huge_memory.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static unsigned long huge_zero_pfn __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static int __init init_huge_zero_page(void)
  144. {
  145. struct page *hpage;
  146. hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  147. HPAGE_PMD_ORDER);
  148. if (!hpage)
  149. return -ENOMEM;
  150. huge_zero_pfn = page_to_pfn(hpage);
  151. return 0;
  152. }
  153. static inline bool is_huge_zero_pfn(unsigned long pfn)
  154. {
  155. return pfn == huge_zero_pfn;
  156. }
  157. static inline bool is_huge_zero_pmd(pmd_t pmd)
  158. {
  159. return is_huge_zero_pfn(pmd_pfn(pmd));
  160. }
  161. #ifdef CONFIG_SYSFS
  162. static ssize_t double_flag_show(struct kobject *kobj,
  163. struct kobj_attribute *attr, char *buf,
  164. enum transparent_hugepage_flag enabled,
  165. enum transparent_hugepage_flag req_madv)
  166. {
  167. if (test_bit(enabled, &transparent_hugepage_flags)) {
  168. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  169. return sprintf(buf, "[always] madvise never\n");
  170. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  171. return sprintf(buf, "always [madvise] never\n");
  172. else
  173. return sprintf(buf, "always madvise [never]\n");
  174. }
  175. static ssize_t double_flag_store(struct kobject *kobj,
  176. struct kobj_attribute *attr,
  177. const char *buf, size_t count,
  178. enum transparent_hugepage_flag enabled,
  179. enum transparent_hugepage_flag req_madv)
  180. {
  181. if (!memcmp("always", buf,
  182. min(sizeof("always")-1, count))) {
  183. set_bit(enabled, &transparent_hugepage_flags);
  184. clear_bit(req_madv, &transparent_hugepage_flags);
  185. } else if (!memcmp("madvise", buf,
  186. min(sizeof("madvise")-1, count))) {
  187. clear_bit(enabled, &transparent_hugepage_flags);
  188. set_bit(req_madv, &transparent_hugepage_flags);
  189. } else if (!memcmp("never", buf,
  190. min(sizeof("never")-1, count))) {
  191. clear_bit(enabled, &transparent_hugepage_flags);
  192. clear_bit(req_madv, &transparent_hugepage_flags);
  193. } else
  194. return -EINVAL;
  195. return count;
  196. }
  197. static ssize_t enabled_show(struct kobject *kobj,
  198. struct kobj_attribute *attr, char *buf)
  199. {
  200. return double_flag_show(kobj, attr, buf,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. }
  204. static ssize_t enabled_store(struct kobject *kobj,
  205. struct kobj_attribute *attr,
  206. const char *buf, size_t count)
  207. {
  208. ssize_t ret;
  209. ret = double_flag_store(kobj, attr, buf, count,
  210. TRANSPARENT_HUGEPAGE_FLAG,
  211. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  212. if (ret > 0) {
  213. int err;
  214. mutex_lock(&khugepaged_mutex);
  215. err = start_khugepaged();
  216. mutex_unlock(&khugepaged_mutex);
  217. if (err)
  218. ret = err;
  219. }
  220. return ret;
  221. }
  222. static struct kobj_attribute enabled_attr =
  223. __ATTR(enabled, 0644, enabled_show, enabled_store);
  224. static ssize_t single_flag_show(struct kobject *kobj,
  225. struct kobj_attribute *attr, char *buf,
  226. enum transparent_hugepage_flag flag)
  227. {
  228. return sprintf(buf, "%d\n",
  229. !!test_bit(flag, &transparent_hugepage_flags));
  230. }
  231. static ssize_t single_flag_store(struct kobject *kobj,
  232. struct kobj_attribute *attr,
  233. const char *buf, size_t count,
  234. enum transparent_hugepage_flag flag)
  235. {
  236. unsigned long value;
  237. int ret;
  238. ret = kstrtoul(buf, 10, &value);
  239. if (ret < 0)
  240. return ret;
  241. if (value > 1)
  242. return -EINVAL;
  243. if (value)
  244. set_bit(flag, &transparent_hugepage_flags);
  245. else
  246. clear_bit(flag, &transparent_hugepage_flags);
  247. return count;
  248. }
  249. /*
  250. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  251. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  252. * memory just to allocate one more hugepage.
  253. */
  254. static ssize_t defrag_show(struct kobject *kobj,
  255. struct kobj_attribute *attr, char *buf)
  256. {
  257. return double_flag_show(kobj, attr, buf,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  259. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  260. }
  261. static ssize_t defrag_store(struct kobject *kobj,
  262. struct kobj_attribute *attr,
  263. const char *buf, size_t count)
  264. {
  265. return double_flag_store(kobj, attr, buf, count,
  266. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  267. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  268. }
  269. static struct kobj_attribute defrag_attr =
  270. __ATTR(defrag, 0644, defrag_show, defrag_store);
  271. #ifdef CONFIG_DEBUG_VM
  272. static ssize_t debug_cow_show(struct kobject *kobj,
  273. struct kobj_attribute *attr, char *buf)
  274. {
  275. return single_flag_show(kobj, attr, buf,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static ssize_t debug_cow_store(struct kobject *kobj,
  279. struct kobj_attribute *attr,
  280. const char *buf, size_t count)
  281. {
  282. return single_flag_store(kobj, attr, buf, count,
  283. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  284. }
  285. static struct kobj_attribute debug_cow_attr =
  286. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  287. #endif /* CONFIG_DEBUG_VM */
  288. static struct attribute *hugepage_attr[] = {
  289. &enabled_attr.attr,
  290. &defrag_attr.attr,
  291. #ifdef CONFIG_DEBUG_VM
  292. &debug_cow_attr.attr,
  293. #endif
  294. NULL,
  295. };
  296. static struct attribute_group hugepage_attr_group = {
  297. .attrs = hugepage_attr,
  298. };
  299. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. char *buf)
  302. {
  303. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  304. }
  305. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  306. struct kobj_attribute *attr,
  307. const char *buf, size_t count)
  308. {
  309. unsigned long msecs;
  310. int err;
  311. err = strict_strtoul(buf, 10, &msecs);
  312. if (err || msecs > UINT_MAX)
  313. return -EINVAL;
  314. khugepaged_scan_sleep_millisecs = msecs;
  315. wake_up_interruptible(&khugepaged_wait);
  316. return count;
  317. }
  318. static struct kobj_attribute scan_sleep_millisecs_attr =
  319. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  320. scan_sleep_millisecs_store);
  321. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. char *buf)
  324. {
  325. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  326. }
  327. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  328. struct kobj_attribute *attr,
  329. const char *buf, size_t count)
  330. {
  331. unsigned long msecs;
  332. int err;
  333. err = strict_strtoul(buf, 10, &msecs);
  334. if (err || msecs > UINT_MAX)
  335. return -EINVAL;
  336. khugepaged_alloc_sleep_millisecs = msecs;
  337. wake_up_interruptible(&khugepaged_wait);
  338. return count;
  339. }
  340. static struct kobj_attribute alloc_sleep_millisecs_attr =
  341. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  342. alloc_sleep_millisecs_store);
  343. static ssize_t pages_to_scan_show(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. char *buf)
  346. {
  347. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  348. }
  349. static ssize_t pages_to_scan_store(struct kobject *kobj,
  350. struct kobj_attribute *attr,
  351. const char *buf, size_t count)
  352. {
  353. int err;
  354. unsigned long pages;
  355. err = strict_strtoul(buf, 10, &pages);
  356. if (err || !pages || pages > UINT_MAX)
  357. return -EINVAL;
  358. khugepaged_pages_to_scan = pages;
  359. return count;
  360. }
  361. static struct kobj_attribute pages_to_scan_attr =
  362. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  363. pages_to_scan_store);
  364. static ssize_t pages_collapsed_show(struct kobject *kobj,
  365. struct kobj_attribute *attr,
  366. char *buf)
  367. {
  368. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  369. }
  370. static struct kobj_attribute pages_collapsed_attr =
  371. __ATTR_RO(pages_collapsed);
  372. static ssize_t full_scans_show(struct kobject *kobj,
  373. struct kobj_attribute *attr,
  374. char *buf)
  375. {
  376. return sprintf(buf, "%u\n", khugepaged_full_scans);
  377. }
  378. static struct kobj_attribute full_scans_attr =
  379. __ATTR_RO(full_scans);
  380. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  381. struct kobj_attribute *attr, char *buf)
  382. {
  383. return single_flag_show(kobj, attr, buf,
  384. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  385. }
  386. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  387. struct kobj_attribute *attr,
  388. const char *buf, size_t count)
  389. {
  390. return single_flag_store(kobj, attr, buf, count,
  391. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  392. }
  393. static struct kobj_attribute khugepaged_defrag_attr =
  394. __ATTR(defrag, 0644, khugepaged_defrag_show,
  395. khugepaged_defrag_store);
  396. /*
  397. * max_ptes_none controls if khugepaged should collapse hugepages over
  398. * any unmapped ptes in turn potentially increasing the memory
  399. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  400. * reduce the available free memory in the system as it
  401. * runs. Increasing max_ptes_none will instead potentially reduce the
  402. * free memory in the system during the khugepaged scan.
