md.c 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. This program is free software; you can redistribute it and/or modify
  17. it under the terms of the GNU General Public License as published by
  18. the Free Software Foundation; either version 2, or (at your option)
  19. any later version.
  20. You should have received a copy of the GNU General Public License
  21. (for example /usr/src/linux/COPYING); if not, write to the Free
  22. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/config.h>
  26. #include <linux/linkage.h>
  27. #include <linux/raid/md.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/devfs_fs_kernel.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/suspend.h>
  32. #include <linux/init.h>
  33. #ifdef CONFIG_KMOD
  34. #include <linux/kmod.h>
  35. #endif
  36. #include <asm/unaligned.h>
  37. #define MAJOR_NR MD_MAJOR
  38. #define MD_DRIVER
  39. /* 63 partitions with the alternate major number (mdp) */
  40. #define MdpMinorShift 6
  41. #define DEBUG 0
  42. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  43. #ifndef MODULE
  44. static void autostart_arrays (int part);
  45. #endif
  46. static mdk_personality_t *pers[MAX_PERSONALITY];
  47. static DEFINE_SPINLOCK(pers_lock);
  48. /*
  49. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  50. * is 1000 KB/sec, so the extra system load does not show up that much.
  51. * Increase it if you want to have more _guaranteed_ speed. Note that
  52. * the RAID driver will use the maximum available bandwith if the IO
  53. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  54. * speed limit - in case reconstruction slows down your system despite
  55. * idle IO detection.
  56. *
  57. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  58. */
  59. static int sysctl_speed_limit_min = 1000;
  60. static int sysctl_speed_limit_max = 200000;
  61. static struct ctl_table_header *raid_table_header;
  62. static ctl_table raid_table[] = {
  63. {
  64. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  65. .procname = "speed_limit_min",
  66. .data = &sysctl_speed_limit_min,
  67. .maxlen = sizeof(int),
  68. .mode = 0644,
  69. .proc_handler = &proc_dointvec,
  70. },
  71. {
  72. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  73. .procname = "speed_limit_max",
  74. .data = &sysctl_speed_limit_max,
  75. .maxlen = sizeof(int),
  76. .mode = 0644,
  77. .proc_handler = &proc_dointvec,
  78. },
  79. { .ctl_name = 0 }
  80. };
  81. static ctl_table raid_dir_table[] = {
  82. {
  83. .ctl_name = DEV_RAID,
  84. .procname = "raid",
  85. .maxlen = 0,
  86. .mode = 0555,
  87. .child = raid_table,
  88. },
  89. { .ctl_name = 0 }
  90. };
  91. static ctl_table raid_root_table[] = {
  92. {
  93. .ctl_name = CTL_DEV,
  94. .procname = "dev",
  95. .maxlen = 0,
  96. .mode = 0555,
  97. .child = raid_dir_table,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static struct block_device_operations md_fops;
  102. /*
  103. * Enables to iterate over all existing md arrays
  104. * all_mddevs_lock protects this list.
  105. */
  106. static LIST_HEAD(all_mddevs);
  107. static DEFINE_SPINLOCK(all_mddevs_lock);
  108. /*
  109. * iterates through all used mddevs in the system.
  110. * We take care to grab the all_mddevs_lock whenever navigating
  111. * the list, and to always hold a refcount when unlocked.
  112. * Any code which breaks out of this loop while own
  113. * a reference to the current mddev and must mddev_put it.
  114. */
  115. #define ITERATE_MDDEV(mddev,tmp) \
  116. \
  117. for (({ spin_lock(&all_mddevs_lock); \
  118. tmp = all_mddevs.next; \
  119. mddev = NULL;}); \
  120. ({ if (tmp != &all_mddevs) \
  121. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  122. spin_unlock(&all_mddevs_lock); \
  123. if (mddev) mddev_put(mddev); \
  124. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  125. tmp != &all_mddevs;}); \
  126. ({ spin_lock(&all_mddevs_lock); \
  127. tmp = tmp->next;}) \
  128. )
  129. static int md_fail_request (request_queue_t *q, struct bio *bio)
  130. {
  131. bio_io_error(bio, bio->bi_size);
  132. return 0;
  133. }
  134. static inline mddev_t *mddev_get(mddev_t *mddev)
  135. {
  136. atomic_inc(&mddev->active);
  137. return mddev;
  138. }
  139. static void mddev_put(mddev_t *mddev)
  140. {
  141. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  142. return;
  143. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  144. list_del(&mddev->all_mddevs);
  145. blk_put_queue(mddev->queue);
  146. kfree(mddev);
  147. }
  148. spin_unlock(&all_mddevs_lock);
  149. }
  150. static mddev_t * mddev_find(dev_t unit)
  151. {
  152. mddev_t *mddev, *new = NULL;
  153. retry:
  154. spin_lock(&all_mddevs_lock);
  155. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  156. if (mddev->unit == unit) {
  157. mddev_get(mddev);
  158. spin_unlock(&all_mddevs_lock);
  159. if (new)
  160. kfree(new);
  161. return mddev;
  162. }
  163. if (new) {
  164. list_add(&new->all_mddevs, &all_mddevs);
  165. spin_unlock(&all_mddevs_lock);
  166. return new;
  167. }
  168. spin_unlock(&all_mddevs_lock);
  169. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  170. if (!new)
  171. return NULL;
  172. memset(new, 0, sizeof(*new));
  173. new->unit = unit;
  174. if (MAJOR(unit) == MD_MAJOR)
  175. new->md_minor = MINOR(unit);
  176. else
  177. new->md_minor = MINOR(unit) >> MdpMinorShift;
  178. init_MUTEX(&new->reconfig_sem);
  179. INIT_LIST_HEAD(&new->disks);
  180. INIT_LIST_HEAD(&new->all_mddevs);
  181. init_timer(&new->safemode_timer);
  182. atomic_set(&new->active, 1);
  183. new->queue = blk_alloc_queue(GFP_KERNEL);
  184. if (!new->queue) {
  185. kfree(new);
  186. return NULL;
  187. }
  188. blk_queue_make_request(new->queue, md_fail_request);
  189. goto retry;
  190. }
  191. static inline int mddev_lock(mddev_t * mddev)
  192. {
  193. return down_interruptible(&mddev->reconfig_sem);
  194. }
  195. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  196. {
  197. down(&mddev->reconfig_sem);
  198. }
  199. static inline int mddev_trylock(mddev_t * mddev)
  200. {
  201. return down_trylock(&mddev->reconfig_sem);
  202. }
  203. static inline void mddev_unlock(mddev_t * mddev)
  204. {
  205. up(&mddev->reconfig_sem);
  206. if (mddev->thread)
  207. md_wakeup_thread(mddev->thread);
  208. }
  209. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  210. {
  211. mdk_rdev_t * rdev;
  212. struct list_head *tmp;
  213. ITERATE_RDEV(mddev,rdev,tmp) {
  214. if (rdev->desc_nr == nr)
  215. return rdev;
  216. }
  217. return NULL;
  218. }
  219. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  220. {
  221. struct list_head *tmp;
  222. mdk_rdev_t *rdev;
  223. ITERATE_RDEV(mddev,rdev,tmp) {
  224. if (rdev->bdev->bd_dev == dev)
  225. return rdev;
  226. }
  227. return NULL;
  228. }
  229. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  230. {
  231. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  232. return MD_NEW_SIZE_BLOCKS(size);
  233. }
  234. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  235. {
  236. sector_t size;
  237. size = rdev->sb_offset;
  238. if (chunk_size)
  239. size &= ~((sector_t)chunk_size/1024 - 1);
  240. return size;
  241. }
  242. static int alloc_disk_sb(mdk_rdev_t * rdev)
  243. {
  244. if (rdev->sb_page)
  245. MD_BUG();
  246. rdev->sb_page = alloc_page(GFP_KERNEL);
  247. if (!rdev->sb_page) {
  248. printk(KERN_ALERT "md: out of memory.\n");
  249. return -EINVAL;
  250. }
  251. return 0;
  252. }
  253. static void free_disk_sb(mdk_rdev_t * rdev)
  254. {
  255. if (rdev->sb_page) {
  256. page_cache_release(rdev->sb_page);
  257. rdev->sb_loaded = 0;
  258. rdev->sb_page = NULL;
  259. rdev->sb_offset = 0;
  260. rdev->size = 0;
  261. }
  262. }
  263. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  264. {
  265. if (bio->bi_size)
  266. return 1;
  267. complete((struct completion*)bio->bi_private);
  268. return 0;
  269. }
  270. static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  271. struct page *page, int rw)
  272. {
  273. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  274. struct completion event;
  275. int ret;
  276. rw |= (1 << BIO_RW_SYNC);
  277. bio->bi_bdev = bdev;
  278. bio->bi_sector = sector;
  279. bio_add_page(bio, page, size, 0);
  280. init_completion(&event);
  281. bio->bi_private = &event;
  282. bio->bi_end_io = bi_complete;
  283. submit_bio(rw, bio);
  284. wait_for_completion(&event);
  285. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  286. bio_put(bio);
  287. return ret;
  288. }
  289. static int read_disk_sb(mdk_rdev_t * rdev)
  290. {
  291. char b[BDEVNAME_SIZE];
  292. if (!rdev->sb_page) {
  293. MD_BUG();
  294. return -EINVAL;
  295. }
  296. if (rdev->sb_loaded)
  297. return 0;
  298. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  299. goto fail;
  300. rdev->sb_loaded = 1;
  301. return 0;
  302. fail:
  303. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  304. bdevname(rdev->bdev,b));
  305. return -EINVAL;
  306. }
  307. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  308. {
  309. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  310. (sb1->set_uuid1 == sb2->set_uuid1) &&
  311. (sb1->set_uuid2 == sb2->set_uuid2) &&
  312. (sb1->set_uuid3 == sb2->set_uuid3))
  313. return 1;
  314. return 0;
  315. }
  316. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  317. {
  318. int ret;
  319. mdp_super_t *tmp1, *tmp2;
  320. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  321. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  322. if (!tmp1 || !tmp2) {
  323. ret = 0;
  324. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  325. goto abort;
  326. }
  327. *tmp1 = *sb1;
  328. *tmp2 = *sb2;
  329. /*
  330. * nr_disks is not constant
  331. */
  332. tmp1->nr_disks = 0;
  333. tmp2->nr_disks = 0;
  334. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  335. ret = 0;
  336. else
  337. ret = 1;
  338. abort:
  339. if (tmp1)
  340. kfree(tmp1);
  341. if (tmp2)
  342. kfree(tmp2);
  343. return ret;
  344. }
  345. static unsigned int calc_sb_csum(mdp_super_t * sb)
  346. {
  347. unsigned int disk_csum, csum;
  348. disk_csum = sb->sb_csum;
  349. sb->sb_csum = 0;
  350. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  351. sb->sb_csum = disk_csum;
  352. return csum;
  353. }
  354. /*
  355. * Handle superblock details.
  356. * We want to be able to handle multiple superblock formats
  357. * so we have a common interface to them all, and an array of
  358. * different handlers.
  359. * We rely on user-space to write the initial superblock, and support
  360. * reading and updating of superblocks.
  361. * Interface methods are:
  362. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  363. * loads and validates a superblock on dev.
  364. * if refdev != NULL, compare superblocks on both devices
  365. * Return:
  366. * 0 - dev has a superblock that is compatible with refdev
  367. * 1 - dev has a superblock that is compatible and newer than refdev
  368. * so dev should be used as the refdev in future
  369. * -EINVAL superblock incompatible or invalid
  370. * -othererror e.g. -EIO
  371. *
  372. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  373. * Verify that dev is acceptable into mddev.
  374. * The first time, mddev->raid_disks will be 0, and data from
  375. * dev should be merged in. Subsequent calls check that dev
  376. * is new enough. Return 0 or -EINVAL
  377. *
  378. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  379. * Update the superblock for rdev with data in mddev
  380. * This does not write to disc.
  381. *
  382. */
  383. struct super_type {
  384. char *name;
  385. struct module *owner;
  386. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  387. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  388. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  389. };
  390. /*
  391. * load_super for 0.90.0
  392. */
  393. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  394. {
  395. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  396. mdp_super_t *sb;
  397. int ret;
  398. sector_t sb_offset;
  399. /*
  400. * Calculate the position of the superblock,
  401. * it's at the end of the disk.
  402. *
  403. * It also happens to be a multiple of 4Kb.
