zd_usb.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410
  1. /* zd_usb.c
  2. *
  3. * This program is free software; you can redistribute it and/or modify
  4. * it under the terms of the GNU General Public License as published by
  5. * the Free Software Foundation; either version 2 of the License, or
  6. * (at your option) any later version.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  16. */
  17. #include <asm/unaligned.h>
  18. #include <linux/kernel.h>
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/firmware.h>
  22. #include <linux/device.h>
  23. #include <linux/errno.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/usb.h>
  26. #include <net/ieee80211.h>
  27. #include "zd_def.h"
  28. #include "zd_netdev.h"
  29. #include "zd_mac.h"
  30. #include "zd_usb.h"
  31. #include "zd_util.h"
  32. static struct usb_device_id usb_ids[] = {
  33. /* ZD1211 */
  34. { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
  35. { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
  36. { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
  37. { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
  38. { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
  39. { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
  40. { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
  41. { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
  42. { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
  43. { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
  44. { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
  45. /* ZD1211B */
  46. { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
  47. { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
  48. { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
  49. { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
  50. /* "Driverless" devices that need ejecting */
  51. { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
  52. {}
  53. };
  54. MODULE_LICENSE("GPL");
  55. MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
  56. MODULE_AUTHOR("Ulrich Kunitz");
  57. MODULE_AUTHOR("Daniel Drake");
  58. MODULE_VERSION("1.0");
  59. MODULE_DEVICE_TABLE(usb, usb_ids);
  60. #define FW_ZD1211_PREFIX "zd1211/zd1211_"
  61. #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
  62. /* register address handling */
  63. #ifdef DEBUG
  64. static int check_addr(struct zd_usb *usb, zd_addr_t addr)
  65. {
  66. u32 base = ZD_ADDR_BASE(addr);
  67. u32 offset = ZD_OFFSET(addr);
  68. if ((u32)addr & ADDR_ZERO_MASK)
  69. goto invalid_address;
  70. switch (base) {
  71. case USB_BASE:
  72. break;
  73. case CR_BASE:
  74. if (offset > CR_MAX_OFFSET) {
  75. dev_dbg(zd_usb_dev(usb),
  76. "CR offset %#010x larger than"
  77. " CR_MAX_OFFSET %#10x\n",
  78. offset, CR_MAX_OFFSET);
  79. goto invalid_address;
  80. }
  81. if (offset & 1) {
  82. dev_dbg(zd_usb_dev(usb),
  83. "CR offset %#010x is not a multiple of 2\n",
  84. offset);
  85. goto invalid_address;
  86. }
  87. break;
  88. case E2P_BASE:
  89. if (offset > E2P_MAX_OFFSET) {
  90. dev_dbg(zd_usb_dev(usb),
  91. "E2P offset %#010x larger than"
  92. " E2P_MAX_OFFSET %#010x\n",
  93. offset, E2P_MAX_OFFSET);
  94. goto invalid_address;
  95. }
  96. break;
  97. case FW_BASE:
  98. if (!usb->fw_base_offset) {
  99. dev_dbg(zd_usb_dev(usb),
  100. "ERROR: fw base offset has not been set\n");
  101. return -EAGAIN;
  102. }
  103. if (offset > FW_MAX_OFFSET) {
  104. dev_dbg(zd_usb_dev(usb),
  105. "FW offset %#10x is larger than"
  106. " FW_MAX_OFFSET %#010x\n",
  107. offset, FW_MAX_OFFSET);
  108. goto invalid_address;
  109. }
  110. break;
  111. default:
  112. dev_dbg(zd_usb_dev(usb),
  113. "address has unsupported base %#010x\n", addr);
  114. goto invalid_address;
  115. }
  116. return 0;
  117. invalid_address:
  118. dev_dbg(zd_usb_dev(usb),
  119. "ERROR: invalid address: %#010x\n", addr);
  120. return -EINVAL;
  121. }
  122. #endif /* DEBUG */
  123. static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
  124. {
  125. u32 base;
  126. u16 offset;
  127. base = ZD_ADDR_BASE(addr);
  128. offset = ZD_OFFSET(addr);
  129. ZD_ASSERT(check_addr(usb, addr) == 0);
  130. switch (base) {
  131. case CR_BASE:
  132. offset += CR_BASE_OFFSET;
  133. break;
  134. case E2P_BASE:
  135. offset += E2P_BASE_OFFSET;
  136. break;
  137. case FW_BASE:
  138. offset += usb->fw_base_offset;
  139. break;
  140. }
  141. return offset;
  142. }
  143. /* USB device initialization */
  144. static int request_fw_file(
  145. const struct firmware **fw, const char *name, struct device *device)
  146. {
  147. int r;
  148. dev_dbg_f(device, "fw name %s\n", name);
  149. r = request_firmware(fw, name, device);
  150. if (r)
  151. dev_err(device,
  152. "Could not load firmware file %s. Error number %d\n",
  153. name, r);
  154. return r;
  155. }
  156. static inline u16 get_bcdDevice(const struct usb_device *udev)
  157. {
  158. return le16_to_cpu(udev->descriptor.bcdDevice);
  159. }
  160. enum upload_code_flags {
  161. REBOOT = 1,
  162. };
  163. /* Ensures that MAX_TRANSFER_SIZE is even. */
  164. #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
  165. static int upload_code(struct usb_device *udev,
  166. const u8 *data, size_t size, u16 code_offset, int flags)
  167. {
  168. u8 *p;
  169. int r;
  170. /* USB request blocks need "kmalloced" buffers.
