namespace.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct mount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct mount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct mount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct mount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct mount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. /*
  137. * vfsmount lock must be held for write
  138. */
  139. unsigned int mnt_get_count(struct mount *mnt)
  140. {
  141. #ifdef CONFIG_SMP
  142. unsigned int count = 0;
  143. int cpu;
  144. for_each_possible_cpu(cpu) {
  145. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  146. }
  147. return count;
  148. #else
  149. return mnt->mnt_count;
  150. #endif
  151. }
  152. static struct mount *alloc_vfsmnt(const char *name)
  153. {
  154. struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  155. if (p) {
  156. struct vfsmount *mnt = &p->mnt;
  157. int err;
  158. err = mnt_alloc_id(p);
  159. if (err)
  160. goto out_free_cache;
  161. if (name) {
  162. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  163. if (!mnt->mnt_devname)
  164. goto out_free_id;
  165. }
  166. #ifdef CONFIG_SMP
  167. p->mnt_pcp = alloc_percpu(struct mnt_pcp);
  168. if (!p->mnt_pcp)
  169. goto out_free_devname;
  170. this_cpu_add(p->mnt_pcp->mnt_count, 1);
  171. #else
  172. p->mnt_count = 1;
  173. p->mnt_writers = 0;
  174. #endif
  175. INIT_LIST_HEAD(&p->mnt_hash);
  176. INIT_LIST_HEAD(&p->mnt_child);
  177. INIT_LIST_HEAD(&p->mnt_mounts);
  178. INIT_LIST_HEAD(&mnt->mnt_list);
  179. INIT_LIST_HEAD(&p->mnt_expire);
  180. INIT_LIST_HEAD(&p->mnt_share);
  181. INIT_LIST_HEAD(&p->mnt_slave_list);
  182. INIT_LIST_HEAD(&p->mnt_slave);
  183. #ifdef CONFIG_FSNOTIFY
  184. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  185. #endif
  186. }
  187. return p;
  188. #ifdef CONFIG_SMP
  189. out_free_devname:
  190. kfree(p->mnt.mnt_devname);
  191. #endif
  192. out_free_id:
  193. mnt_free_id(p);
  194. out_free_cache:
  195. kmem_cache_free(mnt_cache, p);
  196. return NULL;
  197. }
  198. /*
  199. * Most r/o checks on a fs are for operations that take
  200. * discrete amounts of time, like a write() or unlink().
  201. * We must keep track of when those operations start
  202. * (for permission checks) and when they end, so that
  203. * we can determine when writes are able to occur to
  204. * a filesystem.
  205. */
  206. /*
  207. * __mnt_is_readonly: check whether a mount is read-only
  208. * @mnt: the mount to check for its write status
  209. *
  210. * This shouldn't be used directly ouside of the VFS.
  211. * It does not guarantee that the filesystem will stay
  212. * r/w, just that it is right *now*. This can not and
  213. * should not be used in place of IS_RDONLY(inode).
  214. * mnt_want/drop_write() will _keep_ the filesystem
  215. * r/w.
  216. */
  217. int __mnt_is_readonly(struct vfsmount *mnt)
  218. {
  219. if (mnt->mnt_flags & MNT_READONLY)
  220. return 1;
  221. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  222. return 1;
  223. return 0;
  224. }
  225. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  226. static inline void mnt_inc_writers(struct mount *mnt)
  227. {
  228. #ifdef CONFIG_SMP
  229. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  230. #else
  231. mnt->mnt_writers++;
  232. #endif
  233. }
  234. static inline void mnt_dec_writers(struct mount *mnt)
  235. {
  236. #ifdef CONFIG_SMP
  237. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  238. #else
  239. mnt->mnt_writers--;
  240. #endif
  241. }
  242. static unsigned int mnt_get_writers(struct mount *mnt)
  243. {
  244. #ifdef CONFIG_SMP
  245. unsigned int count = 0;
  246. int cpu;
  247. for_each_possible_cpu(cpu) {
  248. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  249. }
  250. return count;
  251. #else
  252. return mnt->mnt_writers;
  253. #endif
  254. }
  255. /*
  256. * Most r/o checks on a fs are for operations that take
  257. * discrete amounts of time, like a write() or unlink().
  258. * We must keep track of when those operations start
  259. * (for permission checks) and when they end, so that
  260. * we can determine when writes are able to occur to
  261. * a filesystem.
  262. */
  263. /**
  264. * mnt_want_write - get write access to a mount
  265. * @m: the mount on which to take a write
  266. *
  267. * This tells the low-level filesystem that a write is
  268. * about to be performed to it, and makes sure that
  269. * writes are allowed before returning success. When
  270. * the write operation is finished, mnt_drop_write()
  271. * must be called. This is effectively a refcount.
  272. */
  273. int mnt_want_write(struct vfsmount *m)
  274. {
  275. struct mount *mnt = real_mount(m);
  276. int ret = 0;
  277. preempt_disable();
  278. mnt_inc_writers(mnt);
  279. /*
  280. * The store to mnt_inc_writers must be visible before we pass
  281. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  282. * incremented count after it has set MNT_WRITE_HOLD.
  283. */
  284. smp_mb();
  285. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  286. cpu_relax();
  287. /*
  288. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  289. * be set to match its requirements. So we must not load that until
  290. * MNT_WRITE_HOLD is cleared.
  291. */
  292. smp_rmb();
  293. if (__mnt_is_readonly(m)) {
  294. mnt_dec_writers(mnt);
  295. ret = -EROFS;
  296. goto out;
  297. }
  298. out:
  299. preempt_enable();
  300. return ret;
  301. }
  302. EXPORT_SYMBOL_GPL(mnt_want_write);
  303. /**
  304. * mnt_clone_write - get write access to a mount
  305. * @mnt: the mount on which to take a write
  306. *
  307. * This is effectively like mnt_want_write, except
  308. * it must only be used to take an extra write reference
  309. * on a mountpoint that we already know has a write reference
  310. * on it. This allows some optimisation.
  311. *
  312. * After finished, mnt_drop_write must be called as usual to
  313. * drop the reference.