  404. */
  405. sb_offset = calc_dev_sboffset(rdev->bdev);
  406. rdev->sb_offset = sb_offset;
  407. ret = read_disk_sb(rdev);
  408. if (ret) return ret;
  409. ret = -EINVAL;
  410. bdevname(rdev->bdev, b);
  411. sb = (mdp_super_t*)page_address(rdev->sb_page);
  412. if (sb->md_magic != MD_SB_MAGIC) {
  413. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  414. b);
  415. goto abort;
  416. }
  417. if (sb->major_version != 0 ||
  418. sb->minor_version != 90) {
  419. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  420. sb->major_version, sb->minor_version,
  421. b);
  422. goto abort;
  423. }
  424. if (sb->raid_disks <= 0)
  425. goto abort;
  426. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  427. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  428. b);
  429. goto abort;
  430. }
  431. rdev->preferred_minor = sb->md_minor;
  432. rdev->data_offset = 0;
  433. if (sb->level == LEVEL_MULTIPATH)
  434. rdev->desc_nr = -1;
  435. else
  436. rdev->desc_nr = sb->this_disk.number;
  437. if (refdev == 0)
  438. ret = 1;
  439. else {
  440. __u64 ev1, ev2;
  441. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  442. if (!uuid_equal(refsb, sb)) {
  443. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  444. b, bdevname(refdev->bdev,b2));
  445. goto abort;
  446. }
  447. if (!sb_equal(refsb, sb)) {
  448. printk(KERN_WARNING "md: %s has same UUID"
  449. " but different superblock to %s\n",
  450. b, bdevname(refdev->bdev, b2));
  451. goto abort;
  452. }
  453. ev1 = md_event(sb);
  454. ev2 = md_event(refsb);
  455. if (ev1 > ev2)
  456. ret = 1;
  457. else
  458. ret = 0;
  459. }
  460. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  461. abort:
  462. return ret;
  463. }
  464. /*
  465. * validate_super for 0.90.0
  466. */
  467. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  468. {
  469. mdp_disk_t *desc;
  470. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  471. if (mddev->raid_disks == 0) {
  472. mddev->major_version = 0;
  473. mddev->minor_version = sb->minor_version;
  474. mddev->patch_version = sb->patch_version;
  475. mddev->persistent = ! sb->not_persistent;
  476. mddev->chunk_size = sb->chunk_size;
  477. mddev->ctime = sb->ctime;
  478. mddev->utime = sb->utime;
  479. mddev->level = sb->level;
  480. mddev->layout = sb->layout;
  481. mddev->raid_disks = sb->raid_disks;
  482. mddev->size = sb->size;
  483. mddev->events = md_event(sb);
  484. if (sb->state & (1<<MD_SB_CLEAN))
  485. mddev->recovery_cp = MaxSector;
  486. else {
  487. if (sb->events_hi == sb->cp_events_hi &&
  488. sb->events_lo == sb->cp_events_lo) {
  489. mddev->recovery_cp = sb->recovery_cp;
  490. } else
  491. mddev->recovery_cp = 0;
  492. }
  493. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  494. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  495. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  496. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  497. mddev->max_disks = MD_SB_DISKS;
  498. } else {
  499. __u64 ev1;
  500. ev1 = md_event(sb);
  501. ++ev1;
  502. if (ev1 < mddev->events)
  503. return -EINVAL;
  504. }
  505. if (mddev->level != LEVEL_MULTIPATH) {
  506. rdev->raid_disk = -1;
  507. rdev->in_sync = rdev->faulty = 0;
  508. desc = sb->disks + rdev->desc_nr;
  509. if (desc->state & (1<<MD_DISK_FAULTY))
  510. rdev->faulty = 1;
  511. else if (desc->state & (1<<MD_DISK_SYNC) &&
  512. desc->raid_disk < mddev->raid_disks) {
  513. rdev->in_sync = 1;
  514. rdev->raid_disk = desc->raid_disk;
  515. }
  516. }
  517. return 0;
  518. }
  519. /*
  520. * sync_super for 0.90.0
  521. */
  522. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  523. {
  524. mdp_super_t *sb;
  525. struct list_head *tmp;
  526. mdk_rdev_t *rdev2;
  527. int next_spare = mddev->raid_disks;
  528. /* make rdev->sb match mddev data..
  529. *
  530. * 1/ zero out disks
  531. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  532. * 3/ any empty disks < next_spare become removed
  533. *
  534. * disks[0] gets initialised to REMOVED because
  535. * we cannot be sure from other fields if it has
  536. * been initialised or not.
  537. */
  538. int i;
  539. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  540. sb = (mdp_super_t*)page_address(rdev->sb_page);
  541. memset(sb, 0, sizeof(*sb));
  542. sb->md_magic = MD_SB_MAGIC;
  543. sb->major_version = mddev->major_version;
  544. sb->minor_version = mddev->minor_version;
  545. sb->patch_version = mddev->patch_version;
  546. sb->gvalid_words = 0; /* ignored */
  547. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  548. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  549. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  550. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  551. sb->ctime = mddev->ctime;
  552. sb->level = mddev->level;
  553. sb->size = mddev->size;
  554. sb->raid_disks = mddev->raid_disks;
  555. sb->md_minor = mddev->md_minor;
  556. sb->not_persistent = !mddev->persistent;
  557. sb->utime = mddev->utime;
  558. sb->state = 0;
  559. sb->events_hi = (mddev->events>>32);
  560. sb->events_lo = (u32)mddev->events;
  561. if (mddev->in_sync)
  562. {
  563. sb->recovery_cp = mddev->recovery_cp;
  564. sb->cp_events_hi = (mddev->events>>32);
  565. sb->cp_events_lo = (u32)mddev->events;
  566. if (mddev->recovery_cp == MaxSector)
  567. sb->state = (1<< MD_SB_CLEAN);
  568. } else
  569. sb->recovery_cp = 0;
  570. sb->layout = mddev->layout;
  571. sb->chunk_size = mddev->chunk_size;
  572. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  573. ITERATE_RDEV(mddev,rdev2,tmp) {
  574. mdp_disk_t *d;
  575. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  576. rdev2->desc_nr = rdev2->raid_disk;
  577. else
  578. rdev2->desc_nr = next_spare++;
  579. d = &sb->disks[rdev2->desc_nr];
  580. nr_disks++;
  581. d->number = rdev2->desc_nr;
  582. d->major = MAJOR(rdev2->bdev->bd_dev);
  583. d->minor = MINOR(rdev2->bdev->bd_dev);
  584. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  585. d->raid_disk = rdev2->raid_disk;
  586. else
  587. d->raid_disk = rdev2->desc_nr; /* compatibility */
  588. if (rdev2->faulty) {
  589. d->state = (1<<MD_DISK_FAULTY);
  590. failed++;
  591. } else if (rdev2->in_sync) {
  592. d->state = (1<<MD_DISK_ACTIVE);
  593. d->state |= (1<<MD_DISK_SYNC);
  594. active++;
  595. working++;
  596. } else {
  597. d->state = 0;
  598. spare++;
  599. working++;
  600. }
  601. }
  602. /* now set the "removed" and "faulty" bits on any missing devices */
  603. for (i=0 ; i < mddev->raid_disks ; i++) {
  604. mdp_disk_t *d = &sb->disks[i];
  605. if (d->state == 0 && d->number == 0) {
  606. d->number = i;
  607. d->raid_disk = i;
  608. d->state = (1<<MD_DISK_REMOVED);
  609. d->state |= (1<<MD_DISK_FAULTY);
  610. failed++;
  611. }
  612. }
  613. sb->nr_disks = nr_disks;
  614. sb->active_disks = active;
  615. sb->working_disks = working;
  616. sb->failed_disks = failed;
  617. sb->spare_disks = spare;
  618. sb->this_disk = sb->disks[rdev->desc_nr];
  619. sb->sb_csum = calc_sb_csum(sb);
  620. }
  621. /*
  622. * version 1 superblock
  623. */
  624. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  625. {
  626. unsigned int disk_csum, csum;
  627. unsigned long long newcsum;
  628. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  629. unsigned int *isuper = (unsigned int*)sb;
  630. int i;
  631. disk_csum = sb->sb_csum;
  632. sb->sb_csum = 0;
  633. newcsum = 0;
  634. for (i=0; size>=4; size -= 4 )
  635. newcsum += le32_to_cpu(*isuper++);
  636. if (size == 2)
  637. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  638. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  639. sb->sb_csum = disk_csum;
  640. return cpu_to_le32(csum);
  641. }
  642. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  643. {
  644. struct mdp_superblock_1 *sb;
  645. int ret;
  646. sector_t sb_offset;
  647. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  648. /*
  649. * Calculate the position of the superblock.
  650. * It is always aligned to a 4K boundary and
  651. * depeding on minor_version, it can be:
  652. * 0: At least 8K, but less than 12K, from end of device
  653. * 1: At start of device
  654. * 2: 4K from start of device.
  655. */
  656. switch(minor_version) {
  657. case 0:
  658. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  659. sb_offset -= 8*2;
  660. sb_offset &= ~(4*2-1);
  661. /* convert from sectors to K */
  662. sb_offset /= 2;
  663. break;
  664. case 1:
  665. sb_offset = 0;
  666. break;
  667. case 2:
  668. sb_offset = 4;
  669. break;
  670. default:
  671. return -EINVAL;
  672. }
  673. rdev->sb_offset = sb_offset;
  674. ret = read_disk_sb(rdev);
  675. if (ret) return ret;
  676. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  677. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  678. sb->major_version != cpu_to_le32(1) ||
  679. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  680. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  681. sb->feature_map != 0)
  682. return -EINVAL;
  683. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  684. printk("md: invalid superblock checksum on %s\n",
  685. bdevname(rdev->bdev,b));
  686. return -EINVAL;
  687. }
  688. if (le64_to_cpu(sb->data_size) < 10) {
  689. printk("md: data_size too small on %s\n",
  690. bdevname(rdev->bdev,b));
  691. return -EINVAL;
  692. }
  693. rdev->preferred_minor = 0xffff;
  694. rdev->data_offset = le64_to_cpu(sb->data_offset);
  695. if (refdev == 0)
  696. return 1;
  697. else {
  698. __u64 ev1, ev2;
  699. struct mdp_superblock_1 *refsb =
  700. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  701. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  702. sb->level != refsb->level ||
  703. sb->layout != refsb->layout ||
  704. sb->chunksize != refsb->chunksize) {
  705. printk(KERN_WARNING "md: %s has strangely different"
  706. " superblock to %s\n",
  707. bdevname(rdev->bdev,b),
  708. bdevname(refdev->bdev,b2));
  709. return -EINVAL;
  710. }
  711. ev1 = le64_to_cpu(sb->events);
  712. ev2 = le64_to_cpu(refsb->events);
  713. if (ev1 > ev2)
  714. return 1;
  715. }
  716. if (minor_version)
  717. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  718. else
  719. rdev->size = rdev->sb_offset;
  720. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  721. return -EINVAL;
  722. rdev->size = le64_to_cpu(sb->data_size)/2;
  723. if (le32_to_cpu(sb->chunksize))
  724. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  725. return 0;
  726. }
  727. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  728. {
  729. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  730. if (mddev->raid_disks == 0) {
  731. mddev->major_version = 1;
  732. mddev->patch_version = 0;
  733. mddev->persistent = 1;
  734. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  735. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  736. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  737. mddev->level = le32_to_cpu(sb->level);
  738. mddev->layout = le32_to_cpu(sb->layout);
  739. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  740. mddev->size = le64_to_cpu(sb->size)/2;
  741. mddev->events = le64_to_cpu(sb->events);
  742. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  743. memcpy(mddev->uuid, sb->set_uuid, 16);
  744. mddev->max_disks = (4096-256)/2;
  745. } else {
  746. __u64 ev1;
  747. ev1 = le64_to_cpu(sb->events);
  748. ++ev1;
  749. if (ev1 < mddev->events)
  750. return -EINVAL;
  751. }
  752. if (mddev->level != LEVEL_MULTIPATH) {
  753. int role;
  754. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  755. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  756. switch(role) {
  757. case 0xffff: /* spare */
  758. rdev->in_sync = 0;
  759. rdev->faulty = 0;
  760. rdev->raid_disk = -1;
  761. break;
  762. case 0xfffe: /* faulty */
  763. rdev->in_sync = 0;
  764. rdev->faulty = 1;
  765. rdev->raid_disk = -1;
  766. break;
  767. default:
  768. rdev->in_sync = 1;
  769. rdev->faulty = 0;
  770. rdev->raid_disk = role;
  771. break;
  772. }
  773. }
  774. return 0;
  775. }
  776. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  777. {
  778. struct mdp_superblock_1 *sb;
  779. struct list_head *tmp;
  780. mdk_rdev_t *rdev2;
  781. int max_dev, i;
  782. /* make rdev->sb match mddev and rdev data. */
  783. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  784. sb->feature_map = 0;
  785. sb->pad0 = 0;
  786. memset(sb->pad1, 0, sizeof(sb->pad1));
  787. memset(sb->pad2, 0, sizeof(sb->pad2));
  788. memset(sb->pad3, 0, sizeof(sb->pad3));
  789. sb->utime = cpu_to_le64((__u64)mddev->utime);
  790. sb->events = cpu_to_le64(mddev->events);
  791. if (mddev->in_sync)
  792. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  793. else
  794. sb->resync_offset = cpu_to_le64(0);
  795. max_dev = 0;
  796. ITERATE_RDEV(mddev,rdev2,tmp)
  797. if (rdev2->desc_nr+1 > max_dev)
  798. max_dev = rdev2->desc_nr+1;
  799. sb->max_dev = cpu_to_le32(max_dev);
  800. for (i=0; i<max_dev;i++)
  801. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  802. ITERATE_RDEV(mddev,rdev2,tmp) {
  803. i = rdev2->desc_nr;
  804. if (rdev2->faulty)
  805. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  806. else if (rdev2->in_sync)
  807. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  808. else
  809. sb->dev_roles[i] = cpu_to_le16(0xffff);
  810. }
  811. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  812. sb->sb_csum = calc_sb_1_csum(sb);
  813. }
  814. static struct super_type super_types[] = {
  815. [0] = {
  816. .name = "0.90.0",
  817. .owner = THIS_MODULE,
  818. .load_super = super_90_load,
  819. .validate_super = super_90_validate,
  820. .sync_super = super_90_sync,
  821. },
  822. [1] = {
  823. .name = "md-1",
  824. .owner = THIS_MODULE,
  825. .load_super = super_1_load,
  826. .validate_super = super_1_validate,
  827. .sync_super = super_1_sync,
  828. },
  829. };
  830. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  831. {
  832. struct list_head *tmp;
  833. mdk_rdev_t *rdev;
  834. ITERATE_RDEV(mddev,rdev,tmp)
  835. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  836. return rdev;
  837. return NULL;
  838. }
  839. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  840. {
  841. struct list_head *tmp;
  842. mdk_rdev_t *rdev;
  843. ITERATE_RDEV(mddev1,rdev,tmp)
  844. if (match_dev_unit(mddev2, rdev))
  845. return 1;
  846. return 0;
  847. }
  848. static LIST_HEAD(pending_raid_disks);
  849. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  850. {
  851. mdk_rdev_t *same_pdev;
  852. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  853. if (rdev->mddev) {
  854. MD_BUG();
  855. return -EINVAL;
  856. }
  857. same_pdev = match_dev_unit(mddev, rdev);
  858. if (same_pdev)
  859. printk(KERN_WARNING
  860. "%s: WARNING: %s appears to be on the same physical"
  861. " disk as %s. True\n protection against single-disk"
  862. " failure might be compromised.\n",
  863. mdname(mddev), bdevname(rdev->bdev,b),
  864. bdevname(same_pdev->bdev,b2));
  865. /* Verify rdev->desc_nr is unique.
