. }
  93. static const intel_limit_t intel_limits_i8xx_dvo = {
  94. .dot = { .min = 25000, .max = 350000 },
  95. .vco = { .min = 930000, .max = 1400000 },
  96. .n = { .min = 3, .max = 16 },
  97. .m = { .min = 96, .max = 140 },
  98. .m1 = { .min = 18, .max = 26 },
  99. .m2 = { .min = 6, .max = 16 },
  100. .p = { .min = 4, .max = 128 },
  101. .p1 = { .min = 2, .max = 33 },
  102. .p2 = { .dot_limit = 165000,
  103. .p2_slow = 4, .p2_fast = 2 },
  104. .find_pll = intel_find_best_PLL,
  105. };
  106. static const intel_limit_t intel_limits_i8xx_lvds = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 1, .max = 6 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 14, .p2_fast = 7 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i9xx_sdvo = {
  120. .dot = { .min = 20000, .max = 400000 },
  121. .vco = { .min = 1400000, .max = 2800000 },
  122. .n = { .min = 1, .max = 6 },
  123. .m = { .min = 70, .max = 120 },
  124. .m1 = { .min = 10, .max = 22 },
  125. .m2 = { .min = 5, .max = 9 },
  126. .p = { .min = 5, .max = 80 },
  127. .p1 = { .min = 1, .max = 8 },
  128. .p2 = { .dot_limit = 200000,
  129. .p2_slow = 10, .p2_fast = 5 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_lvds = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 10, .max = 22 },
  138. .m2 = { .min = 5, .max = 9 },
  139. .p = { .min = 7, .max = 98 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 112000,
  142. .p2_slow = 14, .p2_fast = 7 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_g4x_sdvo = {
  146. .dot = { .min = 25000, .max = 270000 },
  147. .vco = { .min = 1750000, .max = 3500000},
  148. .n = { .min = 1, .max = 4 },
  149. .m = { .min = 104, .max = 138 },
  150. .m1 = { .min = 17, .max = 23 },
  151. .m2 = { .min = 5, .max = 11 },
  152. .p = { .min = 10, .max = 30 },
  153. .p1 = { .min = 1, .max = 3},
  154. .p2 = { .dot_limit = 270000,
  155. .p2_slow = 10,
  156. .p2_fast = 10
  157. },
  158. .find_pll = intel_g4x_find_best_PLL,
  159. };
  160. static const intel_limit_t intel_limits_g4x_hdmi = {
  161. .dot = { .min = 22000, .max = 400000 },
  162. .vco = { .min = 1750000, .max = 3500000},
  163. .n = { .min = 1, .max = 4 },
  164. .m = { .min = 104, .max = 138 },
  165. .m1 = { .min = 16, .max = 23 },
  166. .m2 = { .min = 5, .max = 11 },
  167. .p = { .min = 5, .max = 80 },
  168. .p1 = { .min = 1, .max = 8},
  169. .p2 = { .dot_limit = 165000,
  170. .p2_slow = 10, .p2_fast = 5 },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  174. .dot = { .min = 20000, .max = 115000 },
  175. .vco = { .min = 1750000, .max = 3500000 },
  176. .n = { .min = 1, .max = 3 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 17, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 28, .max = 112 },
  181. .p1 = { .min = 2, .max = 8 },
  182. .p2 = { .dot_limit = 0,
  183. .p2_slow = 14, .p2_fast = 14
  184. },
  185. .find_pll = intel_g4x_find_best_PLL,
  186. };
  187. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  188. .dot = { .min = 80000, .max = 224000 },
  189. .vco = { .min = 1750000, .max = 3500000 },
  190. .n = { .min = 1, .max = 3 },
  191. .m = { .min = 104, .max = 138 },
  192. .m1 = { .min = 17, .max = 23 },
  193. .m2 = { .min = 5, .max = 11 },
  194. .p = { .min = 14, .max = 42 },
  195. .p1 = { .min = 2, .max = 6 },
  196. .p2 = { .dot_limit = 0,
  197. .p2_slow = 7, .p2_fast = 7
  198. },
  199. .find_pll = intel_g4x_find_best_PLL,
  200. };
  201. static const intel_limit_t intel_limits_g4x_display_port = {
  202. .dot = { .min = 161670, .max = 227000 },
  203. .vco = { .min = 1750000, .max = 3500000},
  204. .n = { .min = 1, .max = 2 },
  205. .m = { .min = 97, .max = 108 },
  206. .m1 = { .min = 0x10, .max = 0x12 },
  207. .m2 = { .min = 0x05, .max = 0x06 },
  208. .p = { .min = 10, .max = 20 },
  209. .p1 = { .min = 1, .max = 2},
  210. .p2 = { .dot_limit = 0,
  211. .p2_slow = 10, .p2_fast = 10 },
  212. .find_pll = intel_find_pll_g4x_dp,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2,.max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2,.max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_ironlake_display_port = {
  314. .dot = { .min = 25000, .max = 350000 },
  315. .vco = { .min = 1760000, .max = 3510000},
  316. .n = { .min = 1, .max = 2 },
  317. .m = { .min = 81, .max = 90 },
  318. .m1 = { .min = 12, .max = 22 },
  319. .m2 = { .min = 5, .max = 9 },
  320. .p = { .min = 10, .max = 20 },
  321. .p1 = { .min = 1, .max = 2},
  322. .p2 = { .dot_limit = 0,
  323. .p2_slow = 10, .p2_fast = 10 },
  324. .find_pll = intel_find_pll_ironlake_dp,
  325. };
  326. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  327. int refclk)
  328. {
  329. struct drm_device *dev = crtc->dev;
  330. struct drm_i915_private *dev_priv = dev->dev_private;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  334. LVDS_CLKB_POWER_UP) {
  335. /* LVDS dual channel */
  336. if (refclk == 100000)
  337. limit = &intel_limits_ironlake_dual_lvds_100m;
  338. else
  339. limit = &intel_limits_ironlake_dual_lvds;
  340. } else {
  341. if (refclk == 100000)
  342. limit = &intel_limits_ironlake_single_lvds_100m;
  343. else
  344. limit = &intel_limits_ironlake_single_lvds;
  345. }
  346. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  347. HAS_eDP)
  348. limit = &intel_limits_ironlake_display_port;
  349. else
  350. limit = &intel_limits_ironlake_dac;
  351. return limit;
  352. }
  353. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  354. {
  355. struct drm_device *dev = crtc->dev;
  356. struct drm_i915_private *dev_priv = dev->dev_private;
  357. const intel_limit_t *limit;
  358. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  359. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  360. LVDS_CLKB_POWER_UP)
  361. /* LVDS with dual channel */
  362. limit = &intel_limits_g4x_dual_channel_lvds;
  363. else
  364. /* LVDS with dual channel */
  365. limit = &intel_limits_g4x_single_channel_lvds;
  366. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  367. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  368. limit = &intel_limits_g4x_hdmi;
  369. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  370. limit = &intel_limits_g4x_sdvo;
  371. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  372. limit = &intel_limits_g4x_display_port;
  373. } else /* The option is for other outputs */
  374. limit = &intel_limits_i9xx_sdvo;
  375. return limit;
  376. }
  377. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  378. {
  379. struct drm_device *dev = crtc->dev;
  380. const intel_limit_t *limit;
  381. if (HAS_PCH_SPLIT(dev))
  382. limit = intel_ironlake_limit(crtc, refclk);
  383. else if (IS_G4X(dev)) {
  384. limit = intel_g4x_limit(crtc);
  385. } else if (IS_PINEVIEW(dev)) {
  386. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  387. limit = &intel_limits_pineview_lvds;
  388. else
  389. limit = &intel_limits_pineview_sdvo;
  390. } else if (!IS_GEN2(dev)) {
  391. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  392. limit = &intel_limits_i9xx_lvds;
  393. else
  394. limit = &intel_limits_i9xx_sdvo;
  395. } else {
  396. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  397. limit = &intel_limits_i8xx_lvds;
  398. else
  399. limit = &intel_limits_i8xx_dvo;
  400. }
  401. return limit;
  402. }
  403. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  404. static void pineview_clock(int refclk, intel_clock_t *clock)
  405. {
  406. clock->m = clock->m2 + 2;
  407. clock->p = clock->p1 * clock->p2;
  408. clock->vco = refclk * clock->m / clock->n;
  409. clock->dot = clock->vco / clock->p;
  410. }
  411. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  412. {
  413. if (IS_PINEVIEW(dev)) {
  414. pineview_clock(refclk, clock);
  415. return;
  416. }
  417. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  418. clock->p = clock->p1 * clock->p2;
  419. clock->vco = refclk * clock->m / (clock->n + 2);
  420. clock->dot = clock->vco / clock->p;
  421. }
  422. /**
  423. * Returns whether any output on the specified pipe is of the specified type
  424. */
  425. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  426. {
  427. struct drm_device *dev = crtc->dev;
  428. struct drm_mode_config *mode_config = &dev->mode_config;
  429. struct intel_encoder *encoder;
  430. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  431. if (encoder->base.crtc == crtc && encoder->type == type)
  432. return true;
  433. return false;
  434. }
  435. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  436. /**
  437. * Returns whether the given set of divisors are valid for a given refclk with
  438. * the given connectors.
  439. */
  440. static bool intel_PLL_is_valid(struct drm_device *dev,
  441. const intel_limit_t *limit,
  442. const intel_clock_t *clock)
  443. {
  444. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  445. INTELPllInvalid ("p1 out of range\n");
  446. if (clock->p < limit->p.min || limit->p.max < clock->p)
  447. INTELPllInvalid ("p out of range\n");
  448. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  449. INTELPllInvalid ("m2 out of range\n");
  450. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  451. INTELPllInvalid ("m1 out of range\n");
  452. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  453. INTELPllInvalid ("m1 <= m2\n");
  454. if (clock->m < limit->m.min || limit->m.max < clock->m)
  455. INTELPllInvalid ("m out of range\n");
  456. if (clock->n < limit->n.min || limit->n.max < clock->n)
  457. INTELPllInvalid ("n out of range\n");
  458. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  459. INTELPllInvalid ("vco out of range\n");
  460. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  461. * connector, etc., rather than just a single range.
  462. */
  463. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  464. INTELPllInvalid ("dot out of range\n");
  465. return true;
  466. }
  467. static bool
  468. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  469. int target, int refclk, intel_clock_t *best_clock)
  470. {
  471. struct drm_device *dev = crtc->dev;
  472. struct drm_i915_private *dev_priv = dev->dev_private;
  473. intel_clock_t clock;
  474. int err = target;
  475. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  476. (I915_READ(LVDS)) != 0) {
  477. /*
  478. * For LVDS, if the panel is on, just rely on its current
  479. * settings for dual-channel. We haven't figured out how to
  480. * reliably set up different single/dual channel state, if we
  481. * even can.
  482. */
  483. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  484. LVDS_CLKB_POWER_UP)
  485. clock.p2 = limit->p2.p2_fast;
  486. else
  487. clock.p2 = limit->p2.p2_slow;
  488. } else {
  489. if (target < limit->p2.dot_limit)
  490. clock.p2 = limit->p2.p2_slow;
  491. else
  492. clock.p2 = limit->p2.p2_fast;
  493. }
  494. memset (best_clock, 0, sizeof (*best_clock));
  495. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  496. clock.m1++) {
  497. for (clock.m2 = limit->m2.min;
  498. clock.m2 <= limit->m2.max; clock.m2++) {
  499. /* m1 is always 0 in Pineview */
  500. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  501. break;
  502. for (clock.n = limit->n.min;
  503. clock.n <= limit->n.max; clock.n++) {
  504. for (clock.p1 = limit->p1.min;
  505. clock.p1 <= limit->p1.max; clock.p1++) {
  506. int this_err;
  507. intel_clock(dev, refclk, &clock);
  508. if (!intel_PLL_is_valid(dev, limit,
  509. &clock))
  510. continue;
  511. this_err = abs(clock.dot - target);
  512. if (this_err < err) {
  513. *best_clock = clock;
  514. err = this_err;
  515. }
  516. }
  517. }
  518. }
  519. }
  520. return (err != target);
  521. }
  522. static bool
  523. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  524. int target, int refclk, intel_clock_t *best_clock)
  525. {
  526. struct drm_device *dev = crtc->dev;
  527. struct drm_i915_private *dev_priv = dev->dev_private;
  528. intel_clock_t clock;
  529. int max_n;
  530. bool found;
  531. /* approximately equals target * 0.00585 */
  532. int err_most = (target >> 8) + (target >> 9);
  533. found = false;
  534. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  535. int lvds_reg;
  536. if (HAS_PCH_SPLIT(dev))
  537. lvds_reg = PCH_LVDS;
  538. else
  539. lvds_reg = LVDS;
  540. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  541. LVDS_CLKB_POWER_UP)
  542. clock.p2 = limit->p2.p2_fast;
  543. else
  544. clock.p2 = limit->p2.p2_slow;
  545. } else {
  546. if (target < limit->p2.dot_limit)
  547. clock.p2 = limit->p2.p2_slow;
  548. else
  549. clock.p2 = limit->p2.p2_fast;
  550. }
  551. memset(best_clock, 0, sizeof(*best_clock));
  552. max_n = limit->n.max;
  553. /* based on hardware requirement, prefer smaller n to precision */
  554. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  555. /* based on hardware requirement, prefere larger m1,m2 */
  556. for (clock.m1 = limit->m1.max;
  557. clock.m1 >= limit->m1.min; clock.m1--) {
  558. for (clock.m2 = limit->m2.max;
  559. clock.m2 >= limit->m2.min; clock.m2--) {
  560. for (clock.p1 = limit->p1.max;
  561. clock.p1 >= limit->p1.min; clock.p1--) {
  562. int this_err;
  563. intel_clock(dev, refclk, &clock);
  564. if (!intel_PLL_is_valid(dev, limit,
  565. &clock))
  566. continue;
  567. this_err = abs(clock.dot - target);
  568. if (this_err < err_most) {
  569. *best_clock = clock;
  570. err_most = this_err;
  571. max_n = clock.n;
  572. found = true;
  573. }
  574. }
  575. }
  576. }
  577. }
  578. return found;
  579. }
  580. static bool
  581. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  582. int target, int refclk, intel_clock_t *best_clock)
  583. {
  584. struct drm_device *dev = crtc->dev;
  585. intel_clock_t clock;
  586. if (target < 200000) {
  587. clock.n = 1;
  588. clock.p1 = 2;
  589. clock.p2 = 10;
  590. clock.m1 = 12;
  591. clock.m2 = 9;
  592. } else {
  593. clock.n = 2;
  594. clock.p1 = 1;
  595. clock.p2 = 10;
  596. clock.m1 = 14;
  597. clock.m2 = 8;
  598. }
  599. intel_clock(dev, refclk, &clock);
  600. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  601. return true;
  602. }
  603. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  604. static bool
  605. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  606. int target, int refclk, intel_clock_t *best_clock)
  607. {
  608. intel_clock_t clock;
  609. if (target < 200000) {
  610. clock.p1 = 2;
  611. clock.p2 = 10;
  612. clock.n = 2;
  613. clock.m1 = 23;
  614. clock.m2 = 8;
  615. } else {
  616. clock.p1 = 1;
  617. clock.p2 = 10;
  618. clock.n = 1;
  619. clock.m1 = 14;
  620. clock.m2 = 2;
  621. }
  622. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  623. clock.p = (clock.p1 * clock.p2);
  624. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  625. clock.vco = 0;
  626. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  627. return true;
  628. }
  629. /**
  630. * intel_wait_for_vblank - wait for vblank on a given pipe
  631. * @dev: drm device
  632. * @pipe: pipe to wait for
  633. *
  634. * Wait for vblank to occur on a given pipe. Needed for various bits of
  635. * mode setting code.
  636. */
  637. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  638. {
  639. struct drm_i915_private *dev_priv = dev->dev_private;
  640. int pipestat_reg = PIPESTAT(pipe);
  641. /* Clear existing vblank status. Note this will clear any other
  642. * sticky status fields as well.
  643. *
  644. * This races with i915_driver_irq_handler() with the result
  645. * that either function could miss a vblank event. Here it is not
  646. * fatal, as we will either wait upon the next vblank interrupt or
  647. * timeout. Generally speaking intel_wait_for_vblank() is only
  648. * called during modeset at which time the GPU should be idle and
  649. * should *not* be performing page flips and thus not waiting on
  650. * vblanks...
  651. * Currently, the result of us stealing a vblank from the irq
  652. * handler is that a single frame will be skipped during swapbuffers.
  653. */
  654. I915_WRITE(pipestat_reg,
  655. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  656. /* Wait for vblank interrupt bit to set */
  657. if (wait_for(I915_READ(pipestat_reg) &
  658. PIPE_VBLANK_INTERRUPT_STATUS,
  659. 50))
  660. DRM_DEBUG_KMS("vblank wait timed out\n");
  661. }
  662. /*
  663. * intel_wait_for_pipe_off - wait for pipe to turn off
  664. * @dev: drm device
  665. * @pipe: pipe to wait for
  666. *
  667. * After disabling a pipe, we can't wait for vblank in the usual way,
  668. * spinning on the vblank interrupt status bit, since we won't actually
  669. * see an interrupt when the pipe is disabled.
  670. *
  671. * On Gen4 and above:
  672. * wait for the pipe register state bit to turn off
  673. *
  674. * Otherwise:
  675. * wait for the display line value to settle (it usually
  676. * ends up stopping at the start of the next frame).
  677. *
  678. */
  679. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  680. {
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. if (INTEL_INFO(dev)->gen >= 4) {
  683. int reg = PIPECONF(pipe);
  684. /* Wait for the Pipe State to go off */
  685. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  686. 100))
  687. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  688. } else {
  689. u32 last_line;
  690. int reg = PIPEDSL(pipe);
  691. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  692. /* Wait for the display line to settle */
  693. do {
  694. last_line = I915_READ(reg) & DSL_LINEMASK;
  695. mdelay(5);
  696. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  697. time_after(timeout, jiffies));
  698. if (time_after(jiffies, timeout))
  699. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  700. }
  701. }
  702. static const char *state_string(bool enabled)
  703. {
  704. return enabled ? "on" : "off";
  705. }
  706. /* Only for pre-ILK configs */
  707. static void assert_pll(struct drm_i915_private *dev_priv,
  708. enum pipe pipe, bool state)
  709. {
  710. int reg;
  711. u32 val;
  712. bool cur_state;
  713. reg = DPLL(pipe);
  714. val = I915_READ(reg);
  715. cur_state = !!(val & DPLL_VCO_ENABLE);
  716. WARN(cur_state != state,
  717. "PLL state assertion failure (expected %s, current %s)\n",
  718. state_string(state), state_string(cur_state));
  719. }
  720. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  721. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  722. /* For ILK+ */
  723. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  724. enum pipe pipe, bool state)
  725. {
  726. int reg;
  727. u32 val;
  728. bool cur_state;
  729. reg = PCH_DPLL(pipe);
  730. val = I915_READ(reg);
  731. cur_state = !!(val & DPLL_VCO_ENABLE);
  732. WARN(cur_state != state,
  733. "PCH PLL state assertion failure (expected %s, current %s)\n",
  734. state_string(state), state_string(cur_state));
  735. }
  736. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  737. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  738. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  739. enum pipe pipe, bool state)
  740. {
  741. int reg;
  742. u32 val;
  743. bool cur_state;
  744. reg = FDI_TX_CTL(pipe);
  745. val = I915_READ(reg);
  746. cur_state = !!(val & FDI_TX_ENABLE);
  747. WARN(cur_state != state,
  748. "FDI TX state assertion failure (expected %s, current %s)\n",
  749. state_string(state), state_string(cur_state));
  750. }
  751. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  752. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  753. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  754. enum pipe pipe, bool state)
  755. {
  756. int reg;
  757. u32 val;
  758. bool cur_state;
  759. reg = FDI_RX_CTL(pipe);
  760. val = I915_READ(reg);
  761. cur_state = !!(val & FDI_RX_ENABLE);
  762. WARN(cur_state != state,
  763. "FDI RX state assertion failure (expected %s, current %s)\n",
  764. state_string(state), state_string(cur_state));
  765. }
  766. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  767. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  768. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  769. enum pipe pipe)
  770. {
  771. int reg;
  772. u32 val;
  773. /* ILK FDI PLL is always enabled */
  774. if (dev_priv->info->gen == 5)
  775. return;
  776. reg = FDI_TX_CTL(pipe);
  777. val = I915_READ(reg);
  778. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  779. }
  780. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  781. enum pipe pipe)
  782. {
  783. int reg;
  784. u32 val;
  785. reg = FDI_RX_CTL(pipe);
  786. val = I915_READ(reg);
  787. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  788. }
  789. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  790. enum pipe pipe)
  791. {
  792. int pp_reg, lvds_reg;
  793. u32 val;
  794. enum pipe panel_pipe = PIPE_A;
  795. bool locked = locked;
  796. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  797. pp_reg = PCH_PP_CONTROL;
  798. lvds_reg = PCH_LVDS;
  799. } else {
  800. pp_reg = PP_CONTROL;
  801. lvds_reg = LVDS;
  802. }
  803. val = I915_READ(pp_reg);
  804. if (!(val & PANEL_POWER_ON) ||
  805. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  806. locked = false;
  807. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  808. panel_pipe = PIPE_B;
  809. WARN(panel_pipe == pipe && locked,
  810. "panel assertion failure, pipe %c regs locked\n",
  811. pipe_name(pipe));
  812. }
  813. static void assert_pipe(struct drm_i915_private *dev_priv,
  814. enum pipe pipe, bool state)
  815. {
  816. int reg;
  817. u32 val;
  818. bool cur_state;
  819. reg = PIPECONF(pipe);
  820. val = I915_READ(reg);
  821. cur_state = !!(val & PIPECONF_ENABLE);
  822. WARN(cur_state != state,
  823. "pipe %c assertion failure (expected %s, current %s)\n",
  824. pipe_name(pipe), state_string(state), state_string(cur_state));
  825. }
  826. #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
  827. #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
  828. static void assert_plane_enabled(struct drm_i915_private *dev_priv,
  829. enum plane plane)
  830. {
  831. int reg;
  832. u32 val;
  833. reg = DSPCNTR(plane);
  834. val = I915_READ(reg);
  835. WARN(!(val & DISPLAY_PLANE_ENABLE),
  836. "plane %c assertion failure, should be active but is disabled\n",
  837. plane_name(plane));
  838. }
  839. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  840. enum pipe pipe)
  841. {
  842. int reg, i;
  843. u32 val;
  844. int cur_pipe;
  845. /* Planes are fixed to pipes on ILK+ */
  846. if (HAS_PCH_SPLIT(dev_priv->dev))
  847. return;
  848. /* Need to check both planes against the pipe */
  849. for (i = 0; i < 2; i++) {
  850. reg = DSPCNTR(i);
  851. val = I915_READ(reg);
  852. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  853. DISPPLANE_SEL_PIPE_SHIFT;
  854. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  855. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  856. plane_name(i), pipe_name(pipe));
  857. }
  858. }
  859. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  860. {
  861. u32 val;
  862. bool enabled;
  863. val = I915_READ(PCH_DREF_CONTROL);
  864. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  865. DREF_SUPERSPREAD_SOURCE_MASK));
  866. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  867. }
  868. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  869. enum pipe pipe)
  870. {
  871. int reg;
  872. u32 val;
  873. bool enabled;
  874. reg = TRANSCONF(pipe);
  875. val = I915_READ(reg);
  876. enabled = !!(val & TRANS_ENABLE);
  877. WARN(enabled,
  878. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  879. pipe_name(pipe));
  880. }
  881. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  882. enum pipe pipe, int reg)
  883. {
  884. u32 val = I915_READ(reg);
  885. WARN(DP_PIPE_ENABLED(val, pipe),
  886. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  887. reg, pipe_name(pipe));
  888. }
  889. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  890. enum pipe pipe, int reg)
  891. {
  892. u32 val = I915_READ(reg);
  893. WARN(HDMI_PIPE_ENABLED(val, pipe),
  894. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  895. reg, pipe_name(pipe));
  896. }
  897. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  898. enum pipe pipe)
  899. {
  900. int reg;
  901. u32 val;
  902. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
  903. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
  904. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
  905. reg = PCH_ADPA;
  906. val = I915_READ(reg);
  907. WARN(ADPA_PIPE_ENABLED(val, pipe),
  908. "PCH VGA enabled on transcoder %c, should be disabled\n",
  909. pipe_name(pipe));
  910. reg = PCH_LVDS;
  911. val = I915_READ(reg);
  912. WARN(LVDS_PIPE_ENABLED(val, pipe),
  913. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  914. pipe_name(pipe));
  915. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  916. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  917. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  918. }
  919. /**
  920. * intel_enable_pll - enable a PLL
  921. * @dev_priv: i915 private structure
  922. * @pipe: pipe PLL to enable
  923. *
  924. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  925. * make sure the PLL reg is writable first though, since the panel write
  926. * protect mechanism may be enabled.
  927. *
  928. * Note! This is for pre-ILK only.
  929. */
  930. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  931. {
  932. int reg;
  933. u32 val;
  934. /* No really, not for ILK+ */
  935. BUG_ON(dev_priv->info->gen >= 5);
  936. /* PLL is protected by panel, make sure we can write it */
  937. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  938. assert_panel_unlocked(dev_priv, pipe);
  939. reg = DPLL(pipe);
  940. val = I915_READ(reg);
  941. val |= DPLL_VCO_ENABLE;
  942. /* We do this three times for luck */
  943. I915_WRITE(reg, val);
  944. POSTING_READ(reg);
  945. udelay(150); /* wait for warmup */
  946. I915_WRITE(reg, val);
  947. POSTING_READ(reg);
  948. udelay(150); /* wait for warmup */
  949. I915_WRITE(reg, val);
  950. POSTING_READ(reg);
  951. udelay(150); /* wait for warmup */
  952. }
  953. /**
  954. * intel_disable_pll - disable a PLL
  955. * @dev_priv: i915 private structure
  956. * @pipe: pipe PLL to disable
  957. *
  958. * Disable the PLL for @pipe, making sure the pipe is off first.
  959. *
  960. * Note! This is for pre-ILK only.
  961. */
  962. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  963. {
  964. int reg;
  965. u32 val;
  966. /* Don't disable pipe A or pipe A PLLs if needed */
  967. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  968. return;
  969. /* Make sure the pipe isn't still relying on us */
  970. assert_pipe_disabled(dev_priv, pipe);
  971. reg = DPLL(pipe);
  972. val = I915_READ(reg);
  973. val &= ~DPLL_VCO_ENABLE;
  974. I915_WRITE(reg, val);
  975. POSTING_READ(reg);
  976. }
  977. /**
  978. * intel_enable_pch_pll - enable PCH PLL
  979. * @dev_priv: i915 private structure
  980. * @pipe: pipe PLL to enable
  981. *
  982. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  983. * drives the transcoder clock.
  984. */
  985. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  986. enum pipe pipe)
  987. {
  988. int reg;
  989. u32 val;
  990. /* PCH only available on ILK+ */
  991. BUG_ON(dev_priv->info->gen < 5);
  992. /* PCH refclock must be enabled first */
  993. assert_pch_refclk_enabled(dev_priv);
  994. reg = PCH_DPLL(pipe);
  995. val = I915_READ(reg);
  996. val |= DPLL_VCO_ENABLE;
  997. I915_WRITE(reg, val);
  998. POSTING_READ(reg);
  999. udelay(200);
  1000. }
  1001. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1002. enum pipe pipe)
  1003. {
  1004. int reg;
  1005. u32 val;
  1006. /* PCH only available on ILK+ */
  1007. BUG_ON(dev_priv->info->gen < 5);
  1008. /* Make sure transcoder isn't still depending on us */
  1009. assert_transcoder_disabled(dev_priv, pipe);
  1010. reg = PCH_DPLL(pipe);
  1011. val = I915_READ(reg);
  1012. val &= ~DPLL_VCO_ENABLE;
  1013. I915_WRITE(reg, val);
  1014. POSTING_READ(reg);
  1015. udelay(200);
  1016. }
  1017. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1018. enum pipe pipe)
  1019. {
  1020. int reg;
  1021. u32 val;
  1022. /* PCH only available on ILK+ */
  1023. BUG_ON(dev_priv->info->gen < 5);
  1024. /* Make sure PCH DPLL is enabled */
  1025. assert_pch_pll_enabled(dev_priv, pipe);
  1026. /* FDI must be feeding us bits for PCH ports */
  1027. assert_fdi_tx_enabled(dev_priv, pipe);
  1028. assert_fdi_rx_enabled(dev_priv, pipe);
  1029. reg = TRANSCONF(pipe);
  1030. val = I915_READ(reg);
  1031. /*
  1032. * make the BPC in transcoder be consistent with
  1033. * that in pipeconf reg.
  1034. */
  1035. val &= ~PIPE_BPC_MASK;
  1036. val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
  1037. I915_WRITE(reg, val | TRANS_ENABLE);
  1038. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1039. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1040. }
  1041. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1042. enum pipe pipe)
  1043. {
  1044. int reg;
  1045. u32 val;
  1046. /* FDI relies on the transcoder */
  1047. assert_fdi_tx_disabled(dev_priv, pipe);
  1048. assert_fdi_rx_disabled(dev_priv, pipe);
  1049. /* Ports must be off as well */
  1050. assert_pch_ports_disabled(dev_priv, pipe);
  1051. reg = TRANSCONF(pipe);
  1052. val = I915_READ(reg);
  1053. val &= ~TRANS_ENABLE;
  1054. I915_WRITE(reg, val);
  1055. /* wait for PCH transcoder off, transcoder state */
  1056. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1057. DRM_ERROR("failed to disable transcoder\n");
  1058. }
  1059. /**
  1060. * intel_enable_pipe - enable a pipe, asserting requirements
  1061. * @dev_priv: i915 private structure
  1062. * @pipe: pipe to enable
  1063. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1064. *
  1065. * Enable @pipe, making sure that various hardware specific requirements
  1066. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1067. *
  1068. * @pipe should be %PIPE_A or %PIPE_B.