  171. */
  172. p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
  173. if (!p) {
  174. dev_err(&udev->dev, "out of memory\n");
  175. r = -ENOMEM;
  176. goto error;
  177. }
  178. size &= ~1;
  179. while (size > 0) {
  180. size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
  181. size : MAX_TRANSFER_SIZE;
  182. dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
  183. memcpy(p, data, transfer_size);
  184. r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
  185. USB_REQ_FIRMWARE_DOWNLOAD,
  186. USB_DIR_OUT | USB_TYPE_VENDOR,
  187. code_offset, 0, p, transfer_size, 1000 /* ms */);
  188. if (r < 0) {
  189. dev_err(&udev->dev,
  190. "USB control request for firmware upload"
  191. " failed. Error number %d\n", r);
  192. goto error;
  193. }
  194. transfer_size = r & ~1;
  195. size -= transfer_size;
  196. data += transfer_size;
  197. code_offset += transfer_size/sizeof(u16);
  198. }
  199. if (flags & REBOOT) {
  200. u8 ret;
  201. r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
  202. USB_REQ_FIRMWARE_CONFIRM,
  203. USB_DIR_IN | USB_TYPE_VENDOR,
  204. 0, 0, &ret, sizeof(ret), 5000 /* ms */);
  205. if (r != sizeof(ret)) {
  206. dev_err(&udev->dev,
  207. "control request firmeware confirmation failed."
  208. " Return value %d\n", r);
  209. if (r >= 0)
  210. r = -ENODEV;
  211. goto error;
  212. }
  213. if (ret & 0x80) {
  214. dev_err(&udev->dev,
  215. "Internal error while downloading."
  216. " Firmware confirm return value %#04x\n",
  217. (unsigned int)ret);
  218. r = -ENODEV;
  219. goto error;
  220. }
  221. dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
  222. (unsigned int)ret);
  223. }
  224. r = 0;
  225. error:
  226. kfree(p);
  227. return r;
  228. }
  229. static u16 get_word(const void *data, u16 offset)
  230. {
  231. const __le16 *p = data;
  232. return le16_to_cpu(p[offset]);
  233. }
  234. static char *get_fw_name(char *buffer, size_t size, u8 device_type,
  235. const char* postfix)
  236. {
  237. scnprintf(buffer, size, "%s%s",
  238. device_type == DEVICE_ZD1211B ?
  239. FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
  240. postfix);
  241. return buffer;
  242. }
  243. static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
  244. const struct firmware *ub_fw)
  245. {
  246. const struct firmware *ur_fw = NULL;
  247. int offset;
  248. int r = 0;
  249. char fw_name[128];
  250. r = request_fw_file(&ur_fw,
  251. get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
  252. &udev->dev);
  253. if (r)
  254. goto error;
  255. r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
  256. REBOOT);
  257. if (r)
  258. goto error;
  259. offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
  260. r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
  261. E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
  262. /* At this point, the vendor driver downloads the whole firmware
  263. * image, hacks around with version IDs, and uploads it again,
  264. * completely overwriting the boot code. We do not do this here as
  265. * it is not required on any tested devices, and it is suspected to
  266. * cause problems. */
  267. error:
  268. release_firmware(ur_fw);
  269. return r;
  270. }
  271. static int upload_firmware(struct usb_device *udev, u8 device_type)
  272. {
  273. int r;
  274. u16 fw_bcdDevice;
  275. u16 bcdDevice;
  276. const struct firmware *ub_fw = NULL;
  277. const struct firmware *uph_fw = NULL;
  278. char fw_name[128];
  279. bcdDevice = get_bcdDevice(udev);
  280. r = request_fw_file(&ub_fw,
  281. get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
  282. &udev->dev);
  283. if (r)
  284. goto error;
  285. fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
  286. if (fw_bcdDevice != bcdDevice) {
  287. dev_info(&udev->dev,
  288. "firmware version %#06x and device bootcode version "
  289. "%#06x differ\n", fw_bcdDevice, bcdDevice);
  290. if (bcdDevice <= 0x4313)
  291. dev_warn(&udev->dev, "device has old bootcode, please "
  292. "report success or failure\n");
  293. r = handle_version_mismatch(udev, device_type, ub_fw);
  294. if (r)
  295. goto error;
  296. } else {
  297. dev_dbg_f(&udev->dev,
  298. "firmware device id %#06x is equal to the "
  299. "actual device id\n", fw_bcdDevice);
  300. }
  301. r = request_fw_file(&uph_fw,
  302. get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
  303. &udev->dev);
  304. if (r)
  305. goto error;
  306. r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
  307. REBOOT);
  308. if (r) {
  309. dev_err(&udev->dev,
  310. "Could not upload firmware code uph. Error number %d\n",
  311. r);
  312. }
  313. /* FALL-THROUGH */
  314. error:
  315. release_firmware(ub_fw);
  316. release_firmware(uph_fw);
  317. return r;
  318. }
  319. static void disable_read_regs_int(struct zd_usb *usb)
  320. {
  321. struct zd_usb_interrupt *intr = &usb->intr;
  322. spin_lock(&intr->lock);
  323. intr->read_regs_enabled = 0;
  324. spin_unlock(&intr->lock);
  325. }
  326. #define urb_dev(urb) (&(urb)->dev->dev)
  327. static inline void handle_regs_int(struct urb *urb)
  328. {
  329. struct zd_usb *usb = urb->context;
  330. struct zd_usb_interrupt *intr = &usb->intr;