  866. * If it is -1, assign a free number, else
  867. * check number is not in use
  868. */
  869. if (rdev->desc_nr < 0) {
  870. int choice = 0;
  871. if (mddev->pers) choice = mddev->raid_disks;
  872. while (find_rdev_nr(mddev, choice))
  873. choice++;
  874. rdev->desc_nr = choice;
  875. } else {
  876. if (find_rdev_nr(mddev, rdev->desc_nr))
  877. return -EBUSY;
  878. }
  879. list_add(&rdev->same_set, &mddev->disks);
  880. rdev->mddev = mddev;
  881. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  882. return 0;
  883. }
  884. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  885. {
  886. char b[BDEVNAME_SIZE];
  887. if (!rdev->mddev) {
  888. MD_BUG();
  889. return;
  890. }
  891. list_del_init(&rdev->same_set);
  892. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  893. rdev->mddev = NULL;
  894. }
  895. /*
  896. * prevent the device from being mounted, repartitioned or
  897. * otherwise reused by a RAID array (or any other kernel
  898. * subsystem), by bd_claiming the device.
  899. */
  900. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  901. {
  902. int err = 0;
  903. struct block_device *bdev;
  904. char b[BDEVNAME_SIZE];
  905. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  906. if (IS_ERR(bdev)) {
  907. printk(KERN_ERR "md: could not open %s.\n",
  908. __bdevname(dev, b));
  909. return PTR_ERR(bdev);
  910. }
  911. err = bd_claim(bdev, rdev);
  912. if (err) {
  913. printk(KERN_ERR "md: could not bd_claim %s.\n",
  914. bdevname(bdev, b));
  915. blkdev_put(bdev);
  916. return err;
  917. }
  918. rdev->bdev = bdev;
  919. return err;
  920. }
  921. static void unlock_rdev(mdk_rdev_t *rdev)
  922. {
  923. struct block_device *bdev = rdev->bdev;
  924. rdev->bdev = NULL;
  925. if (!bdev)
  926. MD_BUG();
  927. bd_release(bdev);
  928. blkdev_put(bdev);
  929. }
  930. void md_autodetect_dev(dev_t dev);
  931. static void export_rdev(mdk_rdev_t * rdev)
  932. {
  933. char b[BDEVNAME_SIZE];
  934. printk(KERN_INFO "md: export_rdev(%s)\n",
  935. bdevname(rdev->bdev,b));
  936. if (rdev->mddev)
  937. MD_BUG();
  938. free_disk_sb(rdev);
  939. list_del_init(&rdev->same_set);
  940. #ifndef MODULE
  941. md_autodetect_dev(rdev->bdev->bd_dev);
  942. #endif
  943. unlock_rdev(rdev);
  944. kfree(rdev);
  945. }
  946. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  947. {
  948. unbind_rdev_from_array(rdev);
  949. export_rdev(rdev);
  950. }
  951. static void export_array(mddev_t *mddev)
  952. {
  953. struct list_head *tmp;
  954. mdk_rdev_t *rdev;
  955. ITERATE_RDEV(mddev,rdev,tmp) {
  956. if (!rdev->mddev) {
  957. MD_BUG();
  958. continue;
  959. }
  960. kick_rdev_from_array(rdev);
  961. }
  962. if (!list_empty(&mddev->disks))
  963. MD_BUG();
  964. mddev->raid_disks = 0;
  965. mddev->major_version = 0;
  966. }
  967. static void print_desc(mdp_disk_t *desc)
  968. {
  969. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  970. desc->major,desc->minor,desc->raid_disk,desc->state);
  971. }
  972. static void print_sb(mdp_super_t *sb)
  973. {
  974. int i;
  975. printk(KERN_INFO
  976. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  977. sb->major_version, sb->minor_version, sb->patch_version,
  978. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  979. sb->ctime);
  980. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  981. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  982. sb->md_minor, sb->layout, sb->chunk_size);
  983. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  984. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  985. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  986. sb->failed_disks, sb->spare_disks,
  987. sb->sb_csum, (unsigned long)sb->events_lo);
  988. printk(KERN_INFO);
  989. for (i = 0; i < MD_SB_DISKS; i++) {
  990. mdp_disk_t *desc;
  991. desc = sb->disks + i;
  992. if (desc->number || desc->major || desc->minor ||
  993. desc->raid_disk || (desc->state && (desc->state != 4))) {
  994. printk(" D %2d: ", i);
  995. print_desc(desc);
  996. }
  997. }
  998. printk(KERN_INFO "md: THIS: ");
  999. print_desc(&sb->this_disk);
  1000. }
  1001. static void print_rdev(mdk_rdev_t *rdev)
  1002. {
  1003. char b[BDEVNAME_SIZE];
  1004. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1005. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1006. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1007. if (rdev->sb_loaded) {
  1008. printk(KERN_INFO "md: rdev superblock:\n");
  1009. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1010. } else
  1011. printk(KERN_INFO "md: no rdev superblock!\n");
  1012. }
  1013. void md_print_devices(void)
  1014. {
  1015. struct list_head *tmp, *tmp2;
  1016. mdk_rdev_t *rdev;
  1017. mddev_t *mddev;
  1018. char b[BDEVNAME_SIZE];
  1019. printk("\n");
  1020. printk("md: **********************************\n");
  1021. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1022. printk("md: **********************************\n");
  1023. ITERATE_MDDEV(mddev,tmp) {
  1024. printk("%s: ", mdname(mddev));
  1025. ITERATE_RDEV(mddev,rdev,tmp2)
  1026. printk("<%s>", bdevname(rdev->bdev,b));
  1027. printk("\n");
  1028. ITERATE_RDEV(mddev,rdev,tmp2)
  1029. print_rdev(rdev);
  1030. }
  1031. printk("md: **********************************\n");
  1032. printk("\n");
  1033. }
  1034. static int write_disk_sb(mdk_rdev_t * rdev)
  1035. {
  1036. char b[BDEVNAME_SIZE];
  1037. if (!rdev->sb_loaded) {
  1038. MD_BUG();
  1039. return 1;
  1040. }
  1041. if (rdev->faulty) {
  1042. MD_BUG();
  1043. return 1;
  1044. }
  1045. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1046. bdevname(rdev->bdev,b),
  1047. (unsigned long long)rdev->sb_offset);
  1048. if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
  1049. return 0;
  1050. printk("md: write_disk_sb failed for device %s\n",
  1051. bdevname(rdev->bdev,b));
  1052. return 1;
  1053. }
  1054. static void sync_sbs(mddev_t * mddev)
  1055. {
  1056. mdk_rdev_t *rdev;
  1057. struct list_head *tmp;
  1058. ITERATE_RDEV(mddev,rdev,tmp) {
  1059. super_types[mddev->major_version].
  1060. sync_super(mddev, rdev);
  1061. rdev->sb_loaded = 1;
  1062. }
  1063. }
  1064. static void md_update_sb(mddev_t * mddev)
  1065. {
  1066. int err, count = 100;
  1067. struct list_head *tmp;
  1068. mdk_rdev_t *rdev;
  1069. mddev->sb_dirty = 0;
  1070. repeat:
  1071. mddev->utime = get_seconds();
  1072. mddev->events ++;
  1073. if (!mddev->events) {
  1074. /*
  1075. * oops, this 64-bit counter should never wrap.
  1076. * Either we are in around ~1 trillion A.C., assuming
  1077. * 1 reboot per second, or we have a bug:
  1078. */
  1079. MD_BUG();
  1080. mddev->events --;
  1081. }
  1082. sync_sbs(mddev);
  1083. /*
  1084. * do not write anything to disk if using
  1085. * nonpersistent superblocks
  1086. */
  1087. if (!mddev->persistent)
  1088. return;
  1089. dprintk(KERN_INFO
  1090. "md: updating %s RAID superblock on device (in sync %d)\n",
  1091. mdname(mddev),mddev->in_sync);
  1092. err = 0;
  1093. ITERATE_RDEV(mddev,rdev,tmp) {
  1094. char b[BDEVNAME_SIZE];
  1095. dprintk(KERN_INFO "md: ");
  1096. if (rdev->faulty)
  1097. dprintk("(skipping faulty ");
  1098. dprintk("%s ", bdevname(rdev->bdev,b));
  1099. if (!rdev->faulty) {
  1100. err += write_disk_sb(rdev);
  1101. } else
  1102. dprintk(")\n");
  1103. if (!err && mddev->level == LEVEL_MULTIPATH)
  1104. /* only need to write one superblock... */
  1105. break;
  1106. }
  1107. if (err) {
  1108. if (--count) {
  1109. printk(KERN_ERR "md: errors occurred during superblock"
  1110. " update, repeating\n");
  1111. goto repeat;
  1112. }
  1113. printk(KERN_ERR \
  1114. "md: excessive errors occurred during superblock update, exiting\n");
  1115. }
  1116. }
  1117. /*
  1118. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1119. *
  1120. * mark the device faulty if:
  1121. *
  1122. * - the device is nonexistent (zero size)
  1123. * - the device has no valid superblock
  1124. *
  1125. * a faulty rdev _never_ has rdev->sb set.
  1126. */
  1127. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1128. {
  1129. char b[BDEVNAME_SIZE];
  1130. int err;
  1131. mdk_rdev_t *rdev;
  1132. sector_t size;
  1133. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1134. if (!rdev) {
  1135. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1136. return ERR_PTR(-ENOMEM);
  1137. }
  1138. memset(rdev, 0, sizeof(*rdev));
  1139. if ((err = alloc_disk_sb(rdev)))
  1140. goto abort_free;
  1141. err = lock_rdev(rdev, newdev);
  1142. if (err)
  1143. goto abort_free;
  1144. rdev->desc_nr = -1;
  1145. rdev->faulty = 0;
  1146. rdev->in_sync = 0;
  1147. rdev->data_offset = 0;
  1148. atomic_set(&rdev->nr_pending, 0);
  1149. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1150. if (!size) {
  1151. printk(KERN_WARNING
  1152. "md: %s has zero or unknown size, marking faulty!\n",
  1153. bdevname(rdev->bdev,b));
  1154. err = -EINVAL;
  1155. goto abort_free;
  1156. }
  1157. if (super_format >= 0) {
  1158. err = super_types[super_format].
  1159. load_super(rdev, NULL, super_minor);
  1160. if (err == -EINVAL) {
  1161. printk(KERN_WARNING
  1162. "md: %s has invalid sb, not importing!\n",
  1163. bdevname(rdev->bdev,b));
  1164. goto abort_free;
  1165. }
  1166. if (err < 0) {
  1167. printk(KERN_WARNING
  1168. "md: could not read %s's sb, not importing!\n",
  1169. bdevname(rdev->bdev,b));
  1170. goto abort_free;
  1171. }
  1172. }
  1173. INIT_LIST_HEAD(&rdev->same_set);
  1174. return rdev;
  1175. abort_free:
  1176. if (rdev->sb_page) {
  1177. if (rdev->bdev)
  1178. unlock_rdev(rdev);
  1179. free_disk_sb(rdev);
  1180. }
  1181. kfree(rdev);
  1182. return ERR_PTR(err);
  1183. }
  1184. /*
  1185. * Check a full RAID array for plausibility
  1186. */
  1187. static void analyze_sbs(mddev_t * mddev)
  1188. {
  1189. int i;
  1190. struct list_head *tmp;
  1191. mdk_rdev_t *rdev, *freshest;
  1192. char b[BDEVNAME_SIZE];
  1193. freshest = NULL;
  1194. ITERATE_RDEV(mddev,rdev,tmp)
  1195. switch (super_types[mddev->major_version].
  1196. load_super(rdev, freshest, mddev->minor_version)) {
  1197. case 1:
  1198. freshest = rdev;
  1199. break;
  1200. case 0:
  1201. break;
  1202. default:
  1203. printk( KERN_ERR \
  1204. "md: fatal superblock inconsistency in %s"
  1205. " -- removing from array\n",
  1206. bdevname(rdev->bdev,b));
  1207. kick_rdev_from_array(rdev);
  1208. }
  1209. super_types[mddev->major_version].
  1210. validate_super(mddev, freshest);
  1211. i = 0;
  1212. ITERATE_RDEV(mddev,rdev,tmp) {
  1213. if (rdev != freshest)
  1214. if (super_types[mddev->major_version].