  314. */
  315. int mnt_clone_write(struct vfsmount *mnt)
  316. {
  317. /* superblock may be r/o */
  318. if (__mnt_is_readonly(mnt))
  319. return -EROFS;
  320. preempt_disable();
  321. mnt_inc_writers(real_mount(mnt));
  322. preempt_enable();
  323. return 0;
  324. }
  325. EXPORT_SYMBOL_GPL(mnt_clone_write);
  326. /**
  327. * mnt_want_write_file - get write access to a file's mount
  328. * @file: the file who's mount on which to take a write
  329. *
  330. * This is like mnt_want_write, but it takes a file and can
  331. * do some optimisations if the file is open for write already
  332. */
  333. int mnt_want_write_file(struct file *file)
  334. {
  335. struct inode *inode = file->f_dentry->d_inode;
  336. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  337. return mnt_want_write(file->f_path.mnt);
  338. else
  339. return mnt_clone_write(file->f_path.mnt);
  340. }
  341. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  342. /**
  343. * mnt_drop_write - give up write access to a mount
  344. * @mnt: the mount on which to give up write access
  345. *
  346. * Tells the low-level filesystem that we are done
  347. * performing writes to it. Must be matched with
  348. * mnt_want_write() call above.
  349. */
  350. void mnt_drop_write(struct vfsmount *mnt)
  351. {
  352. preempt_disable();
  353. mnt_dec_writers(real_mount(mnt));
  354. preempt_enable();
  355. }
  356. EXPORT_SYMBOL_GPL(mnt_drop_write);
  357. void mnt_drop_write_file(struct file *file)
  358. {
  359. mnt_drop_write(file->f_path.mnt);
  360. }
  361. EXPORT_SYMBOL(mnt_drop_write_file);
  362. static int mnt_make_readonly(struct mount *mnt)
  363. {
  364. int ret = 0;
  365. br_write_lock(vfsmount_lock);
  366. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  367. /*
  368. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  369. * should be visible before we do.
  370. */
  371. smp_mb();
  372. /*
  373. * With writers on hold, if this value is zero, then there are
  374. * definitely no active writers (although held writers may subsequently
  375. * increment the count, they'll have to wait, and decrement it after
  376. * seeing MNT_READONLY).
  377. *
  378. * It is OK to have counter incremented on one CPU and decremented on
  379. * another: the sum will add up correctly. The danger would be when we
  380. * sum up each counter, if we read a counter before it is incremented,
  381. * but then read another CPU's count which it has been subsequently
  382. * decremented from -- we would see more decrements than we should.
  383. * MNT_WRITE_HOLD protects against this scenario, because
  384. * mnt_want_write first increments count, then smp_mb, then spins on
  385. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  386. * we're counting up here.
  387. */
  388. if (mnt_get_writers(mnt) > 0)
  389. ret = -EBUSY;
  390. else
  391. mnt->mnt.mnt_flags |= MNT_READONLY;
  392. /*
  393. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  394. * that become unheld will see MNT_READONLY.
  395. */
  396. smp_wmb();
  397. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  398. br_write_unlock(vfsmount_lock);
  399. return ret;
  400. }
  401. static void __mnt_unmake_readonly(struct mount *mnt)
  402. {
  403. br_write_lock(vfsmount_lock);
  404. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  405. br_write_unlock(vfsmount_lock);
  406. }
  407. static void free_vfsmnt(struct mount *mnt)
  408. {
  409. kfree(mnt->mnt.mnt_devname);
  410. mnt_free_id(mnt);
  411. #ifdef CONFIG_SMP
  412. free_percpu(mnt->mnt_pcp);
  413. #endif
  414. kmem_cache_free(mnt_cache, mnt);
  415. }
  416. /*
  417. * find the first or last mount at @dentry on vfsmount @mnt depending on
  418. * @dir. If @dir is set return the first mount else return the last mount.
  419. * vfsmount_lock must be held for read or write.
  420. */
  421. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  422. int dir)
  423. {
  424. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  425. struct list_head *tmp = head;
  426. struct mount *p, *found = NULL;
  427. for (;;) {
  428. tmp = dir ? tmp->next : tmp->prev;
  429. p = NULL;
  430. if (tmp == head)
  431. break;
  432. p = list_entry(tmp, struct mount, mnt_hash);
  433. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  434. found = p;
  435. break;
  436. }
  437. }
  438. return found;
  439. }
  440. /*
  441. * lookup_mnt increments the ref count before returning
  442. * the vfsmount struct.
  443. */
  444. struct vfsmount *lookup_mnt(struct path *path)
  445. {
  446. struct mount *child_mnt;
  447. br_read_lock(vfsmount_lock);
  448. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  449. if (child_mnt) {
  450. mnt_add_count(child_mnt, 1);
  451. br_read_unlock(vfsmount_lock);
  452. return &child_mnt->mnt;
  453. } else {
  454. br_read_unlock(vfsmount_lock);
  455. return NULL;
  456. }
  457. }
  458. static inline int check_mnt(struct mount *mnt)
  459. {
  460. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  461. }
  462. /*
  463. * vfsmount lock must be held for write
  464. */
  465. static void touch_mnt_namespace(struct mnt_namespace *ns)
  466. {
  467. if (ns) {
  468. ns->event = ++event;
  469. wake_up_interruptible(&ns->poll);
  470. }
  471. }
  472. /*
  473. * vfsmount lock must be held for write
  474. */
  475. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  476. {
  477. if (ns && ns->event != event) {
  478. ns->event = event;
  479. wake_up_interruptible(&ns->poll);
  480. }
  481. }
  482. /*
  483. * Clear dentry's mounted state if it has no remaining mounts.
  484. * vfsmount_lock must be held for write.