  331. int len;
  332. ZD_ASSERT(in_interrupt());
  333. spin_lock(&intr->lock);
  334. if (intr->read_regs_enabled) {
  335. intr->read_regs.length = len = urb->actual_length;
  336. if (len > sizeof(intr->read_regs.buffer))
  337. len = sizeof(intr->read_regs.buffer);
  338. memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
  339. intr->read_regs_enabled = 0;
  340. complete(&intr->read_regs.completion);
  341. goto out;
  342. }
  343. dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
  344. out:
  345. spin_unlock(&intr->lock);
  346. }
  347. static inline void handle_retry_failed_int(struct urb *urb)
  348. {
  349. dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
  350. }
  351. static void int_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  352. {
  353. int r;
  354. struct usb_int_header *hdr;
  355. switch (urb->status) {
  356. case 0:
  357. break;
  358. case -ESHUTDOWN:
  359. case -EINVAL:
  360. case -ENODEV:
  361. case -ENOENT:
  362. case -ECONNRESET:
  363. case -EPIPE:
  364. goto kfree;
  365. default:
  366. goto resubmit;
  367. }
  368. if (urb->actual_length < sizeof(hdr)) {
  369. dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
  370. goto resubmit;
  371. }
  372. hdr = urb->transfer_buffer;
  373. if (hdr->type != USB_INT_TYPE) {
  374. dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
  375. goto resubmit;
  376. }
  377. switch (hdr->id) {
  378. case USB_INT_ID_REGS:
  379. handle_regs_int(urb);
  380. break;
  381. case USB_INT_ID_RETRY_FAILED:
  382. handle_retry_failed_int(urb);
  383. break;
  384. default:
  385. dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
  386. (unsigned int)hdr->id);
  387. goto resubmit;
  388. }
  389. resubmit:
  390. r = usb_submit_urb(urb, GFP_ATOMIC);
  391. if (r) {
  392. dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
  393. goto kfree;
  394. }
  395. return;
  396. kfree:
  397. kfree(urb->transfer_buffer);
  398. }
  399. static inline int int_urb_interval(struct usb_device *udev)
  400. {
  401. switch (udev->speed) {
  402. case USB_SPEED_HIGH:
  403. return 4;
  404. case USB_SPEED_LOW:
  405. return 10;
  406. case USB_SPEED_FULL:
  407. default:
  408. return 1;
  409. }
  410. }
  411. static inline int usb_int_enabled(struct zd_usb *usb)
  412. {
  413. unsigned long flags;
  414. struct zd_usb_interrupt *intr = &usb->intr;
  415. struct urb *urb;
  416. spin_lock_irqsave(&intr->lock, flags);
  417. urb = intr->urb;
  418. spin_unlock_irqrestore(&intr->lock, flags);
  419. return urb != NULL;
  420. }
  421. int zd_usb_enable_int(struct zd_usb *usb)
  422. {
  423. int r;
  424. struct usb_device *udev;
  425. struct zd_usb_interrupt *intr = &usb->intr;
  426. void *transfer_buffer = NULL;
  427. struct urb *urb;
  428. dev_dbg_f(zd_usb_dev(usb), "\n");
  429. urb = usb_alloc_urb(0, GFP_NOFS);
  430. if (!urb) {
  431. r = -ENOMEM;
  432. goto out;
  433. }
  434. ZD_ASSERT(!irqs_disabled());
  435. spin_lock_irq(&intr->lock);
  436. if (intr->urb) {
  437. spin_unlock_irq(&intr->lock);
  438. r = 0;
  439. goto error_free_urb;
  440. }
  441. intr->urb = urb;
  442. spin_unlock_irq(&intr->lock);
  443. /* TODO: make it a DMA buffer */
  444. r = -ENOMEM;
  445. transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
  446. if (!transfer_buffer) {
  447. dev_dbg_f(zd_usb_dev(usb),
  448. "couldn't allocate transfer_buffer\n");
  449. goto error_set_urb_null;
  450. }
  451. udev = zd_usb_to_usbdev(usb);
  452. usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
  453. transfer_buffer, USB_MAX_EP_INT_BUFFER,
  454. int_urb_complete, usb,
  455. intr->interval);
  456. dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
  457. r = usb_submit_urb(urb, GFP_NOFS);
  458. if (r) {
  459. dev_dbg_f(zd_usb_dev(usb),
  460. "Couldn't submit urb. Error number %d\n", r);
  461. goto error;
  462. }
  463. return 0;
  464. error:
  465. kfree(transfer_buffer);
  466. error_set_urb_null:
  467. spin_lock_irq(&intr->lock);
  468. intr->urb = NULL;
  469. spin_unlock_irq(&intr->lock);
  470. error_free_urb:
  471. usb_free_urb(urb);
  472. out:
  473. return r;
  474. }
  475. void zd_usb_disable_int(struct zd_usb *usb)
  476. {
  477. unsigned long flags;
  478. struct zd_usb_interrupt *intr = &usb->intr;
  479. struct urb *urb;
  480. spin_lock_irqsave(&intr->lock, flags);
  481. urb = intr->urb;
  482. if (!urb) {
  483. spin_unlock_irqrestore(&intr->lock, flags);
  484. return;
  485. }
  486. intr->urb = NULL;
  487. spin_unlock_irqrestore(&intr->lock, flags);
  488. usb_kill_urb(urb);
  489. dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
  490. usb_free_urb(urb);
  491. }
  492. static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
  493. unsigned int length)
  494. {
  495. int i;
  496. struct zd_mac *mac = zd_usb_to_mac(usb);
  497. const struct rx_length_info *length_info;
  498. if (length < sizeof(struct rx_length_info)) {
  499. /* It's not a complete packet anyhow. */
  500. return;
  501. }
  502. length_info = (struct rx_length_info *)
  503. (buffer + length - sizeof(struct rx_length_info));
  504. /* It might be that three frames are merged into a single URB
  505. * transaction. We have to check for the length info tag.