  1215. validate_super(mddev, rdev)) {
  1216. printk(KERN_WARNING "md: kicking non-fresh %s"
  1217. " from array!\n",
  1218. bdevname(rdev->bdev,b));
  1219. kick_rdev_from_array(rdev);
  1220. continue;
  1221. }
  1222. if (mddev->level == LEVEL_MULTIPATH) {
  1223. rdev->desc_nr = i++;
  1224. rdev->raid_disk = rdev->desc_nr;
  1225. rdev->in_sync = 1;
  1226. }
  1227. }
  1228. if (mddev->recovery_cp != MaxSector &&
  1229. mddev->level >= 1)
  1230. printk(KERN_ERR "md: %s: raid array is not clean"
  1231. " -- starting background reconstruction\n",
  1232. mdname(mddev));
  1233. }
  1234. int mdp_major = 0;
  1235. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1236. {
  1237. static DECLARE_MUTEX(disks_sem);
  1238. mddev_t *mddev = mddev_find(dev);
  1239. struct gendisk *disk;
  1240. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1241. int shift = partitioned ? MdpMinorShift : 0;
  1242. int unit = MINOR(dev) >> shift;
  1243. if (!mddev)
  1244. return NULL;
  1245. down(&disks_sem);
  1246. if (mddev->gendisk) {
  1247. up(&disks_sem);
  1248. mddev_put(mddev);
  1249. return NULL;
  1250. }
  1251. disk = alloc_disk(1 << shift);
  1252. if (!disk) {
  1253. up(&disks_sem);
  1254. mddev_put(mddev);
  1255. return NULL;
  1256. }
  1257. disk->major = MAJOR(dev);
  1258. disk->first_minor = unit << shift;
  1259. if (partitioned) {
  1260. sprintf(disk->disk_name, "md_d%d", unit);
  1261. sprintf(disk->devfs_name, "md/d%d", unit);
  1262. } else {
  1263. sprintf(disk->disk_name, "md%d", unit);
  1264. sprintf(disk->devfs_name, "md/%d", unit);
  1265. }
  1266. disk->fops = &md_fops;
  1267. disk->private_data = mddev;
  1268. disk->queue = mddev->queue;
  1269. add_disk(disk);
  1270. mddev->gendisk = disk;
  1271. up(&disks_sem);
  1272. return NULL;
  1273. }
  1274. void md_wakeup_thread(mdk_thread_t *thread);
  1275. static void md_safemode_timeout(unsigned long data)
  1276. {
  1277. mddev_t *mddev = (mddev_t *) data;
  1278. mddev->safemode = 1;
  1279. md_wakeup_thread(mddev->thread);
  1280. }
  1281. static int do_md_run(mddev_t * mddev)
  1282. {
  1283. int pnum, err;
  1284. int chunk_size;
  1285. struct list_head *tmp;
  1286. mdk_rdev_t *rdev;
  1287. struct gendisk *disk;
  1288. char b[BDEVNAME_SIZE];
  1289. if (list_empty(&mddev->disks))
  1290. /* cannot run an array with no devices.. */
  1291. return -EINVAL;
  1292. if (mddev->pers)
  1293. return -EBUSY;
  1294. /*
  1295. * Analyze all RAID superblock(s)
  1296. */
  1297. if (!mddev->raid_disks)
  1298. analyze_sbs(mddev);
  1299. chunk_size = mddev->chunk_size;
  1300. pnum = level_to_pers(mddev->level);
  1301. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1302. if (!chunk_size) {
  1303. /*
  1304. * 'default chunksize' in the old md code used to
  1305. * be PAGE_SIZE, baaad.
  1306. * we abort here to be on the safe side. We don't
  1307. * want to continue the bad practice.
  1308. */
  1309. printk(KERN_ERR
  1310. "no chunksize specified, see 'man raidtab'\n");
  1311. return -EINVAL;
  1312. }
  1313. if (chunk_size > MAX_CHUNK_SIZE) {
  1314. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1315. chunk_size, MAX_CHUNK_SIZE);
  1316. return -EINVAL;
  1317. }
  1318. /*
  1319. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1320. */
  1321. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1322. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1323. return -EINVAL;
  1324. }
  1325. if (chunk_size < PAGE_SIZE) {
  1326. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1327. chunk_size, PAGE_SIZE);
  1328. return -EINVAL;
  1329. }
  1330. /* devices must have minimum size of one chunk */
  1331. ITERATE_RDEV(mddev,rdev,tmp) {
  1332. if (rdev->faulty)
  1333. continue;
  1334. if (rdev->size < chunk_size / 1024) {
  1335. printk(KERN_WARNING
  1336. "md: Dev %s smaller than chunk_size:"
  1337. " %lluk < %dk\n",
  1338. bdevname(rdev->bdev,b),
  1339. (unsigned long long)rdev->size,
  1340. chunk_size / 1024);
  1341. return -EINVAL;
  1342. }
  1343. }
  1344. }
  1345. #ifdef CONFIG_KMOD
  1346. if (!pers[pnum])
  1347. {
  1348. request_module("md-personality-%d", pnum);
  1349. }
  1350. #endif
  1351. /*
  1352. * Drop all container device buffers, from now on
  1353. * the only valid external interface is through the md
  1354. * device.
  1355. * Also find largest hardsector size
  1356. */
  1357. ITERATE_RDEV(mddev,rdev,tmp) {
  1358. if (rdev->faulty)
  1359. continue;
  1360. sync_blockdev(rdev->bdev);
  1361. invalidate_bdev(rdev->bdev, 0);
  1362. }
  1363. md_probe(mddev->unit, NULL, NULL);
  1364. disk = mddev->gendisk;
  1365. if (!disk)
  1366. return -ENOMEM;
  1367. spin_lock(&pers_lock);
  1368. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1369. spin_unlock(&pers_lock);
  1370. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1371. pnum);
  1372. return -EINVAL;
  1373. }
  1374. mddev->pers = pers[pnum];
  1375. spin_unlock(&pers_lock);
  1376. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1377. err = mddev->pers->run(mddev);
  1378. if (err) {
  1379. printk(KERN_ERR "md: pers->run() failed ...\n");
  1380. module_put(mddev->pers->owner);
  1381. mddev->pers = NULL;
  1382. return -EINVAL;
  1383. }
  1384. atomic_set(&mddev->writes_pending,0);
  1385. mddev->safemode = 0;
  1386. mddev->safemode_timer.function = md_safemode_timeout;
  1387. mddev->safemode_timer.data = (unsigned long) mddev;
  1388. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1389. mddev->in_sync = 1;
  1390. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1391. if (mddev->sb_dirty)
  1392. md_update_sb(mddev);
  1393. set_capacity(disk, mddev->array_size<<1);
  1394. /* If we call blk_queue_make_request here, it will
  1395. * re-initialise max_sectors etc which may have been
  1396. * refined inside -> run. So just set the bits we need to set.
  1397. * Most initialisation happended when we called
  1398. * blk_queue_make_request(..., md_fail_request)
  1399. * earlier.
  1400. */
  1401. mddev->queue->queuedata = mddev;
  1402. mddev->queue->make_request_fn = mddev->pers->make_request;
  1403. mddev->changed = 1;
  1404. return 0;
  1405. }
  1406. static int restart_array(mddev_t *mddev)
  1407. {
  1408. struct gendisk *disk = mddev->gendisk;
  1409. int err;
  1410. /*
  1411. * Complain if it has no devices
  1412. */
  1413. err = -ENXIO;
  1414. if (list_empty(&mddev->disks))
  1415. goto out;
  1416. if (mddev->pers) {
  1417. err = -EBUSY;
  1418. if (!mddev->ro)
  1419. goto out;
  1420. mddev->safemode = 0;
  1421. mddev->ro = 0;
  1422. set_disk_ro(disk, 0);
  1423. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1424. mdname(mddev));
  1425. /*
  1426. * Kick recovery or resync if necessary
  1427. */
  1428. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1429. md_wakeup_thread(mddev->thread);
  1430. err = 0;
  1431. } else {
  1432. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1433. mdname(mddev));
  1434. err = -EINVAL;
  1435. }
  1436. out:
  1437. return err;
  1438. }
  1439. static int do_md_stop(mddev_t * mddev, int ro)
  1440. {
  1441. int err = 0;
  1442. struct gendisk *disk = mddev->gendisk;
  1443. if (mddev->pers) {
  1444. if (atomic_read(&mddev->active)>2) {
  1445. printk("md: %s still in use.\n",mdname(mddev));
  1446. return -EBUSY;
  1447. }
  1448. if (mddev->sync_thread) {
  1449. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1450. md_unregister_thread(mddev->sync_thread);
  1451. mddev->sync_thread = NULL;
  1452. }
  1453. del_timer_sync(&mddev->safemode_timer);
  1454. invalidate_partition(disk, 0);
  1455. if (ro) {
  1456. err = -ENXIO;
  1457. if (mddev->ro)
  1458. goto out;
  1459. mddev->ro = 1;
  1460. } else {
  1461. if (mddev->ro)
  1462. set_disk_ro(disk, 0);
  1463. blk_queue_make_request(mddev->queue, md_fail_request);
  1464. mddev->pers->stop(mddev);
  1465. module_put(mddev->pers->owner);
  1466. mddev->pers = NULL;
  1467. if (mddev->ro)
  1468. mddev->ro = 0;
  1469. }
  1470. if (!mddev->in_sync) {
  1471. /* mark array as shutdown cleanly */
  1472. mddev->in_sync = 1;
  1473. md_update_sb(mddev);
  1474. }
  1475. if (ro)
  1476. set_disk_ro(disk, 1);
  1477. }
  1478. /*
  1479. * Free resources if final stop
  1480. */
  1481. if (!ro) {
  1482. struct gendisk *disk;
  1483. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1484. export_array(mddev);
  1485. mddev->array_size = 0;
  1486. disk = mddev->gendisk;
  1487. if (disk)
  1488. set_capacity(disk, 0);
  1489. mddev->changed = 1;
  1490. } else
  1491. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1492. mdname(mddev));
  1493. err = 0;
  1494. out:
  1495. return err;
  1496. }
  1497. static void autorun_array(mddev_t *mddev)
  1498. {
  1499. mdk_rdev_t *rdev;
  1500. struct list_head *tmp;
  1501. int err;
  1502. if (list_empty(&mddev->disks))
  1503. return;
  1504. printk(KERN_INFO "md: running: ");
  1505. ITERATE_RDEV(mddev,rdev,tmp) {
  1506. char b[BDEVNAME_SIZE];
  1507. printk("<%s>", bdevname(rdev->bdev,b));
  1508. }
  1509. printk("\n");
  1510. err = do_md_run (mddev);
  1511. if (err) {
  1512. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1513. do_md_stop (mddev, 0);
  1514. }
  1515. }
  1516. /*
  1517. * lets try to run arrays based on all disks that have arrived
  1518. * until now. (those are in pending_raid_disks)
  1519. *
  1520. * the method: pick the first pending disk, collect all disks with
  1521. * the same UUID, remove all from the pending list and put them into
  1522. * the 'same_array' list. Then order this list based on superblock
  1523. * update time (freshest comes first), kick out 'old' disks and
  1524. * compare superblocks. If everything's fine then run it.
  1525. *
  1526. * If "unit" is allocated, then bump its reference count
  1527. */
  1528. static void autorun_devices(int part)
  1529. {
  1530. struct list_head candidates;
  1531. struct list_head *tmp;
  1532. mdk_rdev_t *rdev0, *rdev;
  1533. mddev_t *mddev;
  1534. char b[BDEVNAME_SIZE];
  1535. printk(KERN_INFO "md: autorun ...\n");
  1536. while (!list_empty(&pending_raid_disks)) {
  1537. dev_t dev;
  1538. rdev0 = list_entry(pending_raid_disks.next,
  1539. mdk_rdev_t, same_set);
  1540. printk(KERN_INFO "md: considering %s ...\n",
  1541. bdevname(rdev0->bdev,b));
  1542. INIT_LIST_HEAD(&candidates);
  1543. ITERATE_RDEV_PENDING(rdev,tmp)
  1544. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1545. printk(KERN_INFO "md: adding %s ...\n",
  1546. bdevname(rdev->bdev,b));
  1547. list_move(&rdev->same_set, &candidates);
  1548. }
  1549. /*
  1550. * now we have a set of devices, with all of them having
  1551. * mostly sane superblocks. It's time to allocate the
  1552. * mddev.
  1553. */
  1554. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1555. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1556. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1557. break;
  1558. }
  1559. if (part)
  1560. dev = MKDEV(mdp_major,
  1561. rdev0->preferred_minor << MdpMinorShift);
  1562. else
  1563. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1564. md_probe(dev, NULL, NULL);
  1565. mddev = mddev_find(dev);
  1566. if (!mddev) {
  1567. printk(KERN_ERR
  1568. "md: cannot allocate memory for md drive.\n");
  1569. break;
  1570. }
  1571. if (mddev_lock(mddev))
  1572. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1573. mdname(mddev));
  1574. else if (mddev->raid_disks || mddev->major_version
  1575. || !list_empty(&mddev->disks)) {
  1576. printk(KERN_WARNING
  1577. "md: %s already running, cannot run %s\n",
  1578. mdname(mddev), bdevname(rdev0->bdev,b));
  1579. mddev_unlock(mddev);
  1580. } else {
  1581. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1582. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1583. list_del_init(&rdev->same_set);
  1584. if (bind_rdev_to_array(rdev, mddev))
  1585. export_rdev(rdev);
  1586. }
  1587. autorun_array(mddev);
  1588. mddev_unlock(mddev);
  1589. }
  1590. /* on success, candidates will be empty, on error
  1591. * it won't...
  1592. */
  1593. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1594. export_rdev(rdev);
  1595. mddev_put(mddev);
  1596. }
  1597. printk(KERN_INFO "md: ... autorun DONE.\n");
  1598. }
  1599. /*
  1600. * import RAID devices based on one partition
  1601. * if possible, the array gets run as well.