  1069. *
  1070. * Will wait until the pipe is actually running (i.e. first vblank) before
  1071. * returning.
  1072. */
  1073. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1074. bool pch_port)
  1075. {
  1076. int reg;
  1077. u32 val;
  1078. /*
  1079. * A pipe without a PLL won't actually be able to drive bits from
  1080. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1081. * need the check.
  1082. */
  1083. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1084. assert_pll_enabled(dev_priv, pipe);
  1085. else {
  1086. if (pch_port) {
  1087. /* if driving the PCH, we need FDI enabled */
  1088. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1089. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1090. }
  1091. /* FIXME: assert CPU port conditions for SNB+ */
  1092. }
  1093. reg = PIPECONF(pipe);
  1094. val = I915_READ(reg);
  1095. if (val & PIPECONF_ENABLE)
  1096. return;
  1097. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1098. intel_wait_for_vblank(dev_priv->dev, pipe);
  1099. }
  1100. /**
  1101. * intel_disable_pipe - disable a pipe, asserting requirements
  1102. * @dev_priv: i915 private structure
  1103. * @pipe: pipe to disable
  1104. *
  1105. * Disable @pipe, making sure that various hardware specific requirements
  1106. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1107. *
  1108. * @pipe should be %PIPE_A or %PIPE_B.
  1109. *
  1110. * Will wait until the pipe has shut down before returning.
  1111. */
  1112. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1113. enum pipe pipe)
  1114. {
  1115. int reg;
  1116. u32 val;
  1117. /*
  1118. * Make sure planes won't keep trying to pump pixels to us,
  1119. * or we might hang the display.
  1120. */
  1121. assert_planes_disabled(dev_priv, pipe);
  1122. /* Don't disable pipe A or pipe A PLLs if needed */
  1123. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1124. return;
  1125. reg = PIPECONF(pipe);
  1126. val = I915_READ(reg);
  1127. if ((val & PIPECONF_ENABLE) == 0)
  1128. return;
  1129. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1130. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1131. }
  1132. /**
  1133. * intel_enable_plane - enable a display plane on a given pipe
  1134. * @dev_priv: i915 private structure
  1135. * @plane: plane to enable
  1136. * @pipe: pipe being fed
  1137. *
  1138. * Enable @plane on @pipe, making sure that @pipe is running first.
  1139. */
  1140. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1141. enum plane plane, enum pipe pipe)
  1142. {
  1143. int reg;
  1144. u32 val;
  1145. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1146. assert_pipe_enabled(dev_priv, pipe);
  1147. reg = DSPCNTR(plane);
  1148. val = I915_READ(reg);
  1149. if (val & DISPLAY_PLANE_ENABLE)
  1150. return;
  1151. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1152. intel_wait_for_vblank(dev_priv->dev, pipe);
  1153. }
  1154. /*
  1155. * Plane regs are double buffered, going from enabled->disabled needs a
  1156. * trigger in order to latch. The display address reg provides this.
  1157. */
  1158. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1159. enum plane plane)
  1160. {
  1161. u32 reg = DSPADDR(plane);
  1162. I915_WRITE(reg, I915_READ(reg));
  1163. }
  1164. /**
  1165. * intel_disable_plane - disable a display plane
  1166. * @dev_priv: i915 private structure
  1167. * @plane: plane to disable
  1168. * @pipe: pipe consuming the data
  1169. *
  1170. * Disable @plane; should be an independent operation.
  1171. */
  1172. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1173. enum plane plane, enum pipe pipe)
  1174. {
  1175. int reg;
  1176. u32 val;
  1177. reg = DSPCNTR(plane);
  1178. val = I915_READ(reg);
  1179. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1180. return;
  1181. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1182. intel_flush_display_plane(dev_priv, plane);
  1183. intel_wait_for_vblank(dev_priv->dev, pipe);
  1184. }
  1185. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1186. enum pipe pipe, int reg)
  1187. {
  1188. u32 val = I915_READ(reg);
  1189. if (DP_PIPE_ENABLED(val, pipe))
  1190. I915_WRITE(reg, val & ~DP_PORT_EN);
  1191. }
  1192. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1193. enum pipe pipe, int reg)
  1194. {
  1195. u32 val = I915_READ(reg);
  1196. if (HDMI_PIPE_ENABLED(val, pipe))
  1197. I915_WRITE(reg, val & ~PORT_ENABLE);
  1198. }
  1199. /* Disable any ports connected to this transcoder */
  1200. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1201. enum pipe pipe)
  1202. {
  1203. u32 reg, val;
  1204. val = I915_READ(PCH_PP_CONTROL);
  1205. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1206. disable_pch_dp(dev_priv, pipe, PCH_DP_B);
  1207. disable_pch_dp(dev_priv, pipe, PCH_DP_C);
  1208. disable_pch_dp(dev_priv, pipe, PCH_DP_D);
  1209. reg = PCH_ADPA;
  1210. val = I915_READ(reg);
  1211. if (ADPA_PIPE_ENABLED(val, pipe))
  1212. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1213. reg = PCH_LVDS;
  1214. val = I915_READ(reg);
  1215. if (LVDS_PIPE_ENABLED(val, pipe)) {
  1216. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1217. POSTING_READ(reg);
  1218. udelay(100);
  1219. }
  1220. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1221. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1222. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1223. }
  1224. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1225. {
  1226. struct drm_device *dev = crtc->dev;
  1227. struct drm_i915_private *dev_priv = dev->dev_private;
  1228. struct drm_framebuffer *fb = crtc->fb;
  1229. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1230. struct drm_i915_gem_object *obj = intel_fb->obj;
  1231. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1232. int plane, i;
  1233. u32 fbc_ctl, fbc_ctl2;
  1234. if (fb->pitch == dev_priv->cfb_pitch &&
  1235. obj->fence_reg == dev_priv->cfb_fence &&
  1236. intel_crtc->plane == dev_priv->cfb_plane &&
  1237. I915_READ(FBC_CONTROL) & FBC_CTL_EN)
  1238. return;
  1239. i8xx_disable_fbc(dev);
  1240. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1241. if (fb->pitch < dev_priv->cfb_pitch)
  1242. dev_priv->cfb_pitch = fb->pitch;
  1243. /* FBC_CTL wants 64B units */
  1244. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1245. dev_priv->cfb_fence = obj->fence_reg;
  1246. dev_priv->cfb_plane = intel_crtc->plane;
  1247. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1248. /* Clear old tags */
  1249. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1250. I915_WRITE(FBC_TAG + (i * 4), 0);
  1251. /* Set it up... */
  1252. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  1253. if (obj->tiling_mode != I915_TILING_NONE)
  1254. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  1255. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1256. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1257. /* enable it... */
  1258. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1259. if (IS_I945GM(dev))
  1260. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1261. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1262. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1263. if (obj->tiling_mode != I915_TILING_NONE)
  1264. fbc_ctl |= dev_priv->cfb_fence;
  1265. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1266. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  1267. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  1268. }
  1269. void i8xx_disable_fbc(struct drm_device *dev)
  1270. {
  1271. struct drm_i915_private *dev_priv = dev->dev_private;
  1272. u32 fbc_ctl;
  1273. /* Disable compression */
  1274. fbc_ctl = I915_READ(FBC_CONTROL);
  1275. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1276. return;
  1277. fbc_ctl &= ~FBC_CTL_EN;
  1278. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1279. /* Wait for compressing bit to clear */
  1280. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1281. DRM_DEBUG_KMS("FBC idle timed out\n");
  1282. return;
  1283. }
  1284. DRM_DEBUG_KMS("disabled FBC\n");
  1285. }
  1286. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1287. {
  1288. struct drm_i915_private *dev_priv = dev->dev_private;
  1289. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1290. }
  1291. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1292. {
  1293. struct drm_device *dev = crtc->dev;
  1294. struct drm_i915_private *dev_priv = dev->dev_private;
  1295. struct drm_framebuffer *fb = crtc->fb;
  1296. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1297. struct drm_i915_gem_object *obj = intel_fb->obj;
  1298. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1299. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1300. unsigned long stall_watermark = 200;
  1301. u32 dpfc_ctl;
  1302. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1303. if (dpfc_ctl & DPFC_CTL_EN) {
  1304. if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
  1305. dev_priv->cfb_fence == obj->fence_reg &&
  1306. dev_priv->cfb_plane == intel_crtc->plane &&
  1307. dev_priv->cfb_y == crtc->y)
  1308. return;
  1309. I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
  1310. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1311. }
  1312. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1313. dev_priv->cfb_fence = obj->fence_reg;
  1314. dev_priv->cfb_plane = intel_crtc->plane;
  1315. dev_priv->cfb_y = crtc->y;
  1316. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1317. if (obj->tiling_mode != I915_TILING_NONE) {
  1318. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  1319. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1320. } else {
  1321. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1322. }
  1323. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1324. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1325. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1326. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1327. /* enable it... */
  1328. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1329. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1330. }
  1331. void g4x_disable_fbc(struct drm_device *dev)
  1332. {
  1333. struct drm_i915_private *dev_priv = dev->dev_private;
  1334. u32 dpfc_ctl;
  1335. /* Disable compression */
  1336. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1337. if (dpfc_ctl & DPFC_CTL_EN) {
  1338. dpfc_ctl &= ~DPFC_CTL_EN;
  1339. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1340. DRM_DEBUG_KMS("disabled FBC\n");
  1341. }
  1342. }
  1343. static bool g4x_fbc_enabled(struct drm_device *dev)
  1344. {
  1345. struct drm_i915_private *dev_priv = dev->dev_private;
  1346. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1347. }
  1348. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1349. {
  1350. struct drm_i915_private *dev_priv = dev->dev_private;
  1351. u32 blt_ecoskpd;
  1352. /* Make sure blitter notifies FBC of writes */
  1353. gen6_gt_force_wake_get(dev_priv);
  1354. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1355. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1356. GEN6_BLITTER_LOCK_SHIFT;
  1357. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1358. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1359. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1360. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1361. GEN6_BLITTER_LOCK_SHIFT);
  1362. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1363. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1364. gen6_gt_force_wake_put(dev_priv);
  1365. }
  1366. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1367. {
  1368. struct drm_device *dev = crtc->dev;
  1369. struct drm_i915_private *dev_priv = dev->dev_private;
  1370. struct drm_framebuffer *fb = crtc->fb;
  1371. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1372. struct drm_i915_gem_object *obj = intel_fb->obj;
  1373. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1374. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1375. unsigned long stall_watermark = 200;
  1376. u32 dpfc_ctl;
  1377. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1378. if (dpfc_ctl & DPFC_CTL_EN) {
  1379. if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
  1380. dev_priv->cfb_fence == obj->fence_reg &&
  1381. dev_priv->cfb_plane == intel_crtc->plane &&
  1382. dev_priv->cfb_offset == obj->gtt_offset &&
  1383. dev_priv->cfb_y == crtc->y)
  1384. return;
  1385. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
  1386. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1387. }
  1388. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  1389. dev_priv->cfb_fence = obj->fence_reg;
  1390. dev_priv->cfb_plane = intel_crtc->plane;
  1391. dev_priv->cfb_offset = obj->gtt_offset;
  1392. dev_priv->cfb_y = crtc->y;
  1393. dpfc_ctl &= DPFC_RESERVED;
  1394. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1395. if (obj->tiling_mode != I915_TILING_NONE) {
  1396. dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
  1397. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1398. } else {
  1399. I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  1400. }
  1401. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1402. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1403. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1404. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1405. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1406. /* enable it... */
  1407. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1408. if (IS_GEN6(dev)) {
  1409. I915_WRITE(SNB_DPFC_CTL_SA,
  1410. SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
  1411. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1412. sandybridge_blit_fbc_update(dev);
  1413. }
  1414. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1415. }
  1416. void ironlake_disable_fbc(struct drm_device *dev)
  1417. {
  1418. struct drm_i915_private *dev_priv = dev->dev_private;
  1419. u32 dpfc_ctl;
  1420. /* Disable compression */
  1421. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1422. if (dpfc_ctl & DPFC_CTL_EN) {
  1423. dpfc_ctl &= ~DPFC_CTL_EN;
  1424. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1425. DRM_DEBUG_KMS("disabled FBC\n");
  1426. }
  1427. }
  1428. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1429. {
  1430. struct drm_i915_private *dev_priv = dev->dev_private;
  1431. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1432. }
  1433. bool intel_fbc_enabled(struct drm_device *dev)
  1434. {
  1435. struct drm_i915_private *dev_priv = dev->dev_private;
  1436. if (!dev_priv->display.fbc_enabled)
  1437. return false;
  1438. return dev_priv->display.fbc_enabled(dev);
  1439. }
  1440. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1441. {
  1442. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1443. if (!dev_priv->display.enable_fbc)
  1444. return;
  1445. dev_priv->display.enable_fbc(crtc, interval);
  1446. }
  1447. void intel_disable_fbc(struct drm_device *dev)
  1448. {
  1449. struct drm_i915_private *dev_priv = dev->dev_private;
  1450. if (!dev_priv->display.disable_fbc)
  1451. return;
  1452. dev_priv->display.disable_fbc(dev);
  1453. }
  1454. /**
  1455. * intel_update_fbc - enable/disable FBC as needed
  1456. * @dev: the drm_device
  1457. *
  1458. * Set up the framebuffer compression hardware at mode set time. We
  1459. * enable it if possible:
  1460. * - plane A only (on pre-965)
  1461. * - no pixel mulitply/line duplication
  1462. * - no alpha buffer discard
  1463. * - no dual wide
  1464. * - framebuffer <= 2048 in width, 1536 in height
  1465. *
  1466. * We can't assume that any compression will take place (worst case),
  1467. * so the compressed buffer has to be the same size as the uncompressed
  1468. * one. It also must reside (along with the line length buffer) in
  1469. * stolen memory.
  1470. *
  1471. * We need to enable/disable FBC on a global basis.
  1472. */
  1473. static void intel_update_fbc(struct drm_device *dev)
  1474. {
  1475. struct drm_i915_private *dev_priv = dev->dev_private;
  1476. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1477. struct intel_crtc *intel_crtc;
  1478. struct drm_framebuffer *fb;
  1479. struct intel_framebuffer *intel_fb;
  1480. struct drm_i915_gem_object *obj;
  1481. DRM_DEBUG_KMS("\n");
  1482. if (!i915_powersave)
  1483. return;
  1484. if (!I915_HAS_FBC(dev))
  1485. return;
  1486. /*
  1487. * If FBC is already on, we just have to verify that we can
  1488. * keep it that way...
  1489. * Need to disable if:
  1490. * - more than one pipe is active
  1491. * - changing FBC params (stride, fence, mode)
  1492. * - new fb is too large to fit in compressed buffer
  1493. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1494. */
  1495. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1496. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1497. if (crtc) {
  1498. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1499. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1500. goto out_disable;
  1501. }
  1502. crtc = tmp_crtc;
  1503. }
  1504. }
  1505. if (!crtc || crtc->fb == NULL) {
  1506. DRM_DEBUG_KMS("no output, disabling\n");
  1507. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1508. goto out_disable;
  1509. }
  1510. intel_crtc = to_intel_crtc(crtc);
  1511. fb = crtc->fb;
  1512. intel_fb = to_intel_framebuffer(fb);
  1513. obj = intel_fb->obj;
  1514. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1515. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1516. "compression\n");
  1517. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1518. goto out_disable;
  1519. }
  1520. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1521. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1522. DRM_DEBUG_KMS("mode incompatible with compression, "
  1523. "disabling\n");
  1524. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1525. goto out_disable;
  1526. }
  1527. if ((crtc->mode.hdisplay > 2048) ||
  1528. (crtc->mode.vdisplay > 1536)) {
  1529. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1530. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1531. goto out_disable;
  1532. }
  1533. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1534. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1535. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1536. goto out_disable;
  1537. }
  1538. if (obj->tiling_mode != I915_TILING_X) {
  1539. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1540. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1541. goto out_disable;
  1542. }
  1543. /* If the kernel debugger is active, always disable compression */
  1544. if (in_dbg_master())
  1545. goto out_disable;
  1546. intel_enable_fbc(crtc, 500);
  1547. return;
  1548. out_disable:
  1549. /* Multiple disables should be harmless */
  1550. if (intel_fbc_enabled(dev)) {
  1551. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1552. intel_disable_fbc(dev);
  1553. }
  1554. }
  1555. int
  1556. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1557. struct drm_i915_gem_object *obj,
  1558. struct intel_ring_buffer *pipelined)
  1559. {
  1560. struct drm_i915_private *dev_priv = dev->dev_private;
  1561. u32 alignment;
  1562. int ret;
  1563. switch (obj->tiling_mode) {
  1564. case I915_TILING_NONE:
  1565. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1566. alignment = 128 * 1024;
  1567. else if (INTEL_INFO(dev)->gen >= 4)
  1568. alignment = 4 * 1024;
  1569. else
  1570. alignment = 64 * 1024;
  1571. break;
  1572. case I915_TILING_X:
  1573. /* pin() will align the object as required by fence */
  1574. alignment = 0;
  1575. break;
  1576. case I915_TILING_Y:
  1577. /* FIXME: Is this true? */
  1578. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1579. return -EINVAL;
  1580. default:
  1581. BUG();
  1582. }
  1583. dev_priv->mm.interruptible = false;
  1584. ret = i915_gem_object_pin(obj, alignment, true);
  1585. if (ret)
  1586. goto err_interruptible;
  1587. ret = i915_gem_object_set_to_display_plane(obj, pipelined);
  1588. if (ret)
  1589. goto err_unpin;
  1590. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1591. * fence, whereas 965+ only requires a fence if using
  1592. * framebuffer compression. For simplicity, we always install
  1593. * a fence as the cost is not that onerous.
  1594. */
  1595. if (obj->tiling_mode != I915_TILING_NONE) {
  1596. ret = i915_gem_object_get_fence(obj, pipelined);
  1597. if (ret)
  1598. goto err_unpin;
  1599. }
  1600. dev_priv->mm.interruptible = true;
  1601. return 0;
  1602. err_unpin:
  1603. i915_gem_object_unpin(obj);
  1604. err_interruptible:
  1605. dev_priv->mm.interruptible = true;
  1606. return ret;
  1607. }
  1608. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1609. static int
  1610. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1611. int x, int y, enum mode_set_atomic state)
  1612. {
  1613. struct drm_device *dev = crtc->dev;
  1614. struct drm_i915_private *dev_priv = dev->dev_private;
  1615. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1616. struct intel_framebuffer *intel_fb;
  1617. struct drm_i915_gem_object *obj;
  1618. int plane = intel_crtc->plane;
  1619. unsigned long Start, Offset;
  1620. u32 dspcntr;
  1621. u32 reg;
  1622. switch (plane) {
  1623. case 0:
  1624. case 1:
  1625. break;
  1626. default:
  1627. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1628. return -EINVAL;
  1629. }
  1630. intel_fb = to_intel_framebuffer(fb);
  1631. obj = intel_fb->obj;
  1632. reg = DSPCNTR(plane);
  1633. dspcntr = I915_READ(reg);
  1634. /* Mask out pixel format bits in case we change it */
  1635. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1636. switch (fb->bits_per_pixel) {
  1637. case 8:
  1638. dspcntr |= DISPPLANE_8BPP;
  1639. break;
  1640. case 16:
  1641. if (fb->depth == 15)
  1642. dspcntr |= DISPPLANE_15_16BPP;
  1643. else
  1644. dspcntr |= DISPPLANE_16BPP;
  1645. break;
  1646. case 24:
  1647. case 32:
  1648. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1649. break;
  1650. default:
  1651. DRM_ERROR("Unknown color depth\n");
  1652. return -EINVAL;
  1653. }
  1654. if (INTEL_INFO(dev)->gen >= 4) {
  1655. if (obj->tiling_mode != I915_TILING_NONE)
  1656. dspcntr |= DISPPLANE_TILED;
  1657. else
  1658. dspcntr &= ~DISPPLANE_TILED;
  1659. }
  1660. if (HAS_PCH_SPLIT(dev))
  1661. /* must disable */
  1662. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1663. I915_WRITE(reg, dspcntr);
  1664. Start = obj->gtt_offset;
  1665. Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
  1666. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1667. Start, Offset, x, y, fb->pitch);
  1668. I915_WRITE(DSPSTRIDE(plane), fb->pitch);
  1669. if (INTEL_INFO(dev)->gen >= 4) {
  1670. I915_WRITE(DSPSURF(plane), Start);
  1671. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1672. I915_WRITE(DSPADDR(plane), Offset);
  1673. } else
  1674. I915_WRITE(DSPADDR(plane), Start + Offset);
  1675. POSTING_READ(reg);
  1676. intel_update_fbc(dev);
  1677. intel_increase_pllclock(crtc);
  1678. return 0;
  1679. }
  1680. static int
  1681. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1682. struct drm_framebuffer *old_fb)
  1683. {
  1684. struct drm_device *dev = crtc->dev;
  1685. struct drm_i915_master_private *master_priv;
  1686. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1687. int ret;
  1688. /* no fb bound */
  1689. if (!crtc->fb) {
  1690. DRM_DEBUG_KMS("No FB bound\n");
  1691. return 0;
  1692. }
  1693. switch (intel_crtc->plane) {
  1694. case 0:
  1695. case 1:
  1696. break;
  1697. default:
  1698. return -EINVAL;
  1699. }
  1700. mutex_lock(&dev->struct_mutex);
  1701. ret = intel_pin_and_fence_fb_obj(dev,
  1702. to_intel_framebuffer(crtc->fb)->obj,
  1703. NULL);
  1704. if (ret != 0) {
  1705. mutex_unlock(&dev->struct_mutex);
  1706. return ret;
  1707. }
  1708. if (old_fb) {
  1709. struct drm_i915_private *dev_priv = dev->dev_private;
  1710. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1711. wait_event(dev_priv->pending_flip_queue,
  1712. atomic_read(&dev_priv->mm.wedged) ||
  1713. atomic_read(&obj->pending_flip) == 0);
  1714. /* Big Hammer, we also need to ensure that any pending
  1715. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1716. * current scanout is retired before unpinning the old
  1717. * framebuffer.
  1718. *
  1719. * This should only fail upon a hung GPU, in which case we
  1720. * can safely continue.
  1721. */
  1722. ret = i915_gem_object_flush_gpu(obj);
  1723. (void) ret;
  1724. }
  1725. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  1726. LEAVE_ATOMIC_MODE_SET);
  1727. if (ret) {
  1728. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  1729. mutex_unlock(&dev->struct_mutex);
  1730. return ret;
  1731. }
  1732. if (old_fb) {
  1733. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1734. i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
  1735. }
  1736. mutex_unlock(&dev->struct_mutex);
  1737. if (!dev->primary->master)
  1738. return 0;
  1739. master_priv = dev->primary->master->driver_priv;
  1740. if (!master_priv->sarea_priv)
  1741. return 0;
  1742. if (intel_crtc->pipe) {
  1743. master_priv->sarea_priv->pipeB_x = x;
  1744. master_priv->sarea_priv->pipeB_y = y;
  1745. } else {
  1746. master_priv->sarea_priv->pipeA_x = x;
  1747. master_priv->sarea_priv->pipeA_y = y;
  1748. }
  1749. return 0;
  1750. }
  1751. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1752. {
  1753. struct drm_device *dev = crtc->dev;
  1754. struct drm_i915_private *dev_priv = dev->dev_private;
  1755. u32 dpa_ctl;
  1756. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1757. dpa_ctl = I915_READ(DP_A);
  1758. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1759. if (clock < 200000) {
  1760. u32 temp;
  1761. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1762. /* workaround for 160Mhz:
  1763. 1) program 0x4600c bits 15:0 = 0x8124
  1764. 2) program 0x46010 bit 0 = 1
  1765. 3) program 0x46034 bit 24 = 1
  1766. 4) program 0x64000 bit 14 = 1
  1767. */
  1768. temp = I915_READ(0x4600c);
  1769. temp &= 0xffff0000;
  1770. I915_WRITE(0x4600c, temp | 0x8124);
  1771. temp = I915_READ(0x46010);
  1772. I915_WRITE(0x46010, temp | 1);
  1773. temp = I915_READ(0x46034);
  1774. I915_WRITE(0x46034, temp | (1 << 24));
  1775. } else {
  1776. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1777. }
  1778. I915_WRITE(DP_A, dpa_ctl);
  1779. POSTING_READ(DP_A);
  1780. udelay(500);
  1781. }
  1782. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1783. {
  1784. struct drm_device *dev = crtc->dev;
  1785. struct drm_i915_private *dev_priv = dev->dev_private;
  1786. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1787. int pipe = intel_crtc->pipe;
  1788. u32 reg, temp;
  1789. /* enable normal train */
  1790. reg = FDI_TX_CTL(pipe);
  1791. temp = I915_READ(reg);
  1792. temp &= ~FDI_LINK_TRAIN_NONE;
  1793. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1794. I915_WRITE(reg, temp);
  1795. reg = FDI_RX_CTL(pipe);
  1796. temp = I915_READ(reg);
  1797. if (HAS_PCH_CPT(dev)) {
  1798. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1799. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1800. } else {
  1801. temp &= ~FDI_LINK_TRAIN_NONE;
  1802. temp |= FDI_LINK_TRAIN_NONE;
  1803. }
  1804. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1805. /* wait one idle pattern time */
  1806. POSTING_READ(reg);
  1807. udelay(1000);
  1808. }
  1809. /* The FDI link training functions for ILK/Ibexpeak. */
  1810. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  1811. {
  1812. struct drm_device *dev = crtc->dev;
  1813. struct drm_i915_private *dev_priv = dev->dev_private;
  1814. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1815. int pipe = intel_crtc->pipe;
  1816. int plane = intel_crtc->plane;
  1817. u32 reg, temp, tries;
  1818. /* FDI needs bits from pipe & plane first */
  1819. assert_pipe_enabled(dev_priv, pipe);
  1820. assert_plane_enabled(dev_priv, plane);
  1821. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1822. for train result */
  1823. reg = FDI_RX_IMR(pipe);
  1824. temp = I915_READ(reg);
  1825. temp &= ~FDI_RX_SYMBOL_LOCK;
  1826. temp &= ~FDI_RX_BIT_LOCK;
  1827. I915_WRITE(reg, temp);
  1828. I915_READ(reg);
  1829. udelay(150);
  1830. /* enable CPU FDI TX and PCH FDI RX */
  1831. reg = FDI_TX_CTL(pipe);
  1832. temp = I915_READ(reg);
  1833. temp &= ~(7 << 19);
  1834. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1835. temp &= ~FDI_LINK_TRAIN_NONE;
  1836. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1837. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  1838. reg = FDI_RX_CTL(pipe);
  1839. temp = I915_READ(reg);
  1840. temp &= ~FDI_LINK_TRAIN_NONE;
  1841. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1842. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  1843. POSTING_READ(reg);
  1844. udelay(150);
  1845. /* Ironlake workaround, enable clock pointer after FDI enable*/
  1846. if (HAS_PCH_IBX(dev)) {
  1847. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  1848. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  1849. FDI_RX_PHASE_SYNC_POINTER_EN);
  1850. }
  1851. reg = FDI_RX_IIR(pipe);
  1852. for (tries = 0; tries < 5; tries++) {
  1853. temp = I915_READ(reg);
  1854. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1855. if ((temp & FDI_RX_BIT_LOCK)) {
  1856. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1857. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  1858. break;
  1859. }
  1860. }
  1861. if (tries == 5)
  1862. DRM_ERROR("FDI train 1 fail!\n");
  1863. /* Train 2 */
  1864. reg = FDI_TX_CTL(pipe);
  1865. temp = I915_READ(reg);
  1866. temp &= ~FDI_LINK_TRAIN_NONE;
  1867. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1868. I915_WRITE(reg, temp);
  1869. reg = FDI_RX_CTL(pipe);
  1870. temp = I915_READ(reg);
  1871. temp &= ~FDI_LINK_TRAIN_NONE;
  1872. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1873. I915_WRITE(reg, temp);
  1874. POSTING_READ(reg);
  1875. udelay(150);
  1876. reg = FDI_RX_IIR(pipe);
  1877. for (tries = 0; tries < 5; tries++) {
  1878. temp = I915_READ(reg);
  1879. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1880. if (temp & FDI_RX_SYMBOL_LOCK) {
  1881. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  1882. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1883. break;
  1884. }
  1885. }
  1886. if (tries == 5)
  1887. DRM_ERROR("FDI train 2 fail!\n");
  1888. DRM_DEBUG_KMS("FDI train done\n");
  1889. }
  1890. static const int snb_b_fdi_train_param [] = {
  1891. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  1892. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  1893. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  1894. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  1895. };
  1896. /* The FDI link training functions for SNB/Cougarpoint. */
  1897. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  1898. {
  1899. struct drm_device *dev = crtc->dev;
  1900. struct drm_i915_private *dev_priv = dev->dev_private;
  1901. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1902. int pipe = intel_crtc->pipe;
  1903. u32 reg, temp, i;
  1904. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  1905. for train result */
  1906. reg = FDI_RX_IMR(pipe);
  1907. temp = I915_READ(reg);
  1908. temp &= ~FDI_RX_SYMBOL_LOCK;
  1909. temp &= ~FDI_RX_BIT_LOCK;
  1910. I915_WRITE(reg, temp);
  1911. POSTING_READ(reg);
  1912. udelay(150);
  1913. /* enable CPU FDI TX and PCH FDI RX */
  1914. reg = FDI_TX_CTL(pipe);
  1915. temp = I915_READ(reg);
  1916. temp &= ~(7 << 19);
  1917. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  1918. temp &= ~FDI_LINK_TRAIN_NONE;
  1919. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1920. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1921. /* SNB-B */
  1922. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1923. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  1924. reg = FDI_RX_CTL(pipe);
  1925. temp = I915_READ(reg);
  1926. if (HAS_PCH_CPT(dev)) {
  1927. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1928. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  1929. } else {
  1930. temp &= ~FDI_LINK_TRAIN_NONE;
  1931. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1932. }
  1933. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  1934. POSTING_READ(reg);
  1935. udelay(150);
  1936. for (i = 0; i < 4; i++ ) {
  1937. reg = FDI_TX_CTL(pipe);
  1938. temp = I915_READ(reg);
  1939. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1940. temp |= snb_b_fdi_train_param[i];
  1941. I915_WRITE(reg, temp);
  1942. POSTING_READ(reg);
  1943. udelay(500);
  1944. reg = FDI_RX_IIR(pipe);
  1945. temp = I915_READ(reg);
  1946. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1947. if (temp & FDI_RX_BIT_LOCK) {
  1948. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  1949. DRM_DEBUG_KMS("FDI train 1 done.\n");
  1950. break;
  1951. }
  1952. }
  1953. if (i == 4)
  1954. DRM_ERROR("FDI train 1 fail!\n");
  1955. /* Train 2 */
  1956. reg = FDI_TX_CTL(pipe);
  1957. temp = I915_READ(reg);
  1958. temp &= ~FDI_LINK_TRAIN_NONE;
  1959. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1960. if (IS_GEN6(dev)) {
  1961. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1962. /* SNB-B */
  1963. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  1964. }
  1965. I915_WRITE(reg, temp);
  1966. reg = FDI_RX_CTL(pipe);
  1967. temp = I915_READ(reg);
  1968. if (HAS_PCH_CPT(dev)) {
  1969. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1970. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  1971. } else {
  1972. temp &= ~FDI_LINK_TRAIN_NONE;
  1973. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1974. }
  1975. I915_WRITE(reg, temp);
  1976. POSTING_READ(reg);
  1977. udelay(150);
  1978. for (i = 0; i < 4; i++ ) {
  1979. reg = FDI_TX_CTL(pipe);
  1980. temp = I915_READ(reg);
  1981. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  1982. temp |= snb_b_fdi_train_param[i];
  1983. I915_WRITE(reg, temp);
  1984. POSTING_READ(reg);
  1985. udelay(500);
  1986. reg = FDI_RX_IIR(pipe);
  1987. temp = I915_READ(reg);
  1988. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1989. if (temp & FDI_RX_SYMBOL_LOCK) {
  1990. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  1991. DRM_DEBUG_KMS("FDI train 2 done.\n");
  1992. break;
  1993. }
  1994. }
  1995. if (i == 4)
  1996. DRM_ERROR("FDI train 2 fail!\n");
  1997. DRM_DEBUG_KMS("FDI train done.\n");
  1998. }
  1999. static void ironlake_fdi_enable(struct drm_crtc *crtc)
  2000. {
  2001. struct drm_device *dev = crtc->dev;
  2002. struct drm_i915_private *dev_priv = dev->dev_private;
  2003. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2004. int pipe = intel_crtc->pipe;
  2005. u32 reg, temp;
  2006. /* Write the TU size bits so error detection works */
  2007. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2008. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2009. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2010. reg = FDI_RX_CTL(pipe);
  2011. temp = I915_READ(reg);
  2012. temp &= ~((0x7 << 19) | (0x7 << 16));
  2013. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2014. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2015. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2016. POSTING_READ(reg);
  2017. udelay(200);
  2018. /* Switch from Rawclk to PCDclk */
  2019. temp = I915_READ(reg);
  2020. I915_WRITE(reg, temp | FDI_PCDCLK);
  2021. POSTING_READ(reg);
  2022. udelay(200);
  2023. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2024. reg = FDI_TX_CTL(pipe);
  2025. temp = I915_READ(reg);
  2026. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2027. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2028. POSTING_READ(reg);
  2029. udelay(100);
  2030. }
  2031. }
  2032. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2033. {
  2034. struct drm_device *dev = crtc->dev;
  2035. struct drm_i915_private *dev_priv = dev->dev_private;
  2036. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2037. int pipe = intel_crtc->pipe;
  2038. u32 reg, temp;
  2039. /* disable CPU FDI tx and PCH FDI rx */
  2040. reg = FDI_TX_CTL(pipe);
  2041. temp = I915_READ(reg);
  2042. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2043. POSTING_READ(reg);
  2044. reg = FDI_RX_CTL(pipe);
  2045. temp = I915_READ(reg);
  2046. temp &= ~(0x7 << 16);
  2047. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2048. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2049. POSTING_READ(reg);
  2050. udelay(100);
  2051. /* Ironlake workaround, disable clock pointer after downing FDI */
  2052. if (HAS_PCH_IBX(dev)) {
  2053. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2054. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2055. I915_READ(FDI_RX_CHICKEN(pipe) &
  2056. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2057. }
  2058. /* still set train pattern 1 */
  2059. reg = FDI_TX_CTL(pipe);
  2060. temp = I915_READ(reg);
  2061. temp &= ~FDI_LINK_TRAIN_NONE;
  2062. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2063. I915_WRITE(reg, temp);
  2064. reg = FDI_RX_CTL(pipe);
  2065. temp = I915_READ(reg);
  2066. if (HAS_PCH_CPT(dev)) {
  2067. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2068. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2069. } else {
  2070. temp &= ~FDI_LINK_TRAIN_NONE;
  2071. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2072. }
  2073. /* BPC in FDI rx is consistent with that in PIPECONF */
  2074. temp &= ~(0x07 << 16);
  2075. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2076. I915_WRITE(reg, temp);
  2077. POSTING_READ(reg);
  2078. udelay(100);
  2079. }
  2080. /*
  2081. * When we disable a pipe, we need to clear any pending scanline wait events
  2082. * to avoid hanging the ring, which we assume we are waiting on.