  403. */
  404. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  409. }
  410. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long max_ptes_none;
  416. err = strict_strtoul(buf, 10, &max_ptes_none);
  417. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  418. return -EINVAL;
  419. khugepaged_max_ptes_none = max_ptes_none;
  420. return count;
  421. }
  422. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  423. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  424. khugepaged_max_ptes_none_store);
  425. static struct attribute *khugepaged_attr[] = {
  426. &khugepaged_defrag_attr.attr,
  427. &khugepaged_max_ptes_none_attr.attr,
  428. &pages_to_scan_attr.attr,
  429. &pages_collapsed_attr.attr,
  430. &full_scans_attr.attr,
  431. &scan_sleep_millisecs_attr.attr,
  432. &alloc_sleep_millisecs_attr.attr,
  433. NULL,
  434. };
  435. static struct attribute_group khugepaged_attr_group = {
  436. .attrs = khugepaged_attr,
  437. .name = "khugepaged",
  438. };
  439. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  440. {
  441. int err;
  442. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  443. if (unlikely(!*hugepage_kobj)) {
  444. printk(KERN_ERR "hugepage: failed kobject create\n");
  445. return -ENOMEM;
  446. }
  447. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  448. if (err) {
  449. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  450. goto delete_obj;
  451. }
  452. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  453. if (err) {
  454. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  455. goto remove_hp_group;
  456. }
  457. return 0;
  458. remove_hp_group:
  459. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  460. delete_obj:
  461. kobject_put(*hugepage_kobj);
  462. return err;
  463. }
  464. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  465. {
  466. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  467. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  468. kobject_put(hugepage_kobj);
  469. }
  470. #else
  471. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  472. {
  473. return 0;
  474. }
  475. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  476. {
  477. }
  478. #endif /* CONFIG_SYSFS */
  479. static int __init hugepage_init(void)
  480. {
  481. int err;
  482. struct kobject *hugepage_kobj;
  483. if (!has_transparent_hugepage()) {
  484. transparent_hugepage_flags = 0;
  485. return -EINVAL;
  486. }
  487. err = hugepage_init_sysfs(&hugepage_kobj);
  488. if (err)
  489. return err;
  490. err = init_huge_zero_page();
  491. if (err)
  492. goto out;
  493. err = khugepaged_slab_init();
  494. if (err)
  495. goto out;
  496. err = mm_slots_hash_init();
  497. if (err) {
  498. khugepaged_slab_free();
  499. goto out;
  500. }
  501. /*
  502. * By default disable transparent hugepages on smaller systems,
  503. * where the extra memory used could hurt more than TLB overhead
  504. * is likely to save. The admin can still enable it through /sys.
  505. */
  506. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  507. transparent_hugepage_flags = 0;
  508. start_khugepaged();
  509. return 0;
  510. out:
  511. if (huge_zero_pfn)
  512. __free_page(pfn_to_page(huge_zero_pfn));
  513. hugepage_exit_sysfs(hugepage_kobj);
  514. return err;
  515. }
  516. module_init(hugepage_init)
  517. static int __init setup_transparent_hugepage(char *str)
  518. {
  519. int ret = 0;
  520. if (!str)
  521. goto out;
  522. if (!strcmp(str, "always")) {
  523. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  524. &transparent_hugepage_flags);
  525. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  526. &transparent_hugepage_flags);
  527. ret = 1;
  528. } else if (!strcmp(str, "madvise")) {
  529. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  530. &transparent_hugepage_flags);
  531. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  532. &transparent_hugepage_flags);
  533. ret = 1;
  534. } else if (!strcmp(str, "never")) {
  535. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  536. &transparent_hugepage_flags);
  537. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  538. &transparent_hugepage_flags);
  539. ret = 1;
  540. }
  541. out:
  542. if (!ret)
  543. printk(KERN_WARNING
  544. "transparent_hugepage= cannot parse, ignored\n");
  545. return ret;
  546. }
  547. __setup("transparent_hugepage=", setup_transparent_hugepage);
  548. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  549. {
  550. if (likely(vma->vm_flags & VM_WRITE))
  551. pmd = pmd_mkwrite(pmd);
  552. return pmd;
  553. }
  554. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  555. {
  556. pmd_t entry;
  557. entry = mk_pmd(page, vma->vm_page_prot);
  558. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  559. entry = pmd_mkhuge(entry);
  560. return entry;
  561. }
  562. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  563. struct vm_area_struct *vma,
  564. unsigned long haddr, pmd_t *pmd,
  565. struct page *page)
  566. {
  567. pgtable_t pgtable;
  568. VM_BUG_ON(!PageCompound(page));
  569. pgtable = pte_alloc_one(mm, haddr);
  570. if (unlikely(!pgtable))
  571. return VM_FAULT_OOM;
  572. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  573. __SetPageUptodate(page);
  574. spin_lock(&mm->page_table_lock);
  575. if (unlikely(!pmd_none(*pmd))) {
  576. spin_unlock(&mm->page_table_lock);
  577. mem_cgroup_uncharge_page(page);
  578. put_page(page);
  579. pte_free(mm, pgtable);
  580. } else {
  581. pmd_t entry;
  582. entry = mk_huge_pmd(page, vma);
  583. /*
  584. * The spinlocking to take the lru_lock inside
  585. * page_add_new_anon_rmap() acts as a full memory
  586. * barrier to be sure clear_huge_page writes become
  587. * visible after the set_pmd_at() write.
  588. */
  589. page_add_new_anon_rmap(page, vma, haddr);
  590. set_pmd_at(mm, haddr, pmd, entry);
  591. pgtable_trans_huge_deposit(mm, pgtable);
  592. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  593. mm->nr_ptes++;
  594. spin_unlock(&mm->page_table_lock);
  595. }
  596. return 0;
  597. }
  598. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  599. {
  600. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  601. }
  602. static inline struct page *alloc_hugepage_vma(int defrag,
  603. struct vm_area_struct *vma,
  604. unsigned long haddr, int nd,
  605. gfp_t extra_gfp)
  606. {
  607. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  608. HPAGE_PMD_ORDER, vma, haddr, nd);
  609. }
  610. #ifndef CONFIG_NUMA
  611. static inline struct page *alloc_hugepage(int defrag)
  612. {
  613. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  614. HPAGE_PMD_ORDER);
  615. }
  616. #endif
  617. static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  618. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
  619. {
  620. pmd_t entry;
  621. entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
  622. entry = pmd_wrprotect(entry);
  623. entry = pmd_mkhuge(entry);
  624. set_pmd_at(mm, haddr, pmd, entry);
  625. pgtable_trans_huge_deposit(mm, pgtable);
  626. mm->nr_ptes++;
  627. }
  628. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  629. unsigned long address, pmd_t *pmd,
  630. unsigned int flags)
  631. {
  632. struct page *page;
  633. unsigned long haddr = address & HPAGE_PMD_MASK;
  634. pte_t *pte;
  635. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  636. if (unlikely(anon_vma_prepare(vma)))
  637. return VM_FAULT_OOM;
  638. if (unlikely(khugepaged_enter(vma)))
  639. return VM_FAULT_OOM;
  640. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  641. vma, haddr, numa_node_id(), 0);
  642. if (unlikely(!page)) {
  643. count_vm_event(THP_FAULT_FALLBACK);
  644. goto out;
  645. }
  646. count_vm_event(THP_FAULT_ALLOC);
  647. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  648. put_page(page);
  649. goto out;
  650. }
  651. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  652. page))) {
  653. mem_cgroup_uncharge_page(page);
  654. put_page(page);
  655. goto out;
  656. }
  657. return 0;
  658. }
  659. out:
  660. /*
  661. * Use __pte_alloc instead of pte_alloc_map, because we can't
  662. * run pte_offset_map on the pmd, if an huge pmd could
  663. * materialize from under us from a different thread.
  664. */
  665. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  666. return VM_FAULT_OOM;
  667. /* if an huge pmd materialized from under us just retry later */
  668. if (unlikely(pmd_trans_huge(*pmd)))
  669. return 0;
  670. /*
  671. * A regular pmd is established and it can't morph into a huge pmd
  672. * from under us anymore at this point because we hold the mmap_sem
  673. * read mode and khugepaged takes it in write mode. So now it's
  674. * safe to run pte_offset_map().
  675. */
  676. pte = pte_offset_map(pmd, address);
  677. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  678. }
  679. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  680. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  681. struct vm_area_struct *vma)
  682. {
  683. struct page *src_page;
  684. pmd_t pmd;
  685. pgtable_t pgtable;
  686. int ret;
  687. ret = -ENOMEM;
  688. pgtable = pte_alloc_one(dst_mm, addr);
  689. if (unlikely(!pgtable))
  690. goto out;
  691. spin_lock(&dst_mm->page_table_lock);
  692. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  693. ret = -EAGAIN;
  694. pmd = *src_pmd;
  695. if (unlikely(!pmd_trans_huge(pmd))) {
  696. pte_free(dst_mm, pgtable);
  697. goto out_unlock;
  698. }
  699. /*
  700. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  701. * under splitting since we don't split the page itself, only pmd to
  702. * a page table.