  506. *
  507. * While testing we discovered that length_info might be unaligned,
  508. * because if USB transactions are merged, the last packet will not
  509. * be padded. Unaligned access might also happen if the length_info
  510. * structure is not present.
  511. */
  512. if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
  513. {
  514. unsigned int l, k, n;
  515. for (i = 0, l = 0;; i++) {
  516. k = le16_to_cpu(get_unaligned(&length_info->length[i]));
  517. n = l+k;
  518. if (n > length)
  519. return;
  520. zd_mac_rx(mac, buffer+l, k);
  521. if (i >= 2)
  522. return;
  523. l = (n+3) & ~3;
  524. }
  525. } else {
  526. zd_mac_rx(mac, buffer, length);
  527. }
  528. }
  529. static void rx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  530. {
  531. struct zd_usb *usb;
  532. struct zd_usb_rx *rx;
  533. const u8 *buffer;
  534. unsigned int length;
  535. switch (urb->status) {
  536. case 0:
  537. break;
  538. case -ESHUTDOWN:
  539. case -EINVAL:
  540. case -ENODEV:
  541. case -ENOENT:
  542. case -ECONNRESET:
  543. case -EPIPE:
  544. return;
  545. default:
  546. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  547. goto resubmit;
  548. }
  549. buffer = urb->transfer_buffer;
  550. length = urb->actual_length;
  551. usb = urb->context;
  552. rx = &usb->rx;
  553. if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
  554. /* If there is an old first fragment, we don't care. */
  555. dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
  556. ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
  557. spin_lock(&rx->lock);
  558. memcpy(rx->fragment, buffer, length);
  559. rx->fragment_length = length;
  560. spin_unlock(&rx->lock);
  561. goto resubmit;
  562. }
  563. spin_lock(&rx->lock);
  564. if (rx->fragment_length > 0) {
  565. /* We are on a second fragment, we believe */
  566. ZD_ASSERT(length + rx->fragment_length <=
  567. ARRAY_SIZE(rx->fragment));
  568. dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
  569. memcpy(rx->fragment+rx->fragment_length, buffer, length);
  570. handle_rx_packet(usb, rx->fragment,
  571. rx->fragment_length + length);
  572. rx->fragment_length = 0;
  573. spin_unlock(&rx->lock);
  574. } else {
  575. spin_unlock(&rx->lock);
  576. handle_rx_packet(usb, buffer, length);
  577. }
  578. resubmit:
  579. usb_submit_urb(urb, GFP_ATOMIC);
  580. }
  581. static struct urb *alloc_urb(struct zd_usb *usb)
  582. {
  583. struct usb_device *udev = zd_usb_to_usbdev(usb);
  584. struct urb *urb;
  585. void *buffer;
  586. urb = usb_alloc_urb(0, GFP_NOFS);
  587. if (!urb)
  588. return NULL;
  589. buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
  590. &urb->transfer_dma);
  591. if (!buffer) {
  592. usb_free_urb(urb);
  593. return NULL;
  594. }
  595. usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
  596. buffer, USB_MAX_RX_SIZE,
  597. rx_urb_complete, usb);
  598. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  599. return urb;
  600. }
  601. static void free_urb(struct urb *urb)
  602. {
  603. if (!urb)
  604. return;
  605. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  606. urb->transfer_buffer, urb->transfer_dma);
  607. usb_free_urb(urb);
  608. }
  609. int zd_usb_enable_rx(struct zd_usb *usb)
  610. {
  611. int i, r;
  612. struct zd_usb_rx *rx = &usb->rx;
  613. struct urb **urbs;
  614. dev_dbg_f(zd_usb_dev(usb), "\n");
  615. r = -ENOMEM;
  616. urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
  617. if (!urbs)
  618. goto error;
  619. for (i = 0; i < URBS_COUNT; i++) {
  620. urbs[i] = alloc_urb(usb);
  621. if (!urbs[i])
  622. goto error;
  623. }
  624. ZD_ASSERT(!irqs_disabled());
  625. spin_lock_irq(&rx->lock);
  626. if (rx->urbs) {
  627. spin_unlock_irq(&rx->lock);
  628. r = 0;
  629. goto error;
  630. }
  631. rx->urbs = urbs;
  632. rx->urbs_count = URBS_COUNT;
  633. spin_unlock_irq(&rx->lock);
  634. for (i = 0; i < URBS_COUNT; i++) {
  635. r = usb_submit_urb(urbs[i], GFP_NOFS);
  636. if (r)
  637. goto error_submit;
  638. }
  639. return 0;
  640. error_submit:
  641. for (i = 0; i < URBS_COUNT; i++) {
  642. usb_kill_urb(urbs[i]);
  643. }
  644. spin_lock_irq(&rx->lock);
  645. rx->urbs = NULL;
  646. rx->urbs_count = 0;
  647. spin_unlock_irq(&rx->lock);
  648. error:
  649. if (urbs) {
  650. for (i = 0; i < URBS_COUNT; i++)
  651. free_urb(urbs[i]);
  652. }
  653. return r;
  654. }
  655. void zd_usb_disable_rx(struct zd_usb *usb)
  656. {
  657. int i;
  658. unsigned long flags;
  659. struct urb **urbs;
  660. unsigned int count;
  661. struct zd_usb_rx *rx = &usb->rx;
  662. spin_lock_irqsave(&rx->lock, flags);
  663. urbs = rx->urbs;
  664. count = rx->urbs_count;
  665. spin_unlock_irqrestore(&rx->lock, flags);