  485. */
  486. static void dentry_reset_mounted(struct dentry *dentry)
  487. {
  488. unsigned u;
  489. for (u = 0; u < HASH_SIZE; u++) {
  490. struct mount *p;
  491. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  492. if (p->mnt_mountpoint == dentry)
  493. return;
  494. }
  495. }
  496. spin_lock(&dentry->d_lock);
  497. dentry->d_flags &= ~DCACHE_MOUNTED;
  498. spin_unlock(&dentry->d_lock);
  499. }
  500. /*
  501. * vfsmount lock must be held for write
  502. */
  503. static void detach_mnt(struct mount *mnt, struct path *old_path)
  504. {
  505. old_path->dentry = mnt->mnt_mountpoint;
  506. old_path->mnt = &mnt->mnt_parent->mnt;
  507. mnt->mnt_parent = mnt;
  508. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  509. list_del_init(&mnt->mnt_child);
  510. list_del_init(&mnt->mnt_hash);
  511. dentry_reset_mounted(old_path->dentry);
  512. }
  513. /*
  514. * vfsmount lock must be held for write
  515. */
  516. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  517. struct mount *child_mnt)
  518. {
  519. child_mnt->mnt_parent = real_mount(mntget(&mnt->mnt));
  520. child_mnt->mnt_mountpoint = dget(dentry);
  521. spin_lock(&dentry->d_lock);
  522. dentry->d_flags |= DCACHE_MOUNTED;
  523. spin_unlock(&dentry->d_lock);
  524. }
  525. /*
  526. * vfsmount lock must be held for write
  527. */
  528. static void attach_mnt(struct mount *mnt, struct path *path)
  529. {
  530. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  531. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  532. hash(path->mnt, path->dentry));
  533. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  534. }
  535. static inline void __mnt_make_longterm(struct mount *mnt)
  536. {
  537. #ifdef CONFIG_SMP
  538. atomic_inc(&mnt->mnt_longterm);
  539. #endif
  540. }
  541. /* needs vfsmount lock for write */
  542. static inline void __mnt_make_shortterm(struct mount *mnt)
  543. {
  544. #ifdef CONFIG_SMP
  545. atomic_dec(&mnt->mnt_longterm);
  546. #endif
  547. }
  548. /*
  549. * vfsmount lock must be held for write
  550. */
  551. static void commit_tree(struct mount *mnt)
  552. {
  553. struct mount *parent = mnt->mnt_parent;
  554. struct mount *m;
  555. LIST_HEAD(head);
  556. struct mnt_namespace *n = parent->mnt_ns;
  557. BUG_ON(parent == mnt);
  558. list_add_tail(&head, &mnt->mnt.mnt_list);
  559. list_for_each_entry(m, &head, mnt.mnt_list) {
  560. m->mnt_ns = n;
  561. __mnt_make_longterm(m);
  562. }
  563. list_splice(&head, n->list.prev);
  564. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  565. hash(&parent->mnt, mnt->mnt_mountpoint));
  566. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  567. touch_mnt_namespace(n);
  568. }
  569. static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
  570. {
  571. struct list_head *next = p->mnt_mounts.next;
  572. if (next == &p->mnt_mounts) {
  573. while (1) {
  574. if (&p->mnt == root)
  575. return NULL;
  576. next = p->mnt_child.next;
  577. if (next != &p->mnt_parent->mnt_mounts)
  578. break;
  579. p = p->mnt_parent;
  580. }
  581. }
  582. return list_entry(next, struct mount, mnt_child);
  583. }
  584. static struct mount *skip_mnt_tree(struct mount *p)
  585. {
  586. struct list_head *prev = p->mnt_mounts.prev;
  587. while (prev != &p->mnt_mounts) {
  588. p = list_entry(prev, struct mount, mnt_child);
  589. prev = p->mnt_mounts.prev;
  590. }
  591. return p;
  592. }
  593. struct vfsmount *
  594. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  595. {
  596. struct mount *mnt;
  597. struct dentry *root;
  598. if (!type)
  599. return ERR_PTR(-ENODEV);
  600. mnt = alloc_vfsmnt(name);
  601. if (!mnt)
  602. return ERR_PTR(-ENOMEM);
  603. if (flags & MS_KERNMOUNT)
  604. mnt->mnt.mnt_flags = MNT_INTERNAL;
  605. root = mount_fs(type, flags, name, data);
  606. if (IS_ERR(root)) {
  607. free_vfsmnt(mnt);
  608. return ERR_CAST(root);
  609. }
  610. mnt->mnt.mnt_root = root;
  611. mnt->mnt.mnt_sb = root->d_sb;
  612. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  613. mnt->mnt_parent = mnt;
  614. return &mnt->mnt;
  615. }
  616. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  617. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  618. int flag)
  619. {
  620. struct super_block *sb = old->mnt.mnt_sb;
  621. struct mount *mnt = alloc_vfsmnt(old->mnt.mnt_devname);
  622. if (mnt) {
  623. if (flag & (CL_SLAVE | CL_PRIVATE))
  624. mnt->mnt_group_id = 0; /* not a peer of original */
  625. else
  626. mnt->mnt_group_id = old->mnt_group_id;
  627. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  628. int err = mnt_alloc_group_id(mnt);
  629. if (err)
  630. goto out_free;
  631. }
  632. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  633. atomic_inc(&sb->s_active);
  634. mnt->mnt.mnt_sb = sb;
  635. mnt->mnt.mnt_root = dget(root);
  636. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  637. mnt->mnt_parent = mnt;
  638. if (flag & CL_SLAVE) {
  639. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  640. mnt->mnt_master = old;
  641. CLEAR_MNT_SHARED(mnt);
  642. } else if (!(flag & CL_PRIVATE)) {
  643. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  644. list_add(&mnt->mnt_share, &old->mnt_share);
  645. if (IS_MNT_SLAVE(old))
  646. list_add(&mnt->mnt_slave, &old->mnt_slave);
  647. mnt->mnt_master = old->mnt_master;
  648. }
  649. if (flag & CL_MAKE_SHARED)
  650. set_mnt_shared(mnt);
  651. /* stick the duplicate mount on the same expiry list
  652. * as the original if that was on one */
  653. if (flag & CL_EXPIRE) {
  654. if (!list_empty(&old->mnt_expire))
  655. list_add(&mnt->mnt_expire, &old->mnt_expire);
  656. }
  657. }
  658. return mnt;
  659. out_free:
  660. free_vfsmnt(mnt);
  661. return NULL;
  662. }
  663. static inline void mntfree(struct mount *mnt)
  664. {
  665. struct vfsmount *m = &mnt->mnt;
  666. struct super_block *sb = m->mnt_sb;
  667. /*
  668. * This probably indicates that somebody messed
  669. * up a mnt_want/drop_write() pair. If this
  670. * happens, the filesystem was probably unable
  671. * to make r/w->r/o transitions.
  672. */
  673. /*
  674. * The locking used to deal with mnt_count decrement provides barriers,
  675. * so mnt_get_writers() below is safe.