  703. */
  704. if (is_huge_zero_pmd(pmd)) {
  705. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
  706. ret = 0;
  707. goto out_unlock;
  708. }
  709. if (unlikely(pmd_trans_splitting(pmd))) {
  710. /* split huge page running from under us */
  711. spin_unlock(&src_mm->page_table_lock);
  712. spin_unlock(&dst_mm->page_table_lock);
  713. pte_free(dst_mm, pgtable);
  714. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  715. goto out;
  716. }
  717. src_page = pmd_page(pmd);
  718. VM_BUG_ON(!PageHead(src_page));
  719. get_page(src_page);
  720. page_dup_rmap(src_page);
  721. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  722. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  723. pmd = pmd_mkold(pmd_wrprotect(pmd));
  724. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  725. pgtable_trans_huge_deposit(dst_mm, pgtable);
  726. dst_mm->nr_ptes++;
  727. ret = 0;
  728. out_unlock:
  729. spin_unlock(&src_mm->page_table_lock);
  730. spin_unlock(&dst_mm->page_table_lock);
  731. out:
  732. return ret;
  733. }
  734. void huge_pmd_set_accessed(struct mm_struct *mm,
  735. struct vm_area_struct *vma,
  736. unsigned long address,
  737. pmd_t *pmd, pmd_t orig_pmd,
  738. int dirty)
  739. {
  740. pmd_t entry;
  741. unsigned long haddr;
  742. spin_lock(&mm->page_table_lock);
  743. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  744. goto unlock;
  745. entry = pmd_mkyoung(orig_pmd);
  746. haddr = address & HPAGE_PMD_MASK;
  747. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  748. update_mmu_cache_pmd(vma, address, pmd);
  749. unlock:
  750. spin_unlock(&mm->page_table_lock);
  751. }
  752. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  753. struct vm_area_struct *vma,
  754. unsigned long address,
  755. pmd_t *pmd, pmd_t orig_pmd,
  756. struct page *page,
  757. unsigned long haddr)
  758. {
  759. pgtable_t pgtable;
  760. pmd_t _pmd;
  761. int ret = 0, i;
  762. struct page **pages;
  763. unsigned long mmun_start; /* For mmu_notifiers */
  764. unsigned long mmun_end; /* For mmu_notifiers */
  765. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  766. GFP_KERNEL);
  767. if (unlikely(!pages)) {
  768. ret |= VM_FAULT_OOM;
  769. goto out;
  770. }
  771. for (i = 0; i < HPAGE_PMD_NR; i++) {
  772. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  773. __GFP_OTHER_NODE,
  774. vma, address, page_to_nid(page));
  775. if (unlikely(!pages[i] ||
  776. mem_cgroup_newpage_charge(pages[i], mm,
  777. GFP_KERNEL))) {
  778. if (pages[i])
  779. put_page(pages[i]);
  780. mem_cgroup_uncharge_start();
  781. while (--i >= 0) {
  782. mem_cgroup_uncharge_page(pages[i]);
  783. put_page(pages[i]);
  784. }
  785. mem_cgroup_uncharge_end();
  786. kfree(pages);
  787. ret |= VM_FAULT_OOM;
  788. goto out;
  789. }
  790. }
  791. for (i = 0; i < HPAGE_PMD_NR; i++) {
  792. copy_user_highpage(pages[i], page + i,
  793. haddr + PAGE_SIZE * i, vma);
  794. __SetPageUptodate(pages[i]);
  795. cond_resched();
  796. }
  797. mmun_start = haddr;
  798. mmun_end = haddr + HPAGE_PMD_SIZE;
  799. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  800. spin_lock(&mm->page_table_lock);
  801. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  802. goto out_free_pages;
  803. VM_BUG_ON(!PageHead(page));
  804. pmdp_clear_flush(vma, haddr, pmd);
  805. /* leave pmd empty until pte is filled */
  806. pgtable = pgtable_trans_huge_withdraw(mm);
  807. pmd_populate(mm, &_pmd, pgtable);
  808. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  809. pte_t *pte, entry;
  810. entry = mk_pte(pages[i], vma->vm_page_prot);
  811. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  812. page_add_new_anon_rmap(pages[i], vma, haddr);
  813. pte = pte_offset_map(&_pmd, haddr);
  814. VM_BUG_ON(!pte_none(*pte));
  815. set_pte_at(mm, haddr, pte, entry);
  816. pte_unmap(pte);
  817. }
  818. kfree(pages);
  819. smp_wmb(); /* make pte visible before pmd */
  820. pmd_populate(mm, pmd, pgtable);
  821. page_remove_rmap(page);
  822. spin_unlock(&mm->page_table_lock);
  823. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  824. ret |= VM_FAULT_WRITE;
  825. put_page(page);
  826. out:
  827. return ret;
  828. out_free_pages:
  829. spin_unlock(&mm->page_table_lock);
  830. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  831. mem_cgroup_uncharge_start();
  832. for (i = 0; i < HPAGE_PMD_NR; i++) {
  833. mem_cgroup_uncharge_page(pages[i]);
  834. put_page(pages[i]);
  835. }
  836. mem_cgroup_uncharge_end();
  837. kfree(pages);
  838. goto out;
  839. }
  840. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  841. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  842. {
  843. int ret = 0;
  844. struct page *page, *new_page;
  845. unsigned long haddr;
  846. unsigned long mmun_start; /* For mmu_notifiers */
  847. unsigned long mmun_end; /* For mmu_notifiers */
  848. VM_BUG_ON(!vma->anon_vma);
  849. spin_lock(&mm->page_table_lock);
  850. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  851. goto out_unlock;
  852. page = pmd_page(orig_pmd);
  853. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  854. haddr = address & HPAGE_PMD_MASK;
  855. if (page_mapcount(page) == 1) {
  856. pmd_t entry;
  857. entry = pmd_mkyoung(orig_pmd);
  858. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  859. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  860. update_mmu_cache_pmd(vma, address, pmd);
  861. ret |= VM_FAULT_WRITE;
  862. goto out_unlock;
  863. }
  864. get_page(page);
  865. spin_unlock(&mm->page_table_lock);
  866. if (transparent_hugepage_enabled(vma) &&
  867. !transparent_hugepage_debug_cow())
  868. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  869. vma, haddr, numa_node_id(), 0);
  870. else
  871. new_page = NULL;
  872. if (unlikely(!new_page)) {
  873. count_vm_event(THP_FAULT_FALLBACK);
  874. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  875. pmd, orig_pmd, page, haddr);
  876. if (ret & VM_FAULT_OOM)
  877. split_huge_page(page);
  878. put_page(page);
  879. goto out;
  880. }
  881. count_vm_event(THP_FAULT_ALLOC);
  882. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  883. put_page(new_page);
  884. split_huge_page(page);
  885. put_page(page);
  886. ret |= VM_FAULT_OOM;
  887. goto out;
  888. }
  889. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  890. __SetPageUptodate(new_page);
  891. mmun_start = haddr;
  892. mmun_end = haddr + HPAGE_PMD_SIZE;
  893. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  894. spin_lock(&mm->page_table_lock);
  895. put_page(page);
  896. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  897. spin_unlock(&mm->page_table_lock);
  898. mem_cgroup_uncharge_page(new_page);
  899. put_page(new_page);
  900. goto out_mn;
  901. } else {
  902. pmd_t entry;
  903. VM_BUG_ON(!PageHead(page));
  904. entry = mk_huge_pmd(new_page, vma);
  905. pmdp_clear_flush(vma, haddr, pmd);
  906. page_add_new_anon_rmap(new_page, vma, haddr);
  907. set_pmd_at(mm, haddr, pmd, entry);
  908. update_mmu_cache_pmd(vma, address, pmd);
  909. page_remove_rmap(page);
  910. put_page(page);
  911. ret |= VM_FAULT_WRITE;
  912. }
  913. spin_unlock(&mm->page_table_lock);
  914. out_mn:
  915. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  916. out:
  917. return ret;
  918. out_unlock:
  919. spin_unlock(&mm->page_table_lock);
  920. return ret;
  921. }
  922. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  923. unsigned long addr,
  924. pmd_t *pmd,
  925. unsigned int flags)
  926. {
  927. struct mm_struct *mm = vma->vm_mm;
  928. struct page *page = NULL;
  929. assert_spin_locked(&mm->page_table_lock);
  930. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  931. goto out;
  932. page = pmd_page(*pmd);
  933. VM_BUG_ON(!PageHead(page));
  934. if (flags & FOLL_TOUCH) {
  935. pmd_t _pmd;
  936. /*
  937. * We should set the dirty bit only for FOLL_WRITE but
  938. * for now the dirty bit in the pmd is meaningless.