  666. if (!urbs)
  667. return;
  668. for (i = 0; i < count; i++) {
  669. usb_kill_urb(urbs[i]);
  670. free_urb(urbs[i]);
  671. }
  672. kfree(urbs);
  673. spin_lock_irqsave(&rx->lock, flags);
  674. rx->urbs = NULL;
  675. rx->urbs_count = 0;
  676. spin_unlock_irqrestore(&rx->lock, flags);
  677. }
  678. static void tx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
  679. {
  680. int r;
  681. switch (urb->status) {
  682. case 0:
  683. break;
  684. case -ESHUTDOWN:
  685. case -EINVAL:
  686. case -ENODEV:
  687. case -ENOENT:
  688. case -ECONNRESET:
  689. case -EPIPE:
  690. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  691. break;
  692. default:
  693. dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
  694. goto resubmit;
  695. }
  696. free_urb:
  697. usb_buffer_free(urb->dev, urb->transfer_buffer_length,
  698. urb->transfer_buffer, urb->transfer_dma);
  699. usb_free_urb(urb);
  700. return;
  701. resubmit:
  702. r = usb_submit_urb(urb, GFP_ATOMIC);
  703. if (r) {
  704. dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
  705. goto free_urb;
  706. }
  707. }
  708. /* Puts the frame on the USB endpoint. It doesn't wait for
  709. * completion. The frame must contain the control set.
  710. */
  711. int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
  712. {
  713. int r;
  714. struct usb_device *udev = zd_usb_to_usbdev(usb);
  715. struct urb *urb;
  716. void *buffer;
  717. urb = usb_alloc_urb(0, GFP_ATOMIC);
  718. if (!urb) {
  719. r = -ENOMEM;
  720. goto out;
  721. }
  722. buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
  723. &urb->transfer_dma);
  724. if (!buffer) {
  725. r = -ENOMEM;
  726. goto error_free_urb;
  727. }
  728. memcpy(buffer, frame, length);
  729. usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
  730. buffer, length, tx_urb_complete, NULL);
  731. urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  732. r = usb_submit_urb(urb, GFP_ATOMIC);
  733. if (r)
  734. goto error;
  735. return 0;
  736. error:
  737. usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
  738. urb->transfer_dma);
  739. error_free_urb:
  740. usb_free_urb(urb);
  741. out:
  742. return r;
  743. }
  744. static inline void init_usb_interrupt(struct zd_usb *usb)
  745. {
  746. struct zd_usb_interrupt *intr = &usb->intr;
  747. spin_lock_init(&intr->lock);
  748. intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
  749. init_completion(&intr->read_regs.completion);
  750. intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
  751. }
  752. static inline void init_usb_rx(struct zd_usb *usb)
  753. {
  754. struct zd_usb_rx *rx = &usb->rx;
  755. spin_lock_init(&rx->lock);
  756. if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
  757. rx->usb_packet_size = 512;
  758. } else {
  759. rx->usb_packet_size = 64;
  760. }
  761. ZD_ASSERT(rx->fragment_length == 0);
  762. }
  763. static inline void init_usb_tx(struct zd_usb *usb)
  764. {
  765. /* FIXME: at this point we will allocate a fixed number of urb's for
  766. * use in a cyclic scheme */
  767. }
  768. void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
  769. struct usb_interface *intf)
  770. {
  771. memset(usb, 0, sizeof(*usb));
  772. usb->intf = usb_get_intf(intf);
  773. usb_set_intfdata(usb->intf, netdev);
  774. init_usb_interrupt(usb);
  775. init_usb_tx(usb);
  776. init_usb_rx(usb);
  777. }
  778. int zd_usb_init_hw(struct zd_usb *usb)
  779. {
  780. int r;
  781. struct zd_chip *chip = zd_usb_to_chip(usb);
  782. ZD_ASSERT(mutex_is_locked(&chip->mutex));
  783. r = zd_ioread16_locked(chip, &usb->fw_base_offset,
  784. USB_REG((u16)FW_BASE_ADDR_OFFSET));
  785. if (r)
  786. return r;
  787. dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
  788. usb->fw_base_offset);
  789. return 0;
  790. }
  791. void zd_usb_clear(struct zd_usb *usb)
  792. {
  793. usb_set_intfdata(usb->intf, NULL);
  794. usb_put_intf(usb->intf);
  795. ZD_MEMCLEAR(usb, sizeof(*usb));
  796. /* FIXME: usb_interrupt, usb_tx, usb_rx? */
  797. }
  798. static const char *speed(enum usb_device_speed speed)
  799. {
  800. switch (speed) {
  801. case USB_SPEED_LOW:
  802. return "low";
  803. case USB_SPEED_FULL:
  804. return "full";
  805. case USB_SPEED_HIGH:
  806. return "high";
  807. default:
  808. return "unknown speed";
  809. }
  810. }
  811. static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
  812. {
  813. return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
  814. le16_to_cpu(udev->descriptor.idVendor),
  815. le16_to_cpu(udev->descriptor.idProduct),
  816. get_bcdDevice(udev),
  817. speed(udev->speed));
  818. }
  819. int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