  2083. */
  2084. static void intel_clear_scanline_wait(struct drm_device *dev)
  2085. {
  2086. struct drm_i915_private *dev_priv = dev->dev_private;
  2087. struct intel_ring_buffer *ring;
  2088. u32 tmp;
  2089. if (IS_GEN2(dev))
  2090. /* Can't break the hang on i8xx */
  2091. return;
  2092. ring = LP_RING(dev_priv);
  2093. tmp = I915_READ_CTL(ring);
  2094. if (tmp & RING_WAIT)
  2095. I915_WRITE_CTL(ring, tmp);
  2096. }
  2097. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2098. {
  2099. struct drm_i915_gem_object *obj;
  2100. struct drm_i915_private *dev_priv;
  2101. if (crtc->fb == NULL)
  2102. return;
  2103. obj = to_intel_framebuffer(crtc->fb)->obj;
  2104. dev_priv = crtc->dev->dev_private;
  2105. wait_event(dev_priv->pending_flip_queue,
  2106. atomic_read(&obj->pending_flip) == 0);
  2107. }
  2108. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2109. {
  2110. struct drm_device *dev = crtc->dev;
  2111. struct drm_mode_config *mode_config = &dev->mode_config;
  2112. struct intel_encoder *encoder;
  2113. /*
  2114. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2115. * must be driven by its own crtc; no sharing is possible.
  2116. */
  2117. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2118. if (encoder->base.crtc != crtc)
  2119. continue;
  2120. switch (encoder->type) {
  2121. case INTEL_OUTPUT_EDP:
  2122. if (!intel_encoder_is_pch_edp(&encoder->base))
  2123. return false;
  2124. continue;
  2125. }
  2126. }
  2127. return true;
  2128. }
  2129. /*
  2130. * Enable PCH resources required for PCH ports:
  2131. * - PCH PLLs
  2132. * - FDI training & RX/TX
  2133. * - update transcoder timings
  2134. * - DP transcoding bits
  2135. * - transcoder
  2136. */
  2137. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2138. {
  2139. struct drm_device *dev = crtc->dev;
  2140. struct drm_i915_private *dev_priv = dev->dev_private;
  2141. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2142. int pipe = intel_crtc->pipe;
  2143. u32 reg, temp;
  2144. /* For PCH output, training FDI link */
  2145. if (IS_GEN6(dev))
  2146. gen6_fdi_link_train(crtc);
  2147. else
  2148. ironlake_fdi_link_train(crtc);
  2149. intel_enable_pch_pll(dev_priv, pipe);
  2150. if (HAS_PCH_CPT(dev)) {
  2151. /* Be sure PCH DPLL SEL is set */
  2152. temp = I915_READ(PCH_DPLL_SEL);
  2153. if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
  2154. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2155. else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
  2156. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2157. I915_WRITE(PCH_DPLL_SEL, temp);
  2158. }
  2159. /* set transcoder timing, panel must allow it */
  2160. assert_panel_unlocked(dev_priv, pipe);
  2161. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2162. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2163. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2164. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2165. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2166. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2167. intel_fdi_normal_train(crtc);
  2168. /* For PCH DP, enable TRANS_DP_CTL */
  2169. if (HAS_PCH_CPT(dev) &&
  2170. intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  2171. reg = TRANS_DP_CTL(pipe);
  2172. temp = I915_READ(reg);
  2173. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2174. TRANS_DP_SYNC_MASK |
  2175. TRANS_DP_BPC_MASK);
  2176. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2177. TRANS_DP_ENH_FRAMING);
  2178. temp |= TRANS_DP_8BPC;
  2179. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2180. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2181. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2182. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2183. switch (intel_trans_dp_port_sel(crtc)) {
  2184. case PCH_DP_B:
  2185. temp |= TRANS_DP_PORT_SEL_B;
  2186. break;
  2187. case PCH_DP_C:
  2188. temp |= TRANS_DP_PORT_SEL_C;
  2189. break;
  2190. case PCH_DP_D:
  2191. temp |= TRANS_DP_PORT_SEL_D;
  2192. break;
  2193. default:
  2194. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2195. temp |= TRANS_DP_PORT_SEL_B;
  2196. break;
  2197. }
  2198. I915_WRITE(reg, temp);
  2199. }
  2200. intel_enable_transcoder(dev_priv, pipe);
  2201. }
  2202. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2203. {
  2204. struct drm_device *dev = crtc->dev;
  2205. struct drm_i915_private *dev_priv = dev->dev_private;
  2206. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2207. int pipe = intel_crtc->pipe;
  2208. int plane = intel_crtc->plane;
  2209. u32 temp;
  2210. bool is_pch_port;
  2211. if (intel_crtc->active)
  2212. return;
  2213. intel_crtc->active = true;
  2214. intel_update_watermarks(dev);
  2215. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2216. temp = I915_READ(PCH_LVDS);
  2217. if ((temp & LVDS_PORT_EN) == 0)
  2218. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2219. }
  2220. is_pch_port = intel_crtc_driving_pch(crtc);
  2221. if (is_pch_port)
  2222. ironlake_fdi_enable(crtc);
  2223. else
  2224. ironlake_fdi_disable(crtc);
  2225. /* Enable panel fitting for LVDS */
  2226. if (dev_priv->pch_pf_size &&
  2227. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2228. /* Force use of hard-coded filter coefficients
  2229. * as some pre-programmed values are broken,
  2230. * e.g. x201.
  2231. */
  2232. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2233. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2234. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2235. }
  2236. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2237. intel_enable_plane(dev_priv, plane, pipe);
  2238. if (is_pch_port)
  2239. ironlake_pch_enable(crtc);
  2240. intel_crtc_load_lut(crtc);
  2241. intel_update_fbc(dev);
  2242. intel_crtc_update_cursor(crtc, true);
  2243. }
  2244. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2245. {
  2246. struct drm_device *dev = crtc->dev;
  2247. struct drm_i915_private *dev_priv = dev->dev_private;
  2248. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2249. int pipe = intel_crtc->pipe;
  2250. int plane = intel_crtc->plane;
  2251. u32 reg, temp;
  2252. if (!intel_crtc->active)
  2253. return;
  2254. intel_crtc_wait_for_pending_flips(crtc);
  2255. drm_vblank_off(dev, pipe);
  2256. intel_crtc_update_cursor(crtc, false);
  2257. intel_disable_plane(dev_priv, plane, pipe);
  2258. if (dev_priv->cfb_plane == plane &&
  2259. dev_priv->display.disable_fbc)
  2260. dev_priv->display.disable_fbc(dev);
  2261. intel_disable_pipe(dev_priv, pipe);
  2262. /* Disable PF */
  2263. I915_WRITE(PF_CTL(pipe), 0);
  2264. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2265. ironlake_fdi_disable(crtc);
  2266. /* This is a horrible layering violation; we should be doing this in
  2267. * the connector/encoder ->prepare instead, but we don't always have
  2268. * enough information there about the config to know whether it will
  2269. * actually be necessary or just cause undesired flicker.
  2270. */
  2271. intel_disable_pch_ports(dev_priv, pipe);
  2272. intel_disable_transcoder(dev_priv, pipe);
  2273. if (HAS_PCH_CPT(dev)) {
  2274. /* disable TRANS_DP_CTL */
  2275. reg = TRANS_DP_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2278. temp |= TRANS_DP_PORT_SEL_NONE;
  2279. I915_WRITE(reg, temp);
  2280. /* disable DPLL_SEL */
  2281. temp = I915_READ(PCH_DPLL_SEL);
  2282. switch (pipe) {
  2283. case 0:
  2284. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2285. break;
  2286. case 1:
  2287. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2288. break;
  2289. case 2:
  2290. /* FIXME: manage transcoder PLLs? */
  2291. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2292. break;
  2293. default:
  2294. BUG(); /* wtf */
  2295. }
  2296. I915_WRITE(PCH_DPLL_SEL, temp);
  2297. }
  2298. /* disable PCH DPLL */
  2299. intel_disable_pch_pll(dev_priv, pipe);
  2300. /* Switch from PCDclk to Rawclk */
  2301. reg = FDI_RX_CTL(pipe);
  2302. temp = I915_READ(reg);
  2303. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2304. /* Disable CPU FDI TX PLL */
  2305. reg = FDI_TX_CTL(pipe);
  2306. temp = I915_READ(reg);
  2307. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2308. POSTING_READ(reg);
  2309. udelay(100);
  2310. reg = FDI_RX_CTL(pipe);
  2311. temp = I915_READ(reg);
  2312. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2313. /* Wait for the clocks to turn off. */
  2314. POSTING_READ(reg);
  2315. udelay(100);
  2316. intel_crtc->active = false;
  2317. intel_update_watermarks(dev);
  2318. intel_update_fbc(dev);
  2319. intel_clear_scanline_wait(dev);
  2320. }
  2321. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2322. {
  2323. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2324. int pipe = intel_crtc->pipe;
  2325. int plane = intel_crtc->plane;
  2326. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2327. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2328. */
  2329. switch (mode) {
  2330. case DRM_MODE_DPMS_ON:
  2331. case DRM_MODE_DPMS_STANDBY:
  2332. case DRM_MODE_DPMS_SUSPEND:
  2333. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2334. ironlake_crtc_enable(crtc);
  2335. break;
  2336. case DRM_MODE_DPMS_OFF:
  2337. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2338. ironlake_crtc_disable(crtc);
  2339. break;
  2340. }
  2341. }
  2342. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2343. {
  2344. if (!enable && intel_crtc->overlay) {
  2345. struct drm_device *dev = intel_crtc->base.dev;
  2346. struct drm_i915_private *dev_priv = dev->dev_private;
  2347. mutex_lock(&dev->struct_mutex);
  2348. dev_priv->mm.interruptible = false;
  2349. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2350. dev_priv->mm.interruptible = true;
  2351. mutex_unlock(&dev->struct_mutex);
  2352. }
  2353. /* Let userspace switch the overlay on again. In most cases userspace
  2354. * has to recompute where to put it anyway.
  2355. */
  2356. }
  2357. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2358. {
  2359. struct drm_device *dev = crtc->dev;
  2360. struct drm_i915_private *dev_priv = dev->dev_private;
  2361. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2362. int pipe = intel_crtc->pipe;
  2363. int plane = intel_crtc->plane;
  2364. if (intel_crtc->active)
  2365. return;
  2366. intel_crtc->active = true;
  2367. intel_update_watermarks(dev);
  2368. intel_enable_pll(dev_priv, pipe);
  2369. intel_enable_pipe(dev_priv, pipe, false);
  2370. intel_enable_plane(dev_priv, plane, pipe);
  2371. intel_crtc_load_lut(crtc);
  2372. intel_update_fbc(dev);
  2373. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2374. intel_crtc_dpms_overlay(intel_crtc, true);
  2375. intel_crtc_update_cursor(crtc, true);
  2376. }
  2377. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2378. {
  2379. struct drm_device *dev = crtc->dev;
  2380. struct drm_i915_private *dev_priv = dev->dev_private;
  2381. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2382. int pipe = intel_crtc->pipe;
  2383. int plane = intel_crtc->plane;
  2384. if (!intel_crtc->active)
  2385. return;
  2386. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2387. intel_crtc_wait_for_pending_flips(crtc);
  2388. drm_vblank_off(dev, pipe);
  2389. intel_crtc_dpms_overlay(intel_crtc, false);
  2390. intel_crtc_update_cursor(crtc, false);
  2391. if (dev_priv->cfb_plane == plane &&
  2392. dev_priv->display.disable_fbc)
  2393. dev_priv->display.disable_fbc(dev);
  2394. intel_disable_plane(dev_priv, plane, pipe);
  2395. intel_disable_pipe(dev_priv, pipe);
  2396. intel_disable_pll(dev_priv, pipe);
  2397. intel_crtc->active = false;
  2398. intel_update_fbc(dev);
  2399. intel_update_watermarks(dev);
  2400. intel_clear_scanline_wait(dev);
  2401. }
  2402. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2403. {
  2404. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2405. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2406. */
  2407. switch (mode) {
  2408. case DRM_MODE_DPMS_ON:
  2409. case DRM_MODE_DPMS_STANDBY:
  2410. case DRM_MODE_DPMS_SUSPEND:
  2411. i9xx_crtc_enable(crtc);
  2412. break;
  2413. case DRM_MODE_DPMS_OFF:
  2414. i9xx_crtc_disable(crtc);
  2415. break;
  2416. }
  2417. }
  2418. /**
  2419. * Sets the power management mode of the pipe and plane.
  2420. */
  2421. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2422. {
  2423. struct drm_device *dev = crtc->dev;
  2424. struct drm_i915_private *dev_priv = dev->dev_private;
  2425. struct drm_i915_master_private *master_priv;
  2426. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2427. int pipe = intel_crtc->pipe;
  2428. bool enabled;
  2429. if (intel_crtc->dpms_mode == mode)
  2430. return;
  2431. intel_crtc->dpms_mode = mode;
  2432. dev_priv->display.dpms(crtc, mode);
  2433. if (!dev->primary->master)
  2434. return;
  2435. master_priv = dev->primary->master->driver_priv;
  2436. if (!master_priv->sarea_priv)
  2437. return;
  2438. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2439. switch (pipe) {
  2440. case 0:
  2441. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2442. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2443. break;
  2444. case 1:
  2445. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2446. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2447. break;
  2448. default:
  2449. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2450. break;
  2451. }
  2452. }
  2453. static void intel_crtc_disable(struct drm_crtc *crtc)
  2454. {
  2455. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2456. struct drm_device *dev = crtc->dev;
  2457. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2458. if (crtc->fb) {
  2459. mutex_lock(&dev->struct_mutex);
  2460. i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
  2461. mutex_unlock(&dev->struct_mutex);
  2462. }
  2463. }
  2464. /* Prepare for a mode set.
  2465. *
  2466. * Note we could be a lot smarter here. We need to figure out which outputs
  2467. * will be enabled, which disabled (in short, how the config will changes)
  2468. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2469. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2470. * panel fitting is in the proper state, etc.
  2471. */
  2472. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2473. {
  2474. i9xx_crtc_disable(crtc);
  2475. }
  2476. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2477. {
  2478. i9xx_crtc_enable(crtc);
  2479. }
  2480. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2481. {
  2482. ironlake_crtc_disable(crtc);
  2483. }
  2484. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2485. {
  2486. ironlake_crtc_enable(crtc);
  2487. }
  2488. void intel_encoder_prepare (struct drm_encoder *encoder)
  2489. {
  2490. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2491. /* lvds has its own version of prepare see intel_lvds_prepare */
  2492. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2493. }
  2494. void intel_encoder_commit (struct drm_encoder *encoder)
  2495. {
  2496. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2497. /* lvds has its own version of commit see intel_lvds_commit */
  2498. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2499. }
  2500. void intel_encoder_destroy(struct drm_encoder *encoder)
  2501. {
  2502. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2503. drm_encoder_cleanup(encoder);
  2504. kfree(intel_encoder);
  2505. }
  2506. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2507. struct drm_display_mode *mode,
  2508. struct drm_display_mode *adjusted_mode)
  2509. {
  2510. struct drm_device *dev = crtc->dev;
  2511. if (HAS_PCH_SPLIT(dev)) {
  2512. /* FDI link clock is fixed at 2.7G */
  2513. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2514. return false;
  2515. }
  2516. /* XXX some encoders set the crtcinfo, others don't.
  2517. * Obviously we need some form of conflict resolution here...
  2518. */
  2519. if (adjusted_mode->crtc_htotal == 0)
  2520. drm_mode_set_crtcinfo(adjusted_mode, 0);
  2521. return true;
  2522. }
  2523. static int i945_get_display_clock_speed(struct drm_device *dev)
  2524. {
  2525. return 400000;
  2526. }
  2527. static int i915_get_display_clock_speed(struct drm_device *dev)
  2528. {
  2529. return 333000;
  2530. }
  2531. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  2532. {
  2533. return 200000;
  2534. }
  2535. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  2536. {
  2537. u16 gcfgc = 0;
  2538. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  2539. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  2540. return 133000;
  2541. else {
  2542. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  2543. case GC_DISPLAY_CLOCK_333_MHZ:
  2544. return 333000;
  2545. default:
  2546. case GC_DISPLAY_CLOCK_190_200_MHZ:
  2547. return 190000;
  2548. }
  2549. }
  2550. }
  2551. static int i865_get_display_clock_speed(struct drm_device *dev)
  2552. {
  2553. return 266000;
  2554. }
  2555. static int i855_get_display_clock_speed(struct drm_device *dev)
  2556. {
  2557. u16 hpllcc = 0;
  2558. /* Assume that the hardware is in the high speed state. This
  2559. * should be the default.
  2560. */
  2561. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  2562. case GC_CLOCK_133_200:
  2563. case GC_CLOCK_100_200:
  2564. return 200000;
  2565. case GC_CLOCK_166_250:
  2566. return 250000;
  2567. case GC_CLOCK_100_133:
  2568. return 133000;
  2569. }
  2570. /* Shouldn't happen */
  2571. return 0;
  2572. }
  2573. static int i830_get_display_clock_speed(struct drm_device *dev)
  2574. {
  2575. return 133000;
  2576. }
  2577. struct fdi_m_n {
  2578. u32 tu;
  2579. u32 gmch_m;
  2580. u32 gmch_n;
  2581. u32 link_m;
  2582. u32 link_n;
  2583. };
  2584. static void
  2585. fdi_reduce_ratio(u32 *num, u32 *den)
  2586. {
  2587. while (*num > 0xffffff || *den > 0xffffff) {
  2588. *num >>= 1;
  2589. *den >>= 1;
  2590. }
  2591. }
  2592. static void
  2593. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  2594. int link_clock, struct fdi_m_n *m_n)
  2595. {
  2596. m_n->tu = 64; /* default size */
  2597. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  2598. m_n->gmch_m = bits_per_pixel * pixel_clock;
  2599. m_n->gmch_n = link_clock * nlanes * 8;
  2600. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  2601. m_n->link_m = pixel_clock;
  2602. m_n->link_n = link_clock;
  2603. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  2604. }
  2605. struct intel_watermark_params {
  2606. unsigned long fifo_size;
  2607. unsigned long max_wm;
  2608. unsigned long default_wm;
  2609. unsigned long guard_size;
  2610. unsigned long cacheline_size;
  2611. };
  2612. /* Pineview has different values for various configs */
  2613. static const struct intel_watermark_params pineview_display_wm = {
  2614. PINEVIEW_DISPLAY_FIFO,
  2615. PINEVIEW_MAX_WM,
  2616. PINEVIEW_DFT_WM,
  2617. PINEVIEW_GUARD_WM,
  2618. PINEVIEW_FIFO_LINE_SIZE
  2619. };
  2620. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  2621. PINEVIEW_DISPLAY_FIFO,
  2622. PINEVIEW_MAX_WM,
  2623. PINEVIEW_DFT_HPLLOFF_WM,
  2624. PINEVIEW_GUARD_WM,
  2625. PINEVIEW_FIFO_LINE_SIZE
  2626. };
  2627. static const struct intel_watermark_params pineview_cursor_wm = {
  2628. PINEVIEW_CURSOR_FIFO,
  2629. PINEVIEW_CURSOR_MAX_WM,
  2630. PINEVIEW_CURSOR_DFT_WM,
  2631. PINEVIEW_CURSOR_GUARD_WM,
  2632. PINEVIEW_FIFO_LINE_SIZE,
  2633. };
  2634. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  2635. PINEVIEW_CURSOR_FIFO,
  2636. PINEVIEW_CURSOR_MAX_WM,
  2637. PINEVIEW_CURSOR_DFT_WM,
  2638. PINEVIEW_CURSOR_GUARD_WM,
  2639. PINEVIEW_FIFO_LINE_SIZE
  2640. };
  2641. static const struct intel_watermark_params g4x_wm_info = {
  2642. G4X_FIFO_SIZE,
  2643. G4X_MAX_WM,
  2644. G4X_MAX_WM,
  2645. 2,
  2646. G4X_FIFO_LINE_SIZE,
  2647. };
  2648. static const struct intel_watermark_params g4x_cursor_wm_info = {
  2649. I965_CURSOR_FIFO,
  2650. I965_CURSOR_MAX_WM,
  2651. I965_CURSOR_DFT_WM,
  2652. 2,
  2653. G4X_FIFO_LINE_SIZE,
  2654. };
  2655. static const struct intel_watermark_params i965_cursor_wm_info = {
  2656. I965_CURSOR_FIFO,
  2657. I965_CURSOR_MAX_WM,
  2658. I965_CURSOR_DFT_WM,
  2659. 2,
  2660. I915_FIFO_LINE_SIZE,
  2661. };
  2662. static const struct intel_watermark_params i945_wm_info = {
  2663. I945_FIFO_SIZE,
  2664. I915_MAX_WM,
  2665. 1,
  2666. 2,
  2667. I915_FIFO_LINE_SIZE
  2668. };
  2669. static const struct intel_watermark_params i915_wm_info = {
  2670. I915_FIFO_SIZE,
  2671. I915_MAX_WM,
  2672. 1,
  2673. 2,
  2674. I915_FIFO_LINE_SIZE
  2675. };
  2676. static const struct intel_watermark_params i855_wm_info = {
  2677. I855GM_FIFO_SIZE,
  2678. I915_MAX_WM,
  2679. 1,
  2680. 2,
  2681. I830_FIFO_LINE_SIZE
  2682. };
  2683. static const struct intel_watermark_params i830_wm_info = {
  2684. I830_FIFO_SIZE,
  2685. I915_MAX_WM,
  2686. 1,
  2687. 2,
  2688. I830_FIFO_LINE_SIZE
  2689. };
  2690. static const struct intel_watermark_params ironlake_display_wm_info = {
  2691. ILK_DISPLAY_FIFO,
  2692. ILK_DISPLAY_MAXWM,
  2693. ILK_DISPLAY_DFTWM,
  2694. 2,
  2695. ILK_FIFO_LINE_SIZE
  2696. };
  2697. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  2698. ILK_CURSOR_FIFO,
  2699. ILK_CURSOR_MAXWM,
  2700. ILK_CURSOR_DFTWM,
  2701. 2,
  2702. ILK_FIFO_LINE_SIZE
  2703. };
  2704. static const struct intel_watermark_params ironlake_display_srwm_info = {
  2705. ILK_DISPLAY_SR_FIFO,
  2706. ILK_DISPLAY_MAX_SRWM,
  2707. ILK_DISPLAY_DFT_SRWM,
  2708. 2,
  2709. ILK_FIFO_LINE_SIZE
  2710. };
  2711. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  2712. ILK_CURSOR_SR_FIFO,
  2713. ILK_CURSOR_MAX_SRWM,
  2714. ILK_CURSOR_DFT_SRWM,
  2715. 2,
  2716. ILK_FIFO_LINE_SIZE
  2717. };
  2718. static const struct intel_watermark_params sandybridge_display_wm_info = {
  2719. SNB_DISPLAY_FIFO,
  2720. SNB_DISPLAY_MAXWM,
  2721. SNB_DISPLAY_DFTWM,
  2722. 2,
  2723. SNB_FIFO_LINE_SIZE
  2724. };
  2725. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  2726. SNB_CURSOR_FIFO,
  2727. SNB_CURSOR_MAXWM,
  2728. SNB_CURSOR_DFTWM,
  2729. 2,
  2730. SNB_FIFO_LINE_SIZE
  2731. };
  2732. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  2733. SNB_DISPLAY_SR_FIFO,
  2734. SNB_DISPLAY_MAX_SRWM,
  2735. SNB_DISPLAY_DFT_SRWM,
  2736. 2,
  2737. SNB_FIFO_LINE_SIZE
  2738. };
  2739. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  2740. SNB_CURSOR_SR_FIFO,
  2741. SNB_CURSOR_MAX_SRWM,
  2742. SNB_CURSOR_DFT_SRWM,
  2743. 2,
  2744. SNB_FIFO_LINE_SIZE
  2745. };
  2746. /**
  2747. * intel_calculate_wm - calculate watermark level
  2748. * @clock_in_khz: pixel clock
  2749. * @wm: chip FIFO params
  2750. * @pixel_size: display pixel size
  2751. * @latency_ns: memory latency for the platform
  2752. *
  2753. * Calculate the watermark level (the level at which the display plane will
  2754. * start fetching from memory again). Each chip has a different display
  2755. * FIFO size and allocation, so the caller needs to figure that out and pass
  2756. * in the correct intel_watermark_params structure.