  939. * And if the dirty bit will become meaningful and
  940. * we'll only set it with FOLL_WRITE, an atomic
  941. * set_bit will be required on the pmd to set the
  942. * young bit, instead of the current set_pmd_at.
  943. */
  944. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  945. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  946. }
  947. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  948. if (page->mapping && trylock_page(page)) {
  949. lru_add_drain();
  950. if (page->mapping)
  951. mlock_vma_page(page);
  952. unlock_page(page);
  953. }
  954. }
  955. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  956. VM_BUG_ON(!PageCompound(page));
  957. if (flags & FOLL_GET)
  958. get_page_foll(page);
  959. out:
  960. return page;
  961. }
  962. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  963. pmd_t *pmd, unsigned long addr)
  964. {
  965. int ret = 0;
  966. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  967. struct page *page;
  968. pgtable_t pgtable;
  969. pmd_t orig_pmd;
  970. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  971. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  972. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  973. if (is_huge_zero_pmd(orig_pmd)) {
  974. tlb->mm->nr_ptes--;
  975. spin_unlock(&tlb->mm->page_table_lock);
  976. } else {
  977. page = pmd_page(orig_pmd);
  978. page_remove_rmap(page);
  979. VM_BUG_ON(page_mapcount(page) < 0);
  980. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  981. VM_BUG_ON(!PageHead(page));
  982. tlb->mm->nr_ptes--;
  983. spin_unlock(&tlb->mm->page_table_lock);
  984. tlb_remove_page(tlb, page);
  985. }
  986. pte_free(tlb->mm, pgtable);
  987. ret = 1;
  988. }
  989. return ret;
  990. }
  991. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  992. unsigned long addr, unsigned long end,
  993. unsigned char *vec)
  994. {
  995. int ret = 0;
  996. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  997. /*
  998. * All logical pages in the range are present
  999. * if backed by a huge page.
  1000. */
  1001. spin_unlock(&vma->vm_mm->page_table_lock);
  1002. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1003. ret = 1;
  1004. }
  1005. return ret;
  1006. }
  1007. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1008. unsigned long old_addr,
  1009. unsigned long new_addr, unsigned long old_end,
  1010. pmd_t *old_pmd, pmd_t *new_pmd)
  1011. {
  1012. int ret = 0;
  1013. pmd_t pmd;
  1014. struct mm_struct *mm = vma->vm_mm;
  1015. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1016. (new_addr & ~HPAGE_PMD_MASK) ||
  1017. old_end - old_addr < HPAGE_PMD_SIZE ||
  1018. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1019. goto out;
  1020. /*
  1021. * The destination pmd shouldn't be established, free_pgtables()
  1022. * should have release it.
  1023. */
  1024. if (WARN_ON(!pmd_none(*new_pmd))) {
  1025. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1026. goto out;
  1027. }
  1028. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1029. if (ret == 1) {
  1030. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1031. VM_BUG_ON(!pmd_none(*new_pmd));
  1032. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1033. spin_unlock(&mm->page_table_lock);
  1034. }
  1035. out:
  1036. return ret;
  1037. }
  1038. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1039. unsigned long addr, pgprot_t newprot)
  1040. {
  1041. struct mm_struct *mm = vma->vm_mm;
  1042. int ret = 0;
  1043. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1044. pmd_t entry;
  1045. entry = pmdp_get_and_clear(mm, addr, pmd);
  1046. entry = pmd_modify(entry, newprot);
  1047. set_pmd_at(mm, addr, pmd, entry);
  1048. spin_unlock(&vma->vm_mm->page_table_lock);
  1049. ret = 1;
  1050. }
  1051. return ret;
  1052. }
  1053. /*
  1054. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1055. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1056. *
  1057. * Note that if it returns 1, this routine returns without unlocking page
  1058. * table locks. So callers must unlock them.
  1059. */
  1060. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1061. {
  1062. spin_lock(&vma->vm_mm->page_table_lock);
  1063. if (likely(pmd_trans_huge(*pmd))) {
  1064. if (unlikely(pmd_trans_splitting(*pmd))) {
  1065. spin_unlock(&vma->vm_mm->page_table_lock);
  1066. wait_split_huge_page(vma->anon_vma, pmd);
  1067. return -1;
  1068. } else {
  1069. /* Thp mapped by 'pmd' is stable, so we can
  1070. * handle it as it is. */
  1071. return 1;
  1072. }
  1073. }
  1074. spin_unlock(&vma->vm_mm->page_table_lock);
  1075. return 0;
  1076. }
  1077. pmd_t *page_check_address_pmd(struct page *page,
  1078. struct mm_struct *mm,
  1079. unsigned long address,
  1080. enum page_check_address_pmd_flag flag)
  1081. {
  1082. pmd_t *pmd, *ret = NULL;
  1083. if (address & ~HPAGE_PMD_MASK)
  1084. goto out;
  1085. pmd = mm_find_pmd(mm, address);
  1086. if (!pmd)
  1087. goto out;
  1088. if (pmd_none(*pmd))
  1089. goto out;
  1090. if (pmd_page(*pmd) != page)
  1091. goto out;
  1092. /*
  1093. * split_vma() may create temporary aliased mappings. There is
  1094. * no risk as long as all huge pmd are found and have their
  1095. * splitting bit set before __split_huge_page_refcount
  1096. * runs. Finding the same huge pmd more than once during the
  1097. * same rmap walk is not a problem.
  1098. */
  1099. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1100. pmd_trans_splitting(*pmd))
  1101. goto out;
  1102. if (pmd_trans_huge(*pmd)) {
  1103. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1104. !pmd_trans_splitting(*pmd));
  1105. ret = pmd;
  1106. }
  1107. out:
  1108. return ret;
  1109. }
  1110. static int __split_huge_page_splitting(struct page *page,
  1111. struct vm_area_struct *vma,
  1112. unsigned long address)
  1113. {
  1114. struct mm_struct *mm = vma->vm_mm;
  1115. pmd_t *pmd;
  1116. int ret = 0;
  1117. /* For mmu_notifiers */
  1118. const unsigned long mmun_start = address;
  1119. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1120. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1121. spin_lock(&mm->page_table_lock);
  1122. pmd = page_check_address_pmd(page, mm, address,
  1123. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1124. if (pmd) {
  1125. /*
  1126. * We can't temporarily set the pmd to null in order
  1127. * to split it, the pmd must remain marked huge at all
  1128. * times or the VM won't take the pmd_trans_huge paths
  1129. * and it won't wait on the anon_vma->root->mutex to
  1130. * serialize against split_huge_page*.
  1131. */
  1132. pmdp_splitting_flush(vma, address, pmd);
  1133. ret = 1;
  1134. }
  1135. spin_unlock(&mm->page_table_lock);
  1136. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1137. return ret;
  1138. }
  1139. static void __split_huge_page_refcount(struct page *page)
  1140. {
  1141. int i;
  1142. struct zone *zone = page_zone(page);
  1143. struct lruvec *lruvec;
  1144. int tail_count = 0;
  1145. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1146. spin_lock_irq(&zone->lru_lock);
  1147. lruvec = mem_cgroup_page_lruvec(page, zone);
  1148. compound_lock(page);
  1149. /* complete memcg works before add pages to LRU */
  1150. mem_cgroup_split_huge_fixup(page);
  1151. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1152. struct page *page_tail = page + i;
  1153. /* tail_page->_mapcount cannot change */
  1154. BUG_ON(page_mapcount(page_tail) < 0);
  1155. tail_count += page_mapcount(page_tail);
  1156. /* check for overflow */
  1157. BUG_ON(tail_count < 0);
  1158. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1159. /*
  1160. * tail_page->_count is zero and not changing from
  1161. * under us. But get_page_unless_zero() may be running
  1162. * from under us on the tail_page. If we used
  1163. * atomic_set() below instead of atomic_add(), we
  1164. * would then run atomic_set() concurrently with
  1165. * get_page_unless_zero(), and atomic_set() is
  1166. * implemented in C not using locked ops. spin_unlock
  1167. * on x86 sometime uses locked ops because of PPro
  1168. * errata 66, 92, so unless somebody can guarantee
  1169. * atomic_set() here would be safe on all archs (and
  1170. * not only on x86), it's safer to use atomic_add().
  1171. */
  1172. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1173. &page_tail->_count);
  1174. /* after clearing PageTail the gup refcount can be released */
  1175. smp_mb();
  1176. /*
  1177. * retain hwpoison flag of the poisoned tail page:
  1178. * fix for the unsuitable process killed on Guest Machine(KVM)
  1179. * by the memory-failure.
  1180. */
  1181. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1182. page_tail->flags |= (page->flags &
  1183. ((1L << PG_referenced) |
  1184. (1L << PG_swapbacked) |
  1185. (1L << PG_mlocked) |
  1186. (1L << PG_uptodate)));
  1187. page_tail->flags |= (1L << PG_dirty);
  1188. /* clear PageTail before overwriting first_page */
  1189. smp_wmb();
  1190. /*
  1191. * __split_huge_page_splitting() already set the
  1192. * splitting bit in all pmd that could map this
  1193. * hugepage, that will ensure no CPU can alter the
  1194. * mapcount on the head page. The mapcount is only
  1195. * accounted in the head page and it has to be
  1196. * transferred to all tail pages in the below code. So
  1197. * for this code to be safe, the split the mapcount
  1198. * can't change. But that doesn't mean userland can't
  1199. * keep changing and reading the page contents while
  1200. * we transfer the mapcount, so the pmd splitting
  1201. * status is achieved setting a reserved bit in the
  1202. * pmd, not by clearing the present bit.