  1602. */
  1603. static int autostart_array(dev_t startdev)
  1604. {
  1605. char b[BDEVNAME_SIZE];
  1606. int err = -EINVAL, i;
  1607. mdp_super_t *sb = NULL;
  1608. mdk_rdev_t *start_rdev = NULL, *rdev;
  1609. start_rdev = md_import_device(startdev, 0, 0);
  1610. if (IS_ERR(start_rdev))
  1611. return err;
  1612. /* NOTE: this can only work for 0.90.0 superblocks */
  1613. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1614. if (sb->major_version != 0 ||
  1615. sb->minor_version != 90 ) {
  1616. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1617. export_rdev(start_rdev);
  1618. return err;
  1619. }
  1620. if (start_rdev->faulty) {
  1621. printk(KERN_WARNING
  1622. "md: can not autostart based on faulty %s!\n",
  1623. bdevname(start_rdev->bdev,b));
  1624. export_rdev(start_rdev);
  1625. return err;
  1626. }
  1627. list_add(&start_rdev->same_set, &pending_raid_disks);
  1628. for (i = 0; i < MD_SB_DISKS; i++) {
  1629. mdp_disk_t *desc = sb->disks + i;
  1630. dev_t dev = MKDEV(desc->major, desc->minor);
  1631. if (!dev)
  1632. continue;
  1633. if (dev == startdev)
  1634. continue;
  1635. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1636. continue;
  1637. rdev = md_import_device(dev, 0, 0);
  1638. if (IS_ERR(rdev))
  1639. continue;
  1640. list_add(&rdev->same_set, &pending_raid_disks);
  1641. }
  1642. /*
  1643. * possibly return codes
  1644. */
  1645. autorun_devices(0);
  1646. return 0;
  1647. }
  1648. static int get_version(void __user * arg)
  1649. {
  1650. mdu_version_t ver;
  1651. ver.major = MD_MAJOR_VERSION;
  1652. ver.minor = MD_MINOR_VERSION;
  1653. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1654. if (copy_to_user(arg, &ver, sizeof(ver)))
  1655. return -EFAULT;
  1656. return 0;
  1657. }
  1658. static int get_array_info(mddev_t * mddev, void __user * arg)
  1659. {
  1660. mdu_array_info_t info;
  1661. int nr,working,active,failed,spare;
  1662. mdk_rdev_t *rdev;
  1663. struct list_head *tmp;
  1664. nr=working=active=failed=spare=0;
  1665. ITERATE_RDEV(mddev,rdev,tmp) {
  1666. nr++;
  1667. if (rdev->faulty)
  1668. failed++;
  1669. else {
  1670. working++;
  1671. if (rdev->in_sync)
  1672. active++;
  1673. else
  1674. spare++;
  1675. }
  1676. }
  1677. info.major_version = mddev->major_version;
  1678. info.minor_version = mddev->minor_version;
  1679. info.patch_version = MD_PATCHLEVEL_VERSION;
  1680. info.ctime = mddev->ctime;
  1681. info.level = mddev->level;
  1682. info.size = mddev->size;
  1683. info.nr_disks = nr;
  1684. info.raid_disks = mddev->raid_disks;
  1685. info.md_minor = mddev->md_minor;
  1686. info.not_persistent= !mddev->persistent;
  1687. info.utime = mddev->utime;
  1688. info.state = 0;
  1689. if (mddev->in_sync)
  1690. info.state = (1<<MD_SB_CLEAN);
  1691. info.active_disks = active;
  1692. info.working_disks = working;
  1693. info.failed_disks = failed;
  1694. info.spare_disks = spare;
  1695. info.layout = mddev->layout;
  1696. info.chunk_size = mddev->chunk_size;
  1697. if (copy_to_user(arg, &info, sizeof(info)))
  1698. return -EFAULT;
  1699. return 0;
  1700. }
  1701. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1702. {
  1703. mdu_disk_info_t info;
  1704. unsigned int nr;
  1705. mdk_rdev_t *rdev;
  1706. if (copy_from_user(&info, arg, sizeof(info)))
  1707. return -EFAULT;
  1708. nr = info.number;
  1709. rdev = find_rdev_nr(mddev, nr);
  1710. if (rdev) {
  1711. info.major = MAJOR(rdev->bdev->bd_dev);
  1712. info.minor = MINOR(rdev->bdev->bd_dev);
  1713. info.raid_disk = rdev->raid_disk;
  1714. info.state = 0;
  1715. if (rdev->faulty)
  1716. info.state |= (1<<MD_DISK_FAULTY);
  1717. else if (rdev->in_sync) {
  1718. info.state |= (1<<MD_DISK_ACTIVE);
  1719. info.state |= (1<<MD_DISK_SYNC);
  1720. }
  1721. } else {
  1722. info.major = info.minor = 0;
  1723. info.raid_disk = -1;
  1724. info.state = (1<<MD_DISK_REMOVED);
  1725. }
  1726. if (copy_to_user(arg, &info, sizeof(info)))
  1727. return -EFAULT;
  1728. return 0;
  1729. }
  1730. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1731. {
  1732. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1733. mdk_rdev_t *rdev;
  1734. dev_t dev = MKDEV(info->major,info->minor);
  1735. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1736. return -EOVERFLOW;
  1737. if (!mddev->raid_disks) {
  1738. int err;
  1739. /* expecting a device which has a superblock */
  1740. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1741. if (IS_ERR(rdev)) {
  1742. printk(KERN_WARNING
  1743. "md: md_import_device returned %ld\n",
  1744. PTR_ERR(rdev));
  1745. return PTR_ERR(rdev);
  1746. }
  1747. if (!list_empty(&mddev->disks)) {
  1748. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1749. mdk_rdev_t, same_set);
  1750. int err = super_types[mddev->major_version]
  1751. .load_super(rdev, rdev0, mddev->minor_version);
  1752. if (err < 0) {
  1753. printk(KERN_WARNING
  1754. "md: %s has different UUID to %s\n",
  1755. bdevname(rdev->bdev,b),
  1756. bdevname(rdev0->bdev,b2));
  1757. export_rdev(rdev);
  1758. return -EINVAL;
  1759. }
  1760. }
  1761. err = bind_rdev_to_array(rdev, mddev);
  1762. if (err)
  1763. export_rdev(rdev);
  1764. return err;
  1765. }
  1766. /*
  1767. * add_new_disk can be used once the array is assembled
  1768. * to add "hot spares". They must already have a superblock
  1769. * written
  1770. */
  1771. if (mddev->pers) {
  1772. int err;
  1773. if (!mddev->pers->hot_add_disk) {
  1774. printk(KERN_WARNING
  1775. "%s: personality does not support diskops!\n",
  1776. mdname(mddev));
  1777. return -EINVAL;
  1778. }
  1779. rdev = md_import_device(dev, mddev->major_version,
  1780. mddev->minor_version);
  1781. if (IS_ERR(rdev)) {
  1782. printk(KERN_WARNING
  1783. "md: md_import_device returned %ld\n",
  1784. PTR_ERR(rdev));
  1785. return PTR_ERR(rdev);
  1786. }
  1787. rdev->in_sync = 0; /* just to be sure */
  1788. rdev->raid_disk = -1;
  1789. err = bind_rdev_to_array(rdev, mddev);
  1790. if (err)
  1791. export_rdev(rdev);
  1792. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1793. if (mddev->thread)
  1794. md_wakeup_thread(mddev->thread);
  1795. return err;
  1796. }
  1797. /* otherwise, add_new_disk is only allowed
  1798. * for major_version==0 superblocks
  1799. */
  1800. if (mddev->major_version != 0) {
  1801. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1802. mdname(mddev));
  1803. return -EINVAL;
  1804. }
  1805. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1806. int err;
  1807. rdev = md_import_device (dev, -1, 0);
  1808. if (IS_ERR(rdev)) {
  1809. printk(KERN_WARNING
  1810. "md: error, md_import_device() returned %ld\n",
  1811. PTR_ERR(rdev));
  1812. return PTR_ERR(rdev);
  1813. }
  1814. rdev->desc_nr = info->number;
  1815. if (info->raid_disk < mddev->raid_disks)
  1816. rdev->raid_disk = info->raid_disk;
  1817. else
  1818. rdev->raid_disk = -1;
  1819. rdev->faulty = 0;
  1820. if (rdev->raid_disk < mddev->raid_disks)
  1821. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1822. else
  1823. rdev->in_sync = 0;
  1824. err = bind_rdev_to_array(rdev, mddev);
  1825. if (err) {
  1826. export_rdev(rdev);
  1827. return err;
  1828. }
  1829. if (!mddev->persistent) {
  1830. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1831. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1832. } else
  1833. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1834. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1835. if (!mddev->size || (mddev->size > rdev->size))
  1836. mddev->size = rdev->size;
  1837. }
  1838. return 0;
  1839. }
  1840. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1841. {
  1842. char b[BDEVNAME_SIZE];
  1843. mdk_rdev_t *rdev;
  1844. if (!mddev->pers)
  1845. return -ENODEV;
  1846. rdev = find_rdev(mddev, dev);
  1847. if (!rdev)
  1848. return -ENXIO;
  1849. if (rdev->raid_disk >= 0)
  1850. goto busy;
  1851. kick_rdev_from_array(rdev);
  1852. md_update_sb(mddev);
  1853. return 0;
  1854. busy:
  1855. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1856. bdevname(rdev->bdev,b), mdname(mddev));
  1857. return -EBUSY;
  1858. }
  1859. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1860. {
  1861. char b[BDEVNAME_SIZE];
  1862. int err;
  1863. unsigned int size;
  1864. mdk_rdev_t *rdev;
  1865. if (!mddev->pers)
  1866. return -ENODEV;
  1867. if (mddev->major_version != 0) {
  1868. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1869. " version-0 superblocks.\n",
  1870. mdname(mddev));
  1871. return -EINVAL;
  1872. }
  1873. if (!mddev->pers->hot_add_disk) {
  1874. printk(KERN_WARNING
  1875. "%s: personality does not support diskops!\n",
  1876. mdname(mddev));
  1877. return -EINVAL;
  1878. }
  1879. rdev = md_import_device (dev, -1, 0);
  1880. if (IS_ERR(rdev)) {
  1881. printk(KERN_WARNING
  1882. "md: error, md_import_device() returned %ld\n",
  1883. PTR_ERR(rdev));
  1884. return -EINVAL;
  1885. }
  1886. if (mddev->persistent)
  1887. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1888. else
  1889. rdev->sb_offset =
  1890. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1891. size = calc_dev_size(rdev, mddev->chunk_size);
  1892. rdev->size = size;
  1893. if (size < mddev->size) {
  1894. printk(KERN_WARNING
  1895. "%s: disk size %llu blocks < array size %llu\n",
  1896. mdname(mddev), (unsigned long long)size,
  1897. (unsigned long long)mddev->size);
  1898. err = -ENOSPC;
  1899. goto abort_export;
  1900. }
  1901. if (rdev->faulty) {
  1902. printk(KERN_WARNING
  1903. "md: can not hot-add faulty %s disk to %s!\n",
  1904. bdevname(rdev->bdev,b), mdname(mddev));
  1905. err = -EINVAL;
  1906. goto abort_export;
  1907. }
  1908. rdev->in_sync = 0;
  1909. rdev->desc_nr = -1;
  1910. bind_rdev_to_array(rdev, mddev);
  1911. /*
  1912. * The rest should better be atomic, we can have disk failures
  1913. * noticed in interrupt contexts ...
  1914. */
  1915. if (rdev->desc_nr == mddev->max_disks) {
  1916. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  1917. mdname(mddev));
  1918. err = -EBUSY;
  1919. goto abort_unbind_export;
  1920. }
  1921. rdev->raid_disk = -1;
  1922. md_update_sb(mddev);
  1923. /*
  1924. * Kick recovery, maybe this spare has to be added to the
  1925. * array immediately.
  1926. */
  1927. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1928. md_wakeup_thread(mddev->thread);
  1929. return 0;
  1930. abort_unbind_export:
  1931. unbind_rdev_from_array(rdev);
  1932. abort_export:
  1933. export_rdev(rdev);
  1934. return err;
  1935. }
  1936. /*
  1937. * set_array_info is used two different ways
  1938. * The original usage is when creating a new array.
  1939. * In this usage, raid_disks is > 0 and it together with
  1940. * level, size, not_persistent,layout,chunksize determine the
  1941. * shape of the array.
  1942. * This will always create an array with a type-0.90.0 superblock.
  1943. * The newer usage is when assembling an array.
  1944. * In this case raid_disks will be 0, and the major_version field is
  1945. * use to determine which style super-blocks are to be found on the devices.
  1946. * The minor and patch _version numbers are also kept incase the
  1947. * super_block handler wishes to interpret them.
  1948. */
  1949. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  1950. {
  1951. if (info->raid_disks == 0) {
  1952. /* just setting version number for superblock loading */
  1953. if (info->major_version < 0 ||
  1954. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  1955. super_types[info->major_version].name == NULL) {
  1956. /* maybe try to auto-load a module? */
  1957. printk(KERN_INFO
  1958. "md: superblock version %d not known\n",
  1959. info->major_version);
  1960. return -EINVAL;
  1961. }
  1962. mddev->major_version = info->major_version;
  1963. mddev->minor_version = info->minor_version;
  1964. mddev->patch_version = info->patch_version;
  1965. return 0;
  1966. }
  1967. mddev->major_version = MD_MAJOR_VERSION;
  1968. mddev->minor_version = MD_MINOR_VERSION;
  1969. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  1970. mddev->ctime = get_seconds();
  1971. mddev->level = info->level;
  1972. mddev->size = info->size;
  1973. mddev->raid_disks = info->raid_disks;
  1974. /* don't set md_minor, it is determined by which /dev/md* was
  1975. * openned
  1976. */
  1977. if (info->state & (1<<MD_SB_CLEAN))
  1978. mddev->recovery_cp = MaxSector;
  1979. else
  1980. mddev->recovery_cp = 0;
  1981. mddev->persistent = ! info->not_persistent;
  1982. mddev->layout = info->layout;
  1983. mddev->chunk_size = info->chunk_size;
  1984. mddev->max_disks = MD_SB_DISKS;
  1985. mddev->sb_dirty = 1;
  1986. /*
  1987. * Generate a 128 bit UUID
  1988. */
  1989. get_random_bytes(mddev->uuid, 16);
  1990. return 0;
  1991. }
  1992. /*
  1993. * update_array_info is used to change the configuration of an
  1994. * on-line array.
  1995. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  1996. * fields in the info are checked against the array.
  1997. * Any differences that cannot be handled will cause an error.
  1998. * Normally, only one change can be managed at a time.
  1999. */
  2000. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2001. {
  2002. int rv = 0;
  2003. int cnt = 0;
  2004. if (mddev->major_version != info->major_version ||
  2005. mddev->minor_version != info->minor_version ||
  2006. /* mddev->patch_version != info->patch_version || */
  2007. mddev->ctime != info->ctime ||
  2008. mddev->level != info->level ||
  2009. /* mddev->layout != info->layout || */
  2010. !mddev->persistent != info->not_persistent||
  2011. mddev->chunk_size != info->chunk_size )
  2012. return -EINVAL;
  2013. /* Check there is only one change */
  2014. if (mddev->size != info->size) cnt++;
  2015. if (mddev->raid_disks != info->raid_disks) cnt++;
  2016. if (mddev->layout != info->layout) cnt++;
  2017. if (cnt == 0) return 0;
  2018. if (cnt > 1) return -EINVAL;
  2019. if (mddev->layout != info->layout) {
  2020. /* Change layout
  2021. * we don't need to do anything at the md level, the
  2022. * personality will take care of it all.