  2757. *
  2758. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  2759. * on the pixel size. When it reaches the watermark level, it'll start
  2760. * fetching FIFO line sized based chunks from memory until the FIFO fills
  2761. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  2762. * will occur, and a display engine hang could result.
  2763. */
  2764. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  2765. const struct intel_watermark_params *wm,
  2766. int fifo_size,
  2767. int pixel_size,
  2768. unsigned long latency_ns)
  2769. {
  2770. long entries_required, wm_size;
  2771. /*
  2772. * Note: we need to make sure we don't overflow for various clock &
  2773. * latency values.
  2774. * clocks go from a few thousand to several hundred thousand.
  2775. * latency is usually a few thousand
  2776. */
  2777. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2778. 1000;
  2779. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  2780. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2781. wm_size = fifo_size - (entries_required + wm->guard_size);
  2782. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2783. /* Don't promote wm_size to unsigned... */
  2784. if (wm_size > (long)wm->max_wm)
  2785. wm_size = wm->max_wm;
  2786. if (wm_size <= 0)
  2787. wm_size = wm->default_wm;
  2788. return wm_size;
  2789. }
  2790. struct cxsr_latency {
  2791. int is_desktop;
  2792. int is_ddr3;
  2793. unsigned long fsb_freq;
  2794. unsigned long mem_freq;
  2795. unsigned long display_sr;
  2796. unsigned long display_hpll_disable;
  2797. unsigned long cursor_sr;
  2798. unsigned long cursor_hpll_disable;
  2799. };
  2800. static const struct cxsr_latency cxsr_latency_table[] = {
  2801. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2802. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2803. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2804. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  2805. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  2806. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2807. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2808. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2809. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  2810. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  2811. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2812. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2813. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2814. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  2815. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  2816. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2817. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2818. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2819. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  2820. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  2821. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2822. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2823. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2824. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  2825. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  2826. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2827. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2828. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2829. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  2830. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  2831. };
  2832. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  2833. int is_ddr3,
  2834. int fsb,
  2835. int mem)
  2836. {
  2837. const struct cxsr_latency *latency;
  2838. int i;
  2839. if (fsb == 0 || mem == 0)
  2840. return NULL;
  2841. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2842. latency = &cxsr_latency_table[i];
  2843. if (is_desktop == latency->is_desktop &&
  2844. is_ddr3 == latency->is_ddr3 &&
  2845. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2846. return latency;
  2847. }
  2848. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2849. return NULL;
  2850. }
  2851. static void pineview_disable_cxsr(struct drm_device *dev)
  2852. {
  2853. struct drm_i915_private *dev_priv = dev->dev_private;
  2854. /* deactivate cxsr */
  2855. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  2856. }
  2857. /*
  2858. * Latency for FIFO fetches is dependent on several factors:
  2859. * - memory configuration (speed, channels)
  2860. * - chipset
  2861. * - current MCH state
  2862. * It can be fairly high in some situations, so here we assume a fairly
  2863. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2864. * set this value too high, the FIFO will fetch frequently to stay full)
  2865. * and power consumption (set it too low to save power and we might see
  2866. * FIFO underruns and display "flicker").
  2867. *
  2868. * A value of 5us seems to be a good balance; safe for very low end
  2869. * platforms but not overly aggressive on lower latency configs.
  2870. */
  2871. static const int latency_ns = 5000;
  2872. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2873. {
  2874. struct drm_i915_private *dev_priv = dev->dev_private;
  2875. uint32_t dsparb = I915_READ(DSPARB);
  2876. int size;
  2877. size = dsparb & 0x7f;
  2878. if (plane)
  2879. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  2880. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2881. plane ? "B" : "A", size);
  2882. return size;
  2883. }
  2884. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2885. {
  2886. struct drm_i915_private *dev_priv = dev->dev_private;
  2887. uint32_t dsparb = I915_READ(DSPARB);
  2888. int size;
  2889. size = dsparb & 0x1ff;
  2890. if (plane)
  2891. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  2892. size >>= 1; /* Convert to cachelines */
  2893. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2894. plane ? "B" : "A", size);
  2895. return size;
  2896. }
  2897. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2898. {
  2899. struct drm_i915_private *dev_priv = dev->dev_private;
  2900. uint32_t dsparb = I915_READ(DSPARB);
  2901. int size;
  2902. size = dsparb & 0x7f;
  2903. size >>= 2; /* Convert to cachelines */
  2904. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2905. plane ? "B" : "A",
  2906. size);
  2907. return size;
  2908. }
  2909. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2910. {
  2911. struct drm_i915_private *dev_priv = dev->dev_private;
  2912. uint32_t dsparb = I915_READ(DSPARB);
  2913. int size;
  2914. size = dsparb & 0x7f;
  2915. size >>= 1; /* Convert to cachelines */
  2916. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2917. plane ? "B" : "A", size);
  2918. return size;
  2919. }
  2920. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  2921. {
  2922. struct drm_crtc *crtc, *enabled = NULL;
  2923. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2924. if (crtc->enabled && crtc->fb) {
  2925. if (enabled)
  2926. return NULL;
  2927. enabled = crtc;
  2928. }
  2929. }
  2930. return enabled;
  2931. }
  2932. static void pineview_update_wm(struct drm_device *dev)
  2933. {
  2934. struct drm_i915_private *dev_priv = dev->dev_private;
  2935. struct drm_crtc *crtc;
  2936. const struct cxsr_latency *latency;
  2937. u32 reg;
  2938. unsigned long wm;
  2939. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  2940. dev_priv->fsb_freq, dev_priv->mem_freq);
  2941. if (!latency) {
  2942. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2943. pineview_disable_cxsr(dev);
  2944. return;
  2945. }
  2946. crtc = single_enabled_crtc(dev);
  2947. if (crtc) {
  2948. int clock = crtc->mode.clock;
  2949. int pixel_size = crtc->fb->bits_per_pixel / 8;
  2950. /* Display SR */
  2951. wm = intel_calculate_wm(clock, &pineview_display_wm,
  2952. pineview_display_wm.fifo_size,
  2953. pixel_size, latency->display_sr);
  2954. reg = I915_READ(DSPFW1);
  2955. reg &= ~DSPFW_SR_MASK;
  2956. reg |= wm << DSPFW_SR_SHIFT;
  2957. I915_WRITE(DSPFW1, reg);
  2958. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2959. /* cursor SR */
  2960. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  2961. pineview_display_wm.fifo_size,
  2962. pixel_size, latency->cursor_sr);
  2963. reg = I915_READ(DSPFW3);
  2964. reg &= ~DSPFW_CURSOR_SR_MASK;
  2965. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  2966. I915_WRITE(DSPFW3, reg);
  2967. /* Display HPLL off SR */
  2968. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  2969. pineview_display_hplloff_wm.fifo_size,
  2970. pixel_size, latency->display_hpll_disable);
  2971. reg = I915_READ(DSPFW3);
  2972. reg &= ~DSPFW_HPLL_SR_MASK;
  2973. reg |= wm & DSPFW_HPLL_SR_MASK;
  2974. I915_WRITE(DSPFW3, reg);
  2975. /* cursor HPLL off SR */
  2976. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  2977. pineview_display_hplloff_wm.fifo_size,
  2978. pixel_size, latency->cursor_hpll_disable);
  2979. reg = I915_READ(DSPFW3);
  2980. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  2981. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  2982. I915_WRITE(DSPFW3, reg);
  2983. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2984. /* activate cxsr */
  2985. I915_WRITE(DSPFW3,
  2986. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  2987. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  2988. } else {
  2989. pineview_disable_cxsr(dev);
  2990. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  2991. }
  2992. }
  2993. static bool g4x_compute_wm0(struct drm_device *dev,
  2994. int plane,
  2995. const struct intel_watermark_params *display,
  2996. int display_latency_ns,
  2997. const struct intel_watermark_params *cursor,
  2998. int cursor_latency_ns,
  2999. int *plane_wm,
  3000. int *cursor_wm)
  3001. {
  3002. struct drm_crtc *crtc;
  3003. int htotal, hdisplay, clock, pixel_size;
  3004. int line_time_us, line_count;
  3005. int entries, tlb_miss;
  3006. crtc = intel_get_crtc_for_plane(dev, plane);
  3007. if (crtc->fb == NULL || !crtc->enabled) {
  3008. *cursor_wm = cursor->guard_size;
  3009. *plane_wm = display->guard_size;
  3010. return false;
  3011. }
  3012. htotal = crtc->mode.htotal;
  3013. hdisplay = crtc->mode.hdisplay;
  3014. clock = crtc->mode.clock;
  3015. pixel_size = crtc->fb->bits_per_pixel / 8;
  3016. /* Use the small buffer method to calculate plane watermark */
  3017. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3018. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3019. if (tlb_miss > 0)
  3020. entries += tlb_miss;
  3021. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3022. *plane_wm = entries + display->guard_size;
  3023. if (*plane_wm > (int)display->max_wm)
  3024. *plane_wm = display->max_wm;
  3025. /* Use the large buffer method to calculate cursor watermark */
  3026. line_time_us = ((htotal * 1000) / clock);
  3027. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3028. entries = line_count * 64 * pixel_size;
  3029. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3030. if (tlb_miss > 0)
  3031. entries += tlb_miss;
  3032. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3033. *cursor_wm = entries + cursor->guard_size;
  3034. if (*cursor_wm > (int)cursor->max_wm)
  3035. *cursor_wm = (int)cursor->max_wm;
  3036. return true;
  3037. }
  3038. /*
  3039. * Check the wm result.
  3040. *
  3041. * If any calculated watermark values is larger than the maximum value that
  3042. * can be programmed into the associated watermark register, that watermark
  3043. * must be disabled.
  3044. */
  3045. static bool g4x_check_srwm(struct drm_device *dev,
  3046. int display_wm, int cursor_wm,
  3047. const struct intel_watermark_params *display,
  3048. const struct intel_watermark_params *cursor)
  3049. {
  3050. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3051. display_wm, cursor_wm);
  3052. if (display_wm > display->max_wm) {
  3053. DRM_DEBUG_KMS("display watermark is too large(%d), disabling\n",
  3054. display_wm, display->max_wm);
  3055. return false;
  3056. }
  3057. if (cursor_wm > cursor->max_wm) {
  3058. DRM_DEBUG_KMS("cursor watermark is too large(%d), disabling\n",
  3059. cursor_wm, cursor->max_wm);
  3060. return false;
  3061. }
  3062. if (!(display_wm || cursor_wm)) {
  3063. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3064. return false;
  3065. }
  3066. return true;
  3067. }
  3068. static bool g4x_compute_srwm(struct drm_device *dev,
  3069. int plane,
  3070. int latency_ns,
  3071. const struct intel_watermark_params *display,
  3072. const struct intel_watermark_params *cursor,
  3073. int *display_wm, int *cursor_wm)
  3074. {
  3075. struct drm_crtc *crtc;
  3076. int hdisplay, htotal, pixel_size, clock;
  3077. unsigned long line_time_us;
  3078. int line_count, line_size;
  3079. int small, large;
  3080. int entries;
  3081. if (!latency_ns) {
  3082. *display_wm = *cursor_wm = 0;
  3083. return false;
  3084. }
  3085. crtc = intel_get_crtc_for_plane(dev, plane);
  3086. hdisplay = crtc->mode.hdisplay;
  3087. htotal = crtc->mode.htotal;
  3088. clock = crtc->mode.clock;
  3089. pixel_size = crtc->fb->bits_per_pixel / 8;
  3090. line_time_us = (htotal * 1000) / clock;
  3091. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3092. line_size = hdisplay * pixel_size;
  3093. /* Use the minimum of the small and large buffer method for primary */
  3094. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3095. large = line_count * line_size;
  3096. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3097. *display_wm = entries + display->guard_size;
  3098. /* calculate the self-refresh watermark for display cursor */
  3099. entries = line_count * pixel_size * 64;
  3100. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3101. *cursor_wm = entries + cursor->guard_size;
  3102. return g4x_check_srwm(dev,
  3103. *display_wm, *cursor_wm,
  3104. display, cursor);
  3105. }
  3106. #define single_plane_enabled(mask) is_power_of_2(mask)
  3107. static void g4x_update_wm(struct drm_device *dev)
  3108. {
  3109. static const int sr_latency_ns = 12000;
  3110. struct drm_i915_private *dev_priv = dev->dev_private;
  3111. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3112. int plane_sr, cursor_sr;
  3113. unsigned int enabled = 0;
  3114. if (g4x_compute_wm0(dev, 0,
  3115. &g4x_wm_info, latency_ns,
  3116. &g4x_cursor_wm_info, latency_ns,
  3117. &planea_wm, &cursora_wm))
  3118. enabled |= 1;
  3119. if (g4x_compute_wm0(dev, 1,
  3120. &g4x_wm_info, latency_ns,
  3121. &g4x_cursor_wm_info, latency_ns,
  3122. &planeb_wm, &cursorb_wm))
  3123. enabled |= 2;
  3124. plane_sr = cursor_sr = 0;
  3125. if (single_plane_enabled(enabled) &&
  3126. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3127. sr_latency_ns,
  3128. &g4x_wm_info,
  3129. &g4x_cursor_wm_info,
  3130. &plane_sr, &cursor_sr))
  3131. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3132. else
  3133. I915_WRITE(FW_BLC_SELF,
  3134. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3135. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3136. planea_wm, cursora_wm,
  3137. planeb_wm, cursorb_wm,
  3138. plane_sr, cursor_sr);
  3139. I915_WRITE(DSPFW1,
  3140. (plane_sr << DSPFW_SR_SHIFT) |
  3141. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3142. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3143. planea_wm);
  3144. I915_WRITE(DSPFW2,
  3145. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3146. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3147. /* HPLL off in SR has some issues on G4x... disable it */
  3148. I915_WRITE(DSPFW3,
  3149. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3150. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3151. }
  3152. static void i965_update_wm(struct drm_device *dev)
  3153. {
  3154. struct drm_i915_private *dev_priv = dev->dev_private;
  3155. struct drm_crtc *crtc;
  3156. int srwm = 1;
  3157. int cursor_sr = 16;
  3158. /* Calc sr entries for one plane configs */
  3159. crtc = single_enabled_crtc(dev);
  3160. if (crtc) {
  3161. /* self-refresh has much higher latency */
  3162. static const int sr_latency_ns = 12000;
  3163. int clock = crtc->mode.clock;
  3164. int htotal = crtc->mode.htotal;
  3165. int hdisplay = crtc->mode.hdisplay;
  3166. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3167. unsigned long line_time_us;
  3168. int entries;
  3169. line_time_us = ((htotal * 1000) / clock);
  3170. /* Use ns/us then divide to preserve precision */
  3171. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3172. pixel_size * hdisplay;
  3173. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3174. srwm = I965_FIFO_SIZE - entries;
  3175. if (srwm < 0)
  3176. srwm = 1;
  3177. srwm &= 0x1ff;
  3178. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3179. entries, srwm);
  3180. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3181. pixel_size * 64;
  3182. entries = DIV_ROUND_UP(entries,
  3183. i965_cursor_wm_info.cacheline_size);
  3184. cursor_sr = i965_cursor_wm_info.fifo_size -
  3185. (entries + i965_cursor_wm_info.guard_size);
  3186. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3187. cursor_sr = i965_cursor_wm_info.max_wm;
  3188. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3189. "cursor %d\n", srwm, cursor_sr);
  3190. if (IS_CRESTLINE(dev))
  3191. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3192. } else {
  3193. /* Turn off self refresh if both pipes are enabled */
  3194. if (IS_CRESTLINE(dev))
  3195. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3196. & ~FW_BLC_SELF_EN);
  3197. }
  3198. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3199. srwm);
  3200. /* 965 has limitations... */
  3201. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3202. (8 << 16) | (8 << 8) | (8 << 0));
  3203. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3204. /* update cursor SR watermark */
  3205. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3206. }
  3207. static void i9xx_update_wm(struct drm_device *dev)
  3208. {
  3209. struct drm_i915_private *dev_priv = dev->dev_private;
  3210. const struct intel_watermark_params *wm_info;
  3211. uint32_t fwater_lo;
  3212. uint32_t fwater_hi;
  3213. int cwm, srwm = 1;
  3214. int fifo_size;
  3215. int planea_wm, planeb_wm;
  3216. struct drm_crtc *crtc, *enabled = NULL;
  3217. if (IS_I945GM(dev))
  3218. wm_info = &i945_wm_info;
  3219. else if (!IS_GEN2(dev))
  3220. wm_info = &i915_wm_info;
  3221. else
  3222. wm_info = &i855_wm_info;
  3223. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3224. crtc = intel_get_crtc_for_plane(dev, 0);
  3225. if (crtc->enabled && crtc->fb) {
  3226. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3227. wm_info, fifo_size,
  3228. crtc->fb->bits_per_pixel / 8,
  3229. latency_ns);
  3230. enabled = crtc;
  3231. } else
  3232. planea_wm = fifo_size - wm_info->guard_size;
  3233. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3234. crtc = intel_get_crtc_for_plane(dev, 1);
  3235. if (crtc->enabled && crtc->fb) {
  3236. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3237. wm_info, fifo_size,
  3238. crtc->fb->bits_per_pixel / 8,
  3239. latency_ns);
  3240. if (enabled == NULL)
  3241. enabled = crtc;
  3242. else
  3243. enabled = NULL;
  3244. } else
  3245. planeb_wm = fifo_size - wm_info->guard_size;
  3246. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3247. /*
  3248. * Overlay gets an aggressive default since video jitter is bad.
  3249. */
  3250. cwm = 2;
  3251. /* Play safe and disable self-refresh before adjusting watermarks. */
  3252. if (IS_I945G(dev) || IS_I945GM(dev))
  3253. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3254. else if (IS_I915GM(dev))
  3255. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3256. /* Calc sr entries for one plane configs */
  3257. if (HAS_FW_BLC(dev) && enabled) {
  3258. /* self-refresh has much higher latency */
  3259. static const int sr_latency_ns = 6000;
  3260. int clock = enabled->mode.clock;
  3261. int htotal = enabled->mode.htotal;
  3262. int hdisplay = enabled->mode.hdisplay;
  3263. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3264. unsigned long line_time_us;
  3265. int entries;
  3266. line_time_us = (htotal * 1000) / clock;
  3267. /* Use ns/us then divide to preserve precision */
  3268. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3269. pixel_size * hdisplay;
  3270. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3271. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3272. srwm = wm_info->fifo_size - entries;
  3273. if (srwm < 0)
  3274. srwm = 1;
  3275. if (IS_I945G(dev) || IS_I945GM(dev))
  3276. I915_WRITE(FW_BLC_SELF,
  3277. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3278. else if (IS_I915GM(dev))
  3279. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3280. }
  3281. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3282. planea_wm, planeb_wm, cwm, srwm);
  3283. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3284. fwater_hi = (cwm & 0x1f);
  3285. /* Set request length to 8 cachelines per fetch */
  3286. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3287. fwater_hi = fwater_hi | (1 << 8);
  3288. I915_WRITE(FW_BLC, fwater_lo);
  3289. I915_WRITE(FW_BLC2, fwater_hi);
  3290. if (HAS_FW_BLC(dev)) {
  3291. if (enabled) {
  3292. if (IS_I945G(dev) || IS_I945GM(dev))
  3293. I915_WRITE(FW_BLC_SELF,
  3294. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3295. else if (IS_I915GM(dev))
  3296. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3297. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3298. } else
  3299. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3300. }
  3301. }
  3302. static void i830_update_wm(struct drm_device *dev)
  3303. {
  3304. struct drm_i915_private *dev_priv = dev->dev_private;
  3305. struct drm_crtc *crtc;
  3306. uint32_t fwater_lo;
  3307. int planea_wm;
  3308. crtc = single_enabled_crtc(dev);
  3309. if (crtc == NULL)
  3310. return;
  3311. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3312. dev_priv->display.get_fifo_size(dev, 0),
  3313. crtc->fb->bits_per_pixel / 8,
  3314. latency_ns);
  3315. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3316. fwater_lo |= (3<<8) | planea_wm;
  3317. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3318. I915_WRITE(FW_BLC, fwater_lo);
  3319. }
  3320. #define ILK_LP0_PLANE_LATENCY 700
  3321. #define ILK_LP0_CURSOR_LATENCY 1300
  3322. static bool ironlake_compute_wm0(struct drm_device *dev,
  3323. int pipe,
  3324. const struct intel_watermark_params *display,
  3325. int display_latency_ns,
  3326. const struct intel_watermark_params *cursor,
  3327. int cursor_latency_ns,
  3328. int *plane_wm,
  3329. int *cursor_wm)
  3330. {
  3331. struct drm_crtc *crtc;
  3332. int htotal, hdisplay, clock, pixel_size;
  3333. int line_time_us, line_count;
  3334. int entries, tlb_miss;
  3335. crtc = intel_get_crtc_for_pipe(dev, pipe);
  3336. if (crtc->fb == NULL || !crtc->enabled)
  3337. return false;
  3338. htotal = crtc->mode.htotal;
  3339. hdisplay = crtc->mode.hdisplay;
  3340. clock = crtc->mode.clock;
  3341. pixel_size = crtc->fb->bits_per_pixel / 8;
  3342. /* Use the small buffer method to calculate plane watermark */
  3343. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3344. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3345. if (tlb_miss > 0)
  3346. entries += tlb_miss;
  3347. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3348. *plane_wm = entries + display->guard_size;
  3349. if (*plane_wm > (int)display->max_wm)
  3350. *plane_wm = display->max_wm;
  3351. /* Use the large buffer method to calculate cursor watermark */
  3352. line_time_us = ((htotal * 1000) / clock);
  3353. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3354. entries = line_count * 64 * pixel_size;
  3355. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3356. if (tlb_miss > 0)
  3357. entries += tlb_miss;
  3358. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3359. *cursor_wm = entries + cursor->guard_size;
  3360. if (*cursor_wm > (int)cursor->max_wm)
  3361. *cursor_wm = (int)cursor->max_wm;
  3362. return true;
  3363. }
  3364. /*
  3365. * Check the wm result.
  3366. *
  3367. * If any calculated watermark values is larger than the maximum value that
  3368. * can be programmed into the associated watermark register, that watermark
  3369. * must be disabled.
  3370. */
  3371. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3372. int fbc_wm, int display_wm, int cursor_wm,
  3373. const struct intel_watermark_params *display,
  3374. const struct intel_watermark_params *cursor)
  3375. {
  3376. struct drm_i915_private *dev_priv = dev->dev_private;
  3377. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3378. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3379. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3380. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3381. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3382. /* fbc has it's own way to disable FBC WM */
  3383. I915_WRITE(DISP_ARB_CTL,
  3384. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3385. return false;
  3386. }
  3387. if (display_wm > display->max_wm) {
  3388. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3389. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3390. return false;
  3391. }
  3392. if (cursor_wm > cursor->max_wm) {
  3393. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3394. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3395. return false;
  3396. }
  3397. if (!(fbc_wm || display_wm || cursor_wm)) {
  3398. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3399. return false;
  3400. }
  3401. return true;
  3402. }
  3403. /*
  3404. * Compute watermark values of WM[1-3],
  3405. */
  3406. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3407. int latency_ns,
  3408. const struct intel_watermark_params *display,
  3409. const struct intel_watermark_params *cursor,
  3410. int *fbc_wm, int *display_wm, int *cursor_wm)
  3411. {
  3412. struct drm_crtc *crtc;
  3413. unsigned long line_time_us;
  3414. int hdisplay, htotal, pixel_size, clock;
  3415. int line_count, line_size;
  3416. int small, large;
  3417. int entries;
  3418. if (!latency_ns) {
  3419. *fbc_wm = *display_wm = *cursor_wm = 0;
  3420. return false;
  3421. }
  3422. crtc = intel_get_crtc_for_plane(dev, plane);
  3423. hdisplay = crtc->mode.hdisplay;
  3424. htotal = crtc->mode.htotal;
  3425. clock = crtc->mode.clock;
  3426. pixel_size = crtc->fb->bits_per_pixel / 8;
  3427. line_time_us = (htotal * 1000) / clock;
  3428. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3429. line_size = hdisplay * pixel_size;
  3430. /* Use the minimum of the small and large buffer method for primary */
  3431. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3432. large = line_count * line_size;
  3433. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3434. *display_wm = entries + display->guard_size;
  3435. /*
  3436. * Spec says:
  3437. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3438. */
  3439. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3440. /* calculate the self-refresh watermark for display cursor */
  3441. entries = line_count * pixel_size * 64;
  3442. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3443. *cursor_wm = entries + cursor->guard_size;
  3444. return ironlake_check_srwm(dev, level,
  3445. *fbc_wm, *display_wm, *cursor_wm,
  3446. display, cursor);
  3447. }
  3448. static void ironlake_update_wm(struct drm_device *dev)
  3449. {
  3450. struct drm_i915_private *dev_priv = dev->dev_private;
  3451. int fbc_wm, plane_wm, cursor_wm;
  3452. unsigned int enabled;
  3453. enabled = 0;
  3454. if (ironlake_compute_wm0(dev, 0,
  3455. &ironlake_display_wm_info,
  3456. ILK_LP0_PLANE_LATENCY,
  3457. &ironlake_cursor_wm_info,
  3458. ILK_LP0_CURSOR_LATENCY,
  3459. &plane_wm, &cursor_wm)) {
  3460. I915_WRITE(WM0_PIPEA_ILK,
  3461. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3462. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3463. " plane %d, " "cursor: %d\n",
  3464. plane_wm, cursor_wm);
  3465. enabled |= 1;
  3466. }
  3467. if (ironlake_compute_wm0(dev, 1,
  3468. &ironlake_display_wm_info,
  3469. ILK_LP0_PLANE_LATENCY,
  3470. &ironlake_cursor_wm_info,
  3471. ILK_LP0_CURSOR_LATENCY,
  3472. &plane_wm, &cursor_wm)) {
  3473. I915_WRITE(WM0_PIPEB_ILK,
  3474. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3475. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3476. " plane %d, cursor: %d\n",
  3477. plane_wm, cursor_wm);
  3478. enabled |= 2;
  3479. }
  3480. /*
  3481. * Calculate and update the self-refresh watermark only when one
  3482. * display plane is used.
  3483. */
  3484. I915_WRITE(WM3_LP_ILK, 0);
  3485. I915_WRITE(WM2_LP_ILK, 0);
  3486. I915_WRITE(WM1_LP_ILK, 0);
  3487. if (!single_plane_enabled(enabled))
  3488. return;
  3489. enabled = ffs(enabled) - 1;
  3490. /* WM1 */
  3491. if (!ironlake_compute_srwm(dev, 1, enabled,
  3492. ILK_READ_WM1_LATENCY() * 500,
  3493. &ironlake_display_srwm_info,
  3494. &ironlake_cursor_srwm_info,
  3495. &fbc_wm, &plane_wm, &cursor_wm))
  3496. return;
  3497. I915_WRITE(WM1_LP_ILK,
  3498. WM1_LP_SR_EN |
  3499. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3500. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3501. (plane_wm << WM1_LP_SR_SHIFT) |
  3502. cursor_wm);
  3503. /* WM2 */
  3504. if (!ironlake_compute_srwm(dev, 2, enabled,
  3505. ILK_READ_WM2_LATENCY() * 500,
  3506. &ironlake_display_srwm_info,
  3507. &ironlake_cursor_srwm_info,
  3508. &fbc_wm, &plane_wm, &cursor_wm))
  3509. return;
  3510. I915_WRITE(WM2_LP_ILK,
  3511. WM2_LP_EN |
  3512. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3513. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3514. (plane_wm << WM1_LP_SR_SHIFT) |
  3515. cursor_wm);
  3516. /*
  3517. * WM3 is unsupported on ILK, probably because we don't have latency
  3518. * data for that power state
  3519. */
  3520. }
  3521. static void sandybridge_update_wm(struct drm_device *dev)
  3522. {
  3523. struct drm_i915_private *dev_priv = dev->dev_private;
  3524. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3525. int fbc_wm, plane_wm, cursor_wm;
  3526. unsigned int enabled;
  3527. enabled = 0;
  3528. if (ironlake_compute_wm0(dev, 0,
  3529. &sandybridge_display_wm_info, latency,
  3530. &sandybridge_cursor_wm_info, latency,
  3531. &plane_wm, &cursor_wm)) {
  3532. I915_WRITE(WM0_PIPEA_ILK,
  3533. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3534. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3535. " plane %d, " "cursor: %d\n",
  3536. plane_wm, cursor_wm);
  3537. enabled |= 1;
  3538. }
  3539. if (ironlake_compute_wm0(dev, 1,
  3540. &sandybridge_display_wm_info, latency,
  3541. &sandybridge_cursor_wm_info, latency,
  3542. &plane_wm, &cursor_wm)) {
  3543. I915_WRITE(WM0_PIPEB_ILK,
  3544. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3545. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3546. " plane %d, cursor: %d\n",
  3547. plane_wm, cursor_wm);
  3548. enabled |= 2;
  3549. }
  3550. /*
  3551. * Calculate and update the self-refresh watermark only when one
  3552. * display plane is used.