  1203. */
  1204. page_tail->_mapcount = page->_mapcount;
  1205. BUG_ON(page_tail->mapping);
  1206. page_tail->mapping = page->mapping;
  1207. page_tail->index = page->index + i;
  1208. BUG_ON(!PageAnon(page_tail));
  1209. BUG_ON(!PageUptodate(page_tail));
  1210. BUG_ON(!PageDirty(page_tail));
  1211. BUG_ON(!PageSwapBacked(page_tail));
  1212. lru_add_page_tail(page, page_tail, lruvec);
  1213. }
  1214. atomic_sub(tail_count, &page->_count);
  1215. BUG_ON(atomic_read(&page->_count) <= 0);
  1216. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1217. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1218. ClearPageCompound(page);
  1219. compound_unlock(page);
  1220. spin_unlock_irq(&zone->lru_lock);
  1221. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1222. struct page *page_tail = page + i;
  1223. BUG_ON(page_count(page_tail) <= 0);
  1224. /*
  1225. * Tail pages may be freed if there wasn't any mapping
  1226. * like if add_to_swap() is running on a lru page that
  1227. * had its mapping zapped. And freeing these pages
  1228. * requires taking the lru_lock so we do the put_page
  1229. * of the tail pages after the split is complete.
  1230. */
  1231. put_page(page_tail);
  1232. }
  1233. /*
  1234. * Only the head page (now become a regular page) is required
  1235. * to be pinned by the caller.
  1236. */
  1237. BUG_ON(page_count(page) <= 0);
  1238. }
  1239. static int __split_huge_page_map(struct page *page,
  1240. struct vm_area_struct *vma,
  1241. unsigned long address)
  1242. {
  1243. struct mm_struct *mm = vma->vm_mm;
  1244. pmd_t *pmd, _pmd;
  1245. int ret = 0, i;
  1246. pgtable_t pgtable;
  1247. unsigned long haddr;
  1248. spin_lock(&mm->page_table_lock);
  1249. pmd = page_check_address_pmd(page, mm, address,
  1250. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1251. if (pmd) {
  1252. pgtable = pgtable_trans_huge_withdraw(mm);
  1253. pmd_populate(mm, &_pmd, pgtable);
  1254. haddr = address;
  1255. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1256. pte_t *pte, entry;
  1257. BUG_ON(PageCompound(page+i));
  1258. entry = mk_pte(page + i, vma->vm_page_prot);
  1259. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1260. if (!pmd_write(*pmd))
  1261. entry = pte_wrprotect(entry);
  1262. else
  1263. BUG_ON(page_mapcount(page) != 1);
  1264. if (!pmd_young(*pmd))
  1265. entry = pte_mkold(entry);
  1266. pte = pte_offset_map(&_pmd, haddr);
  1267. BUG_ON(!pte_none(*pte));
  1268. set_pte_at(mm, haddr, pte, entry);
  1269. pte_unmap(pte);
  1270. }
  1271. smp_wmb(); /* make pte visible before pmd */
  1272. /*
  1273. * Up to this point the pmd is present and huge and
  1274. * userland has the whole access to the hugepage
  1275. * during the split (which happens in place). If we
  1276. * overwrite the pmd with the not-huge version
  1277. * pointing to the pte here (which of course we could
  1278. * if all CPUs were bug free), userland could trigger
  1279. * a small page size TLB miss on the small sized TLB
  1280. * while the hugepage TLB entry is still established
  1281. * in the huge TLB. Some CPU doesn't like that. See
  1282. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1283. * Erratum 383 on page 93. Intel should be safe but is
  1284. * also warns that it's only safe if the permission
  1285. * and cache attributes of the two entries loaded in
  1286. * the two TLB is identical (which should be the case
  1287. * here). But it is generally safer to never allow
  1288. * small and huge TLB entries for the same virtual
  1289. * address to be loaded simultaneously. So instead of
  1290. * doing "pmd_populate(); flush_tlb_range();" we first
  1291. * mark the current pmd notpresent (atomically because
  1292. * here the pmd_trans_huge and pmd_trans_splitting
  1293. * must remain set at all times on the pmd until the
  1294. * split is complete for this pmd), then we flush the
  1295. * SMP TLB and finally we write the non-huge version
  1296. * of the pmd entry with pmd_populate.
  1297. */
  1298. pmdp_invalidate(vma, address, pmd);
  1299. pmd_populate(mm, pmd, pgtable);
  1300. ret = 1;
  1301. }
  1302. spin_unlock(&mm->page_table_lock);
  1303. return ret;
  1304. }
  1305. /* must be called with anon_vma->root->mutex hold */
  1306. static void __split_huge_page(struct page *page,
  1307. struct anon_vma *anon_vma)
  1308. {
  1309. int mapcount, mapcount2;
  1310. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1311. struct anon_vma_chain *avc;
  1312. BUG_ON(!PageHead(page));
  1313. BUG_ON(PageTail(page));
  1314. mapcount = 0;
  1315. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1316. struct vm_area_struct *vma = avc->vma;
  1317. unsigned long addr = vma_address(page, vma);
  1318. BUG_ON(is_vma_temporary_stack(vma));
  1319. mapcount += __split_huge_page_splitting(page, vma, addr);
  1320. }
  1321. /*
  1322. * It is critical that new vmas are added to the tail of the
  1323. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1324. * and establishes a child pmd before
  1325. * __split_huge_page_splitting() freezes the parent pmd (so if
  1326. * we fail to prevent copy_huge_pmd() from running until the
  1327. * whole __split_huge_page() is complete), we will still see
  1328. * the newly established pmd of the child later during the
  1329. * walk, to be able to set it as pmd_trans_splitting too.
  1330. */
  1331. if (mapcount != page_mapcount(page))
  1332. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1333. mapcount, page_mapcount(page));
  1334. BUG_ON(mapcount != page_mapcount(page));
  1335. __split_huge_page_refcount(page);
  1336. mapcount2 = 0;
  1337. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1338. struct vm_area_struct *vma = avc->vma;
  1339. unsigned long addr = vma_address(page, vma);
  1340. BUG_ON(is_vma_temporary_stack(vma));
  1341. mapcount2 += __split_huge_page_map(page, vma, addr);
  1342. }
  1343. if (mapcount != mapcount2)
  1344. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1345. mapcount, mapcount2, page_mapcount(page));
  1346. BUG_ON(mapcount != mapcount2);
  1347. }
  1348. int split_huge_page(struct page *page)
  1349. {
  1350. struct anon_vma *anon_vma;
  1351. int ret = 1;
  1352. BUG_ON(!PageAnon(page));
  1353. anon_vma = page_lock_anon_vma(page);
  1354. if (!anon_vma)
  1355. goto out;
  1356. ret = 0;
  1357. if (!PageCompound(page))
  1358. goto out_unlock;
  1359. BUG_ON(!PageSwapBacked(page));
  1360. __split_huge_page(page, anon_vma);
  1361. count_vm_event(THP_SPLIT);
  1362. BUG_ON(PageCompound(page));
  1363. out_unlock:
  1364. page_unlock_anon_vma(anon_vma);
  1365. out:
  1366. return ret;
  1367. }
  1368. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1369. int hugepage_madvise(struct vm_area_struct *vma,
  1370. unsigned long *vm_flags, int advice)
  1371. {
  1372. struct mm_struct *mm = vma->vm_mm;
  1373. switch (advice) {
  1374. case MADV_HUGEPAGE:
  1375. /*
  1376. * Be somewhat over-protective like KSM for now!
  1377. */
  1378. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1379. return -EINVAL;
  1380. if (mm->def_flags & VM_NOHUGEPAGE)
  1381. return -EINVAL;
  1382. *vm_flags &= ~VM_NOHUGEPAGE;
  1383. *vm_flags |= VM_HUGEPAGE;
  1384. /*
  1385. * If the vma become good for khugepaged to scan,
  1386. * register it here without waiting a page fault that
  1387. * may not happen any time soon.
  1388. */
  1389. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1390. return -ENOMEM;
  1391. break;
  1392. case MADV_NOHUGEPAGE:
  1393. /*
  1394. * Be somewhat over-protective like KSM for now!
  1395. */
  1396. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1397. return -EINVAL;
  1398. *vm_flags &= ~VM_HUGEPAGE;
  1399. *vm_flags |= VM_NOHUGEPAGE;
  1400. /*
  1401. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1402. * this vma even if we leave the mm registered in khugepaged if
  1403. * it got registered before VM_NOHUGEPAGE was set.