  820. {
  821. struct usb_device *udev = interface_to_usbdev(usb->intf);
  822. return scnprint_id(udev, buffer, size);
  823. }
  824. #ifdef DEBUG
  825. static void print_id(struct usb_device *udev)
  826. {
  827. char buffer[40];
  828. scnprint_id(udev, buffer, sizeof(buffer));
  829. buffer[sizeof(buffer)-1] = 0;
  830. dev_dbg_f(&udev->dev, "%s\n", buffer);
  831. }
  832. #else
  833. #define print_id(udev) do { } while (0)
  834. #endif
  835. static int eject_installer(struct usb_interface *intf)
  836. {
  837. struct usb_device *udev = interface_to_usbdev(intf);
  838. struct usb_host_interface *iface_desc = &intf->altsetting[0];
  839. struct usb_endpoint_descriptor *endpoint;
  840. unsigned char *cmd;
  841. u8 bulk_out_ep;
  842. int r;
  843. /* Find bulk out endpoint */
  844. endpoint = &iface_desc->endpoint[1].desc;
  845. if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
  846. (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
  847. USB_ENDPOINT_XFER_BULK) {
  848. bulk_out_ep = endpoint->bEndpointAddress;
  849. } else {
  850. dev_err(&udev->dev,
  851. "zd1211rw: Could not find bulk out endpoint\n");
  852. return -ENODEV;
  853. }
  854. cmd = kzalloc(31, GFP_KERNEL);
  855. if (cmd == NULL)
  856. return -ENODEV;
  857. /* USB bulk command block */
  858. cmd[0] = 0x55; /* bulk command signature */
  859. cmd[1] = 0x53; /* bulk command signature */
  860. cmd[2] = 0x42; /* bulk command signature */
  861. cmd[3] = 0x43; /* bulk command signature */
  862. cmd[14] = 6; /* command length */
  863. cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
  864. cmd[19] = 0x2; /* eject disc */
  865. dev_info(&udev->dev, "Ejecting virtual installer media...\n");
  866. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
  867. cmd, 31, NULL, 2000);
  868. kfree(cmd);
  869. if (r)
  870. return r;
  871. /* At this point, the device disconnects and reconnects with the real
  872. * ID numbers. */
  873. usb_set_intfdata(intf, NULL);
  874. return 0;
  875. }
  876. static int probe(struct usb_interface *intf, const struct usb_device_id *id)
  877. {
  878. int r;
  879. struct usb_device *udev = interface_to_usbdev(intf);
  880. struct net_device *netdev = NULL;
  881. print_id(udev);
  882. if (id->driver_info & DEVICE_INSTALLER)
  883. return eject_installer(intf);
  884. switch (udev->speed) {
  885. case USB_SPEED_LOW:
  886. case USB_SPEED_FULL:
  887. case USB_SPEED_HIGH:
  888. break;
  889. default:
  890. dev_dbg_f(&intf->dev, "Unknown USB speed\n");
  891. r = -ENODEV;
  892. goto error;
  893. }
  894. netdev = zd_netdev_alloc(intf);
  895. if (netdev == NULL) {
  896. r = -ENOMEM;
  897. goto error;
  898. }
  899. r = upload_firmware(udev, id->driver_info);
  900. if (r) {
  901. dev_err(&intf->dev,
  902. "couldn't load firmware. Error number %d\n", r);
  903. goto error;
  904. }
  905. r = usb_reset_configuration(udev);
  906. if (r) {
  907. dev_dbg_f(&intf->dev,
  908. "couldn't reset configuration. Error number %d\n", r);
  909. goto error;
  910. }
  911. /* At this point the interrupt endpoint is not generally enabled. We
  912. * save the USB bandwidth until the network device is opened. But
  913. * notify that the initialization of the MAC will require the
  914. * interrupts to be temporary enabled.
  915. */
  916. r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
  917. if (r) {
  918. dev_dbg_f(&intf->dev,
  919. "couldn't initialize mac. Error number %d\n", r);
  920. goto error;
  921. }
  922. r = register_netdev(netdev);
  923. if (r) {
  924. dev_dbg_f(&intf->dev,
  925. "couldn't register netdev. Error number %d\n", r);
  926. goto error;
  927. }
  928. dev_dbg_f(&intf->dev, "successful\n");
  929. dev_info(&intf->dev,"%s\n", netdev->name);
  930. return 0;
  931. error:
  932. usb_reset_device(interface_to_usbdev(intf));
  933. zd_netdev_free(netdev);
  934. return r;
  935. }
  936. static void disconnect(struct usb_interface *intf)
  937. {
  938. struct net_device *netdev = zd_intf_to_netdev(intf);
  939. struct zd_mac *mac = zd_netdev_mac(netdev);
  940. struct zd_usb *usb = &mac->chip.usb;
  941. /* Either something really bad happened, or we're just dealing with
  942. * a DEVICE_INSTALLER. */
  943. if (netdev == NULL)
  944. return;
  945. dev_dbg_f(zd_usb_dev(usb), "\n");
  946. zd_netdev_disconnect(netdev);
  947. /* Just in case something has gone wrong! */
  948. zd_usb_disable_rx(usb);
  949. zd_usb_disable_int(usb);
  950. /* If the disconnect has been caused by a removal of the
  951. * driver module, the reset allows reloading of the driver. If the
  952. * reset will not be executed here, the upload of the firmware in the
  953. * probe function caused by the reloading of the driver will fail.