  3553. *
  3554. * SNB support 3 levels of watermark.
  3555. *
  3556. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  3557. * and disabled in the descending order
  3558. *
  3559. */
  3560. I915_WRITE(WM3_LP_ILK, 0);
  3561. I915_WRITE(WM2_LP_ILK, 0);
  3562. I915_WRITE(WM1_LP_ILK, 0);
  3563. if (!single_plane_enabled(enabled))
  3564. return;
  3565. enabled = ffs(enabled) - 1;
  3566. /* WM1 */
  3567. if (!ironlake_compute_srwm(dev, 1, enabled,
  3568. SNB_READ_WM1_LATENCY() * 500,
  3569. &sandybridge_display_srwm_info,
  3570. &sandybridge_cursor_srwm_info,
  3571. &fbc_wm, &plane_wm, &cursor_wm))
  3572. return;
  3573. I915_WRITE(WM1_LP_ILK,
  3574. WM1_LP_SR_EN |
  3575. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3576. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3577. (plane_wm << WM1_LP_SR_SHIFT) |
  3578. cursor_wm);
  3579. /* WM2 */
  3580. if (!ironlake_compute_srwm(dev, 2, enabled,
  3581. SNB_READ_WM2_LATENCY() * 500,
  3582. &sandybridge_display_srwm_info,
  3583. &sandybridge_cursor_srwm_info,
  3584. &fbc_wm, &plane_wm, &cursor_wm))
  3585. return;
  3586. I915_WRITE(WM2_LP_ILK,
  3587. WM2_LP_EN |
  3588. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3589. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3590. (plane_wm << WM1_LP_SR_SHIFT) |
  3591. cursor_wm);
  3592. /* WM3 */
  3593. if (!ironlake_compute_srwm(dev, 3, enabled,
  3594. SNB_READ_WM3_LATENCY() * 500,
  3595. &sandybridge_display_srwm_info,
  3596. &sandybridge_cursor_srwm_info,
  3597. &fbc_wm, &plane_wm, &cursor_wm))
  3598. return;
  3599. I915_WRITE(WM3_LP_ILK,
  3600. WM3_LP_EN |
  3601. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3602. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3603. (plane_wm << WM1_LP_SR_SHIFT) |
  3604. cursor_wm);
  3605. }
  3606. /**
  3607. * intel_update_watermarks - update FIFO watermark values based on current modes
  3608. *
  3609. * Calculate watermark values for the various WM regs based on current mode
  3610. * and plane configuration.
  3611. *
  3612. * There are several cases to deal with here:
  3613. * - normal (i.e. non-self-refresh)
  3614. * - self-refresh (SR) mode
  3615. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3616. * - lines are small relative to FIFO size (buffer can hold more than 2
  3617. * lines), so need to account for TLB latency
  3618. *
  3619. * The normal calculation is:
  3620. * watermark = dotclock * bytes per pixel * latency
  3621. * where latency is platform & configuration dependent (we assume pessimal
  3622. * values here).
  3623. *
  3624. * The SR calculation is:
  3625. * watermark = (trunc(latency/line time)+1) * surface width *
  3626. * bytes per pixel
  3627. * where
  3628. * line time = htotal / dotclock
  3629. * surface width = hdisplay for normal plane and 64 for cursor
  3630. * and latency is assumed to be high, as above.
  3631. *
  3632. * The final value programmed to the register should always be rounded up,
  3633. * and include an extra 2 entries to account for clock crossings.
  3634. *
  3635. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3636. * to set the non-SR watermarks to 8.
  3637. */
  3638. static void intel_update_watermarks(struct drm_device *dev)
  3639. {
  3640. struct drm_i915_private *dev_priv = dev->dev_private;
  3641. if (dev_priv->display.update_wm)
  3642. dev_priv->display.update_wm(dev);
  3643. }
  3644. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3645. {
  3646. return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
  3647. }
  3648. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3649. struct drm_display_mode *mode,
  3650. struct drm_display_mode *adjusted_mode,
  3651. int x, int y,
  3652. struct drm_framebuffer *old_fb)
  3653. {
  3654. struct drm_device *dev = crtc->dev;
  3655. struct drm_i915_private *dev_priv = dev->dev_private;
  3656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3657. int pipe = intel_crtc->pipe;
  3658. int plane = intel_crtc->plane;
  3659. int refclk, num_connectors = 0;
  3660. intel_clock_t clock, reduced_clock;
  3661. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3662. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  3663. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3664. struct drm_mode_config *mode_config = &dev->mode_config;
  3665. struct intel_encoder *encoder;
  3666. const intel_limit_t *limit;
  3667. int ret;
  3668. u32 temp;
  3669. u32 lvds_sync = 0;
  3670. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  3671. if (encoder->base.crtc != crtc)
  3672. continue;
  3673. switch (encoder->type) {
  3674. case INTEL_OUTPUT_LVDS:
  3675. is_lvds = true;
  3676. break;
  3677. case INTEL_OUTPUT_SDVO:
  3678. case INTEL_OUTPUT_HDMI:
  3679. is_sdvo = true;
  3680. if (encoder->needs_tv_clock)
  3681. is_tv = true;
  3682. break;
  3683. case INTEL_OUTPUT_DVO:
  3684. is_dvo = true;
  3685. break;
  3686. case INTEL_OUTPUT_TVOUT:
  3687. is_tv = true;
  3688. break;
  3689. case INTEL_OUTPUT_ANALOG:
  3690. is_crt = true;
  3691. break;
  3692. case INTEL_OUTPUT_DISPLAYPORT:
  3693. is_dp = true;
  3694. break;
  3695. }
  3696. num_connectors++;
  3697. }
  3698. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3699. refclk = dev_priv->lvds_ssc_freq * 1000;
  3700. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3701. refclk / 1000);
  3702. } else if (!IS_GEN2(dev)) {
  3703. refclk = 96000;
  3704. } else {
  3705. refclk = 48000;
  3706. }
  3707. /*
  3708. * Returns a set of divisors for the desired target clock with the given
  3709. * refclk, or FALSE. The returned values represent the clock equation:
  3710. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3711. */
  3712. limit = intel_limit(crtc, refclk);
  3713. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  3714. if (!ok) {
  3715. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3716. return -EINVAL;
  3717. }
  3718. /* Ensure that the cursor is valid for the new mode before changing... */
  3719. intel_crtc_update_cursor(crtc, true);
  3720. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3721. has_reduced_clock = limit->find_pll(limit, crtc,
  3722. dev_priv->lvds_downclock,
  3723. refclk,
  3724. &reduced_clock);
  3725. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  3726. /*
  3727. * If the different P is found, it means that we can't
  3728. * switch the display clock by using the FP0/FP1.
  3729. * In such case we will disable the LVDS downclock
  3730. * feature.
  3731. */
  3732. DRM_DEBUG_KMS("Different P is found for "
  3733. "LVDS clock/downclock\n");
  3734. has_reduced_clock = 0;
  3735. }
  3736. }
  3737. /* SDVO TV has fixed PLL values depend on its clock range,
  3738. this mirrors vbios setting. */
  3739. if (is_sdvo && is_tv) {
  3740. if (adjusted_mode->clock >= 100000
  3741. && adjusted_mode->clock < 140500) {
  3742. clock.p1 = 2;
  3743. clock.p2 = 10;
  3744. clock.n = 3;
  3745. clock.m1 = 16;
  3746. clock.m2 = 8;
  3747. } else if (adjusted_mode->clock >= 140500
  3748. && adjusted_mode->clock <= 200000) {
  3749. clock.p1 = 1;
  3750. clock.p2 = 10;
  3751. clock.n = 6;
  3752. clock.m1 = 12;
  3753. clock.m2 = 8;
  3754. }
  3755. }
  3756. if (IS_PINEVIEW(dev)) {
  3757. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  3758. if (has_reduced_clock)
  3759. fp2 = (1 << reduced_clock.n) << 16 |
  3760. reduced_clock.m1 << 8 | reduced_clock.m2;
  3761. } else {
  3762. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  3763. if (has_reduced_clock)
  3764. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  3765. reduced_clock.m2;
  3766. }
  3767. dpll = DPLL_VGA_MODE_DIS;
  3768. if (!IS_GEN2(dev)) {
  3769. if (is_lvds)
  3770. dpll |= DPLLB_MODE_LVDS;
  3771. else
  3772. dpll |= DPLLB_MODE_DAC_SERIAL;
  3773. if (is_sdvo) {
  3774. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3775. if (pixel_multiplier > 1) {
  3776. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3777. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3778. }
  3779. dpll |= DPLL_DVO_HIGH_SPEED;
  3780. }
  3781. if (is_dp)
  3782. dpll |= DPLL_DVO_HIGH_SPEED;
  3783. /* compute bitmask from p1 value */
  3784. if (IS_PINEVIEW(dev))
  3785. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3786. else {
  3787. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3788. if (IS_G4X(dev) && has_reduced_clock)
  3789. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3790. }
  3791. switch (clock.p2) {
  3792. case 5:
  3793. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3794. break;
  3795. case 7:
  3796. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3797. break;
  3798. case 10:
  3799. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3800. break;
  3801. case 14:
  3802. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3803. break;
  3804. }
  3805. if (INTEL_INFO(dev)->gen >= 4)
  3806. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3807. } else {
  3808. if (is_lvds) {
  3809. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3810. } else {
  3811. if (clock.p1 == 2)
  3812. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3813. else
  3814. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3815. if (clock.p2 == 4)
  3816. dpll |= PLL_P2_DIVIDE_BY_4;
  3817. }
  3818. }
  3819. if (is_sdvo && is_tv)
  3820. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3821. else if (is_tv)
  3822. /* XXX: just matching BIOS for now */
  3823. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3824. dpll |= 3;
  3825. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3826. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3827. else
  3828. dpll |= PLL_REF_INPUT_DREFCLK;
  3829. /* setup pipeconf */
  3830. pipeconf = I915_READ(PIPECONF(pipe));
  3831. /* Set up the display plane register */
  3832. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3833. /* Ironlake's plane is forced to pipe, bit 24 is to
  3834. enable color space conversion */
  3835. if (pipe == 0)
  3836. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3837. else
  3838. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3839. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3840. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3841. * core speed.
  3842. *
  3843. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3844. * pipe == 0 check?
  3845. */
  3846. if (mode->clock >
  3847. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3848. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3849. else
  3850. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3851. }
  3852. dpll |= DPLL_VCO_ENABLE;
  3853. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3854. drm_mode_debug_printmodeline(mode);
  3855. I915_WRITE(FP0(pipe), fp);
  3856. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3857. POSTING_READ(DPLL(pipe));
  3858. udelay(150);
  3859. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3860. * This is an exception to the general rule that mode_set doesn't turn
  3861. * things on.
  3862. */
  3863. if (is_lvds) {
  3864. temp = I915_READ(LVDS);
  3865. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3866. if (pipe == 1) {
  3867. temp |= LVDS_PIPEB_SELECT;
  3868. } else {
  3869. temp &= ~LVDS_PIPEB_SELECT;
  3870. }
  3871. /* set the corresponsding LVDS_BORDER bit */
  3872. temp |= dev_priv->lvds_border_bits;
  3873. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3874. * set the DPLLs for dual-channel mode or not.
  3875. */
  3876. if (clock.p2 == 7)
  3877. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3878. else
  3879. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3880. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3881. * appropriately here, but we need to look more thoroughly into how
  3882. * panels behave in the two modes.
  3883. */
  3884. /* set the dithering flag on LVDS as needed */
  3885. if (INTEL_INFO(dev)->gen >= 4) {
  3886. if (dev_priv->lvds_dither)
  3887. temp |= LVDS_ENABLE_DITHER;
  3888. else
  3889. temp &= ~LVDS_ENABLE_DITHER;
  3890. }
  3891. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3892. lvds_sync |= LVDS_HSYNC_POLARITY;
  3893. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3894. lvds_sync |= LVDS_VSYNC_POLARITY;
  3895. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  3896. != lvds_sync) {
  3897. char flags[2] = "-+";
  3898. DRM_INFO("Changing LVDS panel from "
  3899. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  3900. flags[!(temp & LVDS_HSYNC_POLARITY)],
  3901. flags[!(temp & LVDS_VSYNC_POLARITY)],
  3902. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  3903. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  3904. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3905. temp |= lvds_sync;
  3906. }
  3907. I915_WRITE(LVDS, temp);
  3908. }
  3909. if (is_dp) {
  3910. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3911. }
  3912. I915_WRITE(DPLL(pipe), dpll);
  3913. /* Wait for the clocks to stabilize. */
  3914. POSTING_READ(DPLL(pipe));
  3915. udelay(150);
  3916. if (INTEL_INFO(dev)->gen >= 4) {
  3917. temp = 0;
  3918. if (is_sdvo) {
  3919. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3920. if (temp > 1)
  3921. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3922. else
  3923. temp = 0;
  3924. }
  3925. I915_WRITE(DPLL_MD(pipe), temp);
  3926. } else {
  3927. /* The pixel multiplier can only be updated once the
  3928. * DPLL is enabled and the clocks are stable.
  3929. *
  3930. * So write it again.
  3931. */
  3932. I915_WRITE(DPLL(pipe), dpll);
  3933. }
  3934. intel_crtc->lowfreq_avail = false;
  3935. if (is_lvds && has_reduced_clock && i915_powersave) {
  3936. I915_WRITE(FP1(pipe), fp2);
  3937. intel_crtc->lowfreq_avail = true;
  3938. if (HAS_PIPE_CXSR(dev)) {
  3939. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3940. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3941. }
  3942. } else {
  3943. I915_WRITE(FP1(pipe), fp);
  3944. if (HAS_PIPE_CXSR(dev)) {
  3945. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3946. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3947. }
  3948. }
  3949. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3950. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3951. /* the chip adds 2 halflines automatically */
  3952. adjusted_mode->crtc_vdisplay -= 1;
  3953. adjusted_mode->crtc_vtotal -= 1;
  3954. adjusted_mode->crtc_vblank_start -= 1;
  3955. adjusted_mode->crtc_vblank_end -= 1;
  3956. adjusted_mode->crtc_vsync_end -= 1;
  3957. adjusted_mode->crtc_vsync_start -= 1;
  3958. } else
  3959. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  3960. I915_WRITE(HTOTAL(pipe),
  3961. (adjusted_mode->crtc_hdisplay - 1) |
  3962. ((adjusted_mode->crtc_htotal - 1) << 16));
  3963. I915_WRITE(HBLANK(pipe),
  3964. (adjusted_mode->crtc_hblank_start - 1) |
  3965. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3966. I915_WRITE(HSYNC(pipe),
  3967. (adjusted_mode->crtc_hsync_start - 1) |
  3968. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3969. I915_WRITE(VTOTAL(pipe),
  3970. (adjusted_mode->crtc_vdisplay - 1) |
  3971. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3972. I915_WRITE(VBLANK(pipe),
  3973. (adjusted_mode->crtc_vblank_start - 1) |
  3974. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3975. I915_WRITE(VSYNC(pipe),
  3976. (adjusted_mode->crtc_vsync_start - 1) |
  3977. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3978. /* pipesrc and dspsize control the size that is scaled from,
  3979. * which should always be the user's requested size.
  3980. */
  3981. I915_WRITE(DSPSIZE(plane),
  3982. ((mode->vdisplay - 1) << 16) |
  3983. (mode->hdisplay - 1));
  3984. I915_WRITE(DSPPOS(plane), 0);
  3985. I915_WRITE(PIPESRC(pipe),
  3986. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3987. I915_WRITE(PIPECONF(pipe), pipeconf);
  3988. POSTING_READ(PIPECONF(pipe));
  3989. intel_enable_pipe(dev_priv, pipe, false);
  3990. intel_wait_for_vblank(dev, pipe);
  3991. I915_WRITE(DSPCNTR(plane), dspcntr);
  3992. POSTING_READ(DSPCNTR(plane));
  3993. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3994. intel_update_watermarks(dev);
  3995. return ret;
  3996. }
  3997. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  3998. struct drm_display_mode *mode,
  3999. struct drm_display_mode *adjusted_mode,
  4000. int x, int y,
  4001. struct drm_framebuffer *old_fb)
  4002. {
  4003. struct drm_device *dev = crtc->dev;
  4004. struct drm_i915_private *dev_priv = dev->dev_private;
  4005. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4006. int pipe = intel_crtc->pipe;
  4007. int plane = intel_crtc->plane;
  4008. int refclk, num_connectors = 0;
  4009. intel_clock_t clock, reduced_clock;
  4010. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4011. bool ok, has_reduced_clock = false, is_sdvo = false;
  4012. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4013. struct intel_encoder *has_edp_encoder = NULL;
  4014. struct drm_mode_config *mode_config = &dev->mode_config;
  4015. struct intel_encoder *encoder;
  4016. const intel_limit_t *limit;
  4017. int ret;
  4018. struct fdi_m_n m_n = {0};
  4019. u32 temp;
  4020. u32 lvds_sync = 0;
  4021. int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
  4022. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4023. if (encoder->base.crtc != crtc)
  4024. continue;
  4025. switch (encoder->type) {
  4026. case INTEL_OUTPUT_LVDS:
  4027. is_lvds = true;
  4028. break;
  4029. case INTEL_OUTPUT_SDVO:
  4030. case INTEL_OUTPUT_HDMI:
  4031. is_sdvo = true;
  4032. if (encoder->needs_tv_clock)
  4033. is_tv = true;
  4034. break;
  4035. case INTEL_OUTPUT_TVOUT:
  4036. is_tv = true;
  4037. break;
  4038. case INTEL_OUTPUT_ANALOG:
  4039. is_crt = true;
  4040. break;
  4041. case INTEL_OUTPUT_DISPLAYPORT:
  4042. is_dp = true;
  4043. break;
  4044. case INTEL_OUTPUT_EDP:
  4045. has_edp_encoder = encoder;
  4046. break;
  4047. }
  4048. num_connectors++;
  4049. }
  4050. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4051. refclk = dev_priv->lvds_ssc_freq * 1000;
  4052. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4053. refclk / 1000);
  4054. } else {
  4055. refclk = 96000;
  4056. if (!has_edp_encoder ||
  4057. intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4058. refclk = 120000; /* 120Mhz refclk */
  4059. }
  4060. /*
  4061. * Returns a set of divisors for the desired target clock with the given
  4062. * refclk, or FALSE. The returned values represent the clock equation:
  4063. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4064. */
  4065. limit = intel_limit(crtc, refclk);
  4066. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  4067. if (!ok) {
  4068. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4069. return -EINVAL;
  4070. }
  4071. /* Ensure that the cursor is valid for the new mode before changing... */
  4072. intel_crtc_update_cursor(crtc, true);
  4073. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4074. has_reduced_clock = limit->find_pll(limit, crtc,
  4075. dev_priv->lvds_downclock,
  4076. refclk,
  4077. &reduced_clock);
  4078. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  4079. /*
  4080. * If the different P is found, it means that we can't
  4081. * switch the display clock by using the FP0/FP1.
  4082. * In such case we will disable the LVDS downclock
  4083. * feature.
  4084. */
  4085. DRM_DEBUG_KMS("Different P is found for "
  4086. "LVDS clock/downclock\n");
  4087. has_reduced_clock = 0;
  4088. }
  4089. }
  4090. /* SDVO TV has fixed PLL values depend on its clock range,
  4091. this mirrors vbios setting. */
  4092. if (is_sdvo && is_tv) {
  4093. if (adjusted_mode->clock >= 100000
  4094. && adjusted_mode->clock < 140500) {
  4095. clock.p1 = 2;
  4096. clock.p2 = 10;
  4097. clock.n = 3;
  4098. clock.m1 = 16;
  4099. clock.m2 = 8;
  4100. } else if (adjusted_mode->clock >= 140500
  4101. && adjusted_mode->clock <= 200000) {
  4102. clock.p1 = 1;
  4103. clock.p2 = 10;
  4104. clock.n = 6;
  4105. clock.m1 = 12;
  4106. clock.m2 = 8;
  4107. }
  4108. }
  4109. /* FDI link */
  4110. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4111. lane = 0;
  4112. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4113. according to current link config */
  4114. if (has_edp_encoder &&
  4115. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4116. target_clock = mode->clock;
  4117. intel_edp_link_config(has_edp_encoder,
  4118. &lane, &link_bw);
  4119. } else {
  4120. /* [e]DP over FDI requires target mode clock
  4121. instead of link clock */
  4122. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4123. target_clock = mode->clock;
  4124. else
  4125. target_clock = adjusted_mode->clock;
  4126. /* FDI is a binary signal running at ~2.7GHz, encoding
  4127. * each output octet as 10 bits. The actual frequency
  4128. * is stored as a divider into a 100MHz clock, and the
  4129. * mode pixel clock is stored in units of 1KHz.
  4130. * Hence the bw of each lane in terms of the mode signal
  4131. * is:
  4132. */
  4133. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4134. }
  4135. /* determine panel color depth */
  4136. temp = I915_READ(PIPECONF(pipe));
  4137. temp &= ~PIPE_BPC_MASK;
  4138. if (is_lvds) {
  4139. /* the BPC will be 6 if it is 18-bit LVDS panel */
  4140. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
  4141. temp |= PIPE_8BPC;
  4142. else
  4143. temp |= PIPE_6BPC;
  4144. } else if (has_edp_encoder) {
  4145. switch (dev_priv->edp.bpp/3) {
  4146. case 8:
  4147. temp |= PIPE_8BPC;
  4148. break;
  4149. case 10:
  4150. temp |= PIPE_10BPC;
  4151. break;
  4152. case 6:
  4153. temp |= PIPE_6BPC;
  4154. break;
  4155. case 12:
  4156. temp |= PIPE_12BPC;
  4157. break;
  4158. }
  4159. } else
  4160. temp |= PIPE_8BPC;
  4161. I915_WRITE(PIPECONF(pipe), temp);
  4162. switch (temp & PIPE_BPC_MASK) {
  4163. case PIPE_8BPC:
  4164. bpp = 24;
  4165. break;
  4166. case PIPE_10BPC:
  4167. bpp = 30;
  4168. break;
  4169. case PIPE_6BPC:
  4170. bpp = 18;
  4171. break;
  4172. case PIPE_12BPC:
  4173. bpp = 36;
  4174. break;
  4175. default:
  4176. DRM_ERROR("unknown pipe bpc value\n");
  4177. bpp = 24;
  4178. }
  4179. if (!lane) {
  4180. /*
  4181. * Account for spread spectrum to avoid
  4182. * oversubscribing the link. Max center spread
  4183. * is 2.5%; use 5% for safety's sake.
  4184. */
  4185. u32 bps = target_clock * bpp * 21 / 20;
  4186. lane = bps / (link_bw * 8) + 1;
  4187. }
  4188. intel_crtc->fdi_lanes = lane;
  4189. if (pixel_multiplier > 1)
  4190. link_bw *= pixel_multiplier;
  4191. ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
  4192. /* Ironlake: try to setup display ref clock before DPLL
  4193. * enabling. This is only under driver's control after
  4194. * PCH B stepping, previous chipset stepping should be
  4195. * ignoring this setting.
  4196. */
  4197. temp = I915_READ(PCH_DREF_CONTROL);
  4198. /* Always enable nonspread source */
  4199. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4200. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4201. temp &= ~DREF_SSC_SOURCE_MASK;
  4202. temp |= DREF_SSC_SOURCE_ENABLE;
  4203. I915_WRITE(PCH_DREF_CONTROL, temp);
  4204. POSTING_READ(PCH_DREF_CONTROL);
  4205. udelay(200);
  4206. if (has_edp_encoder) {
  4207. if (intel_panel_use_ssc(dev_priv)) {
  4208. temp |= DREF_SSC1_ENABLE;
  4209. I915_WRITE(PCH_DREF_CONTROL, temp);
  4210. POSTING_READ(PCH_DREF_CONTROL);
  4211. udelay(200);
  4212. }
  4213. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4214. /* Enable CPU source on CPU attached eDP */
  4215. if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4216. if (intel_panel_use_ssc(dev_priv))
  4217. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4218. else
  4219. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4220. } else {
  4221. /* Enable SSC on PCH eDP if needed */
  4222. if (intel_panel_use_ssc(dev_priv)) {
  4223. DRM_ERROR("enabling SSC on PCH\n");
  4224. temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
  4225. }
  4226. }
  4227. I915_WRITE(PCH_DREF_CONTROL, temp);
  4228. POSTING_READ(PCH_DREF_CONTROL);
  4229. udelay(200);
  4230. }
  4231. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4232. if (has_reduced_clock)
  4233. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4234. reduced_clock.m2;
  4235. /* Enable autotuning of the PLL clock (if permissible) */
  4236. factor = 21;
  4237. if (is_lvds) {
  4238. if ((intel_panel_use_ssc(dev_priv) &&
  4239. dev_priv->lvds_ssc_freq == 100) ||
  4240. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4241. factor = 25;
  4242. } else if (is_sdvo && is_tv)
  4243. factor = 20;
  4244. if (clock.m1 < factor * clock.n)
  4245. fp |= FP_CB_TUNE;
  4246. dpll = 0;
  4247. if (is_lvds)
  4248. dpll |= DPLLB_MODE_LVDS;
  4249. else
  4250. dpll |= DPLLB_MODE_DAC_SERIAL;
  4251. if (is_sdvo) {
  4252. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4253. if (pixel_multiplier > 1) {
  4254. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4255. }
  4256. dpll |= DPLL_DVO_HIGH_SPEED;
  4257. }
  4258. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  4259. dpll |= DPLL_DVO_HIGH_SPEED;
  4260. /* compute bitmask from p1 value */
  4261. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4262. /* also FPA1 */
  4263. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4264. switch (clock.p2) {
  4265. case 5:
  4266. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4267. break;
  4268. case 7:
  4269. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4270. break;
  4271. case 10:
  4272. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4273. break;
  4274. case 14:
  4275. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4276. break;
  4277. }
  4278. if (is_sdvo && is_tv)
  4279. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4280. else if (is_tv)
  4281. /* XXX: just matching BIOS for now */
  4282. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4283. dpll |= 3;
  4284. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4285. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4286. else
  4287. dpll |= PLL_REF_INPUT_DREFCLK;
  4288. /* setup pipeconf */
  4289. pipeconf = I915_READ(PIPECONF(pipe));
  4290. /* Set up the display plane register */
  4291. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4292. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4293. drm_mode_debug_printmodeline(mode);
  4294. /* PCH eDP needs FDI, but CPU eDP does not */
  4295. if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4296. I915_WRITE(PCH_FP0(pipe), fp);
  4297. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4298. POSTING_READ(PCH_DPLL(pipe));
  4299. udelay(150);
  4300. }
  4301. /* enable transcoder DPLL */
  4302. if (HAS_PCH_CPT(dev)) {
  4303. temp = I915_READ(PCH_DPLL_SEL);
  4304. switch (pipe) {
  4305. case 0:
  4306. temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
  4307. break;
  4308. case 1:
  4309. temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
  4310. break;
  4311. case 2:
  4312. /* FIXME: manage transcoder PLLs? */
  4313. temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
  4314. break;
  4315. default:
  4316. BUG();
  4317. }
  4318. I915_WRITE(PCH_DPLL_SEL, temp);
  4319. POSTING_READ(PCH_DPLL_SEL);
  4320. udelay(150);
  4321. }
  4322. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4323. * This is an exception to the general rule that mode_set doesn't turn
  4324. * things on.
  4325. */
  4326. if (is_lvds) {
  4327. temp = I915_READ(PCH_LVDS);
  4328. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4329. if (pipe == 1) {
  4330. if (HAS_PCH_CPT(dev))
  4331. temp |= PORT_TRANS_B_SEL_CPT;
  4332. else
  4333. temp |= LVDS_PIPEB_SELECT;
  4334. } else {
  4335. if (HAS_PCH_CPT(dev))
  4336. temp &= ~PORT_TRANS_SEL_MASK;
  4337. else
  4338. temp &= ~LVDS_PIPEB_SELECT;
  4339. }
  4340. /* set the corresponsding LVDS_BORDER bit */
  4341. temp |= dev_priv->lvds_border_bits;
  4342. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4343. * set the DPLLs for dual-channel mode or not.
  4344. */
  4345. if (clock.p2 == 7)
  4346. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4347. else
  4348. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4349. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4350. * appropriately here, but we need to look more thoroughly into how
  4351. * panels behave in the two modes.