  1404. */
  1405. break;
  1406. }
  1407. return 0;
  1408. }
  1409. static int __init khugepaged_slab_init(void)
  1410. {
  1411. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1412. sizeof(struct mm_slot),
  1413. __alignof__(struct mm_slot), 0, NULL);
  1414. if (!mm_slot_cache)
  1415. return -ENOMEM;
  1416. return 0;
  1417. }
  1418. static void __init khugepaged_slab_free(void)
  1419. {
  1420. kmem_cache_destroy(mm_slot_cache);
  1421. mm_slot_cache = NULL;
  1422. }
  1423. static inline struct mm_slot *alloc_mm_slot(void)
  1424. {
  1425. if (!mm_slot_cache) /* initialization failed */
  1426. return NULL;
  1427. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1428. }
  1429. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1430. {
  1431. kmem_cache_free(mm_slot_cache, mm_slot);
  1432. }
  1433. static int __init mm_slots_hash_init(void)
  1434. {
  1435. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1436. GFP_KERNEL);
  1437. if (!mm_slots_hash)
  1438. return -ENOMEM;
  1439. return 0;
  1440. }
  1441. #if 0
  1442. static void __init mm_slots_hash_free(void)
  1443. {
  1444. kfree(mm_slots_hash);
  1445. mm_slots_hash = NULL;
  1446. }
  1447. #endif
  1448. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1449. {
  1450. struct mm_slot *mm_slot;
  1451. struct hlist_head *bucket;
  1452. struct hlist_node *node;
  1453. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1454. % MM_SLOTS_HASH_HEADS];
  1455. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1456. if (mm == mm_slot->mm)
  1457. return mm_slot;
  1458. }
  1459. return NULL;
  1460. }
  1461. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1462. struct mm_slot *mm_slot)
  1463. {
  1464. struct hlist_head *bucket;
  1465. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1466. % MM_SLOTS_HASH_HEADS];
  1467. mm_slot->mm = mm;
  1468. hlist_add_head(&mm_slot->hash, bucket);
  1469. }
  1470. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1471. {
  1472. return atomic_read(&mm->mm_users) == 0;
  1473. }
  1474. int __khugepaged_enter(struct mm_struct *mm)
  1475. {
  1476. struct mm_slot *mm_slot;
  1477. int wakeup;
  1478. mm_slot = alloc_mm_slot();
  1479. if (!mm_slot)
  1480. return -ENOMEM;
  1481. /* __khugepaged_exit() must not run from under us */
  1482. VM_BUG_ON(khugepaged_test_exit(mm));
  1483. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1484. free_mm_slot(mm_slot);
  1485. return 0;
  1486. }
  1487. spin_lock(&khugepaged_mm_lock);
  1488. insert_to_mm_slots_hash(mm, mm_slot);
  1489. /*
  1490. * Insert just behind the scanning cursor, to let the area settle
  1491. * down a little.
  1492. */
  1493. wakeup = list_empty(&khugepaged_scan.mm_head);
  1494. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1495. spin_unlock(&khugepaged_mm_lock);
  1496. atomic_inc(&mm->mm_count);
  1497. if (wakeup)
  1498. wake_up_interruptible(&khugepaged_wait);
  1499. return 0;
  1500. }
  1501. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1502. {
  1503. unsigned long hstart, hend;
  1504. if (!vma->anon_vma)
  1505. /*
  1506. * Not yet faulted in so we will register later in the
  1507. * page fault if needed.
  1508. */
  1509. return 0;
  1510. if (vma->vm_ops)
  1511. /* khugepaged not yet working on file or special mappings */
  1512. return 0;
  1513. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1514. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1515. hend = vma->vm_end & HPAGE_PMD_MASK;
  1516. if (hstart < hend)
  1517. return khugepaged_enter(vma);
  1518. return 0;
  1519. }
  1520. void __khugepaged_exit(struct mm_struct *mm)
  1521. {
  1522. struct mm_slot *mm_slot;
  1523. int free = 0;
  1524. spin_lock(&khugepaged_mm_lock);
  1525. mm_slot = get_mm_slot(mm);
  1526. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1527. hlist_del(&mm_slot->hash);
  1528. list_del(&mm_slot->mm_node);
  1529. free = 1;
  1530. }
  1531. spin_unlock(&khugepaged_mm_lock);
  1532. if (free) {
  1533. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1534. free_mm_slot(mm_slot);
  1535. mmdrop(mm);
  1536. } else if (mm_slot) {
  1537. /*
  1538. * This is required to serialize against
  1539. * khugepaged_test_exit() (which is guaranteed to run
  1540. * under mmap sem read mode). Stop here (after we
  1541. * return all pagetables will be destroyed) until
  1542. * khugepaged has finished working on the pagetables
  1543. * under the mmap_sem.
  1544. */
  1545. down_write(&mm->mmap_sem);
  1546. up_write(&mm->mmap_sem);
  1547. }
  1548. }
  1549. static void release_pte_page(struct page *page)
  1550. {
  1551. /* 0 stands for page_is_file_cache(page) == false */
  1552. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1553. unlock_page(page);
  1554. putback_lru_page(page);
  1555. }
  1556. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1557. {
  1558. while (--_pte >= pte) {
  1559. pte_t pteval = *_pte;
  1560. if (!pte_none(pteval))
  1561. release_pte_page(pte_page(pteval));
  1562. }
  1563. }
  1564. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1565. unsigned long address,
  1566. pte_t *pte)
  1567. {
  1568. struct page *page;
  1569. pte_t *_pte;
  1570. int referenced = 0, none = 0;
  1571. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1572. _pte++, address += PAGE_SIZE) {
  1573. pte_t pteval = *_pte;
  1574. if (pte_none(pteval)) {
  1575. if (++none <= khugepaged_max_ptes_none)
  1576. continue;
  1577. else
  1578. goto out;
  1579. }
  1580. if (!pte_present(pteval) || !pte_write(pteval))
  1581. goto out;
  1582. page = vm_normal_page(vma, address, pteval);
  1583. if (unlikely(!page))
  1584. goto out;
  1585. VM_BUG_ON(PageCompound(page));
  1586. BUG_ON(!PageAnon(page));
  1587. VM_BUG_ON(!PageSwapBacked(page));
  1588. /* cannot use mapcount: can't collapse if there's a gup pin */
  1589. if (page_count(page) != 1)
  1590. goto out;
  1591. /*
  1592. * We can do it before isolate_lru_page because the
  1593. * page can't be freed from under us. NOTE: PG_lock
  1594. * is needed to serialize against split_huge_page
  1595. * when invoked from the VM.
  1596. */
  1597. if (!trylock_page(page))
  1598. goto out;
  1599. /*
  1600. * Isolate the page to avoid collapsing an hugepage
  1601. * currently in use by the VM.
  1602. */
  1603. if (isolate_lru_page(page)) {
  1604. unlock_page(page);
  1605. goto out;
  1606. }
  1607. /* 0 stands for page_is_file_cache(page) == false */
  1608. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1609. VM_BUG_ON(!PageLocked(page));
  1610. VM_BUG_ON(PageLRU(page));
  1611. /* If there is no mapped pte young don't collapse the page */
  1612. if (pte_young(pteval) || PageReferenced(page) ||
  1613. mmu_notifier_test_young(vma->vm_mm, address))
  1614. referenced = 1;
  1615. }
  1616. if (likely(referenced))
  1617. return 1;
  1618. out:
  1619. release_pte_pages(pte, _pte);
  1620. return 0;
  1621. }
  1622. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1623. struct vm_area_struct *vma,
  1624. unsigned long address,
  1625. spinlock_t *ptl)
  1626. {
  1627. pte_t *_pte;
  1628. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1629. pte_t pteval = *_pte;
  1630. struct page *src_page;
  1631. if (pte_none(pteval)) {
  1632. clear_user_highpage(page, address);
  1633. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1634. } else {
  1635. src_page = pte_page(pteval);
  1636. copy_user_highpage(page, src_page, address, vma);
  1637. VM_BUG_ON(page_mapcount(src_page) != 1);
  1638. release_pte_page(src_page);
  1639. /*
  1640. * ptl mostly unnecessary, but preempt has to
  1641. * be disabled to update the per-cpu stats
  1642. * inside page_remove_rmap().
  1643. */
  1644. spin_lock(ptl);
  1645. /*
  1646. * paravirt calls inside pte_clear here are
  1647. * superfluous.