  676. */
  677. WARN_ON(mnt_get_writers(mnt));
  678. fsnotify_vfsmount_delete(m);
  679. dput(m->mnt_root);
  680. free_vfsmnt(mnt);
  681. deactivate_super(sb);
  682. }
  683. static void mntput_no_expire(struct mount *mnt)
  684. {
  685. put_again:
  686. #ifdef CONFIG_SMP
  687. br_read_lock(vfsmount_lock);
  688. if (likely(atomic_read(&mnt->mnt_longterm))) {
  689. mnt_add_count(mnt, -1);
  690. br_read_unlock(vfsmount_lock);
  691. return;
  692. }
  693. br_read_unlock(vfsmount_lock);
  694. br_write_lock(vfsmount_lock);
  695. mnt_add_count(mnt, -1);
  696. if (mnt_get_count(mnt)) {
  697. br_write_unlock(vfsmount_lock);
  698. return;
  699. }
  700. #else
  701. mnt_add_count(mnt, -1);
  702. if (likely(mnt_get_count(mnt)))
  703. return;
  704. br_write_lock(vfsmount_lock);
  705. #endif
  706. if (unlikely(mnt->mnt_pinned)) {
  707. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  708. mnt->mnt_pinned = 0;
  709. br_write_unlock(vfsmount_lock);
  710. acct_auto_close_mnt(&mnt->mnt);
  711. goto put_again;
  712. }
  713. br_write_unlock(vfsmount_lock);
  714. mntfree(mnt);
  715. }
  716. void mntput(struct vfsmount *mnt)
  717. {
  718. if (mnt) {
  719. struct mount *m = real_mount(mnt);
  720. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  721. if (unlikely(m->mnt_expiry_mark))
  722. m->mnt_expiry_mark = 0;
  723. mntput_no_expire(m);
  724. }
  725. }
  726. EXPORT_SYMBOL(mntput);
  727. struct vfsmount *mntget(struct vfsmount *mnt)
  728. {
  729. if (mnt)
  730. mnt_add_count(real_mount(mnt), 1);
  731. return mnt;
  732. }
  733. EXPORT_SYMBOL(mntget);
  734. void mnt_pin(struct vfsmount *mnt)
  735. {
  736. br_write_lock(vfsmount_lock);
  737. real_mount(mnt)->mnt_pinned++;
  738. br_write_unlock(vfsmount_lock);
  739. }
  740. EXPORT_SYMBOL(mnt_pin);
  741. void mnt_unpin(struct vfsmount *m)
  742. {
  743. struct mount *mnt = real_mount(m);
  744. br_write_lock(vfsmount_lock);
  745. if (mnt->mnt_pinned) {
  746. mnt_add_count(mnt, 1);
  747. mnt->mnt_pinned--;
  748. }
  749. br_write_unlock(vfsmount_lock);
  750. }
  751. EXPORT_SYMBOL(mnt_unpin);
  752. static inline void mangle(struct seq_file *m, const char *s)
  753. {
  754. seq_escape(m, s, " \t\n\\");
  755. }
  756. /*
  757. * Simple .show_options callback for filesystems which don't want to
  758. * implement more complex mount option showing.
  759. *
  760. * See also save_mount_options().
  761. */
  762. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  763. {
  764. const char *options;
  765. rcu_read_lock();
  766. options = rcu_dereference(mnt->mnt_sb->s_options);
  767. if (options != NULL && options[0]) {
  768. seq_putc(m, ',');
  769. mangle(m, options);
  770. }
  771. rcu_read_unlock();
  772. return 0;
  773. }
  774. EXPORT_SYMBOL(generic_show_options);
  775. /*
  776. * If filesystem uses generic_show_options(), this function should be
  777. * called from the fill_super() callback.
  778. *
  779. * The .remount_fs callback usually needs to be handled in a special
  780. * way, to make sure, that previous options are not overwritten if the
  781. * remount fails.
  782. *
  783. * Also note, that if the filesystem's .remount_fs function doesn't
  784. * reset all options to their default value, but changes only newly
  785. * given options, then the displayed options will not reflect reality
  786. * any more.
  787. */
  788. void save_mount_options(struct super_block *sb, char *options)
  789. {
  790. BUG_ON(sb->s_options);
  791. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  792. }
  793. EXPORT_SYMBOL(save_mount_options);
  794. void replace_mount_options(struct super_block *sb, char *options)
  795. {
  796. char *old = sb->s_options;
  797. rcu_assign_pointer(sb->s_options, options);
  798. if (old) {
  799. synchronize_rcu();
  800. kfree(old);
  801. }
  802. }
  803. EXPORT_SYMBOL(replace_mount_options);
  804. #ifdef CONFIG_PROC_FS
  805. /* iterator */
  806. static void *m_start(struct seq_file *m, loff_t *pos)
  807. {
  808. struct proc_mounts *p = m->private;
  809. down_read(&namespace_sem);
  810. return seq_list_start(&p->ns->list, *pos);
  811. }
  812. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  813. {
  814. struct proc_mounts *p = m->private;
  815. return seq_list_next(v, &p->ns->list, pos);
  816. }
  817. static void m_stop(struct seq_file *m, void *v)
  818. {
  819. up_read(&namespace_sem);
  820. }
  821. int mnt_had_events(struct proc_mounts *p)
  822. {
  823. struct mnt_namespace *ns = p->ns;
  824. int res = 0;
  825. br_read_lock(vfsmount_lock);
  826. if (p->m.poll_event != ns->event) {
  827. p->m.poll_event = ns->event;
  828. res = 1;
  829. }
  830. br_read_unlock(vfsmount_lock);
  831. return res;
  832. }
  833. struct proc_fs_info {
  834. int flag;
  835. const char *str;
  836. };
  837. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  838. {
  839. static const struct proc_fs_info fs_info[] = {
  840. { MS_SYNCHRONOUS, ",sync" },
  841. { MS_DIRSYNC, ",dirsync" },
  842. { MS_MANDLOCK, ",mand" },
  843. { 0, NULL }
  844. };
  845. const struct proc_fs_info *fs_infop;
  846. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  847. if (sb->s_flags & fs_infop->flag)
  848. seq_puts(m, fs_infop->str);
  849. }
  850. return security_sb_show_options(m, sb);
  851. }
  852. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  853. {
  854. static const struct proc_fs_info mnt_info[] = {
  855. { MNT_NOSUID, ",nosuid" },
  856. { MNT_NODEV, ",nodev" },
  857. { MNT_NOEXEC, ",noexec" },
  858. { MNT_NOATIME, ",noatime" },
  859. { MNT_NODIRATIME, ",nodiratime" },
  860. { MNT_RELATIME, ",relatime" },
  861. { 0, NULL }
  862. };
  863. const struct proc_fs_info *fs_infop;
  864. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  865. if (mnt->mnt_flags & fs_infop->flag)
  866. seq_puts(m, fs_infop->str);
  867. }
  868. }
  869. static void show_type(struct seq_file *m, struct super_block *sb)