  954. */
  955. usb_reset_device(interface_to_usbdev(intf));
  956. zd_netdev_free(netdev);
  957. dev_dbg(&intf->dev, "disconnected\n");
  958. }
  959. static struct usb_driver driver = {
  960. .name = "zd1211rw",
  961. .id_table = usb_ids,
  962. .probe = probe,
  963. .disconnect = disconnect,
  964. };
  965. static int __init usb_init(void)
  966. {
  967. int r;
  968. pr_debug("usb_init()\n");
  969. r = usb_register(&driver);
  970. if (r) {
  971. printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
  972. return r;
  973. }
  974. pr_debug("zd1211rw initialized\n");
  975. return 0;
  976. }
  977. static void __exit usb_exit(void)
  978. {
  979. pr_debug("usb_exit()\n");
  980. usb_deregister(&driver);
  981. }
  982. module_init(usb_init);
  983. module_exit(usb_exit);
  984. static int usb_int_regs_length(unsigned int count)
  985. {
  986. return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
  987. }
  988. static void prepare_read_regs_int(struct zd_usb *usb)
  989. {
  990. struct zd_usb_interrupt *intr = &usb->intr;
  991. spin_lock(&intr->lock);
  992. intr->read_regs_enabled = 1;
  993. INIT_COMPLETION(intr->read_regs.completion);
  994. spin_unlock(&intr->lock);
  995. }
  996. static int get_results(struct zd_usb *usb, u16 *values,
  997. struct usb_req_read_regs *req, unsigned int count)
  998. {
  999. int r;
  1000. int i;
  1001. struct zd_usb_interrupt *intr = &usb->intr;
  1002. struct read_regs_int *rr = &intr->read_regs;
  1003. struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
  1004. spin_lock(&intr->lock);
  1005. r = -EIO;
  1006. /* The created block size seems to be larger than expected.
  1007. * However results appear to be correct.
  1008. */
  1009. if (rr->length < usb_int_regs_length(count)) {
  1010. dev_dbg_f(zd_usb_dev(usb),
  1011. "error: actual length %d less than expected %d\n",
  1012. rr->length, usb_int_regs_length(count));
  1013. goto error_unlock;
  1014. }
  1015. if (rr->length > sizeof(rr->buffer)) {
  1016. dev_dbg_f(zd_usb_dev(usb),
  1017. "error: actual length %d exceeds buffer size %zu\n",
  1018. rr->length, sizeof(rr->buffer));
  1019. goto error_unlock;
  1020. }
  1021. for (i = 0; i < count; i++) {
  1022. struct reg_data *rd = &regs->regs[i];
  1023. if (rd->addr != req->addr[i]) {
  1024. dev_dbg_f(zd_usb_dev(usb),
  1025. "rd[%d] addr %#06hx expected %#06hx\n", i,
  1026. le16_to_cpu(rd->addr),
  1027. le16_to_cpu(req->addr[i]));
  1028. goto error_unlock;
  1029. }
  1030. values[i] = le16_to_cpu(rd->value);
  1031. }
  1032. r = 0;
  1033. error_unlock:
  1034. spin_unlock(&intr->lock);
  1035. return r;
  1036. }
  1037. int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
  1038. const zd_addr_t *addresses, unsigned int count)
  1039. {
  1040. int r;
  1041. int i, req_len, actual_req_len;
  1042. struct usb_device *udev;
  1043. struct usb_req_read_regs *req = NULL;
  1044. unsigned long timeout;
  1045. if (count < 1) {
  1046. dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
  1047. return -EINVAL;
  1048. }
  1049. if (count > USB_MAX_IOREAD16_COUNT) {
  1050. dev_dbg_f(zd_usb_dev(usb),
  1051. "error: count %u exceeds possible max %u\n",
  1052. count, USB_MAX_IOREAD16_COUNT);
  1053. return -EINVAL;
  1054. }
  1055. if (in_atomic()) {
  1056. dev_dbg_f(zd_usb_dev(usb),
  1057. "error: io in atomic context not supported\n");
  1058. return -EWOULDBLOCK;
  1059. }
  1060. if (!usb_int_enabled(usb)) {
  1061. dev_dbg_f(zd_usb_dev(usb),
  1062. "error: usb interrupt not enabled\n");
  1063. return -EWOULDBLOCK;
  1064. }
  1065. req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
  1066. req = kmalloc(req_len, GFP_NOFS);
  1067. if (!req)
  1068. return -ENOMEM;
  1069. req->id = cpu_to_le16(USB_REQ_READ_REGS);
  1070. for (i = 0; i < count; i++)
  1071. req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
  1072. udev = zd_usb_to_usbdev(usb);
  1073. prepare_read_regs_int(usb);
  1074. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1075. req, req_len, &actual_req_len, 1000 /* ms */);
  1076. if (r) {
  1077. dev_dbg_f(zd_usb_dev(usb),
  1078. "error in usb_bulk_msg(). Error number %d\n", r);
  1079. goto error;
  1080. }
  1081. if (req_len != actual_req_len) {
  1082. dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
  1083. " req_len %d != actual_req_len %d\n",
  1084. req_len, actual_req_len);
  1085. r = -EIO;
  1086. goto error;
  1087. }
  1088. timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
  1089. msecs_to_jiffies(1000));
  1090. if (!timeout) {