  2023. */
  2024. if (mddev->pers->reconfig == NULL)
  2025. return -EINVAL;
  2026. else
  2027. return mddev->pers->reconfig(mddev, info->layout, -1);
  2028. }
  2029. if (mddev->size != info->size) {
  2030. mdk_rdev_t * rdev;
  2031. struct list_head *tmp;
  2032. if (mddev->pers->resize == NULL)
  2033. return -EINVAL;
  2034. /* The "size" is the amount of each device that is used.
  2035. * This can only make sense for arrays with redundancy.
  2036. * linear and raid0 always use whatever space is available
  2037. * We can only consider changing the size if no resync
  2038. * or reconstruction is happening, and if the new size
  2039. * is acceptable. It must fit before the sb_offset or,
  2040. * if that is <data_offset, it must fit before the
  2041. * size of each device.
  2042. * If size is zero, we find the largest size that fits.
  2043. */
  2044. if (mddev->sync_thread)
  2045. return -EBUSY;
  2046. ITERATE_RDEV(mddev,rdev,tmp) {
  2047. sector_t avail;
  2048. int fit = (info->size == 0);
  2049. if (rdev->sb_offset > rdev->data_offset)
  2050. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2051. else
  2052. avail = get_capacity(rdev->bdev->bd_disk)
  2053. - rdev->data_offset;
  2054. if (fit && (info->size == 0 || info->size > avail/2))
  2055. info->size = avail/2;
  2056. if (avail < ((sector_t)info->size << 1))
  2057. return -ENOSPC;
  2058. }
  2059. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2060. if (!rv) {
  2061. struct block_device *bdev;
  2062. bdev = bdget_disk(mddev->gendisk, 0);
  2063. if (bdev) {
  2064. down(&bdev->bd_inode->i_sem);
  2065. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2066. up(&bdev->bd_inode->i_sem);
  2067. bdput(bdev);
  2068. }
  2069. }
  2070. }
  2071. if (mddev->raid_disks != info->raid_disks) {
  2072. /* change the number of raid disks */
  2073. if (mddev->pers->reshape == NULL)
  2074. return -EINVAL;
  2075. if (info->raid_disks <= 0 ||
  2076. info->raid_disks >= mddev->max_disks)
  2077. return -EINVAL;
  2078. if (mddev->sync_thread)
  2079. return -EBUSY;
  2080. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2081. if (!rv) {
  2082. struct block_device *bdev;
  2083. bdev = bdget_disk(mddev->gendisk, 0);
  2084. if (bdev) {
  2085. down(&bdev->bd_inode->i_sem);
  2086. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2087. up(&bdev->bd_inode->i_sem);
  2088. bdput(bdev);
  2089. }
  2090. }
  2091. }
  2092. md_update_sb(mddev);
  2093. return rv;
  2094. }
  2095. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2096. {
  2097. mdk_rdev_t *rdev;
  2098. if (mddev->pers == NULL)
  2099. return -ENODEV;
  2100. rdev = find_rdev(mddev, dev);
  2101. if (!rdev)
  2102. return -ENODEV;
  2103. md_error(mddev, rdev);
  2104. return 0;
  2105. }
  2106. static int md_ioctl(struct inode *inode, struct file *file,
  2107. unsigned int cmd, unsigned long arg)
  2108. {
  2109. int err = 0;
  2110. void __user *argp = (void __user *)arg;
  2111. struct hd_geometry __user *loc = argp;
  2112. mddev_t *mddev = NULL;
  2113. if (!capable(CAP_SYS_ADMIN))
  2114. return -EACCES;
  2115. /*
  2116. * Commands dealing with the RAID driver but not any
  2117. * particular array:
  2118. */
  2119. switch (cmd)
  2120. {
  2121. case RAID_VERSION:
  2122. err = get_version(argp);
  2123. goto done;
  2124. case PRINT_RAID_DEBUG:
  2125. err = 0;
  2126. md_print_devices();
  2127. goto done;
  2128. #ifndef MODULE
  2129. case RAID_AUTORUN:
  2130. err = 0;
  2131. autostart_arrays(arg);
  2132. goto done;
  2133. #endif
  2134. default:;
  2135. }
  2136. /*
  2137. * Commands creating/starting a new array:
  2138. */
  2139. mddev = inode->i_bdev->bd_disk->private_data;
  2140. if (!mddev) {
  2141. BUG();
  2142. goto abort;
  2143. }
  2144. if (cmd == START_ARRAY) {
  2145. /* START_ARRAY doesn't need to lock the array as autostart_array
  2146. * does the locking, and it could even be a different array
  2147. */
  2148. static int cnt = 3;
  2149. if (cnt > 0 ) {
  2150. printk(KERN_WARNING
  2151. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2152. "This will not be supported beyond 2.6\n",
  2153. current->comm, current->pid);
  2154. cnt--;
  2155. }
  2156. err = autostart_array(new_decode_dev(arg));
  2157. if (err) {
  2158. printk(KERN_WARNING "md: autostart failed!\n");
  2159. goto abort;
  2160. }
  2161. goto done;
  2162. }
  2163. err = mddev_lock(mddev);
  2164. if (err) {
  2165. printk(KERN_INFO
  2166. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2167. err, cmd);
  2168. goto abort;
  2169. }
  2170. switch (cmd)
  2171. {
  2172. case SET_ARRAY_INFO:
  2173. {
  2174. mdu_array_info_t info;
  2175. if (!arg)
  2176. memset(&info, 0, sizeof(info));
  2177. else if (copy_from_user(&info, argp, sizeof(info))) {
  2178. err = -EFAULT;
  2179. goto abort_unlock;
  2180. }
  2181. if (mddev->pers) {
  2182. err = update_array_info(mddev, &info);
  2183. if (err) {
  2184. printk(KERN_WARNING "md: couldn't update"
  2185. " array info. %d\n", err);
  2186. goto abort_unlock;
  2187. }
  2188. goto done_unlock;
  2189. }
  2190. if (!list_empty(&mddev->disks)) {
  2191. printk(KERN_WARNING
  2192. "md: array %s already has disks!\n",
  2193. mdname(mddev));
  2194. err = -EBUSY;
  2195. goto abort_unlock;
  2196. }
  2197. if (mddev->raid_disks) {
  2198. printk(KERN_WARNING
  2199. "md: array %s already initialised!\n",
  2200. mdname(mddev));
  2201. err = -EBUSY;
  2202. goto abort_unlock;
  2203. }
  2204. err = set_array_info(mddev, &info);
  2205. if (err) {
  2206. printk(KERN_WARNING "md: couldn't set"
  2207. " array info. %d\n", err);
  2208. goto abort_unlock;
  2209. }
  2210. }
  2211. goto done_unlock;
  2212. default:;
  2213. }
  2214. /*
  2215. * Commands querying/configuring an existing array:
  2216. */
  2217. /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
  2218. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
  2219. err = -ENODEV;
  2220. goto abort_unlock;
  2221. }
  2222. /*
  2223. * Commands even a read-only array can execute:
  2224. */
  2225. switch (cmd)
  2226. {
  2227. case GET_ARRAY_INFO:
  2228. err = get_array_info(mddev, argp);
  2229. goto done_unlock;
  2230. case GET_DISK_INFO:
  2231. err = get_disk_info(mddev, argp);
  2232. goto done_unlock;
  2233. case RESTART_ARRAY_RW:
  2234. err = restart_array(mddev);
  2235. goto done_unlock;
  2236. case STOP_ARRAY:
  2237. err = do_md_stop (mddev, 0);
  2238. goto done_unlock;
  2239. case STOP_ARRAY_RO:
  2240. err = do_md_stop (mddev, 1);
  2241. goto done_unlock;
  2242. /*
  2243. * We have a problem here : there is no easy way to give a CHS
  2244. * virtual geometry. We currently pretend that we have a 2 heads
  2245. * 4 sectors (with a BIG number of cylinders...). This drives
  2246. * dosfs just mad... ;-)
  2247. */
  2248. case HDIO_GETGEO:
  2249. if (!loc) {
  2250. err = -EINVAL;
  2251. goto abort_unlock;
  2252. }
  2253. err = put_user (2, (char __user *) &loc->heads);
  2254. if (err)
  2255. goto abort_unlock;
  2256. err = put_user (4, (char __user *) &loc->sectors);
  2257. if (err)
  2258. goto abort_unlock;
  2259. err = put_user(get_capacity(mddev->gendisk)/8,
  2260. (short __user *) &loc->cylinders);
  2261. if (err)
  2262. goto abort_unlock;
  2263. err = put_user (get_start_sect(inode->i_bdev),
  2264. (long __user *) &loc->start);
  2265. goto done_unlock;
  2266. }
  2267. /*
  2268. * The remaining ioctls are changing the state of the
  2269. * superblock, so we do not allow read-only arrays
  2270. * here:
  2271. */
  2272. if (mddev->ro) {
  2273. err = -EROFS;
  2274. goto abort_unlock;
  2275. }
  2276. switch (cmd)
  2277. {
  2278. case ADD_NEW_DISK:
  2279. {
  2280. mdu_disk_info_t info;
  2281. if (copy_from_user(&info, argp, sizeof(info)))
  2282. err = -EFAULT;
  2283. else
  2284. err = add_new_disk(mddev, &info);
  2285. goto done_unlock;
  2286. }
  2287. case HOT_REMOVE_DISK:
  2288. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2289. goto done_unlock;
  2290. case HOT_ADD_DISK:
  2291. err = hot_add_disk(mddev, new_decode_dev(arg));
  2292. goto done_unlock;
  2293. case SET_DISK_FAULTY:
  2294. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2295. goto done_unlock;
  2296. case RUN_ARRAY:
  2297. err = do_md_run (mddev);
  2298. goto done_unlock;
  2299. default:
  2300. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2301. printk(KERN_WARNING "md: %s(pid %d) used"
  2302. " obsolete MD ioctl, upgrade your"
  2303. " software to use new ictls.\n",
  2304. current->comm, current->pid);
  2305. err = -EINVAL;
  2306. goto abort_unlock;
  2307. }
  2308. done_unlock:
  2309. abort_unlock:
  2310. mddev_unlock(mddev);
  2311. return err;
  2312. done:
  2313. if (err)
  2314. MD_BUG();
  2315. abort:
  2316. return err;
  2317. }
  2318. static int md_open(struct inode *inode, struct file *file)
  2319. {
  2320. /*
  2321. * Succeed if we can lock the mddev, which confirms that
  2322. * it isn't being stopped right now.
  2323. */
  2324. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2325. int err;
  2326. if ((err = mddev_lock(mddev)))
  2327. goto out;
  2328. err = 0;
  2329. mddev_get(mddev);
  2330. mddev_unlock(mddev);
  2331. check_disk_change(inode->i_bdev);
  2332. out:
  2333. return err;
  2334. }
  2335. static int md_release(struct inode *inode, struct file * file)
  2336. {
  2337. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2338. if (!mddev)
  2339. BUG();
  2340. mddev_put(mddev);
  2341. return 0;
  2342. }
  2343. static int md_media_changed(struct gendisk *disk)
  2344. {
  2345. mddev_t *mddev = disk->private_data;
  2346. return mddev->changed;
  2347. }
  2348. static int md_revalidate(struct gendisk *disk)
  2349. {
  2350. mddev_t *mddev = disk->private_data;
  2351. mddev->changed = 0;
  2352. return 0;
  2353. }
  2354. static struct block_device_operations md_fops =
  2355. {
  2356. .owner = THIS_MODULE,
  2357. .open = md_open,
  2358. .release = md_release,
  2359. .ioctl = md_ioctl,
  2360. .media_changed = md_media_changed,
  2361. .revalidate_disk= md_revalidate,
  2362. };
  2363. static int md_thread(void * arg)
  2364. {
  2365. mdk_thread_t *thread = arg;
  2366. lock_kernel();
  2367. /*
  2368. * Detach thread
  2369. */
  2370. daemonize(thread->name, mdname(thread->mddev));
  2371. current->exit_signal = SIGCHLD;
  2372. allow_signal(SIGKILL);
  2373. thread->tsk = current;
  2374. /*
  2375. * md_thread is a 'system-thread', it's priority should be very
  2376. * high. We avoid resource deadlocks individually in each
  2377. * raid personality. (RAID5 does preallocation) We also use RR and
  2378. * the very same RT priority as kswapd, thus we will never get
  2379. * into a priority inversion deadlock.
  2380. *
  2381. * we definitely have to have equal or higher priority than
  2382. * bdflush, otherwise bdflush will deadlock if there are too
  2383. * many dirty RAID5 blocks.