  870. {
  871. mangle(m, sb->s_type->name);
  872. if (sb->s_subtype && sb->s_subtype[0]) {
  873. seq_putc(m, '.');
  874. mangle(m, sb->s_subtype);
  875. }
  876. }
  877. static int show_vfsmnt(struct seq_file *m, void *v)
  878. {
  879. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  880. int err = 0;
  881. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  882. if (mnt->mnt_sb->s_op->show_devname) {
  883. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  884. if (err)
  885. goto out;
  886. } else {
  887. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  888. }
  889. seq_putc(m, ' ');
  890. seq_path(m, &mnt_path, " \t\n\\");
  891. seq_putc(m, ' ');
  892. show_type(m, mnt->mnt_sb);
  893. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  894. err = show_sb_opts(m, mnt->mnt_sb);
  895. if (err)
  896. goto out;
  897. show_mnt_opts(m, mnt);
  898. if (mnt->mnt_sb->s_op->show_options)
  899. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  900. seq_puts(m, " 0 0\n");
  901. out:
  902. return err;
  903. }
  904. const struct seq_operations mounts_op = {
  905. .start = m_start,
  906. .next = m_next,
  907. .stop = m_stop,
  908. .show = show_vfsmnt
  909. };
  910. static int show_mountinfo(struct seq_file *m, void *v)
  911. {
  912. struct proc_mounts *p = m->private;
  913. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  914. struct mount *r = real_mount(mnt);
  915. struct super_block *sb = mnt->mnt_sb;
  916. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  917. struct path root = p->root;
  918. int err = 0;
  919. seq_printf(m, "%i %i %u:%u ", r->mnt_id, r->mnt_parent->mnt_id,
  920. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  921. if (sb->s_op->show_path)
  922. err = sb->s_op->show_path(m, mnt);
  923. else
  924. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  925. if (err)
  926. goto out;
  927. seq_putc(m, ' ');
  928. /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
  929. err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
  930. if (err)
  931. goto out;
  932. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  933. show_mnt_opts(m, mnt);
  934. /* Tagged fields ("foo:X" or "bar") */
  935. if (IS_MNT_SHARED(r))
  936. seq_printf(m, " shared:%i", r->mnt_group_id);
  937. if (IS_MNT_SLAVE(r)) {
  938. int master = r->mnt_master->mnt_group_id;
  939. int dom = get_dominating_id(r, &p->root);
  940. seq_printf(m, " master:%i", master);
  941. if (dom && dom != master)
  942. seq_printf(m, " propagate_from:%i", dom);
  943. }
  944. if (IS_MNT_UNBINDABLE(r))
  945. seq_puts(m, " unbindable");
  946. /* Filesystem specific data */
  947. seq_puts(m, " - ");
  948. show_type(m, sb);
  949. seq_putc(m, ' ');
  950. if (sb->s_op->show_devname)
  951. err = sb->s_op->show_devname(m, mnt);
  952. else
  953. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  954. if (err)
  955. goto out;
  956. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  957. err = show_sb_opts(m, sb);
  958. if (err)
  959. goto out;
  960. if (sb->s_op->show_options)
  961. err = sb->s_op->show_options(m, mnt);
  962. seq_putc(m, '\n');
  963. out:
  964. return err;
  965. }
  966. const struct seq_operations mountinfo_op = {
  967. .start = m_start,
  968. .next = m_next,
  969. .stop = m_stop,
  970. .show = show_mountinfo,
  971. };
  972. static int show_vfsstat(struct seq_file *m, void *v)
  973. {
  974. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  975. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  976. int err = 0;
  977. /* device */
  978. if (mnt->mnt_sb->s_op->show_devname) {
  979. seq_puts(m, "device ");
  980. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  981. } else {
  982. if (mnt->mnt_devname) {
  983. seq_puts(m, "device ");
  984. mangle(m, mnt->mnt_devname);
  985. } else
  986. seq_puts(m, "no device");
  987. }
  988. /* mount point */
  989. seq_puts(m, " mounted on ");
  990. seq_path(m, &mnt_path, " \t\n\\");
  991. seq_putc(m, ' ');
  992. /* file system type */
  993. seq_puts(m, "with fstype ");
  994. show_type(m, mnt->mnt_sb);
  995. /* optional statistics */
  996. if (mnt->mnt_sb->s_op->show_stats) {
  997. seq_putc(m, ' ');
  998. if (!err)
  999. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  1000. }
  1001. seq_putc(m, '\n');
  1002. return err;
  1003. }
  1004. const struct seq_operations mountstats_op = {
  1005. .start = m_start,
  1006. .next = m_next,
  1007. .stop = m_stop,
  1008. .show = show_vfsstat,
  1009. };
  1010. #endif /* CONFIG_PROC_FS */
  1011. /**
  1012. * may_umount_tree - check if a mount tree is busy
  1013. * @mnt: root of mount tree
  1014. *
  1015. * This is called to check if a tree of mounts has any
  1016. * open files, pwds, chroots or sub mounts that are
  1017. * busy.
  1018. */
  1019. int may_umount_tree(struct vfsmount *mnt)
  1020. {
  1021. int actual_refs = 0;
  1022. int minimum_refs = 0;
  1023. struct mount *p;
  1024. BUG_ON(!mnt);
  1025. /* write lock needed for mnt_get_count */
  1026. br_write_lock(vfsmount_lock);
  1027. for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
  1028. actual_refs += mnt_get_count(p);
  1029. minimum_refs += 2;
  1030. }
  1031. br_write_unlock(vfsmount_lock);
  1032. if (actual_refs > minimum_refs)
  1033. return 0;
  1034. return 1;
  1035. }
  1036. EXPORT_SYMBOL(may_umount_tree);
  1037. /**
  1038. * may_umount - check if a mount point is busy
  1039. * @mnt: root of mount
  1040. *
  1041. * This is called to check if a mount point has any
  1042. * open files, pwds, chroots or sub mounts. If the
  1043. * mount has sub mounts this will return busy
  1044. * regardless of whether the sub mounts are busy.
  1045. *
  1046. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1047. * give false negatives. The main reason why it's here is that we need
  1048. * a non-destructive way to look for easily umountable filesystems.