  1091. disable_read_regs_int(usb);
  1092. dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
  1093. r = -ETIMEDOUT;
  1094. goto error;
  1095. }
  1096. r = get_results(usb, values, req, count);
  1097. error:
  1098. kfree(req);
  1099. return r;
  1100. }
  1101. int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
  1102. unsigned int count)
  1103. {
  1104. int r;
  1105. struct usb_device *udev;
  1106. struct usb_req_write_regs *req = NULL;
  1107. int i, req_len, actual_req_len;
  1108. if (count == 0)
  1109. return 0;
  1110. if (count > USB_MAX_IOWRITE16_COUNT) {
  1111. dev_dbg_f(zd_usb_dev(usb),
  1112. "error: count %u exceeds possible max %u\n",
  1113. count, USB_MAX_IOWRITE16_COUNT);
  1114. return -EINVAL;
  1115. }
  1116. if (in_atomic()) {
  1117. dev_dbg_f(zd_usb_dev(usb),
  1118. "error: io in atomic context not supported\n");
  1119. return -EWOULDBLOCK;
  1120. }
  1121. req_len = sizeof(struct usb_req_write_regs) +
  1122. count * sizeof(struct reg_data);
  1123. req = kmalloc(req_len, GFP_NOFS);
  1124. if (!req)
  1125. return -ENOMEM;
  1126. req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
  1127. for (i = 0; i < count; i++) {
  1128. struct reg_data *rw = &req->reg_writes[i];
  1129. rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
  1130. rw->value = cpu_to_le16(ioreqs[i].value);
  1131. }
  1132. udev = zd_usb_to_usbdev(usb);
  1133. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1134. req, req_len, &actual_req_len, 1000 /* ms */);
  1135. if (r) {
  1136. dev_dbg_f(zd_usb_dev(usb),
  1137. "error in usb_bulk_msg(). Error number %d\n", r);
  1138. goto error;
  1139. }
  1140. if (req_len != actual_req_len) {
  1141. dev_dbg_f(zd_usb_dev(usb),
  1142. "error in usb_bulk_msg()"
  1143. " req_len %d != actual_req_len %d\n",
  1144. req_len, actual_req_len);
  1145. r = -EIO;
  1146. goto error;
  1147. }
  1148. /* FALL-THROUGH with r == 0 */
  1149. error:
  1150. kfree(req);
  1151. return r;
  1152. }
  1153. int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
  1154. {
  1155. int r;
  1156. struct usb_device *udev;
  1157. struct usb_req_rfwrite *req = NULL;
  1158. int i, req_len, actual_req_len;
  1159. u16 bit_value_template;
  1160. if (in_atomic()) {
  1161. dev_dbg_f(zd_usb_dev(usb),
  1162. "error: io in atomic context not supported\n");
  1163. return -EWOULDBLOCK;
  1164. }
  1165. if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
  1166. dev_dbg_f(zd_usb_dev(usb),
  1167. "error: bits %d are smaller than"
  1168. " USB_MIN_RFWRITE_BIT_COUNT %d\n",
  1169. bits, USB_MIN_RFWRITE_BIT_COUNT);
  1170. return -EINVAL;
  1171. }
  1172. if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
  1173. dev_dbg_f(zd_usb_dev(usb),
  1174. "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
  1175. bits, USB_MAX_RFWRITE_BIT_COUNT);
  1176. return -EINVAL;
  1177. }
  1178. #ifdef DEBUG
  1179. if (value & (~0UL << bits)) {
  1180. dev_dbg_f(zd_usb_dev(usb),
  1181. "error: value %#09x has bits >= %d set\n",
  1182. value, bits);
  1183. return -EINVAL;
  1184. }
  1185. #endif /* DEBUG */
  1186. dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
  1187. r = zd_usb_ioread16(usb, &bit_value_template, CR203);
  1188. if (r) {
  1189. dev_dbg_f(zd_usb_dev(usb),
  1190. "error %d: Couldn't read CR203\n", r);
  1191. goto out;
  1192. }
  1193. bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
  1194. req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
  1195. req = kmalloc(req_len, GFP_NOFS);
  1196. if (!req)
  1197. return -ENOMEM;
  1198. req->id = cpu_to_le16(USB_REQ_WRITE_RF);
  1199. /* 1: 3683a, but not used in ZYDAS driver */
  1200. req->value = cpu_to_le16(2);
  1201. req->bits = cpu_to_le16(bits);
  1202. for (i = 0; i < bits; i++) {
  1203. u16 bv = bit_value_template;
  1204. if (value & (1 << (bits-1-i)))
  1205. bv |= RF_DATA;
  1206. req->bit_values[i] = cpu_to_le16(bv);
  1207. }
  1208. udev = zd_usb_to_usbdev(usb);
  1209. r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
  1210. req, req_len, &actual_req_len, 1000 /* ms */);
  1211. if (r) {
  1212. dev_dbg_f(zd_usb_dev(usb),
  1213. "error in usb_bulk_msg(). Error number %d\n", r);
  1214. goto out;
  1215. }
  1216. if (req_len != actual_req_len) {
  1217. dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
  1218. " req_len %d != actual_req_len %d\n",
  1219. req_len, actual_req_len);
  1220. r = -EIO;
  1221. goto out;
  1222. }
  1223. /* FALL-THROUGH with r == 0 */
  1224. out:
  1225. kfree(req);
  1226. return r;
  1227. }