  1648. */
  1649. pte_clear(vma->vm_mm, address, _pte);
  1650. page_remove_rmap(src_page);
  1651. spin_unlock(ptl);
  1652. free_page_and_swap_cache(src_page);
  1653. }
  1654. address += PAGE_SIZE;
  1655. page++;
  1656. }
  1657. }
  1658. static void khugepaged_alloc_sleep(void)
  1659. {
  1660. wait_event_freezable_timeout(khugepaged_wait, false,
  1661. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1662. }
  1663. #ifdef CONFIG_NUMA
  1664. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1665. {
  1666. if (IS_ERR(*hpage)) {
  1667. if (!*wait)
  1668. return false;
  1669. *wait = false;
  1670. *hpage = NULL;
  1671. khugepaged_alloc_sleep();
  1672. } else if (*hpage) {
  1673. put_page(*hpage);
  1674. *hpage = NULL;
  1675. }
  1676. return true;
  1677. }
  1678. static struct page
  1679. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1680. struct vm_area_struct *vma, unsigned long address,
  1681. int node)
  1682. {
  1683. VM_BUG_ON(*hpage);
  1684. /*
  1685. * Allocate the page while the vma is still valid and under
  1686. * the mmap_sem read mode so there is no memory allocation
  1687. * later when we take the mmap_sem in write mode. This is more
  1688. * friendly behavior (OTOH it may actually hide bugs) to
  1689. * filesystems in userland with daemons allocating memory in
  1690. * the userland I/O paths. Allocating memory with the
  1691. * mmap_sem in read mode is good idea also to allow greater
  1692. * scalability.
  1693. */
  1694. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1695. node, __GFP_OTHER_NODE);
  1696. /*
  1697. * After allocating the hugepage, release the mmap_sem read lock in
  1698. * preparation for taking it in write mode.
  1699. */
  1700. up_read(&mm->mmap_sem);
  1701. if (unlikely(!*hpage)) {
  1702. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1703. *hpage = ERR_PTR(-ENOMEM);
  1704. return NULL;
  1705. }
  1706. count_vm_event(THP_COLLAPSE_ALLOC);
  1707. return *hpage;
  1708. }
  1709. #else
  1710. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1711. {
  1712. struct page *hpage;
  1713. do {
  1714. hpage = alloc_hugepage(khugepaged_defrag());
  1715. if (!hpage) {
  1716. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1717. if (!*wait)
  1718. return NULL;
  1719. *wait = false;
  1720. khugepaged_alloc_sleep();
  1721. } else
  1722. count_vm_event(THP_COLLAPSE_ALLOC);
  1723. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1724. return hpage;
  1725. }
  1726. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1727. {
  1728. if (!*hpage)
  1729. *hpage = khugepaged_alloc_hugepage(wait);
  1730. if (unlikely(!*hpage))
  1731. return false;
  1732. return true;
  1733. }
  1734. static struct page
  1735. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1736. struct vm_area_struct *vma, unsigned long address,
  1737. int node)
  1738. {
  1739. up_read(&mm->mmap_sem);
  1740. VM_BUG_ON(!*hpage);
  1741. return *hpage;
  1742. }
  1743. #endif
  1744. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1745. {
  1746. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1747. (vma->vm_flags & VM_NOHUGEPAGE))
  1748. return false;
  1749. if (!vma->anon_vma || vma->vm_ops)
  1750. return false;
  1751. if (is_vma_temporary_stack(vma))
  1752. return false;
  1753. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1754. return true;
  1755. }
  1756. static void collapse_huge_page(struct mm_struct *mm,
  1757. unsigned long address,
  1758. struct page **hpage,
  1759. struct vm_area_struct *vma,
  1760. int node)
  1761. {
  1762. pmd_t *pmd, _pmd;
  1763. pte_t *pte;
  1764. pgtable_t pgtable;
  1765. struct page *new_page;
  1766. spinlock_t *ptl;
  1767. int isolated;
  1768. unsigned long hstart, hend;
  1769. unsigned long mmun_start; /* For mmu_notifiers */
  1770. unsigned long mmun_end; /* For mmu_notifiers */
  1771. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1772. /* release the mmap_sem read lock. */
  1773. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1774. if (!new_page)
  1775. return;
  1776. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1777. return;
  1778. /*
  1779. * Prevent all access to pagetables with the exception of
  1780. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1781. * handled by the anon_vma lock + PG_lock.
  1782. */
  1783. down_write(&mm->mmap_sem);
  1784. if (unlikely(khugepaged_test_exit(mm)))
  1785. goto out;
  1786. vma = find_vma(mm, address);
  1787. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1788. hend = vma->vm_end & HPAGE_PMD_MASK;
  1789. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1790. goto out;
  1791. if (!hugepage_vma_check(vma))
  1792. goto out;
  1793. pmd = mm_find_pmd(mm, address);
  1794. if (!pmd)
  1795. goto out;
  1796. if (pmd_trans_huge(*pmd))
  1797. goto out;
  1798. anon_vma_lock(vma->anon_vma);
  1799. pte = pte_offset_map(pmd, address);
  1800. ptl = pte_lockptr(mm, pmd);
  1801. mmun_start = address;
  1802. mmun_end = address + HPAGE_PMD_SIZE;
  1803. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1804. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1805. /*
  1806. * After this gup_fast can't run anymore. This also removes
  1807. * any huge TLB entry from the CPU so we won't allow
  1808. * huge and small TLB entries for the same virtual address
  1809. * to avoid the risk of CPU bugs in that area.
  1810. */
  1811. _pmd = pmdp_clear_flush(vma, address, pmd);
  1812. spin_unlock(&mm->page_table_lock);
  1813. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1814. spin_lock(ptl);
  1815. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1816. spin_unlock(ptl);
  1817. if (unlikely(!isolated)) {
  1818. pte_unmap(pte);
  1819. spin_lock(&mm->page_table_lock);
  1820. BUG_ON(!pmd_none(*pmd));
  1821. set_pmd_at(mm, address, pmd, _pmd);
  1822. spin_unlock(&mm->page_table_lock);
  1823. anon_vma_unlock(vma->anon_vma);
  1824. goto out;
  1825. }
  1826. /*
  1827. * All pages are isolated and locked so anon_vma rmap
  1828. * can't run anymore.
  1829. */
  1830. anon_vma_unlock(vma->anon_vma);
  1831. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1832. pte_unmap(pte);
  1833. __SetPageUptodate(new_page);
  1834. pgtable = pmd_pgtable(_pmd);
  1835. _pmd = mk_huge_pmd(new_page, vma);
  1836. /*
  1837. * spin_lock() below is not the equivalent of smp_wmb(), so
  1838. * this is needed to avoid the copy_huge_page writes to become
  1839. * visible after the set_pmd_at() write.
  1840. */
  1841. smp_wmb();
  1842. spin_lock(&mm->page_table_lock);
  1843. BUG_ON(!pmd_none(*pmd));
  1844. page_add_new_anon_rmap(new_page, vma, address);
  1845. set_pmd_at(mm, address, pmd, _pmd);
  1846. update_mmu_cache_pmd(vma, address, pmd);
  1847. pgtable_trans_huge_deposit(mm, pgtable);
  1848. spin_unlock(&mm->page_table_lock);
  1849. *hpage = NULL;
  1850. khugepaged_pages_collapsed++;
  1851. out_up_write:
  1852. up_write(&mm->mmap_sem);
  1853. return;
  1854. out:
  1855. mem_cgroup_uncharge_page(new_page);
  1856. goto out_up_write;
  1857. }
  1858. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1859. struct vm_area_struct *vma,
  1860. unsigned long address,
  1861. struct page **hpage)
  1862. {
  1863. pmd_t *pmd;
  1864. pte_t *pte, *_pte;
  1865. int ret = 0, referenced = 0, none = 0;
  1866. struct page *page;
  1867. unsigned long _address;
  1868. spinlock_t *ptl;
  1869. int node = -1;
  1870. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1871. pmd = mm_find_pmd(mm, address);
  1872. if (!pmd)
  1873. goto out;
  1874. if (pmd_trans_huge(*pmd))
  1875. goto out;
  1876. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1877. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1878. _pte++, _address += PAGE_SIZE) {
  1879. pte_t pteval = *_pte;
  1880. if (pte_none(pteval)) {
  1881. if (++none <= khugepaged_max_ptes_none)
  1882. continue;
  1883. else
  1884. goto out_unmap;
  1885. }
  1886. if (!pte_present(pteval) || !pte_write(pteval))
  1887. goto out_unmap;
  1888. page = vm_normal_page(vma, _address, pteval);
  1889. if (unlikely(!page))
  1890. goto out_unmap;
  1891. /*
  1892. * Chose the node of the first page. This could
  1893. * be more sophisticated and look at more pages,
  1894. * but isn't for now.
  1895. */
  1896. if (node == -1)
  1897. node = page_to_nid(page);
  1898. VM_BUG_ON(PageCompound(page));
  1899. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1900. goto out_unmap;
  1901. /* cannot use mapcount: can't collapse if there's a gup pin */
  1902. if (page_count(page) != 1)
  1903. goto out_unmap;
  1904. if (pte_young(pteval) || PageReferenced(page) ||
  1905. mmu_notifier_test_young(vma->vm_mm, address))
  1906. referenced = 1;
  1907. }
  1908. if (referenced)
  1909. ret = 1;
  1910. out_unmap:
  1911. pte_unmap_unlock(pte, ptl);
  1912. if (ret)
  1913. /* collapse_huge_page will return with the mmap_sem released */
  1914. collapse_huge_page(mm, address, hpage, vma, node);
  1915. out:
  1916. return ret;
  1917. }
  1918. static void collect_mm_slot(struct mm_slot *mm_slot)
  1919. {
  1920. struct mm_struct *mm = mm_slot->mm;
  1921. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1922. if (khugepaged_test_exit(mm)) {
  1923. /* free mm_slot */
  1924. hlist_del(&mm_slot->hash);
  1925. list_del(&mm_slot->mm_node);
  1926. /*
  1927. * Not strictly needed because the mm exited already.