  2384. */
  2385. unlock_kernel();
  2386. complete(thread->event);
  2387. while (thread->run) {
  2388. void (*run)(mddev_t *);
  2389. wait_event_interruptible(thread->wqueue,
  2390. test_bit(THREAD_WAKEUP, &thread->flags));
  2391. if (current->flags & PF_FREEZE)
  2392. refrigerator(PF_FREEZE);
  2393. clear_bit(THREAD_WAKEUP, &thread->flags);
  2394. run = thread->run;
  2395. if (run)
  2396. run(thread->mddev);
  2397. if (signal_pending(current))
  2398. flush_signals(current);
  2399. }
  2400. complete(thread->event);
  2401. return 0;
  2402. }
  2403. void md_wakeup_thread(mdk_thread_t *thread)
  2404. {
  2405. if (thread) {
  2406. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2407. set_bit(THREAD_WAKEUP, &thread->flags);
  2408. wake_up(&thread->wqueue);
  2409. }
  2410. }
  2411. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2412. const char *name)
  2413. {
  2414. mdk_thread_t *thread;
  2415. int ret;
  2416. struct completion event;
  2417. thread = (mdk_thread_t *) kmalloc
  2418. (sizeof(mdk_thread_t), GFP_KERNEL);
  2419. if (!thread)
  2420. return NULL;
  2421. memset(thread, 0, sizeof(mdk_thread_t));
  2422. init_waitqueue_head(&thread->wqueue);
  2423. init_completion(&event);
  2424. thread->event = &event;
  2425. thread->run = run;
  2426. thread->mddev = mddev;
  2427. thread->name = name;
  2428. ret = kernel_thread(md_thread, thread, 0);
  2429. if (ret < 0) {
  2430. kfree(thread);
  2431. return NULL;
  2432. }
  2433. wait_for_completion(&event);
  2434. return thread;
  2435. }
  2436. void md_unregister_thread(mdk_thread_t *thread)
  2437. {
  2438. struct completion event;
  2439. init_completion(&event);
  2440. thread->event = &event;
  2441. /* As soon as ->run is set to NULL, the task could disappear,
  2442. * so we need to hold tasklist_lock until we have sent the signal
  2443. */
  2444. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2445. read_lock(&tasklist_lock);
  2446. thread->run = NULL;
  2447. send_sig(SIGKILL, thread->tsk, 1);
  2448. read_unlock(&tasklist_lock);
  2449. wait_for_completion(&event);
  2450. kfree(thread);
  2451. }
  2452. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2453. {
  2454. if (!mddev) {
  2455. MD_BUG();
  2456. return;
  2457. }
  2458. if (!rdev || rdev->faulty)
  2459. return;
  2460. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2461. mdname(mddev),
  2462. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2463. __builtin_return_address(0),__builtin_return_address(1),
  2464. __builtin_return_address(2),__builtin_return_address(3));
  2465. if (!mddev->pers->error_handler)
  2466. return;
  2467. mddev->pers->error_handler(mddev,rdev);
  2468. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2469. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2470. md_wakeup_thread(mddev->thread);
  2471. }
  2472. /* seq_file implementation /proc/mdstat */
  2473. static void status_unused(struct seq_file *seq)
  2474. {
  2475. int i = 0;
  2476. mdk_rdev_t *rdev;
  2477. struct list_head *tmp;
  2478. seq_printf(seq, "unused devices: ");
  2479. ITERATE_RDEV_PENDING(rdev,tmp) {
  2480. char b[BDEVNAME_SIZE];
  2481. i++;
  2482. seq_printf(seq, "%s ",
  2483. bdevname(rdev->bdev,b));
  2484. }
  2485. if (!i)
  2486. seq_printf(seq, "<none>");
  2487. seq_printf(seq, "\n");
  2488. }
  2489. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2490. {
  2491. unsigned long max_blocks, resync, res, dt, db, rt;
  2492. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2493. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2494. max_blocks = mddev->resync_max_sectors >> 1;
  2495. else
  2496. max_blocks = mddev->size;
  2497. /*
  2498. * Should not happen.
  2499. */
  2500. if (!max_blocks) {
  2501. MD_BUG();
  2502. return;
  2503. }
  2504. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2505. {
  2506. int i, x = res/50, y = 20-x;
  2507. seq_printf(seq, "[");
  2508. for (i = 0; i < x; i++)
  2509. seq_printf(seq, "=");
  2510. seq_printf(seq, ">");
  2511. for (i = 0; i < y; i++)
  2512. seq_printf(seq, ".");
  2513. seq_printf(seq, "] ");
  2514. }
  2515. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2516. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2517. "resync" : "recovery"),
  2518. res/10, res % 10, resync, max_blocks);
  2519. /*
  2520. * We do not want to overflow, so the order of operands and
  2521. * the * 100 / 100 trick are important. We do a +1 to be
  2522. * safe against division by zero. We only estimate anyway.
  2523. *
  2524. * dt: time from mark until now
  2525. * db: blocks written from mark until now
  2526. * rt: remaining time
  2527. */
  2528. dt = ((jiffies - mddev->resync_mark) / HZ);
  2529. if (!dt) dt++;
  2530. db = resync - (mddev->resync_mark_cnt/2);
  2531. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2532. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2533. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2534. }
  2535. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2536. {
  2537. struct list_head *tmp;
  2538. loff_t l = *pos;
  2539. mddev_t *mddev;
  2540. if (l >= 0x10000)
  2541. return NULL;
  2542. if (!l--)
  2543. /* header */
  2544. return (void*)1;
  2545. spin_lock(&all_mddevs_lock);
  2546. list_for_each(tmp,&all_mddevs)
  2547. if (!l--) {
  2548. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2549. mddev_get(mddev);
  2550. spin_unlock(&all_mddevs_lock);
  2551. return mddev;
  2552. }
  2553. spin_unlock(&all_mddevs_lock);
  2554. if (!l--)
  2555. return (void*)2;/* tail */
  2556. return NULL;
  2557. }
  2558. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2559. {
  2560. struct list_head *tmp;
  2561. mddev_t *next_mddev, *mddev = v;
  2562. ++*pos;
  2563. if (v == (void*)2)
  2564. return NULL;
  2565. spin_lock(&all_mddevs_lock);
  2566. if (v == (void*)1)
  2567. tmp = all_mddevs.next;
  2568. else
  2569. tmp = mddev->all_mddevs.next;
  2570. if (tmp != &all_mddevs)
  2571. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2572. else {
  2573. next_mddev = (void*)2;
  2574. *pos = 0x10000;
  2575. }
  2576. spin_unlock(&all_mddevs_lock);
  2577. if (v != (void*)1)
  2578. mddev_put(mddev);
  2579. return next_mddev;
  2580. }
  2581. static void md_seq_stop(struct seq_file *seq, void *v)
  2582. {
  2583. mddev_t *mddev = v;
  2584. if (mddev && v != (void*)1 && v != (void*)2)
  2585. mddev_put(mddev);
  2586. }
  2587. static int md_seq_show(struct seq_file *seq, void *v)
  2588. {
  2589. mddev_t *mddev = v;
  2590. sector_t size;
  2591. struct list_head *tmp2;
  2592. mdk_rdev_t *rdev;
  2593. int i;
  2594. if (v == (void*)1) {
  2595. seq_printf(seq, "Personalities : ");
  2596. spin_lock(&pers_lock);
  2597. for (i = 0; i < MAX_PERSONALITY; i++)
  2598. if (pers[i])
  2599. seq_printf(seq, "[%s] ", pers[i]->name);
  2600. spin_unlock(&pers_lock);
  2601. seq_printf(seq, "\n");
  2602. return 0;
  2603. }
  2604. if (v == (void*)2) {
  2605. status_unused(seq);
  2606. return 0;
  2607. }
  2608. if (mddev_lock(mddev)!=0)
  2609. return -EINTR;
  2610. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2611. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2612. mddev->pers ? "" : "in");
  2613. if (mddev->pers) {
  2614. if (mddev->ro)
  2615. seq_printf(seq, " (read-only)");
  2616. seq_printf(seq, " %s", mddev->pers->name);
  2617. }
  2618. size = 0;
  2619. ITERATE_RDEV(mddev,rdev,tmp2) {
  2620. char b[BDEVNAME_SIZE];
  2621. seq_printf(seq, " %s[%d]",
  2622. bdevname(rdev->bdev,b), rdev->desc_nr);
  2623. if (rdev->faulty) {
  2624. seq_printf(seq, "(F)");
  2625. continue;
  2626. }
  2627. size += rdev->size;
  2628. }
  2629. if (!list_empty(&mddev->disks)) {
  2630. if (mddev->pers)
  2631. seq_printf(seq, "\n %llu blocks",
  2632. (unsigned long long)mddev->array_size);
  2633. else
  2634. seq_printf(seq, "\n %llu blocks",
  2635. (unsigned long long)size);
  2636. }
  2637. if (mddev->pers) {
  2638. mddev->pers->status (seq, mddev);
  2639. seq_printf(seq, "\n ");
  2640. if (mddev->curr_resync > 2)
  2641. status_resync (seq, mddev);
  2642. else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2643. seq_printf(seq, " resync=DELAYED");
  2644. }
  2645. seq_printf(seq, "\n");
  2646. }
  2647. mddev_unlock(mddev);
  2648. return 0;
  2649. }
  2650. static struct seq_operations md_seq_ops = {
  2651. .start = md_seq_start,
  2652. .next = md_seq_next,
  2653. .stop = md_seq_stop,
  2654. .show = md_seq_show,
  2655. };
  2656. static int md_seq_open(struct inode *inode, struct file *file)
  2657. {
  2658. int error;
  2659. error = seq_open(file, &md_seq_ops);
  2660. return error;
  2661. }
  2662. static struct file_operations md_seq_fops = {
  2663. .open = md_seq_open,
  2664. .read = seq_read,
  2665. .llseek = seq_lseek,
  2666. .release = seq_release,
  2667. };
  2668. int register_md_personality(int pnum, mdk_personality_t *p)
  2669. {
  2670. if (pnum >= MAX_PERSONALITY) {
  2671. printk(KERN_ERR
  2672. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2673. p->name, pnum, MAX_PERSONALITY-1);
  2674. return -EINVAL;
  2675. }
  2676. spin_lock(&pers_lock);
  2677. if (pers[pnum]) {
  2678. spin_unlock(&pers_lock);
  2679. return -EBUSY;
  2680. }
  2681. pers[pnum] = p;
  2682. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2683. spin_unlock(&pers_lock);
  2684. return 0;
  2685. }
  2686. int unregister_md_personality(int pnum)
  2687. {
  2688. if (pnum >= MAX_PERSONALITY)
  2689. return -EINVAL;
  2690. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2691. spin_lock(&pers_lock);
  2692. pers[pnum] = NULL;
  2693. spin_unlock(&pers_lock);
  2694. return 0;
  2695. }
  2696. static int is_mddev_idle(mddev_t *mddev)
  2697. {
  2698. mdk_rdev_t * rdev;
  2699. struct list_head *tmp;
  2700. int idle;
  2701. unsigned long curr_events;
  2702. idle = 1;
  2703. ITERATE_RDEV(mddev,rdev,tmp) {
  2704. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2705. curr_events = disk_stat_read(disk, read_sectors) +
  2706. disk_stat_read(disk, write_sectors) -
  2707. atomic_read(&disk->sync_io);
  2708. /* Allow some slack between valud of curr_events and last_events,
  2709. * as there are some uninteresting races.
  2710. * Note: the following is an unsigned comparison.
  2711. */
  2712. if ((curr_events - rdev->last_events + 32) > 64) {
  2713. rdev->last_events = curr_events;
  2714. idle = 0;
  2715. }
  2716. }
  2717. return idle;
  2718. }
  2719. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2720. {
  2721. /* another "blocks" (512byte) blocks have been synced */
  2722. atomic_sub(blocks, &mddev->recovery_active);
  2723. wake_up(&mddev->recovery_wait);
  2724. if (!ok) {
  2725. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2726. md_wakeup_thread(mddev->thread);
  2727. // stop recovery, signal do_sync ....
  2728. }
  2729. }
  2730. void md_write_start(mddev_t *mddev)
  2731. {
  2732. if (!atomic_read(&mddev->writes_pending)) {
  2733. mddev_lock_uninterruptible(mddev);
  2734. if (mddev->in_sync) {
  2735. mddev->in_sync = 0;
  2736. del_timer(&mddev->safemode_timer);
  2737. md_update_sb(mddev);
  2738. }
  2739. atomic_inc(&mddev->writes_pending);
  2740. mddev_unlock(mddev);
  2741. } else
  2742. atomic_inc(&mddev->writes_pending);
  2743. }
  2744. void md_write_end(mddev_t *mddev)
  2745. {
  2746. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2747. if (mddev->safemode == 2)
  2748. md_wakeup_thread(mddev->thread);
  2749. else
  2750. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2751. }
  2752. }
  2753. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2754. #define SYNC_MARKS 10
  2755. #define SYNC_MARK_STEP (3*HZ)
  2756. static void md_do_sync(mddev_t *mddev)
  2757. {
  2758. mddev_t *mddev2;
  2759. unsigned int currspeed = 0,
  2760. window;
  2761. sector_t max_sectors,j;
  2762. unsigned long mark[SYNC_MARKS];
  2763. sector_t mark_cnt[SYNC_MARKS];
  2764. int last_mark,m;
  2765. struct list_head *tmp;
  2766. sector_t last_check;
  2767. /* just incase thread restarts... */
  2768. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2769. return;
  2770. /* we overload curr_resync somewhat here.
  2771. * 0 == not engaged in resync at all
  2772. * 2 == checking that there is no conflict with another sync
  2773. * 1 == like 2, but have yielded to allow conflicting resync to
  2774. * commense
  2775. * other == active in resync - this many blocks
  2776. *
  2777. * Before starting a resync we must have set curr_resync to
  2778. * 2, and then checked that every "conflicting" array has curr_resync
  2779. * less than ours. When we find one that is the same or higher
  2780. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2781. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2782. * This will mean we have to start checking from the beginning again.