  4352. */
  4353. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4354. lvds_sync |= LVDS_HSYNC_POLARITY;
  4355. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4356. lvds_sync |= LVDS_VSYNC_POLARITY;
  4357. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4358. != lvds_sync) {
  4359. char flags[2] = "-+";
  4360. DRM_INFO("Changing LVDS panel from "
  4361. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4362. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4363. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4364. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4365. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4366. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4367. temp |= lvds_sync;
  4368. }
  4369. I915_WRITE(PCH_LVDS, temp);
  4370. }
  4371. /* set the dithering flag and clear for anything other than a panel. */
  4372. pipeconf &= ~PIPECONF_DITHER_EN;
  4373. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  4374. if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
  4375. pipeconf |= PIPECONF_DITHER_EN;
  4376. pipeconf |= PIPECONF_DITHER_TYPE_ST1;
  4377. }
  4378. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4379. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4380. } else {
  4381. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4382. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4383. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4384. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4385. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4386. }
  4387. if (!has_edp_encoder ||
  4388. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4389. I915_WRITE(PCH_DPLL(pipe), dpll);
  4390. /* Wait for the clocks to stabilize. */
  4391. POSTING_READ(PCH_DPLL(pipe));
  4392. udelay(150);
  4393. /* The pixel multiplier can only be updated once the
  4394. * DPLL is enabled and the clocks are stable.
  4395. *
  4396. * So write it again.
  4397. */
  4398. I915_WRITE(PCH_DPLL(pipe), dpll);
  4399. }
  4400. intel_crtc->lowfreq_avail = false;
  4401. if (is_lvds && has_reduced_clock && i915_powersave) {
  4402. I915_WRITE(PCH_FP1(pipe), fp2);
  4403. intel_crtc->lowfreq_avail = true;
  4404. if (HAS_PIPE_CXSR(dev)) {
  4405. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4406. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4407. }
  4408. } else {
  4409. I915_WRITE(PCH_FP1(pipe), fp);
  4410. if (HAS_PIPE_CXSR(dev)) {
  4411. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4412. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4413. }
  4414. }
  4415. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4416. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4417. /* the chip adds 2 halflines automatically */
  4418. adjusted_mode->crtc_vdisplay -= 1;
  4419. adjusted_mode->crtc_vtotal -= 1;
  4420. adjusted_mode->crtc_vblank_start -= 1;
  4421. adjusted_mode->crtc_vblank_end -= 1;
  4422. adjusted_mode->crtc_vsync_end -= 1;
  4423. adjusted_mode->crtc_vsync_start -= 1;
  4424. } else
  4425. pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
  4426. I915_WRITE(HTOTAL(pipe),
  4427. (adjusted_mode->crtc_hdisplay - 1) |
  4428. ((adjusted_mode->crtc_htotal - 1) << 16));
  4429. I915_WRITE(HBLANK(pipe),
  4430. (adjusted_mode->crtc_hblank_start - 1) |
  4431. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4432. I915_WRITE(HSYNC(pipe),
  4433. (adjusted_mode->crtc_hsync_start - 1) |
  4434. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4435. I915_WRITE(VTOTAL(pipe),
  4436. (adjusted_mode->crtc_vdisplay - 1) |
  4437. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4438. I915_WRITE(VBLANK(pipe),
  4439. (adjusted_mode->crtc_vblank_start - 1) |
  4440. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4441. I915_WRITE(VSYNC(pipe),
  4442. (adjusted_mode->crtc_vsync_start - 1) |
  4443. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4444. /* pipesrc controls the size that is scaled from, which should
  4445. * always be the user's requested size.
  4446. */
  4447. I915_WRITE(PIPESRC(pipe),
  4448. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4449. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4450. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4451. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4452. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4453. if (has_edp_encoder &&
  4454. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4455. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4456. }
  4457. I915_WRITE(PIPECONF(pipe), pipeconf);
  4458. POSTING_READ(PIPECONF(pipe));
  4459. intel_wait_for_vblank(dev, pipe);
  4460. if (IS_GEN5(dev)) {
  4461. /* enable address swizzle for tiling buffer */
  4462. temp = I915_READ(DISP_ARB_CTL);
  4463. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  4464. }
  4465. I915_WRITE(DSPCNTR(plane), dspcntr);
  4466. POSTING_READ(DSPCNTR(plane));
  4467. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4468. intel_update_watermarks(dev);
  4469. return ret;
  4470. }
  4471. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4472. struct drm_display_mode *mode,
  4473. struct drm_display_mode *adjusted_mode,
  4474. int x, int y,
  4475. struct drm_framebuffer *old_fb)
  4476. {
  4477. struct drm_device *dev = crtc->dev;
  4478. struct drm_i915_private *dev_priv = dev->dev_private;
  4479. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4480. int pipe = intel_crtc->pipe;
  4481. int ret;
  4482. drm_vblank_pre_modeset(dev, pipe);
  4483. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4484. x, y, old_fb);
  4485. drm_vblank_post_modeset(dev, pipe);
  4486. return ret;
  4487. }
  4488. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4489. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4490. {
  4491. struct drm_device *dev = crtc->dev;
  4492. struct drm_i915_private *dev_priv = dev->dev_private;
  4493. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4494. int palreg = PALETTE(intel_crtc->pipe);
  4495. int i;
  4496. /* The clocks have to be on to load the palette. */
  4497. if (!crtc->enabled)
  4498. return;
  4499. /* use legacy palette for Ironlake */
  4500. if (HAS_PCH_SPLIT(dev))
  4501. palreg = LGC_PALETTE(intel_crtc->pipe);
  4502. for (i = 0; i < 256; i++) {
  4503. I915_WRITE(palreg + 4 * i,
  4504. (intel_crtc->lut_r[i] << 16) |
  4505. (intel_crtc->lut_g[i] << 8) |
  4506. intel_crtc->lut_b[i]);
  4507. }
  4508. }
  4509. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4510. {
  4511. struct drm_device *dev = crtc->dev;
  4512. struct drm_i915_private *dev_priv = dev->dev_private;
  4513. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4514. bool visible = base != 0;
  4515. u32 cntl;
  4516. if (intel_crtc->cursor_visible == visible)
  4517. return;
  4518. cntl = I915_READ(_CURACNTR);
  4519. if (visible) {
  4520. /* On these chipsets we can only modify the base whilst
  4521. * the cursor is disabled.
  4522. */
  4523. I915_WRITE(_CURABASE, base);
  4524. cntl &= ~(CURSOR_FORMAT_MASK);
  4525. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4526. cntl |= CURSOR_ENABLE |
  4527. CURSOR_GAMMA_ENABLE |
  4528. CURSOR_FORMAT_ARGB;
  4529. } else
  4530. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4531. I915_WRITE(_CURACNTR, cntl);
  4532. intel_crtc->cursor_visible = visible;
  4533. }
  4534. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4535. {
  4536. struct drm_device *dev = crtc->dev;
  4537. struct drm_i915_private *dev_priv = dev->dev_private;
  4538. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4539. int pipe = intel_crtc->pipe;
  4540. bool visible = base != 0;
  4541. if (intel_crtc->cursor_visible != visible) {
  4542. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4543. if (base) {
  4544. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4545. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4546. cntl |= pipe << 28; /* Connect to correct pipe */
  4547. } else {
  4548. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4549. cntl |= CURSOR_MODE_DISABLE;
  4550. }
  4551. I915_WRITE(CURCNTR(pipe), cntl);
  4552. intel_crtc->cursor_visible = visible;
  4553. }
  4554. /* and commit changes on next vblank */
  4555. I915_WRITE(CURBASE(pipe), base);
  4556. }
  4557. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4558. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4559. bool on)
  4560. {
  4561. struct drm_device *dev = crtc->dev;
  4562. struct drm_i915_private *dev_priv = dev->dev_private;
  4563. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4564. int pipe = intel_crtc->pipe;
  4565. int x = intel_crtc->cursor_x;
  4566. int y = intel_crtc->cursor_y;
  4567. u32 base, pos;
  4568. bool visible;
  4569. pos = 0;
  4570. if (on && crtc->enabled && crtc->fb) {
  4571. base = intel_crtc->cursor_addr;
  4572. if (x > (int) crtc->fb->width)
  4573. base = 0;
  4574. if (y > (int) crtc->fb->height)
  4575. base = 0;
  4576. } else
  4577. base = 0;
  4578. if (x < 0) {
  4579. if (x + intel_crtc->cursor_width < 0)
  4580. base = 0;
  4581. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4582. x = -x;
  4583. }
  4584. pos |= x << CURSOR_X_SHIFT;
  4585. if (y < 0) {
  4586. if (y + intel_crtc->cursor_height < 0)
  4587. base = 0;
  4588. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4589. y = -y;
  4590. }
  4591. pos |= y << CURSOR_Y_SHIFT;
  4592. visible = base != 0;
  4593. if (!visible && !intel_crtc->cursor_visible)
  4594. return;
  4595. I915_WRITE(CURPOS(pipe), pos);
  4596. if (IS_845G(dev) || IS_I865G(dev))
  4597. i845_update_cursor(crtc, base);
  4598. else
  4599. i9xx_update_cursor(crtc, base);
  4600. if (visible)
  4601. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  4602. }
  4603. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  4604. struct drm_file *file,
  4605. uint32_t handle,
  4606. uint32_t width, uint32_t height)
  4607. {
  4608. struct drm_device *dev = crtc->dev;
  4609. struct drm_i915_private *dev_priv = dev->dev_private;
  4610. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4611. struct drm_i915_gem_object *obj;
  4612. uint32_t addr;
  4613. int ret;
  4614. DRM_DEBUG_KMS("\n");
  4615. /* if we want to turn off the cursor ignore width and height */
  4616. if (!handle) {
  4617. DRM_DEBUG_KMS("cursor off\n");
  4618. addr = 0;
  4619. obj = NULL;
  4620. mutex_lock(&dev->struct_mutex);
  4621. goto finish;
  4622. }
  4623. /* Currently we only support 64x64 cursors */
  4624. if (width != 64 || height != 64) {
  4625. DRM_ERROR("we currently only support 64x64 cursors\n");
  4626. return -EINVAL;
  4627. }
  4628. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  4629. if (&obj->base == NULL)
  4630. return -ENOENT;
  4631. if (obj->base.size < width * height * 4) {
  4632. DRM_ERROR("buffer is to small\n");
  4633. ret = -ENOMEM;
  4634. goto fail;
  4635. }
  4636. /* we only need to pin inside GTT if cursor is non-phy */
  4637. mutex_lock(&dev->struct_mutex);
  4638. if (!dev_priv->info->cursor_needs_physical) {
  4639. if (obj->tiling_mode) {
  4640. DRM_ERROR("cursor cannot be tiled\n");
  4641. ret = -EINVAL;
  4642. goto fail_locked;
  4643. }
  4644. ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
  4645. if (ret) {
  4646. DRM_ERROR("failed to pin cursor bo\n");
  4647. goto fail_locked;
  4648. }
  4649. ret = i915_gem_object_set_to_gtt_domain(obj, 0);
  4650. if (ret) {
  4651. DRM_ERROR("failed to move cursor bo into the GTT\n");
  4652. goto fail_unpin;
  4653. }
  4654. ret = i915_gem_object_put_fence(obj);
  4655. if (ret) {
  4656. DRM_ERROR("failed to move cursor bo into the GTT\n");
  4657. goto fail_unpin;
  4658. }
  4659. addr = obj->gtt_offset;
  4660. } else {
  4661. int align = IS_I830(dev) ? 16 * 1024 : 256;
  4662. ret = i915_gem_attach_phys_object(dev, obj,
  4663. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  4664. align);
  4665. if (ret) {
  4666. DRM_ERROR("failed to attach phys object\n");
  4667. goto fail_locked;
  4668. }
  4669. addr = obj->phys_obj->handle->busaddr;
  4670. }
  4671. if (IS_GEN2(dev))
  4672. I915_WRITE(CURSIZE, (height << 12) | width);
  4673. finish:
  4674. if (intel_crtc->cursor_bo) {
  4675. if (dev_priv->info->cursor_needs_physical) {
  4676. if (intel_crtc->cursor_bo != obj)
  4677. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  4678. } else
  4679. i915_gem_object_unpin(intel_crtc->cursor_bo);
  4680. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  4681. }
  4682. mutex_unlock(&dev->struct_mutex);
  4683. intel_crtc->cursor_addr = addr;
  4684. intel_crtc->cursor_bo = obj;
  4685. intel_crtc->cursor_width = width;
  4686. intel_crtc->cursor_height = height;
  4687. intel_crtc_update_cursor(crtc, true);
  4688. return 0;
  4689. fail_unpin:
  4690. i915_gem_object_unpin(obj);
  4691. fail_locked:
  4692. mutex_unlock(&dev->struct_mutex);
  4693. fail:
  4694. drm_gem_object_unreference_unlocked(&obj->base);
  4695. return ret;
  4696. }
  4697. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  4698. {
  4699. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4700. intel_crtc->cursor_x = x;
  4701. intel_crtc->cursor_y = y;
  4702. intel_crtc_update_cursor(crtc, true);
  4703. return 0;
  4704. }
  4705. /** Sets the color ramps on behalf of RandR */
  4706. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  4707. u16 blue, int regno)
  4708. {
  4709. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4710. intel_crtc->lut_r[regno] = red >> 8;
  4711. intel_crtc->lut_g[regno] = green >> 8;
  4712. intel_crtc->lut_b[regno] = blue >> 8;
  4713. }
  4714. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  4715. u16 *blue, int regno)
  4716. {
  4717. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4718. *red = intel_crtc->lut_r[regno] << 8;
  4719. *green = intel_crtc->lut_g[regno] << 8;
  4720. *blue = intel_crtc->lut_b[regno] << 8;
  4721. }
  4722. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  4723. u16 *blue, uint32_t start, uint32_t size)
  4724. {
  4725. int end = (start + size > 256) ? 256 : start + size, i;
  4726. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4727. for (i = start; i < end; i++) {
  4728. intel_crtc->lut_r[i] = red[i] >> 8;
  4729. intel_crtc->lut_g[i] = green[i] >> 8;
  4730. intel_crtc->lut_b[i] = blue[i] >> 8;
  4731. }
  4732. intel_crtc_load_lut(crtc);
  4733. }
  4734. /**
  4735. * Get a pipe with a simple mode set on it for doing load-based monitor
  4736. * detection.
  4737. *
  4738. * It will be up to the load-detect code to adjust the pipe as appropriate for
  4739. * its requirements. The pipe will be connected to no other encoders.
  4740. *
  4741. * Currently this code will only succeed if there is a pipe with no encoders
  4742. * configured for it. In the future, it could choose to temporarily disable
  4743. * some outputs to free up a pipe for its use.
  4744. *
  4745. * \return crtc, or NULL if no pipes are available.
  4746. */
  4747. /* VESA 640x480x72Hz mode to set on the pipe */
  4748. static struct drm_display_mode load_detect_mode = {
  4749. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  4750. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  4751. };
  4752. static struct drm_framebuffer *
  4753. intel_framebuffer_create(struct drm_device *dev,
  4754. struct drm_mode_fb_cmd *mode_cmd,
  4755. struct drm_i915_gem_object *obj)
  4756. {
  4757. struct intel_framebuffer *intel_fb;
  4758. int ret;
  4759. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4760. if (!intel_fb) {
  4761. drm_gem_object_unreference_unlocked(&obj->base);
  4762. return ERR_PTR(-ENOMEM);
  4763. }
  4764. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  4765. if (ret) {
  4766. drm_gem_object_unreference_unlocked(&obj->base);
  4767. kfree(intel_fb);
  4768. return ERR_PTR(ret);
  4769. }
  4770. return &intel_fb->base;
  4771. }
  4772. static u32
  4773. intel_framebuffer_pitch_for_width(int width, int bpp)
  4774. {
  4775. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  4776. return ALIGN(pitch, 64);
  4777. }
  4778. static u32
  4779. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  4780. {
  4781. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  4782. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  4783. }
  4784. static struct drm_framebuffer *
  4785. intel_framebuffer_create_for_mode(struct drm_device *dev,
  4786. struct drm_display_mode *mode,
  4787. int depth, int bpp)
  4788. {
  4789. struct drm_i915_gem_object *obj;
  4790. struct drm_mode_fb_cmd mode_cmd;
  4791. obj = i915_gem_alloc_object(dev,
  4792. intel_framebuffer_size_for_mode(mode, bpp));
  4793. if (obj == NULL)
  4794. return ERR_PTR(-ENOMEM);
  4795. mode_cmd.width = mode->hdisplay;
  4796. mode_cmd.height = mode->vdisplay;
  4797. mode_cmd.depth = depth;
  4798. mode_cmd.bpp = bpp;
  4799. mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
  4800. return intel_framebuffer_create(dev, &mode_cmd, obj);
  4801. }
  4802. static struct drm_framebuffer *
  4803. mode_fits_in_fbdev(struct drm_device *dev,
  4804. struct drm_display_mode *mode)
  4805. {
  4806. struct drm_i915_private *dev_priv = dev->dev_private;
  4807. struct drm_i915_gem_object *obj;
  4808. struct drm_framebuffer *fb;
  4809. if (dev_priv->fbdev == NULL)
  4810. return NULL;
  4811. obj = dev_priv->fbdev->ifb.obj;
  4812. if (obj == NULL)
  4813. return NULL;
  4814. fb = &dev_priv->fbdev->ifb.base;
  4815. if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
  4816. fb->bits_per_pixel))
  4817. return NULL;
  4818. if (obj->base.size < mode->vdisplay * fb->pitch)
  4819. return NULL;
  4820. return fb;
  4821. }
  4822. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  4823. struct drm_connector *connector,
  4824. struct drm_display_mode *mode,
  4825. struct intel_load_detect_pipe *old)
  4826. {
  4827. struct intel_crtc *intel_crtc;
  4828. struct drm_crtc *possible_crtc;
  4829. struct drm_encoder *encoder = &intel_encoder->base;
  4830. struct drm_crtc *crtc = NULL;
  4831. struct drm_device *dev = encoder->dev;
  4832. struct drm_framebuffer *old_fb;
  4833. int i = -1;
  4834. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4835. connector->base.id, drm_get_connector_name(connector),
  4836. encoder->base.id, drm_get_encoder_name(encoder));
  4837. /*
  4838. * Algorithm gets a little messy:
  4839. *
  4840. * - if the connector already has an assigned crtc, use it (but make
  4841. * sure it's on first)
  4842. *
  4843. * - try to find the first unused crtc that can drive this connector,
  4844. * and use that if we find one
  4845. */
  4846. /* See if we already have a CRTC for this connector */
  4847. if (encoder->crtc) {
  4848. crtc = encoder->crtc;
  4849. intel_crtc = to_intel_crtc(crtc);
  4850. old->dpms_mode = intel_crtc->dpms_mode;
  4851. old->load_detect_temp = false;
  4852. /* Make sure the crtc and connector are running */
  4853. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  4854. struct drm_encoder_helper_funcs *encoder_funcs;
  4855. struct drm_crtc_helper_funcs *crtc_funcs;
  4856. crtc_funcs = crtc->helper_private;
  4857. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  4858. encoder_funcs = encoder->helper_private;
  4859. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  4860. }
  4861. return true;
  4862. }
  4863. /* Find an unused one (if possible) */
  4864. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  4865. i++;
  4866. if (!(encoder->possible_crtcs & (1 << i)))
  4867. continue;
  4868. if (!possible_crtc->enabled) {
  4869. crtc = possible_crtc;
  4870. break;
  4871. }
  4872. }
  4873. /*
  4874. * If we didn't find an unused CRTC, don't use any.
  4875. */
  4876. if (!crtc) {
  4877. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  4878. return false;
  4879. }
  4880. encoder->crtc = crtc;
  4881. connector->encoder = encoder;
  4882. intel_crtc = to_intel_crtc(crtc);
  4883. old->dpms_mode = intel_crtc->dpms_mode;
  4884. old->load_detect_temp = true;
  4885. old->release_fb = NULL;
  4886. if (!mode)
  4887. mode = &load_detect_mode;
  4888. old_fb = crtc->fb;
  4889. /* We need a framebuffer large enough to accommodate all accesses
  4890. * that the plane may generate whilst we perform load detection.
  4891. * We can not rely on the fbcon either being present (we get called
  4892. * during its initialisation to detect all boot displays, or it may
  4893. * not even exist) or that it is large enough to satisfy the
  4894. * requested mode.
  4895. */
  4896. crtc->fb = mode_fits_in_fbdev(dev, mode);
  4897. if (crtc->fb == NULL) {
  4898. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  4899. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  4900. old->release_fb = crtc->fb;
  4901. } else
  4902. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  4903. if (IS_ERR(crtc->fb)) {
  4904. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  4905. crtc->fb = old_fb;
  4906. return false;
  4907. }
  4908. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  4909. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  4910. if (old->release_fb)
  4911. old->release_fb->funcs->destroy(old->release_fb);
  4912. crtc->fb = old_fb;
  4913. return false;
  4914. }
  4915. /* let the connector get through one full cycle before testing */
  4916. intel_wait_for_vblank(dev, intel_crtc->pipe);
  4917. return true;
  4918. }
  4919. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  4920. struct drm_connector *connector,
  4921. struct intel_load_detect_pipe *old)
  4922. {
  4923. struct drm_encoder *encoder = &intel_encoder->base;
  4924. struct drm_device *dev = encoder->dev;
  4925. struct drm_crtc *crtc = encoder->crtc;
  4926. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  4927. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  4928. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4929. connector->base.id, drm_get_connector_name(connector),
  4930. encoder->base.id, drm_get_encoder_name(encoder));
  4931. if (old->load_detect_temp) {
  4932. connector->encoder = NULL;
  4933. drm_helper_disable_unused_functions(dev);
  4934. if (old->release_fb)
  4935. old->release_fb->funcs->destroy(old->release_fb);
  4936. return;
  4937. }
  4938. /* Switch crtc and encoder back off if necessary */
  4939. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  4940. encoder_funcs->dpms(encoder, old->dpms_mode);
  4941. crtc_funcs->dpms(crtc, old->dpms_mode);
  4942. }
  4943. }
  4944. /* Returns the clock of the currently programmed mode of the given pipe. */
  4945. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  4946. {
  4947. struct drm_i915_private *dev_priv = dev->dev_private;
  4948. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4949. int pipe = intel_crtc->pipe;
  4950. u32 dpll = I915_READ(DPLL(pipe));
  4951. u32 fp;
  4952. intel_clock_t clock;
  4953. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  4954. fp = I915_READ(FP0(pipe));
  4955. else
  4956. fp = I915_READ(FP1(pipe));
  4957. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  4958. if (IS_PINEVIEW(dev)) {
  4959. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  4960. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  4961. } else {
  4962. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  4963. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  4964. }
  4965. if (!IS_GEN2(dev)) {
  4966. if (IS_PINEVIEW(dev))
  4967. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  4968. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  4969. else
  4970. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  4971. DPLL_FPA01_P1_POST_DIV_SHIFT);
  4972. switch (dpll & DPLL_MODE_MASK) {
  4973. case DPLLB_MODE_DAC_SERIAL:
  4974. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  4975. 5 : 10;
  4976. break;
  4977. case DPLLB_MODE_LVDS:
  4978. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  4979. 7 : 14;
  4980. break;
  4981. default:
  4982. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  4983. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  4984. return 0;
  4985. }
  4986. /* XXX: Handle the 100Mhz refclk */
  4987. intel_clock(dev, 96000, &clock);
  4988. } else {
  4989. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  4990. if (is_lvds) {
  4991. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  4992. DPLL_FPA01_P1_POST_DIV_SHIFT);
  4993. clock.p2 = 14;
  4994. if ((dpll & PLL_REF_INPUT_MASK) ==
  4995. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  4996. /* XXX: might not be 66MHz */
  4997. intel_clock(dev, 66000, &clock);
  4998. } else
  4999. intel_clock(dev, 48000, &clock);
  5000. } else {
  5001. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5002. clock.p1 = 2;
  5003. else {
  5004. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5005. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5006. }
  5007. if (dpll & PLL_P2_DIVIDE_BY_4)
  5008. clock.p2 = 4;
  5009. else
  5010. clock.p2 = 2;
  5011. intel_clock(dev, 48000, &clock);
  5012. }
  5013. }
  5014. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5015. * i830PllIsValid() because it relies on the xf86_config connector
  5016. * configuration being accurate, which it isn't necessarily.
  5017. */
  5018. return clock.dot;
  5019. }
  5020. /** Returns the currently programmed mode of the given pipe. */
  5021. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5022. struct drm_crtc *crtc)
  5023. {
  5024. struct drm_i915_private *dev_priv = dev->dev_private;
  5025. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5026. int pipe = intel_crtc->pipe;
  5027. struct drm_display_mode *mode;
  5028. int htot = I915_READ(HTOTAL(pipe));
  5029. int hsync = I915_READ(HSYNC(pipe));
  5030. int vtot = I915_READ(VTOTAL(pipe));
  5031. int vsync = I915_READ(VSYNC(pipe));
  5032. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5033. if (!mode)
  5034. return NULL;
  5035. mode->clock = intel_crtc_clock_get(dev, crtc);
  5036. mode->hdisplay = (htot & 0xffff) + 1;
  5037. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5038. mode->hsync_start = (hsync & 0xffff) + 1;
  5039. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5040. mode->vdisplay = (vtot & 0xffff) + 1;
  5041. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5042. mode->vsync_start = (vsync & 0xffff) + 1;
  5043. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5044. drm_mode_set_name(mode);
  5045. drm_mode_set_crtcinfo(mode, 0);
  5046. return mode;
  5047. }
  5048. #define GPU_IDLE_TIMEOUT 500 /* ms */
  5049. /* When this timer fires, we've been idle for awhile */
  5050. static void intel_gpu_idle_timer(unsigned long arg)
  5051. {
  5052. struct drm_device *dev = (struct drm_device *)arg;
  5053. drm_i915_private_t *dev_priv = dev->dev_private;
  5054. if (!list_empty(&dev_priv->mm.active_list)) {
  5055. /* Still processing requests, so just re-arm the timer. */
  5056. mod_timer(&dev_priv->idle_timer, jiffies +
  5057. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5058. return;
  5059. }
  5060. dev_priv->busy = false;
  5061. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5062. }
  5063. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  5064. static void intel_crtc_idle_timer(unsigned long arg)
  5065. {
  5066. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  5067. struct drm_crtc *crtc = &intel_crtc->base;
  5068. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  5069. struct intel_framebuffer *intel_fb;
  5070. intel_fb = to_intel_framebuffer(crtc->fb);
  5071. if (intel_fb && intel_fb->obj->active) {
  5072. /* The framebuffer is still being accessed by the GPU. */
  5073. mod_timer(&intel_crtc->idle_timer, jiffies +
  5074. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5075. return;
  5076. }
  5077. intel_crtc->busy = false;
  5078. queue_work(dev_priv->wq, &dev_priv->idle_work);
  5079. }
  5080. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5081. {
  5082. struct drm_device *dev = crtc->dev;
  5083. drm_i915_private_t *dev_priv = dev->dev_private;
  5084. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5085. int pipe = intel_crtc->pipe;
  5086. int dpll_reg = DPLL(pipe);
  5087. int dpll;
  5088. if (HAS_PCH_SPLIT(dev))
  5089. return;
  5090. if (!dev_priv->lvds_downclock_avail)
  5091. return;
  5092. dpll = I915_READ(dpll_reg);
  5093. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5094. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5095. /* Unlock panel regs */
  5096. I915_WRITE(PP_CONTROL,
  5097. I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
  5098. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5099. I915_WRITE(dpll_reg, dpll);
  5100. intel_wait_for_vblank(dev, pipe);
  5101. dpll = I915_READ(dpll_reg);
  5102. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5103. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5104. /* ...and lock them again */
  5105. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5106. }
  5107. /* Schedule downclock */
  5108. mod_timer(&intel_crtc->idle_timer, jiffies +
  5109. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5110. }
  5111. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5112. {
  5113. struct drm_device *dev = crtc->dev;
  5114. drm_i915_private_t *dev_priv = dev->dev_private;
  5115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5116. int pipe = intel_crtc->pipe;
  5117. int dpll_reg = DPLL(pipe);
  5118. int dpll = I915_READ(dpll_reg);
  5119. if (HAS_PCH_SPLIT(dev))
  5120. return;
  5121. if (!dev_priv->lvds_downclock_avail)
  5122. return;
  5123. /*
  5124. * Since this is called by a timer, we should never get here in
  5125. * the manual case.
  5126. */
  5127. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5128. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5129. /* Unlock panel regs */
  5130. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
  5131. PANEL_UNLOCK_REGS);
  5132. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5133. I915_WRITE(dpll_reg, dpll);
  5134. intel_wait_for_vblank(dev, pipe);
  5135. dpll = I915_READ(dpll_reg);
  5136. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5137. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5138. /* ...and lock them again */
  5139. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  5140. }
  5141. }
  5142. /**
  5143. * intel_idle_update - adjust clocks for idleness
  5144. * @work: work struct
  5145. *
  5146. * Either the GPU or display (or both) went idle. Check the busy status
  5147. * here and adjust the CRTC and GPU clocks as necessary.