  1928. *
  1929. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1930. */
  1931. /* khugepaged_mm_lock actually not necessary for the below */
  1932. free_mm_slot(mm_slot);
  1933. mmdrop(mm);
  1934. }
  1935. }
  1936. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1937. struct page **hpage)
  1938. __releases(&khugepaged_mm_lock)
  1939. __acquires(&khugepaged_mm_lock)
  1940. {
  1941. struct mm_slot *mm_slot;
  1942. struct mm_struct *mm;
  1943. struct vm_area_struct *vma;
  1944. int progress = 0;
  1945. VM_BUG_ON(!pages);
  1946. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1947. if (khugepaged_scan.mm_slot)
  1948. mm_slot = khugepaged_scan.mm_slot;
  1949. else {
  1950. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1951. struct mm_slot, mm_node);
  1952. khugepaged_scan.address = 0;
  1953. khugepaged_scan.mm_slot = mm_slot;
  1954. }
  1955. spin_unlock(&khugepaged_mm_lock);
  1956. mm = mm_slot->mm;
  1957. down_read(&mm->mmap_sem);
  1958. if (unlikely(khugepaged_test_exit(mm)))
  1959. vma = NULL;
  1960. else
  1961. vma = find_vma(mm, khugepaged_scan.address);
  1962. progress++;
  1963. for (; vma; vma = vma->vm_next) {
  1964. unsigned long hstart, hend;
  1965. cond_resched();
  1966. if (unlikely(khugepaged_test_exit(mm))) {
  1967. progress++;
  1968. break;
  1969. }
  1970. if (!hugepage_vma_check(vma)) {
  1971. skip:
  1972. progress++;
  1973. continue;
  1974. }
  1975. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1976. hend = vma->vm_end & HPAGE_PMD_MASK;
  1977. if (hstart >= hend)
  1978. goto skip;
  1979. if (khugepaged_scan.address > hend)
  1980. goto skip;
  1981. if (khugepaged_scan.address < hstart)
  1982. khugepaged_scan.address = hstart;
  1983. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1984. while (khugepaged_scan.address < hend) {
  1985. int ret;
  1986. cond_resched();
  1987. if (unlikely(khugepaged_test_exit(mm)))
  1988. goto breakouterloop;
  1989. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1990. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1991. hend);
  1992. ret = khugepaged_scan_pmd(mm, vma,
  1993. khugepaged_scan.address,
  1994. hpage);
  1995. /* move to next address */
  1996. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1997. progress += HPAGE_PMD_NR;
  1998. if (ret)
  1999. /* we released mmap_sem so break loop */
  2000. goto breakouterloop_mmap_sem;
  2001. if (progress >= pages)
  2002. goto breakouterloop;
  2003. }
  2004. }
  2005. breakouterloop:
  2006. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2007. breakouterloop_mmap_sem:
  2008. spin_lock(&khugepaged_mm_lock);
  2009. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2010. /*
  2011. * Release the current mm_slot if this mm is about to die, or
  2012. * if we scanned all vmas of this mm.
  2013. */
  2014. if (khugepaged_test_exit(mm) || !vma) {
  2015. /*
  2016. * Make sure that if mm_users is reaching zero while
  2017. * khugepaged runs here, khugepaged_exit will find
  2018. * mm_slot not pointing to the exiting mm.
  2019. */
  2020. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2021. khugepaged_scan.mm_slot = list_entry(
  2022. mm_slot->mm_node.next,
  2023. struct mm_slot, mm_node);
  2024. khugepaged_scan.address = 0;
  2025. } else {
  2026. khugepaged_scan.mm_slot = NULL;
  2027. khugepaged_full_scans++;
  2028. }
  2029. collect_mm_slot(mm_slot);
  2030. }
  2031. return progress;
  2032. }
  2033. static int khugepaged_has_work(void)
  2034. {
  2035. return !list_empty(&khugepaged_scan.mm_head) &&
  2036. khugepaged_enabled();
  2037. }
  2038. static int khugepaged_wait_event(void)
  2039. {
  2040. return !list_empty(&khugepaged_scan.mm_head) ||
  2041. kthread_should_stop();
  2042. }
  2043. static void khugepaged_do_scan(void)
  2044. {
  2045. struct page *hpage = NULL;
  2046. unsigned int progress = 0, pass_through_head = 0;
  2047. unsigned int pages = khugepaged_pages_to_scan;
  2048. bool wait = true;
  2049. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2050. while (progress < pages) {
  2051. if (!khugepaged_prealloc_page(&hpage, &wait))
  2052. break;
  2053. cond_resched();
  2054. if (unlikely(kthread_should_stop() || freezing(current)))
  2055. break;
  2056. spin_lock(&khugepaged_mm_lock);
  2057. if (!khugepaged_scan.mm_slot)
  2058. pass_through_head++;
  2059. if (khugepaged_has_work() &&
  2060. pass_through_head < 2)
  2061. progress += khugepaged_scan_mm_slot(pages - progress,
  2062. &hpage);
  2063. else
  2064. progress = pages;
  2065. spin_unlock(&khugepaged_mm_lock);
  2066. }
  2067. if (!IS_ERR_OR_NULL(hpage))
  2068. put_page(hpage);
  2069. }
  2070. static void khugepaged_wait_work(void)
  2071. {
  2072. try_to_freeze();
  2073. if (khugepaged_has_work()) {
  2074. if (!khugepaged_scan_sleep_millisecs)
  2075. return;
  2076. wait_event_freezable_timeout(khugepaged_wait,
  2077. kthread_should_stop(),
  2078. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2079. return;
  2080. }
  2081. if (khugepaged_enabled())
  2082. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2083. }
  2084. static int khugepaged(void *none)
  2085. {
  2086. struct mm_slot *mm_slot;
  2087. set_freezable();
  2088. set_user_nice(current, 19);
  2089. while (!kthread_should_stop()) {
  2090. khugepaged_do_scan();
  2091. khugepaged_wait_work();
  2092. }
  2093. spin_lock(&khugepaged_mm_lock);
  2094. mm_slot = khugepaged_scan.mm_slot;
  2095. khugepaged_scan.mm_slot = NULL;
  2096. if (mm_slot)
  2097. collect_mm_slot(mm_slot);
  2098. spin_unlock(&khugepaged_mm_lock);
  2099. return 0;
  2100. }
  2101. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2102. {
  2103. struct page *page;
  2104. spin_lock(&mm->page_table_lock);
  2105. if (unlikely(!pmd_trans_huge(*pmd))) {
  2106. spin_unlock(&mm->page_table_lock);
  2107. return;
  2108. }
  2109. page = pmd_page(*pmd);
  2110. VM_BUG_ON(!page_count(page));
  2111. get_page(page);
  2112. spin_unlock(&mm->page_table_lock);
  2113. split_huge_page(page);
  2114. put_page(page);
  2115. BUG_ON(pmd_trans_huge(*pmd));
  2116. }
  2117. static void split_huge_page_address(struct mm_struct *mm,
  2118. unsigned long address)
  2119. {
  2120. pmd_t *pmd;
  2121. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2122. pmd = mm_find_pmd(mm, address);
  2123. if (!pmd)
  2124. return;
  2125. /*
  2126. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2127. * materialize from under us.
  2128. */
  2129. split_huge_page_pmd(mm, pmd);
  2130. }
  2131. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2132. unsigned long start,
  2133. unsigned long end,
  2134. long adjust_next)
  2135. {
  2136. /*
  2137. * If the new start address isn't hpage aligned and it could
  2138. * previously contain an hugepage: check if we need to split
  2139. * an huge pmd.
  2140. */
  2141. if (start & ~HPAGE_PMD_MASK &&
  2142. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2143. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2144. split_huge_page_address(vma->vm_mm, start);
  2145. /*
  2146. * If the new end address isn't hpage aligned and it could
  2147. * previously contain an hugepage: check if we need to split
  2148. * an huge pmd.
  2149. */
  2150. if (end & ~HPAGE_PMD_MASK &&
  2151. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2152. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2153. split_huge_page_address(vma->vm_mm, end);
  2154. /*
  2155. * If we're also updating the vma->vm_next->vm_start, if the new
  2156. * vm_next->vm_start isn't page aligned and it could previously
  2157. * contain an hugepage: check if we need to split an huge pmd.
  2158. */
  2159. if (adjust_next > 0) {
  2160. struct vm_area_struct *next = vma->vm_next;
  2161. unsigned long nstart = next->vm_start;
  2162. nstart += adjust_next << PAGE_SHIFT;
  2163. if (nstart & ~HPAGE_PMD_MASK &&
  2164. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2165. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2166. split_huge_page_address(next->vm_mm, nstart);
  2167. }
  2168. }