  2783. *
  2784. */
  2785. do {
  2786. mddev->curr_resync = 2;
  2787. try_again:
  2788. if (signal_pending(current)) {
  2789. flush_signals(current);
  2790. goto skip;
  2791. }
  2792. ITERATE_MDDEV(mddev2,tmp) {
  2793. printk(".");
  2794. if (mddev2 == mddev)
  2795. continue;
  2796. if (mddev2->curr_resync &&
  2797. match_mddev_units(mddev,mddev2)) {
  2798. DEFINE_WAIT(wq);
  2799. if (mddev < mddev2 && mddev->curr_resync == 2) {
  2800. /* arbitrarily yield */
  2801. mddev->curr_resync = 1;
  2802. wake_up(&resync_wait);
  2803. }
  2804. if (mddev > mddev2 && mddev->curr_resync == 1)
  2805. /* no need to wait here, we can wait the next
  2806. * time 'round when curr_resync == 2
  2807. */
  2808. continue;
  2809. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  2810. if (!signal_pending(current)
  2811. && mddev2->curr_resync >= mddev->curr_resync) {
  2812. printk(KERN_INFO "md: delaying resync of %s"
  2813. " until %s has finished resync (they"
  2814. " share one or more physical units)\n",
  2815. mdname(mddev), mdname(mddev2));
  2816. mddev_put(mddev2);
  2817. schedule();
  2818. finish_wait(&resync_wait, &wq);
  2819. goto try_again;
  2820. }
  2821. finish_wait(&resync_wait, &wq);
  2822. }
  2823. }
  2824. } while (mddev->curr_resync < 2);
  2825. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2826. /* resync follows the size requested by the personality,
  2827. * which default to physical size, but can be virtual size
  2828. */
  2829. max_sectors = mddev->resync_max_sectors;
  2830. else
  2831. /* recovery follows the physical size of devices */
  2832. max_sectors = mddev->size << 1;
  2833. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  2834. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  2835. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  2836. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  2837. "(but not more than %d KB/sec) for reconstruction.\n",
  2838. sysctl_speed_limit_max);
  2839. is_mddev_idle(mddev); /* this also initializes IO event counters */
  2840. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2841. j = mddev->recovery_cp;
  2842. else
  2843. j = 0;
  2844. for (m = 0; m < SYNC_MARKS; m++) {
  2845. mark[m] = jiffies;
  2846. mark_cnt[m] = j;
  2847. }
  2848. last_mark = 0;
  2849. mddev->resync_mark = mark[last_mark];
  2850. mddev->resync_mark_cnt = mark_cnt[last_mark];
  2851. /*
  2852. * Tune reconstruction:
  2853. */
  2854. window = 32*(PAGE_SIZE/512);
  2855. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  2856. window/2,(unsigned long long) max_sectors/2);
  2857. atomic_set(&mddev->recovery_active, 0);
  2858. init_waitqueue_head(&mddev->recovery_wait);
  2859. last_check = 0;
  2860. if (j>2) {
  2861. printk(KERN_INFO
  2862. "md: resuming recovery of %s from checkpoint.\n",
  2863. mdname(mddev));
  2864. mddev->curr_resync = j;
  2865. }
  2866. while (j < max_sectors) {
  2867. int sectors;
  2868. sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
  2869. if (sectors < 0) {
  2870. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2871. goto out;
  2872. }
  2873. atomic_add(sectors, &mddev->recovery_active);
  2874. j += sectors;
  2875. if (j>1) mddev->curr_resync = j;
  2876. if (last_check + window > j || j == max_sectors)
  2877. continue;
  2878. last_check = j;
  2879. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  2880. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  2881. break;
  2882. repeat:
  2883. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  2884. /* step marks */
  2885. int next = (last_mark+1) % SYNC_MARKS;
  2886. mddev->resync_mark = mark[next];
  2887. mddev->resync_mark_cnt = mark_cnt[next];
  2888. mark[next] = jiffies;
  2889. mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
  2890. last_mark = next;
  2891. }
  2892. if (signal_pending(current)) {
  2893. /*
  2894. * got a signal, exit.
  2895. */
  2896. printk(KERN_INFO
  2897. "md: md_do_sync() got signal ... exiting\n");
  2898. flush_signals(current);
  2899. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2900. goto out;
  2901. }
  2902. /*
  2903. * this loop exits only if either when we are slower than
  2904. * the 'hard' speed limit, or the system was IO-idle for
  2905. * a jiffy.
  2906. * the system might be non-idle CPU-wise, but we only care
  2907. * about not overloading the IO subsystem. (things like an
  2908. * e2fsck being done on the RAID array should execute fast)
  2909. */
  2910. mddev->queue->unplug_fn(mddev->queue);
  2911. cond_resched();
  2912. currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
  2913. if (currspeed > sysctl_speed_limit_min) {
  2914. if ((currspeed > sysctl_speed_limit_max) ||
  2915. !is_mddev_idle(mddev)) {
  2916. msleep_interruptible(250);
  2917. goto repeat;
  2918. }
  2919. }
  2920. }
  2921. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  2922. /*
  2923. * this also signals 'finished resyncing' to md_stop
  2924. */
  2925. out:
  2926. mddev->queue->unplug_fn(mddev->queue);
  2927. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  2928. /* tell personality that we are finished */
  2929. mddev->pers->sync_request(mddev, max_sectors, 1);
  2930. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  2931. mddev->curr_resync > 2 &&
  2932. mddev->curr_resync >= mddev->recovery_cp) {
  2933. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  2934. printk(KERN_INFO
  2935. "md: checkpointing recovery of %s.\n",
  2936. mdname(mddev));
  2937. mddev->recovery_cp = mddev->curr_resync;
  2938. } else
  2939. mddev->recovery_cp = MaxSector;
  2940. }
  2941. skip:
  2942. mddev->curr_resync = 0;
  2943. wake_up(&resync_wait);
  2944. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  2945. md_wakeup_thread(mddev->thread);
  2946. }
  2947. /*
  2948. * This routine is regularly called by all per-raid-array threads to
  2949. * deal with generic issues like resync and super-block update.
  2950. * Raid personalities that don't have a thread (linear/raid0) do not
  2951. * need this as they never do any recovery or update the superblock.
  2952. *
  2953. * It does not do any resync itself, but rather "forks" off other threads
  2954. * to do that as needed.
  2955. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  2956. * "->recovery" and create a thread at ->sync_thread.
  2957. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  2958. * and wakeups up this thread which will reap the thread and finish up.
  2959. * This thread also removes any faulty devices (with nr_pending == 0).
  2960. *
  2961. * The overall approach is:
  2962. * 1/ if the superblock needs updating, update it.
  2963. * 2/ If a recovery thread is running, don't do anything else.
  2964. * 3/ If recovery has finished, clean up, possibly marking spares active.
  2965. * 4/ If there are any faulty devices, remove them.
  2966. * 5/ If array is degraded, try to add spares devices
  2967. * 6/ If array has spares or is not in-sync, start a resync thread.
  2968. */
  2969. void md_check_recovery(mddev_t *mddev)
  2970. {
  2971. mdk_rdev_t *rdev;
  2972. struct list_head *rtmp;
  2973. dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
  2974. if (mddev->ro)
  2975. return;
  2976. if (signal_pending(current)) {
  2977. if (mddev->pers->sync_request) {
  2978. printk(KERN_INFO "md: %s in immediate safe mode\n",
  2979. mdname(mddev));
  2980. mddev->safemode = 2;
  2981. }
  2982. flush_signals(current);
  2983. }
  2984. if ( ! (
  2985. mddev->sb_dirty ||
  2986. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  2987. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  2988. (mddev->safemode == 1) ||
  2989. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  2990. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  2991. ))
  2992. return;
  2993. if (mddev_trylock(mddev)==0) {
  2994. int spares =0;
  2995. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  2996. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  2997. mddev->in_sync = 1;
  2998. mddev->sb_dirty = 1;
  2999. }
  3000. if (mddev->safemode == 1)
  3001. mddev->safemode = 0;
  3002. if (mddev->sb_dirty)
  3003. md_update_sb(mddev);
  3004. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3005. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3006. /* resync/recovery still happening */
  3007. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3008. goto unlock;
  3009. }
  3010. if (mddev->sync_thread) {
  3011. /* resync has finished, collect result */
  3012. md_unregister_thread(mddev->sync_thread);
  3013. mddev->sync_thread = NULL;
  3014. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3015. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3016. /* success...*/
  3017. /* activate any spares */
  3018. mddev->pers->spare_active(mddev);
  3019. }
  3020. md_update_sb(mddev);
  3021. mddev->recovery = 0;
  3022. /* flag recovery needed just to double check */
  3023. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3024. goto unlock;
  3025. }
  3026. if (mddev->recovery)
  3027. /* probably just the RECOVERY_NEEDED flag */
  3028. mddev->recovery = 0;
  3029. /* no recovery is running.
  3030. * remove any failed drives, then
  3031. * add spares if possible.
  3032. * Spare are also removed and re-added, to allow
  3033. * the personality to fail the re-add.
  3034. */
  3035. ITERATE_RDEV(mddev,rdev,rtmp)
  3036. if (rdev->raid_disk >= 0 &&
  3037. (rdev->faulty || ! rdev->in_sync) &&
  3038. atomic_read(&rdev->nr_pending)==0) {
  3039. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3040. rdev->raid_disk = -1;
  3041. }
  3042. if (mddev->degraded) {
  3043. ITERATE_RDEV(mddev,rdev,rtmp)
  3044. if (rdev->raid_disk < 0
  3045. && !rdev->faulty) {
  3046. if (mddev->pers->hot_add_disk(mddev,rdev))
  3047. spares++;
  3048. else
  3049. break;
  3050. }
  3051. }
  3052. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3053. /* nothing we can do ... */
  3054. goto unlock;
  3055. }
  3056. if (mddev->pers->sync_request) {
  3057. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3058. if (!spares)
  3059. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3060. mddev->sync_thread = md_register_thread(md_do_sync,
  3061. mddev,
  3062. "%s_resync");
  3063. if (!mddev->sync_thread) {
  3064. printk(KERN_ERR "%s: could not start resync"
  3065. " thread...\n",
  3066. mdname(mddev));
  3067. /* leave the spares where they are, it shouldn't hurt */
  3068. mddev->recovery = 0;
  3069. } else {
  3070. md_wakeup_thread(mddev->sync_thread);
  3071. }
  3072. }
  3073. unlock:
  3074. mddev_unlock(mddev);
  3075. }
  3076. }
  3077. static int md_notify_reboot(struct notifier_block *this,
  3078. unsigned long code, void *x)
  3079. {
  3080. struct list_head *tmp;
  3081. mddev_t *mddev;
  3082. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3083. printk(KERN_INFO "md: stopping all md devices.\n");
  3084. ITERATE_MDDEV(mddev,tmp)
  3085. if (mddev_trylock(mddev)==0)
  3086. do_md_stop (mddev, 1);
  3087. /*
  3088. * certain more exotic SCSI devices are known to be
  3089. * volatile wrt too early system reboots. While the
  3090. * right place to handle this issue is the given
  3091. * driver, we do want to have a safe RAID driver ...
  3092. */
  3093. mdelay(1000*1);
  3094. }
  3095. return NOTIFY_DONE;
  3096. }
  3097. static struct notifier_block md_notifier = {
  3098. .notifier_call = md_notify_reboot,
  3099. .next = NULL,
  3100. .priority = INT_MAX, /* before any real devices */
  3101. };
  3102. static void md_geninit(void)
  3103. {
  3104. struct proc_dir_entry *p;
  3105. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3106. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3107. if (p)
  3108. p->proc_fops = &md_seq_fops;
  3109. }
  3110. static int __init md_init(void)
  3111. {
  3112. int minor;
  3113. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3114. " MD_SB_DISKS=%d\n",
  3115. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3116. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3117. if (register_blkdev(MAJOR_NR, "md"))
  3118. return -1;
  3119. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3120. unregister_blkdev(MAJOR_NR, "md");
  3121. return -1;
  3122. }
  3123. devfs_mk_dir("md");
  3124. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3125. md_probe, NULL, NULL);
  3126. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3127. md_probe, NULL, NULL);
  3128. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3129. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3130. S_IFBLK|S_IRUSR|S_IWUSR,
  3131. "md/%d", minor);
  3132. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3133. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3134. S_IFBLK|S_IRUSR|S_IWUSR,
  3135. "md/mdp%d", minor);
  3136. register_reboot_notifier(&md_notifier);
  3137. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3138. md_geninit();
  3139. return (0);
  3140. }
  3141. #ifndef MODULE
  3142. /*
  3143. * Searches all registered partitions for autorun RAID arrays
  3144. * at boot time.
  3145. */
  3146. static dev_t detected_devices[128];
  3147. static int dev_cnt;
  3148. void md_autodetect_dev(dev_t dev)
  3149. {
  3150. if (dev_cnt >= 0 && dev_cnt < 127)
  3151. detected_devices[dev_cnt++] = dev;
  3152. }
  3153. static void autostart_arrays(int part)
  3154. {
  3155. mdk_rdev_t *rdev;
  3156. int i;
  3157. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3158. for (i = 0; i < dev_cnt; i++) {
  3159. dev_t dev = detected_devices[i];
  3160. rdev = md_import_device(dev,0, 0);
  3161. if (IS_ERR(rdev))
  3162. continue;
  3163. if (rdev->faulty) {
  3164. MD_BUG();
  3165. continue;
  3166. }
  3167. list_add(&rdev->same_set, &pending_raid_disks);
  3168. }
  3169. dev_cnt = 0;
  3170. autorun_devices(part);
  3171. }
  3172. #endif
  3173. static __exit void md_exit(void)
  3174. {
  3175. mddev_t *mddev;
  3176. struct list_head *tmp;
  3177. int i;
  3178. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3179. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3180. for (i=0; i < MAX_MD_DEVS; i++)
  3181. devfs_remove("md/%d", i);
  3182. for (i=0; i < MAX_MD_DEVS; i++)
  3183. devfs_remove("md/d%d", i);
  3184. devfs_remove("md");
  3185. unregister_blkdev(MAJOR_NR,"md");
  3186. unregister_blkdev(mdp_major, "mdp");
  3187. unregister_reboot_notifier(&md_notifier);
  3188. unregister_sysctl_table(raid_table_header);
  3189. remove_proc_entry("mdstat", NULL);
  3190. ITERATE_MDDEV(mddev,tmp) {
  3191. struct gendisk *disk = mddev->gendisk;
  3192. if (!disk)
  3193. continue;
  3194. export_array(mddev);
  3195. del_gendisk(disk);
  3196. put_disk(disk);
  3197. mddev->gendisk = NULL;
  3198. mddev_put(mddev);
  3199. }
  3200. }
  3201. module_init(md_init)
  3202. module_exit(md_exit)
  3203. EXPORT_SYMBOL(register_md_personality);
  3204. EXPORT_SYMBOL(unregister_md_personality);
  3205. EXPORT_SYMBOL(md_error);
  3206. EXPORT_SYMBOL(md_done_sync);
  3207. EXPORT_SYMBOL(md_write_start);
  3208. EXPORT_SYMBOL(md_write_end);
  3209. EXPORT_SYMBOL(md_register_thread);
  3210. EXPORT_SYMBOL(md_unregister_thread);
  3211. EXPORT_SYMBOL(md_wakeup_thread);
  3212. EXPORT_SYMBOL(md_print_devices);
  3213. EXPORT_SYMBOL(md_check_recovery);
  3214. MODULE_LICENSE("GPL");