  5148. */
  5149. static void intel_idle_update(struct work_struct *work)
  5150. {
  5151. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  5152. idle_work);
  5153. struct drm_device *dev = dev_priv->dev;
  5154. struct drm_crtc *crtc;
  5155. struct intel_crtc *intel_crtc;
  5156. if (!i915_powersave)
  5157. return;
  5158. mutex_lock(&dev->struct_mutex);
  5159. i915_update_gfx_val(dev_priv);
  5160. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5161. /* Skip inactive CRTCs */
  5162. if (!crtc->fb)
  5163. continue;
  5164. intel_crtc = to_intel_crtc(crtc);
  5165. if (!intel_crtc->busy)
  5166. intel_decrease_pllclock(crtc);
  5167. }
  5168. mutex_unlock(&dev->struct_mutex);
  5169. }
  5170. /**
  5171. * intel_mark_busy - mark the GPU and possibly the display busy
  5172. * @dev: drm device
  5173. * @obj: object we're operating on
  5174. *
  5175. * Callers can use this function to indicate that the GPU is busy processing
  5176. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  5177. * buffer), we'll also mark the display as busy, so we know to increase its
  5178. * clock frequency.
  5179. */
  5180. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  5181. {
  5182. drm_i915_private_t *dev_priv = dev->dev_private;
  5183. struct drm_crtc *crtc = NULL;
  5184. struct intel_framebuffer *intel_fb;
  5185. struct intel_crtc *intel_crtc;
  5186. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  5187. return;
  5188. if (!dev_priv->busy)
  5189. dev_priv->busy = true;
  5190. else
  5191. mod_timer(&dev_priv->idle_timer, jiffies +
  5192. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  5193. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5194. if (!crtc->fb)
  5195. continue;
  5196. intel_crtc = to_intel_crtc(crtc);
  5197. intel_fb = to_intel_framebuffer(crtc->fb);
  5198. if (intel_fb->obj == obj) {
  5199. if (!intel_crtc->busy) {
  5200. /* Non-busy -> busy, upclock */
  5201. intel_increase_pllclock(crtc);
  5202. intel_crtc->busy = true;
  5203. } else {
  5204. /* Busy -> busy, put off timer */
  5205. mod_timer(&intel_crtc->idle_timer, jiffies +
  5206. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  5207. }
  5208. }
  5209. }
  5210. }
  5211. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5212. {
  5213. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5214. struct drm_device *dev = crtc->dev;
  5215. struct intel_unpin_work *work;
  5216. unsigned long flags;
  5217. spin_lock_irqsave(&dev->event_lock, flags);
  5218. work = intel_crtc->unpin_work;
  5219. intel_crtc->unpin_work = NULL;
  5220. spin_unlock_irqrestore(&dev->event_lock, flags);
  5221. if (work) {
  5222. cancel_work_sync(&work->work);
  5223. kfree(work);
  5224. }
  5225. drm_crtc_cleanup(crtc);
  5226. kfree(intel_crtc);
  5227. }
  5228. static void intel_unpin_work_fn(struct work_struct *__work)
  5229. {
  5230. struct intel_unpin_work *work =
  5231. container_of(__work, struct intel_unpin_work, work);
  5232. mutex_lock(&work->dev->struct_mutex);
  5233. i915_gem_object_unpin(work->old_fb_obj);
  5234. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5235. drm_gem_object_unreference(&work->old_fb_obj->base);
  5236. mutex_unlock(&work->dev->struct_mutex);
  5237. kfree(work);
  5238. }
  5239. static void do_intel_finish_page_flip(struct drm_device *dev,
  5240. struct drm_crtc *crtc)
  5241. {
  5242. drm_i915_private_t *dev_priv = dev->dev_private;
  5243. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5244. struct intel_unpin_work *work;
  5245. struct drm_i915_gem_object *obj;
  5246. struct drm_pending_vblank_event *e;
  5247. struct timeval tnow, tvbl;
  5248. unsigned long flags;
  5249. /* Ignore early vblank irqs */
  5250. if (intel_crtc == NULL)
  5251. return;
  5252. do_gettimeofday(&tnow);
  5253. spin_lock_irqsave(&dev->event_lock, flags);
  5254. work = intel_crtc->unpin_work;
  5255. if (work == NULL || !work->pending) {
  5256. spin_unlock_irqrestore(&dev->event_lock, flags);
  5257. return;
  5258. }
  5259. intel_crtc->unpin_work = NULL;
  5260. if (work->event) {
  5261. e = work->event;
  5262. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5263. /* Called before vblank count and timestamps have
  5264. * been updated for the vblank interval of flip
  5265. * completion? Need to increment vblank count and
  5266. * add one videorefresh duration to returned timestamp
  5267. * to account for this. We assume this happened if we
  5268. * get called over 0.9 frame durations after the last
  5269. * timestamped vblank.
  5270. *
  5271. * This calculation can not be used with vrefresh rates
  5272. * below 5Hz (10Hz to be on the safe side) without
  5273. * promoting to 64 integers.
  5274. */
  5275. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5276. 9 * crtc->framedur_ns) {
  5277. e->event.sequence++;
  5278. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5279. crtc->framedur_ns);
  5280. }
  5281. e->event.tv_sec = tvbl.tv_sec;
  5282. e->event.tv_usec = tvbl.tv_usec;
  5283. list_add_tail(&e->base.link,
  5284. &e->base.file_priv->event_list);
  5285. wake_up_interruptible(&e->base.file_priv->event_wait);
  5286. }
  5287. drm_vblank_put(dev, intel_crtc->pipe);
  5288. spin_unlock_irqrestore(&dev->event_lock, flags);
  5289. obj = work->old_fb_obj;
  5290. atomic_clear_mask(1 << intel_crtc->plane,
  5291. &obj->pending_flip.counter);
  5292. if (atomic_read(&obj->pending_flip) == 0)
  5293. wake_up(&dev_priv->pending_flip_queue);
  5294. schedule_work(&work->work);
  5295. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5296. }
  5297. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5298. {
  5299. drm_i915_private_t *dev_priv = dev->dev_private;
  5300. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5301. do_intel_finish_page_flip(dev, crtc);
  5302. }
  5303. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5304. {
  5305. drm_i915_private_t *dev_priv = dev->dev_private;
  5306. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5307. do_intel_finish_page_flip(dev, crtc);
  5308. }
  5309. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5310. {
  5311. drm_i915_private_t *dev_priv = dev->dev_private;
  5312. struct intel_crtc *intel_crtc =
  5313. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5314. unsigned long flags;
  5315. spin_lock_irqsave(&dev->event_lock, flags);
  5316. if (intel_crtc->unpin_work) {
  5317. if ((++intel_crtc->unpin_work->pending) > 1)
  5318. DRM_ERROR("Prepared flip multiple times\n");
  5319. } else {
  5320. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5321. }
  5322. spin_unlock_irqrestore(&dev->event_lock, flags);
  5323. }
  5324. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5325. struct drm_framebuffer *fb,
  5326. struct drm_pending_vblank_event *event)
  5327. {
  5328. struct drm_device *dev = crtc->dev;
  5329. struct drm_i915_private *dev_priv = dev->dev_private;
  5330. struct intel_framebuffer *intel_fb;
  5331. struct drm_i915_gem_object *obj;
  5332. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5333. struct intel_unpin_work *work;
  5334. unsigned long flags, offset;
  5335. int pipe = intel_crtc->pipe;
  5336. u32 pf, pipesrc;
  5337. int ret;
  5338. work = kzalloc(sizeof *work, GFP_KERNEL);
  5339. if (work == NULL)
  5340. return -ENOMEM;
  5341. work->event = event;
  5342. work->dev = crtc->dev;
  5343. intel_fb = to_intel_framebuffer(crtc->fb);
  5344. work->old_fb_obj = intel_fb->obj;
  5345. INIT_WORK(&work->work, intel_unpin_work_fn);
  5346. /* We borrow the event spin lock for protecting unpin_work */
  5347. spin_lock_irqsave(&dev->event_lock, flags);
  5348. if (intel_crtc->unpin_work) {
  5349. spin_unlock_irqrestore(&dev->event_lock, flags);
  5350. kfree(work);
  5351. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5352. return -EBUSY;
  5353. }
  5354. intel_crtc->unpin_work = work;
  5355. spin_unlock_irqrestore(&dev->event_lock, flags);
  5356. intel_fb = to_intel_framebuffer(fb);
  5357. obj = intel_fb->obj;
  5358. mutex_lock(&dev->struct_mutex);
  5359. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  5360. if (ret)
  5361. goto cleanup_work;
  5362. /* Reference the objects for the scheduled work. */
  5363. drm_gem_object_reference(&work->old_fb_obj->base);
  5364. drm_gem_object_reference(&obj->base);
  5365. crtc->fb = fb;
  5366. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5367. if (ret)
  5368. goto cleanup_objs;
  5369. if (IS_GEN3(dev) || IS_GEN2(dev)) {
  5370. u32 flip_mask;
  5371. /* Can't queue multiple flips, so wait for the previous
  5372. * one to finish before executing the next.
  5373. */
  5374. ret = BEGIN_LP_RING(2);
  5375. if (ret)
  5376. goto cleanup_objs;
  5377. if (intel_crtc->plane)
  5378. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5379. else
  5380. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5381. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  5382. OUT_RING(MI_NOOP);
  5383. ADVANCE_LP_RING();
  5384. }
  5385. work->pending_flip_obj = obj;
  5386. work->enable_stall_check = true;
  5387. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  5388. offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
  5389. ret = BEGIN_LP_RING(4);
  5390. if (ret)
  5391. goto cleanup_objs;
  5392. /* Block clients from rendering to the new back buffer until
  5393. * the flip occurs and the object is no longer visible.
  5394. */
  5395. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5396. switch (INTEL_INFO(dev)->gen) {
  5397. case 2:
  5398. OUT_RING(MI_DISPLAY_FLIP |
  5399. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5400. OUT_RING(fb->pitch);
  5401. OUT_RING(obj->gtt_offset + offset);
  5402. OUT_RING(MI_NOOP);
  5403. break;
  5404. case 3:
  5405. OUT_RING(MI_DISPLAY_FLIP_I915 |
  5406. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5407. OUT_RING(fb->pitch);
  5408. OUT_RING(obj->gtt_offset + offset);
  5409. OUT_RING(MI_NOOP);
  5410. break;
  5411. case 4:
  5412. case 5:
  5413. /* i965+ uses the linear or tiled offsets from the
  5414. * Display Registers (which do not change across a page-flip)
  5415. * so we need only reprogram the base address.
  5416. */
  5417. OUT_RING(MI_DISPLAY_FLIP |
  5418. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5419. OUT_RING(fb->pitch);
  5420. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  5421. /* XXX Enabling the panel-fitter across page-flip is so far
  5422. * untested on non-native modes, so ignore it for now.
  5423. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5424. */
  5425. pf = 0;
  5426. pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
  5427. OUT_RING(pf | pipesrc);
  5428. break;
  5429. case 6:
  5430. OUT_RING(MI_DISPLAY_FLIP |
  5431. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5432. OUT_RING(fb->pitch | obj->tiling_mode);
  5433. OUT_RING(obj->gtt_offset);
  5434. pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
  5435. pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
  5436. OUT_RING(pf | pipesrc);
  5437. break;
  5438. }
  5439. ADVANCE_LP_RING();
  5440. mutex_unlock(&dev->struct_mutex);
  5441. trace_i915_flip_request(intel_crtc->plane, obj);
  5442. return 0;
  5443. cleanup_objs:
  5444. drm_gem_object_unreference(&work->old_fb_obj->base);
  5445. drm_gem_object_unreference(&obj->base);
  5446. cleanup_work:
  5447. mutex_unlock(&dev->struct_mutex);
  5448. spin_lock_irqsave(&dev->event_lock, flags);
  5449. intel_crtc->unpin_work = NULL;
  5450. spin_unlock_irqrestore(&dev->event_lock, flags);
  5451. kfree(work);
  5452. return ret;
  5453. }
  5454. static void intel_sanitize_modesetting(struct drm_device *dev,
  5455. int pipe, int plane)
  5456. {
  5457. struct drm_i915_private *dev_priv = dev->dev_private;
  5458. u32 reg, val;
  5459. if (HAS_PCH_SPLIT(dev))
  5460. return;
  5461. /* Who knows what state these registers were left in by the BIOS or
  5462. * grub?
  5463. *
  5464. * If we leave the registers in a conflicting state (e.g. with the
  5465. * display plane reading from the other pipe than the one we intend
  5466. * to use) then when we attempt to teardown the active mode, we will
  5467. * not disable the pipes and planes in the correct order -- leaving
  5468. * a plane reading from a disabled pipe and possibly leading to
  5469. * undefined behaviour.
  5470. */
  5471. reg = DSPCNTR(plane);
  5472. val = I915_READ(reg);
  5473. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  5474. return;
  5475. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  5476. return;
  5477. /* This display plane is active and attached to the other CPU pipe. */
  5478. pipe = !pipe;
  5479. /* Disable the plane and wait for it to stop reading from the pipe. */
  5480. intel_disable_plane(dev_priv, plane, pipe);
  5481. intel_disable_pipe(dev_priv, pipe);
  5482. }
  5483. static void intel_crtc_reset(struct drm_crtc *crtc)
  5484. {
  5485. struct drm_device *dev = crtc->dev;
  5486. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5487. /* Reset flags back to the 'unknown' status so that they
  5488. * will be correctly set on the initial modeset.
  5489. */
  5490. intel_crtc->dpms_mode = -1;
  5491. /* We need to fix up any BIOS configuration that conflicts with
  5492. * our expectations.
  5493. */
  5494. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  5495. }
  5496. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5497. .dpms = intel_crtc_dpms,
  5498. .mode_fixup = intel_crtc_mode_fixup,
  5499. .mode_set = intel_crtc_mode_set,
  5500. .mode_set_base = intel_pipe_set_base,
  5501. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5502. .load_lut = intel_crtc_load_lut,
  5503. .disable = intel_crtc_disable,
  5504. };
  5505. static const struct drm_crtc_funcs intel_crtc_funcs = {
  5506. .reset = intel_crtc_reset,
  5507. .cursor_set = intel_crtc_cursor_set,
  5508. .cursor_move = intel_crtc_cursor_move,
  5509. .gamma_set = intel_crtc_gamma_set,
  5510. .set_config = drm_crtc_helper_set_config,
  5511. .destroy = intel_crtc_destroy,
  5512. .page_flip = intel_crtc_page_flip,
  5513. };
  5514. static void intel_crtc_init(struct drm_device *dev, int pipe)
  5515. {
  5516. drm_i915_private_t *dev_priv = dev->dev_private;
  5517. struct intel_crtc *intel_crtc;
  5518. int i;
  5519. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  5520. if (intel_crtc == NULL)
  5521. return;
  5522. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  5523. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  5524. for (i = 0; i < 256; i++) {
  5525. intel_crtc->lut_r[i] = i;
  5526. intel_crtc->lut_g[i] = i;
  5527. intel_crtc->lut_b[i] = i;
  5528. }
  5529. /* Swap pipes & planes for FBC on pre-965 */
  5530. intel_crtc->pipe = pipe;
  5531. intel_crtc->plane = pipe;
  5532. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  5533. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  5534. intel_crtc->plane = !pipe;
  5535. }
  5536. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  5537. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  5538. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  5539. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  5540. intel_crtc_reset(&intel_crtc->base);
  5541. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  5542. if (HAS_PCH_SPLIT(dev)) {
  5543. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  5544. intel_helper_funcs.commit = ironlake_crtc_commit;
  5545. } else {
  5546. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  5547. intel_helper_funcs.commit = i9xx_crtc_commit;
  5548. }
  5549. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  5550. intel_crtc->busy = false;
  5551. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  5552. (unsigned long)intel_crtc);
  5553. }
  5554. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  5555. struct drm_file *file)
  5556. {
  5557. drm_i915_private_t *dev_priv = dev->dev_private;
  5558. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  5559. struct drm_mode_object *drmmode_obj;
  5560. struct intel_crtc *crtc;
  5561. if (!dev_priv) {
  5562. DRM_ERROR("called with no initialization\n");
  5563. return -EINVAL;
  5564. }
  5565. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  5566. DRM_MODE_OBJECT_CRTC);
  5567. if (!drmmode_obj) {
  5568. DRM_ERROR("no such CRTC id\n");
  5569. return -EINVAL;
  5570. }
  5571. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  5572. pipe_from_crtc_id->pipe = crtc->pipe;
  5573. return 0;
  5574. }
  5575. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  5576. {
  5577. struct intel_encoder *encoder;
  5578. int index_mask = 0;
  5579. int entry = 0;
  5580. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  5581. if (type_mask & encoder->clone_mask)
  5582. index_mask |= (1 << entry);
  5583. entry++;
  5584. }
  5585. return index_mask;
  5586. }
  5587. static bool has_edp_a(struct drm_device *dev)
  5588. {
  5589. struct drm_i915_private *dev_priv = dev->dev_private;
  5590. if (!IS_MOBILE(dev))
  5591. return false;
  5592. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  5593. return false;
  5594. if (IS_GEN5(dev) &&
  5595. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  5596. return false;
  5597. return true;
  5598. }
  5599. static void intel_setup_outputs(struct drm_device *dev)
  5600. {
  5601. struct drm_i915_private *dev_priv = dev->dev_private;
  5602. struct intel_encoder *encoder;
  5603. bool dpd_is_edp = false;
  5604. bool has_lvds = false;
  5605. if (IS_MOBILE(dev) && !IS_I830(dev))
  5606. has_lvds = intel_lvds_init(dev);
  5607. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  5608. /* disable the panel fitter on everything but LVDS */
  5609. I915_WRITE(PFIT_CONTROL, 0);
  5610. }
  5611. if (HAS_PCH_SPLIT(dev)) {
  5612. dpd_is_edp = intel_dpd_is_edp(dev);
  5613. if (has_edp_a(dev))
  5614. intel_dp_init(dev, DP_A);
  5615. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  5616. intel_dp_init(dev, PCH_DP_D);
  5617. }
  5618. intel_crt_init(dev);
  5619. if (HAS_PCH_SPLIT(dev)) {
  5620. int found;
  5621. if (I915_READ(HDMIB) & PORT_DETECTED) {
  5622. /* PCH SDVOB multiplex with HDMIB */
  5623. found = intel_sdvo_init(dev, PCH_SDVOB);
  5624. if (!found)
  5625. intel_hdmi_init(dev, HDMIB);
  5626. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  5627. intel_dp_init(dev, PCH_DP_B);
  5628. }
  5629. if (I915_READ(HDMIC) & PORT_DETECTED)
  5630. intel_hdmi_init(dev, HDMIC);
  5631. if (I915_READ(HDMID) & PORT_DETECTED)
  5632. intel_hdmi_init(dev, HDMID);
  5633. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  5634. intel_dp_init(dev, PCH_DP_C);
  5635. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  5636. intel_dp_init(dev, PCH_DP_D);
  5637. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  5638. bool found = false;
  5639. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  5640. DRM_DEBUG_KMS("probing SDVOB\n");
  5641. found = intel_sdvo_init(dev, SDVOB);
  5642. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  5643. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  5644. intel_hdmi_init(dev, SDVOB);
  5645. }
  5646. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  5647. DRM_DEBUG_KMS("probing DP_B\n");
  5648. intel_dp_init(dev, DP_B);
  5649. }
  5650. }
  5651. /* Before G4X SDVOC doesn't have its own detect register */
  5652. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  5653. DRM_DEBUG_KMS("probing SDVOC\n");
  5654. found = intel_sdvo_init(dev, SDVOC);
  5655. }
  5656. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  5657. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  5658. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  5659. intel_hdmi_init(dev, SDVOC);
  5660. }
  5661. if (SUPPORTS_INTEGRATED_DP(dev)) {
  5662. DRM_DEBUG_KMS("probing DP_C\n");
  5663. intel_dp_init(dev, DP_C);
  5664. }
  5665. }
  5666. if (SUPPORTS_INTEGRATED_DP(dev) &&
  5667. (I915_READ(DP_D) & DP_DETECTED)) {
  5668. DRM_DEBUG_KMS("probing DP_D\n");
  5669. intel_dp_init(dev, DP_D);
  5670. }
  5671. } else if (IS_GEN2(dev))
  5672. intel_dvo_init(dev);
  5673. if (SUPPORTS_TV(dev))
  5674. intel_tv_init(dev);
  5675. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  5676. encoder->base.possible_crtcs = encoder->crtc_mask;
  5677. encoder->base.possible_clones =
  5678. intel_encoder_clones(dev, encoder->clone_mask);
  5679. }
  5680. intel_panel_setup_backlight(dev);
  5681. /* disable all the possible outputs/crtcs before entering KMS mode */
  5682. drm_helper_disable_unused_functions(dev);
  5683. }
  5684. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  5685. {
  5686. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  5687. drm_framebuffer_cleanup(fb);
  5688. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  5689. kfree(intel_fb);
  5690. }
  5691. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  5692. struct drm_file *file,
  5693. unsigned int *handle)
  5694. {
  5695. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  5696. struct drm_i915_gem_object *obj = intel_fb->obj;
  5697. return drm_gem_handle_create(file, &obj->base, handle);
  5698. }
  5699. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  5700. .destroy = intel_user_framebuffer_destroy,
  5701. .create_handle = intel_user_framebuffer_create_handle,
  5702. };
  5703. int intel_framebuffer_init(struct drm_device *dev,
  5704. struct intel_framebuffer *intel_fb,
  5705. struct drm_mode_fb_cmd *mode_cmd,
  5706. struct drm_i915_gem_object *obj)
  5707. {
  5708. int ret;
  5709. if (obj->tiling_mode == I915_TILING_Y)
  5710. return -EINVAL;
  5711. if (mode_cmd->pitch & 63)
  5712. return -EINVAL;
  5713. switch (mode_cmd->bpp) {
  5714. case 8:
  5715. case 16:
  5716. case 24:
  5717. case 32:
  5718. break;
  5719. default:
  5720. return -EINVAL;
  5721. }
  5722. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  5723. if (ret) {
  5724. DRM_ERROR("framebuffer init failed %d\n", ret);
  5725. return ret;
  5726. }
  5727. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  5728. intel_fb->obj = obj;
  5729. return 0;
  5730. }
  5731. static struct drm_framebuffer *
  5732. intel_user_framebuffer_create(struct drm_device *dev,
  5733. struct drm_file *filp,
  5734. struct drm_mode_fb_cmd *mode_cmd)
  5735. {
  5736. struct drm_i915_gem_object *obj;
  5737. obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
  5738. if (&obj->base == NULL)
  5739. return ERR_PTR(-ENOENT);
  5740. return intel_framebuffer_create(dev, mode_cmd, obj);
  5741. }
  5742. static const struct drm_mode_config_funcs intel_mode_funcs = {
  5743. .fb_create = intel_user_framebuffer_create,
  5744. .output_poll_changed = intel_fb_output_poll_changed,
  5745. };
  5746. static struct drm_i915_gem_object *
  5747. intel_alloc_context_page(struct drm_device *dev)
  5748. {
  5749. struct drm_i915_gem_object *ctx;
  5750. int ret;
  5751. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  5752. ctx = i915_gem_alloc_object(dev, 4096);
  5753. if (!ctx) {
  5754. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  5755. return NULL;
  5756. }
  5757. ret = i915_gem_object_pin(ctx, 4096, true);
  5758. if (ret) {
  5759. DRM_ERROR("failed to pin power context: %d\n", ret);
  5760. goto err_unref;
  5761. }
  5762. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  5763. if (ret) {
  5764. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  5765. goto err_unpin;
  5766. }
  5767. return ctx;
  5768. err_unpin:
  5769. i915_gem_object_unpin(ctx);
  5770. err_unref:
  5771. drm_gem_object_unreference(&ctx->base);
  5772. mutex_unlock(&dev->struct_mutex);
  5773. return NULL;
  5774. }
  5775. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  5776. {
  5777. struct drm_i915_private *dev_priv = dev->dev_private;
  5778. u16 rgvswctl;
  5779. rgvswctl = I915_READ16(MEMSWCTL);
  5780. if (rgvswctl & MEMCTL_CMD_STS) {
  5781. DRM_DEBUG("gpu busy, RCS change rejected\n");
  5782. return false; /* still busy with another command */
  5783. }
  5784. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  5785. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  5786. I915_WRITE16(MEMSWCTL, rgvswctl);
  5787. POSTING_READ16(MEMSWCTL);
  5788. rgvswctl |= MEMCTL_CMD_STS;
  5789. I915_WRITE16(MEMSWCTL, rgvswctl);
  5790. return true;
  5791. }
  5792. void ironlake_enable_drps(struct drm_device *dev)
  5793. {
  5794. struct drm_i915_private *dev_priv = dev->dev_private;
  5795. u32 rgvmodectl = I915_READ(MEMMODECTL);
  5796. u8 fmax, fmin, fstart, vstart;
  5797. /* Enable temp reporting */
  5798. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  5799. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  5800. /* 100ms RC evaluation intervals */
  5801. I915_WRITE(RCUPEI, 100000);
  5802. I915_WRITE(RCDNEI, 100000);
  5803. /* Set max/min thresholds to 90ms and 80ms respectively */
  5804. I915_WRITE(RCBMAXAVG, 90000);
  5805. I915_WRITE(RCBMINAVG, 80000);
  5806. I915_WRITE(MEMIHYST, 1);
  5807. /* Set up min, max, and cur for interrupt handling */
  5808. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  5809. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  5810. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  5811. MEMMODE_FSTART_SHIFT;
  5812. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  5813. PXVFREQ_PX_SHIFT;
  5814. dev_priv->fmax = fmax; /* IPS callback will increase this */
  5815. dev_priv->fstart = fstart;
  5816. dev_priv->max_delay = fstart;
  5817. dev_priv->min_delay = fmin;
  5818. dev_priv->cur_delay = fstart;
  5819. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  5820. fmax, fmin, fstart);
  5821. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  5822. /*
  5823. * Interrupts will be enabled in ironlake_irq_postinstall
  5824. */
  5825. I915_WRITE(VIDSTART, vstart);
  5826. POSTING_READ(VIDSTART);
  5827. rgvmodectl |= MEMMODE_SWMODE_EN;
  5828. I915_WRITE(MEMMODECTL, rgvmodectl);
  5829. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  5830. DRM_ERROR("stuck trying to change perf mode\n");
  5831. msleep(1);
  5832. ironlake_set_drps(dev, fstart);
  5833. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  5834. I915_READ(0x112e0);
  5835. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  5836. dev_priv->last_count2 = I915_READ(0x112f4);
  5837. getrawmonotonic(&dev_priv->last_time2);
  5838. }
  5839. void ironlake_disable_drps(struct drm_device *dev)
  5840. {
  5841. struct drm_i915_private *dev_priv = dev->dev_private;
  5842. u16 rgvswctl = I915_READ16(MEMSWCTL);
  5843. /* Ack interrupts, disable EFC interrupt */
  5844. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  5845. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  5846. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  5847. I915_WRITE(DEIIR, DE_PCU_EVENT);
  5848. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  5849. /* Go back to the starting frequency */
  5850. ironlake_set_drps(dev, dev_priv->fstart);
  5851. msleep(1);
  5852. rgvswctl |= MEMCTL_CMD_STS;
  5853. I915_WRITE(MEMSWCTL, rgvswctl);
  5854. msleep(1);
  5855. }
  5856. void gen6_set_rps(struct drm_device *dev, u8 val)
  5857. {
  5858. struct drm_i915_private *dev_priv = dev->dev_private;
  5859. u32 swreq;
  5860. swreq = (val & 0x3ff) << 25;
  5861. I915_WRITE(GEN6_RPNSWREQ, swreq);
  5862. }
  5863. void gen6_disable_rps(struct drm_device *dev)
  5864. {
  5865. struct drm_i915_private *dev_priv = dev->dev_private;
  5866. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  5867. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  5868. I915_WRITE(GEN6_PMIER, 0);
  5869. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  5870. }
  5871. static unsigned long intel_pxfreq(u32 vidfreq)
  5872. {
  5873. unsigned long freq;
  5874. int div = (vidfreq & 0x3f0000) >> 16;
  5875. int post = (vidfreq & 0x3000) >> 12;
  5876. int pre = (vidfreq & 0x7);
  5877. if (!pre)
  5878. return 0;
  5879. freq = ((div * 133333) / ((1<<post) * pre));
  5880. return freq;
  5881. }
  5882. void intel_init_emon(struct drm_device *dev)
  5883. {
  5884. struct drm_i915_private *dev_priv = dev->dev_private;
  5885. u32 lcfuse;
  5886. u8 pxw[16];
  5887. int i;
  5888. /* Disable to program */
  5889. I915_WRITE(ECR, 0);
  5890. POSTING_READ(ECR);
  5891. /* Program energy weights for various events */
  5892. I915_WRITE(SDEW, 0x15040d00);
  5893. I915_WRITE(CSIEW0, 0x007f0000);
  5894. I915_WRITE(CSIEW1, 0x1e220004);
  5895. I915_WRITE(CSIEW2, 0x04000004);
  5896. for (i = 0; i < 5; i++)
  5897. I915_WRITE(PEW + (i * 4), 0);
  5898. for (i = 0; i < 3; i++)
  5899. I915_WRITE(DEW + (i * 4), 0);
  5900. /* Program P-state weights to account for frequency power adjustment */
  5901. for (i = 0; i < 16; i++) {
  5902. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  5903. unsigned long freq = intel_pxfreq(pxvidfreq);
  5904. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  5905. PXVFREQ_PX_SHIFT;
  5906. unsigned long val;
  5907. val = vid * vid;
  5908. val *= (freq / 1000);
  5909. val *= 255;
  5910. val /= (127*127*900);
  5911. if (val > 0xff)
  5912. DRM_ERROR("bad pxval: %ld\n", val);
  5913. pxw[i] = val;
  5914. }
  5915. /* Render standby states get 0 weight */
  5916. pxw[14] = 0;
  5917. pxw[15] = 0;
  5918. for (i = 0; i < 4; i++) {
  5919. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  5920. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  5921. I915_WRITE(PXW + (i * 4), val);
  5922. }
  5923. /* Adjust magic regs to magic values (more experimental results) */
  5924. I915_WRITE(OGW0, 0);
  5925. I915_WRITE(OGW1, 0);
  5926. I915_WRITE(EG0, 0x00007f00);
  5927. I915_WRITE(EG1, 0x0000000e);
  5928. I915_WRITE(EG2, 0x000e0000);
  5929. I915_WRITE(EG3, 0x68000300);
  5930. I915_WRITE(EG4, 0x42000000);
  5931. I915_WRITE(EG5, 0x00140031);
  5932. I915_WRITE(EG6, 0);
  5933. I915_WRITE(EG7, 0);
  5934. for (i = 0; i < 8; i++)
  5935. I915_WRITE(PXWL + (i * 4), 0);
  5936. /* Enable PMON + select events */
  5937. I915_WRITE(ECR, 0x80000019);
  5938. lcfuse = I915_READ(LCFUSE02);
  5939. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  5940. }
  5941. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  5942. {
  5943. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  5944. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  5945. u32 pcu_mbox, rc6_mask = 0;
  5946. int cur_freq, min_freq, max_freq;
  5947. int i;
  5948. /* Here begins a magic sequence of register writes to enable
  5949. * auto-downclocking.