  1049. */
  1050. int may_umount(struct vfsmount *mnt)
  1051. {
  1052. int ret = 1;
  1053. down_read(&namespace_sem);
  1054. br_write_lock(vfsmount_lock);
  1055. if (propagate_mount_busy(real_mount(mnt), 2))
  1056. ret = 0;
  1057. br_write_unlock(vfsmount_lock);
  1058. up_read(&namespace_sem);
  1059. return ret;
  1060. }
  1061. EXPORT_SYMBOL(may_umount);
  1062. void release_mounts(struct list_head *head)
  1063. {
  1064. struct mount *mnt;
  1065. while (!list_empty(head)) {
  1066. mnt = list_first_entry(head, struct mount, mnt_hash);
  1067. list_del_init(&mnt->mnt_hash);
  1068. if (mnt_has_parent(mnt)) {
  1069. struct dentry *dentry;
  1070. struct mount *m;
  1071. br_write_lock(vfsmount_lock);
  1072. dentry = mnt->mnt_mountpoint;
  1073. m = mnt->mnt_parent;
  1074. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  1075. mnt->mnt_parent = mnt;
  1076. m->mnt_ghosts--;
  1077. br_write_unlock(vfsmount_lock);
  1078. dput(dentry);
  1079. mntput(&m->mnt);
  1080. }
  1081. mntput(&mnt->mnt);
  1082. }
  1083. }
  1084. /*
  1085. * vfsmount lock must be held for write
  1086. * namespace_sem must be held for write
  1087. */
  1088. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  1089. {
  1090. LIST_HEAD(tmp_list);
  1091. struct mount *p;
  1092. for (p = mnt; p; p = next_mnt(p, &mnt->mnt))
  1093. list_move(&p->mnt_hash, &tmp_list);
  1094. if (propagate)
  1095. propagate_umount(&tmp_list);
  1096. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1097. list_del_init(&p->mnt_expire);
  1098. list_del_init(&p->mnt.mnt_list);
  1099. __touch_mnt_namespace(p->mnt_ns);
  1100. p->mnt_ns = NULL;
  1101. __mnt_make_shortterm(p);
  1102. list_del_init(&p->mnt_child);
  1103. if (mnt_has_parent(p)) {
  1104. p->mnt_parent->mnt_ghosts++;
  1105. dentry_reset_mounted(p->mnt_mountpoint);
  1106. }
  1107. change_mnt_propagation(p, MS_PRIVATE);
  1108. }
  1109. list_splice(&tmp_list, kill);
  1110. }
  1111. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1112. static int do_umount(struct mount *mnt, int flags)
  1113. {
  1114. struct super_block *sb = mnt->mnt.mnt_sb;
  1115. int retval;
  1116. LIST_HEAD(umount_list);
  1117. retval = security_sb_umount(&mnt->mnt, flags);
  1118. if (retval)
  1119. return retval;
  1120. /*
  1121. * Allow userspace to request a mountpoint be expired rather than
  1122. * unmounting unconditionally. Unmount only happens if:
  1123. * (1) the mark is already set (the mark is cleared by mntput())
  1124. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1125. */
  1126. if (flags & MNT_EXPIRE) {
  1127. if (&mnt->mnt == current->fs->root.mnt ||
  1128. flags & (MNT_FORCE | MNT_DETACH))
  1129. return -EINVAL;
  1130. /*
  1131. * probably don't strictly need the lock here if we examined
  1132. * all race cases, but it's a slowpath.
  1133. */
  1134. br_write_lock(vfsmount_lock);
  1135. if (mnt_get_count(mnt) != 2) {
  1136. br_write_unlock(vfsmount_lock);
  1137. return -EBUSY;
  1138. }
  1139. br_write_unlock(vfsmount_lock);
  1140. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1141. return -EAGAIN;
  1142. }
  1143. /*
  1144. * If we may have to abort operations to get out of this
  1145. * mount, and they will themselves hold resources we must
  1146. * allow the fs to do things. In the Unix tradition of
  1147. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1148. * might fail to complete on the first run through as other tasks
  1149. * must return, and the like. Thats for the mount program to worry
  1150. * about for the moment.
  1151. */
  1152. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1153. sb->s_op->umount_begin(sb);
  1154. }
  1155. /*
  1156. * No sense to grab the lock for this test, but test itself looks
  1157. * somewhat bogus. Suggestions for better replacement?
  1158. * Ho-hum... In principle, we might treat that as umount + switch
  1159. * to rootfs. GC would eventually take care of the old vfsmount.
  1160. * Actually it makes sense, especially if rootfs would contain a
  1161. * /reboot - static binary that would close all descriptors and
  1162. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1163. */
  1164. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1165. /*
  1166. * Special case for "unmounting" root ...
  1167. * we just try to remount it readonly.
  1168. */
  1169. down_write(&sb->s_umount);
  1170. if (!(sb->s_flags & MS_RDONLY))
  1171. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1172. up_write(&sb->s_umount);
  1173. return retval;
  1174. }
  1175. down_write(&namespace_sem);
  1176. br_write_lock(vfsmount_lock);
  1177. event++;
  1178. if (!(flags & MNT_DETACH))
  1179. shrink_submounts(mnt, &umount_list);
  1180. retval = -EBUSY;
  1181. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1182. if (!list_empty(&mnt->mnt.mnt_list))
  1183. umount_tree(mnt, 1, &umount_list);
  1184. retval = 0;
  1185. }
  1186. br_write_unlock(vfsmount_lock);
  1187. up_write(&namespace_sem);
  1188. release_mounts(&umount_list);
  1189. return retval;
  1190. }
  1191. /*
  1192. * Now umount can handle mount points as well as block devices.
  1193. * This is important for filesystems which use unnamed block devices.
  1194. *
  1195. * We now support a flag for forced unmount like the other 'big iron'
  1196. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1197. */
  1198. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1199. {
  1200. struct path path;
  1201. struct mount *mnt;
  1202. int retval;
  1203. int lookup_flags = 0;
  1204. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1205. return -EINVAL;
  1206. if (!(flags & UMOUNT_NOFOLLOW))
  1207. lookup_flags |= LOOKUP_FOLLOW;
  1208. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1209. if (retval)
  1210. goto out;
  1211. mnt = real_mount(path.mnt);
  1212. retval = -EINVAL;
  1213. if (path.dentry != path.mnt->mnt_root)
  1214. goto dput_and_out;
  1215. if (!check_mnt(mnt))
  1216. goto dput_and_out;
  1217. retval = -EPERM;
  1218. if (!capable(CAP_SYS_ADMIN))
  1219. goto dput_and_out;
  1220. retval = do_umount(mnt, flags);
  1221. dput_and_out:
  1222. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1223. dput(path.dentry);
  1224. mntput_no_expire(mnt);
  1225. out:
  1226. return retval;
  1227. }
  1228. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1229. /*
  1230. * The 2.0 compatible umount. No flags.
  1231. */
  1232. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1233. {
  1234. return sys_umount(name, 0);
  1235. }
  1236. #endif
  1237. static int mount_is_safe(struct path *path)
  1238. {
  1239. if (capable(CAP_SYS_ADMIN))
  1240. return 0;
  1241. return -EPERM;
  1242. #ifdef notyet
  1243. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1244. return -EPERM;
  1245. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1246. if (current_uid() != path->dentry->d_inode->i_uid)
  1247. return -EPERM;
  1248. }
  1249. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1250. return -EPERM;
  1251. return 0;
  1252. #endif
  1253. }
  1254. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1255. int flag)
  1256. {
  1257. struct mount *res, *p, *q, *r;
  1258. struct path path;
  1259. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1260. return NULL;
  1261. res = q = clone_mnt(mnt, dentry, flag);
  1262. if (!q)
  1263. goto Enomem;
  1264. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1265. p = mnt;
  1266. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1267. struct mount *s;
  1268. if (!is_subdir(r->mnt_mountpoint, dentry))
  1269. continue;
  1270. for (s = r; s; s = next_mnt(s, &r->mnt)) {
  1271. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1272. s = skip_mnt_tree(s);
  1273. continue;
  1274. }
  1275. while (p != s->mnt_parent) {
  1276. p = p->mnt_parent;
  1277. q = q->mnt_parent;
  1278. }
  1279. p = s;
  1280. path.mnt = &q->mnt;
  1281. path.dentry = p->mnt_mountpoint;
  1282. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1283. if (!q)
  1284. goto Enomem;
  1285. br_write_lock(vfsmount_lock);
  1286. list_add_tail(&q->mnt.mnt_list, &res->mnt.mnt_list);
  1287. attach_mnt(q, &path);
  1288. br_write_unlock(vfsmount_lock);
  1289. }
  1290. }
  1291. return res;
  1292. Enomem:
  1293. if (res) {
  1294. LIST_HEAD(umount_list);
  1295. br_write_lock(vfsmount_lock);
  1296. umount_tree(res, 0, &umount_list);
  1297. br_write_unlock(vfsmount_lock);
  1298. release_mounts(&umount_list);
  1299. }
  1300. return NULL;
  1301. }
  1302. struct vfsmount *collect_mounts(struct path *path)
  1303. {
  1304. struct mount *tree;
  1305. down_write(&namespace_sem);
  1306. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1307. CL_COPY_ALL | CL_PRIVATE);
  1308. up_write(&namespace_sem);
  1309. return tree ? &tree->mnt : NULL;
  1310. }
  1311. void drop_collected_mounts(struct vfsmount *mnt)
  1312. {
  1313. LIST_HEAD(umount_list);
  1314. down_write(&namespace_sem);
  1315. br_write_lock(vfsmount_lock);
  1316. umount_tree(real_mount(mnt), 0, &umount_list);
  1317. br_write_unlock(vfsmount_lock);
  1318. up_write(&namespace_sem);
  1319. release_mounts(&umount_list);
  1320. }
  1321. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1322. struct vfsmount *root)
  1323. {
  1324. struct vfsmount *mnt;
  1325. int res = f(root, arg);
  1326. if (res)
  1327. return res;
  1328. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1329. res = f(mnt, arg);
  1330. if (res)
  1331. return res;
  1332. }
  1333. return 0;
  1334. }
  1335. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1336. {
  1337. struct mount *p;
  1338. for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
  1339. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1340. mnt_release_group_id(p);
  1341. }
  1342. }
  1343. static int invent_group_ids(struct mount *mnt, bool recurse)
  1344. {
  1345. struct mount *p;
  1346. for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
  1347. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1348. int err = mnt_alloc_group_id(p);
  1349. if (err) {
  1350. cleanup_group_ids(mnt, p);
  1351. return err;
  1352. }
  1353. }
  1354. }
  1355. return 0;
  1356. }
  1357. /*
  1358. * @source_mnt : mount tree to be attached
  1359. * @nd : place the mount tree @source_mnt is attached
  1360. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1361. * store the parent mount and mountpoint dentry.
  1362. * (done when source_mnt is moved)
  1363. *
  1364. * NOTE: in the table below explains the semantics when a source mount
  1365. * of a given type is attached to a destination mount of a given type.
  1366. * ---------------------------------------------------------------------------
  1367. * | BIND MOUNT OPERATION |
  1368. * |**************************************************************************
  1369. * | source-->| shared | private | slave | unbindable |
  1370. * | dest | | | | |
  1371. * | | | | | | |
  1372. * | v | | | | |
  1373. * |**************************************************************************
  1374. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1375. * | | | | | |
  1376. * |non-shared| shared (+) | private | slave (*) | invalid |
  1377. * ***************************************************************************
  1378. * A bind operation clones the source mount and mounts the clone on the
  1379. * destination mount.
  1380. *
  1381. * (++) the cloned mount is propagated to all the mounts in the propagation
  1382. * tree of the destination mount and the cloned mount is added to
  1383. * the peer group of the source mount.
  1384. * (+) the cloned mount is created under the destination mount and is marked
  1385. * as shared. The cloned mount is added to the peer group of the source
  1386. * mount.
  1387. * (+++) the mount is propagated to all the mounts in the propagation tree
  1388. * of the destination mount and the cloned mount is made slave
  1389. * of the same master as that of the source mount. The cloned mount
  1390. * is marked as 'shared and slave'.
  1391. * (*) the cloned mount is made a slave of the same master as that of the
  1392. * source mount.
  1393. *
  1394. * ---------------------------------------------------------------------------
  1395. * | MOVE MOUNT OPERATION |
  1396. * |**************************************************************************
  1397. * | source-->| shared | private | slave | unbindable |
  1398. * | dest | | | | |
  1399. * | | | | | | |
  1400. * | v | | | | |
  1401. * |**************************************************************************
  1402. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1403. * | | | | | |
  1404. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1405. * ***************************************************************************
  1406. *
  1407. * (+) the mount is moved to the destination. And is then propagated to
  1408. * all the mounts in the propagation tree of the destination mount.
  1409. * (+*) the mount is moved to the destination.
  1410. * (+++) the mount is moved to the destination and is then propagated to
  1411. * all the mounts belonging to the destination mount's propagation tree.
  1412. * the mount is marked as 'shared and slave'.
  1413. * (*) the mount continues to be a slave at the new location.
  1414. *
  1415. * if the source mount is a tree, the operations explained above is
  1416. * applied to each mount in the tree.
  1417. * Must be called without spinlocks held, since this function can sleep
  1418. * in allocations.