  5950. *
  5951. * Perhaps there might be some value in exposing these to
  5952. * userspace...
  5953. */
  5954. I915_WRITE(GEN6_RC_STATE, 0);
  5955. gen6_gt_force_wake_get(dev_priv);
  5956. /* disable the counters and set deterministic thresholds */
  5957. I915_WRITE(GEN6_RC_CONTROL, 0);
  5958. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  5959. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  5960. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  5961. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  5962. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  5963. for (i = 0; i < I915_NUM_RINGS; i++)
  5964. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  5965. I915_WRITE(GEN6_RC_SLEEP, 0);
  5966. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  5967. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  5968. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  5969. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  5970. if (i915_enable_rc6)
  5971. rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
  5972. GEN6_RC_CTL_RC6_ENABLE;
  5973. I915_WRITE(GEN6_RC_CONTROL,
  5974. rc6_mask |
  5975. GEN6_RC_CTL_EI_MODE(1) |
  5976. GEN6_RC_CTL_HW_ENABLE);
  5977. I915_WRITE(GEN6_RPNSWREQ,
  5978. GEN6_FREQUENCY(10) |
  5979. GEN6_OFFSET(0) |
  5980. GEN6_AGGRESSIVE_TURBO);
  5981. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  5982. GEN6_FREQUENCY(12));
  5983. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  5984. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  5985. 18 << 24 |
  5986. 6 << 16);
  5987. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  5988. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  5989. I915_WRITE(GEN6_RP_UP_EI, 100000);
  5990. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  5991. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  5992. I915_WRITE(GEN6_RP_CONTROL,
  5993. GEN6_RP_MEDIA_TURBO |
  5994. GEN6_RP_USE_NORMAL_FREQ |
  5995. GEN6_RP_MEDIA_IS_GFX |
  5996. GEN6_RP_ENABLE |
  5997. GEN6_RP_UP_BUSY_AVG |
  5998. GEN6_RP_DOWN_IDLE_CONT);
  5999. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6000. 500))
  6001. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6002. I915_WRITE(GEN6_PCODE_DATA, 0);
  6003. I915_WRITE(GEN6_PCODE_MAILBOX,
  6004. GEN6_PCODE_READY |
  6005. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  6006. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6007. 500))
  6008. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6009. min_freq = (rp_state_cap & 0xff0000) >> 16;
  6010. max_freq = rp_state_cap & 0xff;
  6011. cur_freq = (gt_perf_status & 0xff00) >> 8;
  6012. /* Check for overclock support */
  6013. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6014. 500))
  6015. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  6016. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  6017. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  6018. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  6019. 500))
  6020. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  6021. if (pcu_mbox & (1<<31)) { /* OC supported */
  6022. max_freq = pcu_mbox & 0xff;
  6023. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  6024. }
  6025. /* In units of 100MHz */
  6026. dev_priv->max_delay = max_freq;
  6027. dev_priv->min_delay = min_freq;
  6028. dev_priv->cur_delay = cur_freq;
  6029. /* requires MSI enabled */
  6030. I915_WRITE(GEN6_PMIER,
  6031. GEN6_PM_MBOX_EVENT |
  6032. GEN6_PM_THERMAL_EVENT |
  6033. GEN6_PM_RP_DOWN_TIMEOUT |
  6034. GEN6_PM_RP_UP_THRESHOLD |
  6035. GEN6_PM_RP_DOWN_THRESHOLD |
  6036. GEN6_PM_RP_UP_EI_EXPIRED |
  6037. GEN6_PM_RP_DOWN_EI_EXPIRED);
  6038. I915_WRITE(GEN6_PMIMR, 0);
  6039. /* enable all PM interrupts */
  6040. I915_WRITE(GEN6_PMINTRMSK, 0);
  6041. gen6_gt_force_wake_put(dev_priv);
  6042. }
  6043. void intel_enable_clock_gating(struct drm_device *dev)
  6044. {
  6045. struct drm_i915_private *dev_priv = dev->dev_private;
  6046. int pipe;
  6047. /*
  6048. * Disable clock gating reported to work incorrectly according to the
  6049. * specs, but enable as much else as we can.
  6050. */
  6051. if (HAS_PCH_SPLIT(dev)) {
  6052. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  6053. if (IS_GEN5(dev)) {
  6054. /* Required for FBC */
  6055. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  6056. DPFCRUNIT_CLOCK_GATE_DISABLE |
  6057. DPFDUNIT_CLOCK_GATE_DISABLE;
  6058. /* Required for CxSR */
  6059. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  6060. I915_WRITE(PCH_3DCGDIS0,
  6061. MARIUNIT_CLOCK_GATE_DISABLE |
  6062. SVSMUNIT_CLOCK_GATE_DISABLE);
  6063. I915_WRITE(PCH_3DCGDIS1,
  6064. VFMUNIT_CLOCK_GATE_DISABLE);
  6065. }
  6066. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  6067. /*
  6068. * On Ibex Peak and Cougar Point, we need to disable clock
  6069. * gating for the panel power sequencer or it will fail to
  6070. * start up when no ports are active.
  6071. */
  6072. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  6073. /*
  6074. * According to the spec the following bits should be set in
  6075. * order to enable memory self-refresh
  6076. * The bit 22/21 of 0x42004
  6077. * The bit 5 of 0x42020
  6078. * The bit 15 of 0x45000
  6079. */
  6080. if (IS_GEN5(dev)) {
  6081. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6082. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  6083. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  6084. I915_WRITE(ILK_DSPCLK_GATE,
  6085. (I915_READ(ILK_DSPCLK_GATE) |
  6086. ILK_DPARB_CLK_GATE));
  6087. I915_WRITE(DISP_ARB_CTL,
  6088. (I915_READ(DISP_ARB_CTL) |
  6089. DISP_FBC_WM_DIS));
  6090. I915_WRITE(WM3_LP_ILK, 0);
  6091. I915_WRITE(WM2_LP_ILK, 0);
  6092. I915_WRITE(WM1_LP_ILK, 0);
  6093. }
  6094. /*
  6095. * Based on the document from hardware guys the following bits
  6096. * should be set unconditionally in order to enable FBC.
  6097. * The bit 22 of 0x42000
  6098. * The bit 22 of 0x42004
  6099. * The bit 7,8,9 of 0x42020.
  6100. */
  6101. if (IS_IRONLAKE_M(dev)) {
  6102. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6103. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6104. ILK_FBCQ_DIS);
  6105. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6106. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6107. ILK_DPARB_GATE);
  6108. I915_WRITE(ILK_DSPCLK_GATE,
  6109. I915_READ(ILK_DSPCLK_GATE) |
  6110. ILK_DPFC_DIS1 |
  6111. ILK_DPFC_DIS2 |
  6112. ILK_CLK_FBC);
  6113. }
  6114. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6115. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6116. ILK_ELPIN_409_SELECT);
  6117. if (IS_GEN5(dev)) {
  6118. I915_WRITE(_3D_CHICKEN2,
  6119. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  6120. _3D_CHICKEN2_WM_READ_PIPELINED);
  6121. }
  6122. if (IS_GEN6(dev)) {
  6123. I915_WRITE(WM3_LP_ILK, 0);
  6124. I915_WRITE(WM2_LP_ILK, 0);
  6125. I915_WRITE(WM1_LP_ILK, 0);
  6126. /*
  6127. * According to the spec the following bits should be
  6128. * set in order to enable memory self-refresh and fbc:
  6129. * The bit21 and bit22 of 0x42000
  6130. * The bit21 and bit22 of 0x42004
  6131. * The bit5 and bit7 of 0x42020
  6132. * The bit14 of 0x70180
  6133. * The bit14 of 0x71180
  6134. */
  6135. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  6136. I915_READ(ILK_DISPLAY_CHICKEN1) |
  6137. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  6138. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  6139. I915_READ(ILK_DISPLAY_CHICKEN2) |
  6140. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  6141. I915_WRITE(ILK_DSPCLK_GATE,
  6142. I915_READ(ILK_DSPCLK_GATE) |
  6143. ILK_DPARB_CLK_GATE |
  6144. ILK_DPFD_CLK_GATE);
  6145. for_each_pipe(pipe)
  6146. I915_WRITE(DSPCNTR(pipe),
  6147. I915_READ(DSPCNTR(pipe)) |
  6148. DISPPLANE_TRICKLE_FEED_DISABLE);
  6149. }
  6150. } else if (IS_G4X(dev)) {
  6151. uint32_t dspclk_gate;
  6152. I915_WRITE(RENCLK_GATE_D1, 0);
  6153. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  6154. GS_UNIT_CLOCK_GATE_DISABLE |
  6155. CL_UNIT_CLOCK_GATE_DISABLE);
  6156. I915_WRITE(RAMCLK_GATE_D, 0);
  6157. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  6158. OVRUNIT_CLOCK_GATE_DISABLE |
  6159. OVCUNIT_CLOCK_GATE_DISABLE;
  6160. if (IS_GM45(dev))
  6161. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  6162. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  6163. } else if (IS_CRESTLINE(dev)) {
  6164. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  6165. I915_WRITE(RENCLK_GATE_D2, 0);
  6166. I915_WRITE(DSPCLK_GATE_D, 0);
  6167. I915_WRITE(RAMCLK_GATE_D, 0);
  6168. I915_WRITE16(DEUC, 0);
  6169. } else if (IS_BROADWATER(dev)) {
  6170. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  6171. I965_RCC_CLOCK_GATE_DISABLE |
  6172. I965_RCPB_CLOCK_GATE_DISABLE |
  6173. I965_ISC_CLOCK_GATE_DISABLE |
  6174. I965_FBC_CLOCK_GATE_DISABLE);
  6175. I915_WRITE(RENCLK_GATE_D2, 0);
  6176. } else if (IS_GEN3(dev)) {
  6177. u32 dstate = I915_READ(D_STATE);
  6178. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  6179. DSTATE_DOT_CLOCK_GATING;
  6180. I915_WRITE(D_STATE, dstate);
  6181. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  6182. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  6183. } else if (IS_I830(dev)) {
  6184. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  6185. }
  6186. }
  6187. static void ironlake_teardown_rc6(struct drm_device *dev)
  6188. {
  6189. struct drm_i915_private *dev_priv = dev->dev_private;
  6190. if (dev_priv->renderctx) {
  6191. i915_gem_object_unpin(dev_priv->renderctx);
  6192. drm_gem_object_unreference(&dev_priv->renderctx->base);
  6193. dev_priv->renderctx = NULL;
  6194. }
  6195. if (dev_priv->pwrctx) {
  6196. i915_gem_object_unpin(dev_priv->pwrctx);
  6197. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  6198. dev_priv->pwrctx = NULL;
  6199. }
  6200. }
  6201. static void ironlake_disable_rc6(struct drm_device *dev)
  6202. {
  6203. struct drm_i915_private *dev_priv = dev->dev_private;
  6204. if (I915_READ(PWRCTXA)) {
  6205. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  6206. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  6207. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  6208. 50);
  6209. I915_WRITE(PWRCTXA, 0);
  6210. POSTING_READ(PWRCTXA);
  6211. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  6212. POSTING_READ(RSTDBYCTL);
  6213. }
  6214. ironlake_teardown_rc6(dev);
  6215. }
  6216. static int ironlake_setup_rc6(struct drm_device *dev)
  6217. {
  6218. struct drm_i915_private *dev_priv = dev->dev_private;
  6219. if (dev_priv->renderctx == NULL)
  6220. dev_priv->renderctx = intel_alloc_context_page(dev);
  6221. if (!dev_priv->renderctx)
  6222. return -ENOMEM;
  6223. if (dev_priv->pwrctx == NULL)
  6224. dev_priv->pwrctx = intel_alloc_context_page(dev);
  6225. if (!dev_priv->pwrctx) {
  6226. ironlake_teardown_rc6(dev);
  6227. return -ENOMEM;
  6228. }
  6229. return 0;
  6230. }
  6231. void ironlake_enable_rc6(struct drm_device *dev)
  6232. {
  6233. struct drm_i915_private *dev_priv = dev->dev_private;
  6234. int ret;
  6235. /* rc6 disabled by default due to repeated reports of hanging during
  6236. * boot and resume.
  6237. */
  6238. if (!i915_enable_rc6)
  6239. return;
  6240. mutex_lock(&dev->struct_mutex);
  6241. ret = ironlake_setup_rc6(dev);
  6242. if (ret) {
  6243. mutex_unlock(&dev->struct_mutex);
  6244. return;
  6245. }
  6246. /*
  6247. * GPU can automatically power down the render unit if given a page
  6248. * to save state.
  6249. */
  6250. ret = BEGIN_LP_RING(6);
  6251. if (ret) {
  6252. ironlake_teardown_rc6(dev);
  6253. mutex_unlock(&dev->struct_mutex);
  6254. return;
  6255. }
  6256. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  6257. OUT_RING(MI_SET_CONTEXT);
  6258. OUT_RING(dev_priv->renderctx->gtt_offset |
  6259. MI_MM_SPACE_GTT |
  6260. MI_SAVE_EXT_STATE_EN |
  6261. MI_RESTORE_EXT_STATE_EN |
  6262. MI_RESTORE_INHIBIT);
  6263. OUT_RING(MI_SUSPEND_FLUSH);
  6264. OUT_RING(MI_NOOP);
  6265. OUT_RING(MI_FLUSH);
  6266. ADVANCE_LP_RING();
  6267. /*
  6268. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  6269. * does an implicit flush, combined with MI_FLUSH above, it should be
  6270. * safe to assume that renderctx is valid
  6271. */
  6272. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  6273. if (ret) {
  6274. DRM_ERROR("failed to enable ironlake power power savings\n");
  6275. ironlake_teardown_rc6(dev);
  6276. mutex_unlock(&dev->struct_mutex);
  6277. return;
  6278. }
  6279. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  6280. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  6281. mutex_unlock(&dev->struct_mutex);
  6282. }
  6283. /* Set up chip specific display functions */
  6284. static void intel_init_display(struct drm_device *dev)
  6285. {
  6286. struct drm_i915_private *dev_priv = dev->dev_private;
  6287. /* We always want a DPMS function */
  6288. if (HAS_PCH_SPLIT(dev)) {
  6289. dev_priv->display.dpms = ironlake_crtc_dpms;
  6290. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6291. } else {
  6292. dev_priv->display.dpms = i9xx_crtc_dpms;
  6293. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6294. }
  6295. if (I915_HAS_FBC(dev)) {
  6296. if (HAS_PCH_SPLIT(dev)) {
  6297. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  6298. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  6299. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  6300. } else if (IS_GM45(dev)) {
  6301. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  6302. dev_priv->display.enable_fbc = g4x_enable_fbc;
  6303. dev_priv->display.disable_fbc = g4x_disable_fbc;
  6304. } else if (IS_CRESTLINE(dev)) {
  6305. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  6306. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  6307. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  6308. }
  6309. /* 855GM needs testing */
  6310. }
  6311. /* Returns the core display clock speed */
  6312. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
  6313. dev_priv->display.get_display_clock_speed =
  6314. i945_get_display_clock_speed;
  6315. else if (IS_I915G(dev))
  6316. dev_priv->display.get_display_clock_speed =
  6317. i915_get_display_clock_speed;
  6318. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6319. dev_priv->display.get_display_clock_speed =
  6320. i9xx_misc_get_display_clock_speed;
  6321. else if (IS_I915GM(dev))
  6322. dev_priv->display.get_display_clock_speed =
  6323. i915gm_get_display_clock_speed;
  6324. else if (IS_I865G(dev))
  6325. dev_priv->display.get_display_clock_speed =
  6326. i865_get_display_clock_speed;
  6327. else if (IS_I85X(dev))
  6328. dev_priv->display.get_display_clock_speed =
  6329. i855_get_display_clock_speed;
  6330. else /* 852, 830 */
  6331. dev_priv->display.get_display_clock_speed =
  6332. i830_get_display_clock_speed;
  6333. /* For FIFO watermark updates */
  6334. if (HAS_PCH_SPLIT(dev)) {
  6335. if (IS_GEN5(dev)) {
  6336. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  6337. dev_priv->display.update_wm = ironlake_update_wm;
  6338. else {
  6339. DRM_DEBUG_KMS("Failed to get proper latency. "
  6340. "Disable CxSR\n");
  6341. dev_priv->display.update_wm = NULL;
  6342. }
  6343. } else if (IS_GEN6(dev)) {
  6344. if (SNB_READ_WM0_LATENCY()) {
  6345. dev_priv->display.update_wm = sandybridge_update_wm;
  6346. } else {
  6347. DRM_DEBUG_KMS("Failed to read display plane latency. "
  6348. "Disable CxSR\n");
  6349. dev_priv->display.update_wm = NULL;
  6350. }
  6351. } else
  6352. dev_priv->display.update_wm = NULL;
  6353. } else if (IS_PINEVIEW(dev)) {
  6354. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  6355. dev_priv->is_ddr3,
  6356. dev_priv->fsb_freq,
  6357. dev_priv->mem_freq)) {
  6358. DRM_INFO("failed to find known CxSR latency "
  6359. "(found ddr%s fsb freq %d, mem freq %d), "
  6360. "disabling CxSR\n",
  6361. (dev_priv->is_ddr3 == 1) ? "3": "2",
  6362. dev_priv->fsb_freq, dev_priv->mem_freq);
  6363. /* Disable CxSR and never update its watermark again */
  6364. pineview_disable_cxsr(dev);
  6365. dev_priv->display.update_wm = NULL;
  6366. } else
  6367. dev_priv->display.update_wm = pineview_update_wm;
  6368. } else if (IS_G4X(dev))
  6369. dev_priv->display.update_wm = g4x_update_wm;
  6370. else if (IS_GEN4(dev))
  6371. dev_priv->display.update_wm = i965_update_wm;
  6372. else if (IS_GEN3(dev)) {
  6373. dev_priv->display.update_wm = i9xx_update_wm;
  6374. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  6375. } else if (IS_I85X(dev)) {
  6376. dev_priv->display.update_wm = i9xx_update_wm;
  6377. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  6378. } else {
  6379. dev_priv->display.update_wm = i830_update_wm;
  6380. if (IS_845G(dev))
  6381. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  6382. else
  6383. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  6384. }
  6385. }
  6386. /*
  6387. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6388. * resume, or other times. This quirk makes sure that's the case for
  6389. * affected systems.
  6390. */
  6391. static void quirk_pipea_force (struct drm_device *dev)
  6392. {
  6393. struct drm_i915_private *dev_priv = dev->dev_private;
  6394. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6395. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  6396. }
  6397. struct intel_quirk {
  6398. int device;
  6399. int subsystem_vendor;
  6400. int subsystem_device;
  6401. void (*hook)(struct drm_device *dev);
  6402. };
  6403. struct intel_quirk intel_quirks[] = {
  6404. /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
  6405. { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
  6406. /* HP Mini needs pipe A force quirk (LP: #322104) */
  6407. { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
  6408. /* Thinkpad R31 needs pipe A force quirk */
  6409. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  6410. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  6411. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  6412. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  6413. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  6414. /* ThinkPad X40 needs pipe A force quirk */
  6415. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  6416. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  6417. /* 855 & before need to leave pipe A & dpll A up */
  6418. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6419. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6420. };
  6421. static void intel_init_quirks(struct drm_device *dev)
  6422. {
  6423. struct pci_dev *d = dev->pdev;
  6424. int i;
  6425. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  6426. struct intel_quirk *q = &intel_quirks[i];
  6427. if (d->device == q->device &&
  6428. (d->subsystem_vendor == q->subsystem_vendor ||
  6429. q->subsystem_vendor == PCI_ANY_ID) &&
  6430. (d->subsystem_device == q->subsystem_device ||
  6431. q->subsystem_device == PCI_ANY_ID))
  6432. q->hook(dev);
  6433. }
  6434. }
  6435. /* Disable the VGA plane that we never use */
  6436. static void i915_disable_vga(struct drm_device *dev)
  6437. {
  6438. struct drm_i915_private *dev_priv = dev->dev_private;
  6439. u8 sr1;
  6440. u32 vga_reg;
  6441. if (HAS_PCH_SPLIT(dev))
  6442. vga_reg = CPU_VGACNTRL;
  6443. else
  6444. vga_reg = VGACNTRL;
  6445. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  6446. outb(1, VGA_SR_INDEX);
  6447. sr1 = inb(VGA_SR_DATA);
  6448. outb(sr1 | 1<<5, VGA_SR_DATA);
  6449. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  6450. udelay(300);
  6451. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  6452. POSTING_READ(vga_reg);
  6453. }
  6454. void intel_modeset_init(struct drm_device *dev)
  6455. {
  6456. struct drm_i915_private *dev_priv = dev->dev_private;
  6457. int i;
  6458. drm_mode_config_init(dev);
  6459. dev->mode_config.min_width = 0;
  6460. dev->mode_config.min_height = 0;
  6461. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  6462. intel_init_quirks(dev);
  6463. intel_init_display(dev);
  6464. if (IS_GEN2(dev)) {
  6465. dev->mode_config.max_width = 2048;
  6466. dev->mode_config.max_height = 2048;
  6467. } else if (IS_GEN3(dev)) {
  6468. dev->mode_config.max_width = 4096;
  6469. dev->mode_config.max_height = 4096;
  6470. } else {
  6471. dev->mode_config.max_width = 8192;
  6472. dev->mode_config.max_height = 8192;
  6473. }
  6474. dev->mode_config.fb_base = dev->agp->base;
  6475. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  6476. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  6477. for (i = 0; i < dev_priv->num_pipe; i++) {
  6478. intel_crtc_init(dev, i);
  6479. }
  6480. /* Just disable it once at startup */
  6481. i915_disable_vga(dev);
  6482. intel_setup_outputs(dev);
  6483. intel_enable_clock_gating(dev);
  6484. if (IS_IRONLAKE_M(dev)) {
  6485. ironlake_enable_drps(dev);
  6486. intel_init_emon(dev);
  6487. }
  6488. if (IS_GEN6(dev))
  6489. gen6_enable_rps(dev_priv);
  6490. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  6491. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  6492. (unsigned long)dev);
  6493. }
  6494. void intel_modeset_gem_init(struct drm_device *dev)
  6495. {
  6496. if (IS_IRONLAKE_M(dev))
  6497. ironlake_enable_rc6(dev);
  6498. intel_setup_overlay(dev);
  6499. }
  6500. void intel_modeset_cleanup(struct drm_device *dev)
  6501. {
  6502. struct drm_i915_private *dev_priv = dev->dev_private;
  6503. struct drm_crtc *crtc;
  6504. struct intel_crtc *intel_crtc;
  6505. drm_kms_helper_poll_fini(dev);
  6506. mutex_lock(&dev->struct_mutex);
  6507. intel_unregister_dsm_handler();
  6508. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6509. /* Skip inactive CRTCs */
  6510. if (!crtc->fb)
  6511. continue;
  6512. intel_crtc = to_intel_crtc(crtc);
  6513. intel_increase_pllclock(crtc);
  6514. }
  6515. if (dev_priv->display.disable_fbc)
  6516. dev_priv->display.disable_fbc(dev);
  6517. if (IS_IRONLAKE_M(dev))
  6518. ironlake_disable_drps(dev);
  6519. if (IS_GEN6(dev))
  6520. gen6_disable_rps(dev);
  6521. if (IS_IRONLAKE_M(dev))
  6522. ironlake_disable_rc6(dev);
  6523. mutex_unlock(&dev->struct_mutex);
  6524. /* Disable the irq before mode object teardown, for the irq might
  6525. * enqueue unpin/hotplug work. */
  6526. drm_irq_uninstall(dev);
  6527. cancel_work_sync(&dev_priv->hotplug_work);
  6528. /* Shut off idle work before the crtcs get freed. */
  6529. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6530. intel_crtc = to_intel_crtc(crtc);
  6531. del_timer_sync(&intel_crtc->idle_timer);
  6532. }
  6533. del_timer_sync(&dev_priv->idle_timer);
  6534. cancel_work_sync(&dev_priv->idle_work);
  6535. drm_mode_config_cleanup(dev);
  6536. }
  6537. /*
  6538. * Return which encoder is currently attached for connector.
  6539. */
  6540. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  6541. {
  6542. return &intel_attached_encoder(connector)->base;
  6543. }
  6544. void intel_connector_attach_encoder(struct intel_connector *connector,
  6545. struct intel_encoder *encoder)
  6546. {
  6547. connector->encoder = encoder;
  6548. drm_mode_connector_attach_encoder(&connector->base,
  6549. &encoder->base);
  6550. }
  6551. /*
  6552. * set vga decode state - true == enable VGA decode
  6553. */
  6554. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  6555. {
  6556. struct drm_i915_private *dev_priv = dev->dev_private;
  6557. u16 gmch_ctrl;
  6558. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  6559. if (state)
  6560. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  6561. else
  6562. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  6563. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  6564. return 0;
  6565. }
  6566. #ifdef CONFIG_DEBUG_FS
  6567. #include <linux/seq_file.h>
  6568. struct intel_display_error_state {
  6569. struct intel_cursor_error_state {
  6570. u32 control;
  6571. u32 position;
  6572. u32 base;
  6573. u32 size;
  6574. } cursor[2];
  6575. struct intel_pipe_error_state {
  6576. u32 conf;
  6577. u32 source;
  6578. u32 htotal;
  6579. u32 hblank;
  6580. u32 hsync;
  6581. u32 vtotal;
  6582. u32 vblank;
  6583. u32 vsync;
  6584. } pipe[2];
  6585. struct intel_plane_error_state {
  6586. u32 control;
  6587. u32 stride;
  6588. u32 size;
  6589. u32 pos;
  6590. u32 addr;
  6591. u32 surface;
  6592. u32 tile_offset;
  6593. } plane[2];
  6594. };
  6595. struct intel_display_error_state *
  6596. intel_display_capture_error_state(struct drm_device *dev)
  6597. {
  6598. drm_i915_private_t *dev_priv = dev->dev_private;
  6599. struct intel_display_error_state *error;
  6600. int i;
  6601. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  6602. if (error == NULL)
  6603. return NULL;
  6604. for (i = 0; i < 2; i++) {
  6605. error->cursor[i].control = I915_READ(CURCNTR(i));
  6606. error->cursor[i].position = I915_READ(CURPOS(i));
  6607. error->cursor[i].base = I915_READ(CURBASE(i));
  6608. error->plane[i].control = I915_READ(DSPCNTR(i));
  6609. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  6610. error->plane[i].size = I915_READ(DSPSIZE(i));
  6611. error->plane[i].pos= I915_READ(DSPPOS(i));
  6612. error->plane[i].addr = I915_READ(DSPADDR(i));
  6613. if (INTEL_INFO(dev)->gen >= 4) {
  6614. error->plane[i].surface = I915_READ(DSPSURF(i));
  6615. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  6616. }
  6617. error->pipe[i].conf = I915_READ(PIPECONF(i));
  6618. error->pipe[i].source = I915_READ(PIPESRC(i));
  6619. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  6620. error->pipe[i].hblank = I915_READ(HBLANK(i));
  6621. error->pipe[i].hsync = I915_READ(HSYNC(i));
  6622. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  6623. error->pipe[i].vblank = I915_READ(VBLANK(i));
  6624. error->pipe[i].vsync = I915_READ(VSYNC(i));
  6625. }
  6626. return error;
  6627. }
  6628. void
  6629. intel_display_print_error_state(struct seq_file *m,
  6630. struct drm_device *dev,
  6631. struct intel_display_error_state *error)
  6632. {
  6633. int i;
  6634. for (i = 0; i < 2; i++) {
  6635. seq_printf(m, "Pipe [%d]:\n", i);
  6636. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  6637. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  6638. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  6639. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  6640. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  6641. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  6642. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  6643. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  6644. seq_printf(m, "Plane [%d]:\n", i);
  6645. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  6646. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  6647. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  6648. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  6649. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  6650. if (INTEL_INFO(dev)->gen >= 4) {
  6651. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  6652. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  6653. }
  6654. seq_printf(m, "Cursor [%d]:\n", i);
  6655. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  6656. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  6657. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  6658. }
  6659. }
  6660. #endif