  1419. */
  1420. static int attach_recursive_mnt(struct mount *source_mnt,
  1421. struct path *path, struct path *parent_path)
  1422. {
  1423. LIST_HEAD(tree_list);
  1424. struct mount *dest_mnt = real_mount(path->mnt);
  1425. struct dentry *dest_dentry = path->dentry;
  1426. struct mount *child, *p;
  1427. int err;
  1428. if (IS_MNT_SHARED(dest_mnt)) {
  1429. err = invent_group_ids(source_mnt, true);
  1430. if (err)
  1431. goto out;
  1432. }
  1433. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1434. if (err)
  1435. goto out_cleanup_ids;
  1436. br_write_lock(vfsmount_lock);
  1437. if (IS_MNT_SHARED(dest_mnt)) {
  1438. for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
  1439. set_mnt_shared(p);
  1440. }
  1441. if (parent_path) {
  1442. detach_mnt(source_mnt, parent_path);
  1443. attach_mnt(source_mnt, path);
  1444. touch_mnt_namespace(source_mnt->mnt_ns);
  1445. } else {
  1446. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1447. commit_tree(source_mnt);
  1448. }
  1449. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1450. list_del_init(&child->mnt_hash);
  1451. commit_tree(child);
  1452. }
  1453. br_write_unlock(vfsmount_lock);
  1454. return 0;
  1455. out_cleanup_ids:
  1456. if (IS_MNT_SHARED(dest_mnt))
  1457. cleanup_group_ids(source_mnt, NULL);
  1458. out:
  1459. return err;
  1460. }
  1461. static int lock_mount(struct path *path)
  1462. {
  1463. struct vfsmount *mnt;
  1464. retry:
  1465. mutex_lock(&path->dentry->d_inode->i_mutex);
  1466. if (unlikely(cant_mount(path->dentry))) {
  1467. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1468. return -ENOENT;
  1469. }
  1470. down_write(&namespace_sem);
  1471. mnt = lookup_mnt(path);
  1472. if (likely(!mnt))
  1473. return 0;
  1474. up_write(&namespace_sem);
  1475. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1476. path_put(path);
  1477. path->mnt = mnt;
  1478. path->dentry = dget(mnt->mnt_root);
  1479. goto retry;
  1480. }
  1481. static void unlock_mount(struct path *path)
  1482. {
  1483. up_write(&namespace_sem);
  1484. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1485. }
  1486. static int graft_tree(struct mount *mnt, struct path *path)
  1487. {
  1488. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1489. return -EINVAL;
  1490. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1491. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1492. return -ENOTDIR;
  1493. if (d_unlinked(path->dentry))
  1494. return -ENOENT;
  1495. return attach_recursive_mnt(mnt, path, NULL);
  1496. }
  1497. /*
  1498. * Sanity check the flags to change_mnt_propagation.
  1499. */
  1500. static int flags_to_propagation_type(int flags)
  1501. {
  1502. int type = flags & ~(MS_REC | MS_SILENT);
  1503. /* Fail if any non-propagation flags are set */
  1504. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1505. return 0;
  1506. /* Only one propagation flag should be set */
  1507. if (!is_power_of_2(type))
  1508. return 0;
  1509. return type;
  1510. }
  1511. /*
  1512. * recursively change the type of the mountpoint.
  1513. */
  1514. static int do_change_type(struct path *path, int flag)
  1515. {
  1516. struct mount *m;
  1517. struct mount *mnt = real_mount(path->mnt);
  1518. int recurse = flag & MS_REC;
  1519. int type;
  1520. int err = 0;
  1521. if (!capable(CAP_SYS_ADMIN))
  1522. return -EPERM;
  1523. if (path->dentry != path->mnt->mnt_root)
  1524. return -EINVAL;
  1525. type = flags_to_propagation_type(flag);
  1526. if (!type)
  1527. return -EINVAL;
  1528. down_write(&namespace_sem);
  1529. if (type == MS_SHARED) {
  1530. err = invent_group_ids(mnt, recurse);
  1531. if (err)
  1532. goto out_unlock;
  1533. }
  1534. br_write_lock(vfsmount_lock);
  1535. for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
  1536. change_mnt_propagation(m, type);
  1537. br_write_unlock(vfsmount_lock);
  1538. out_unlock:
  1539. up_write(&namespace_sem);
  1540. return err;
  1541. }
  1542. /*
  1543. * do loopback mount.
  1544. */
  1545. static int do_loopback(struct path *path, char *old_name,
  1546. int recurse)
  1547. {
  1548. LIST_HEAD(umount_list);
  1549. struct path old_path;
  1550. struct mount *mnt = NULL, *old;
  1551. int err = mount_is_safe(path);
  1552. if (err)
  1553. return err;
  1554. if (!old_name || !*old_name)
  1555. return -EINVAL;
  1556. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1557. if (err)
  1558. return err;
  1559. err = lock_mount(path);
  1560. if (err)
  1561. goto out;
  1562. old = real_mount(old_path.mnt);
  1563. err = -EINVAL;
  1564. if (IS_MNT_UNBINDABLE(old))
  1565. goto out2;
  1566. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1567. goto out2;
  1568. err = -ENOMEM;
  1569. if (recurse)
  1570. mnt = copy_tree(old, old_path.dentry, 0);
  1571. else
  1572. mnt = clone_mnt(old, old_path.dentry, 0);
  1573. if (!mnt)
  1574. goto out2;
  1575. err = graft_tree(mnt, path);
  1576. if (err) {
  1577. br_write_lock(vfsmount_lock);
  1578. umount_tree(mnt, 0, &umount_list);
  1579. br_write_unlock(vfsmount_lock);
  1580. }
  1581. out2:
  1582. unlock_mount(path);
  1583. release_mounts(&umount_list);
  1584. out:
  1585. path_put(&old_path);
  1586. return err;
  1587. }
  1588. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1589. {
  1590. int error = 0;
  1591. int readonly_request = 0;
  1592. if (ms_flags & MS_RDONLY)
  1593. readonly_request = 1;
  1594. if (readonly_request == __mnt_is_readonly(mnt))
  1595. return 0;
  1596. if (readonly_request)
  1597. error = mnt_make_readonly(real_mount(mnt));
  1598. else
  1599. __mnt_unmake_readonly(real_mount(mnt));
  1600. return error;
  1601. }
  1602. /*
  1603. * change filesystem flags. dir should be a physical root of filesystem.
  1604. * If you've mounted a non-root directory somewhere and want to do remount
  1605. * on it - tough luck.
  1606. */
  1607. static int do_remount(struct path *path, int flags, int mnt_flags,
  1608. void *data)
  1609. {
  1610. int err;
  1611. struct super_block *sb = path->mnt->mnt_sb;
  1612. struct mount *mnt = real_mount(path->mnt);
  1613. if (!capable(CAP_SYS_ADMIN))
  1614. return -EPERM;
  1615. if (!check_mnt(mnt))
  1616. return -EINVAL;
  1617. if (path->dentry != path->mnt->mnt_root)
  1618. return -EINVAL;
  1619. err = security_sb_remount(sb, data);
  1620. if (err)
  1621. return err;
  1622. down_write(&sb->s_umount);
  1623. if (flags & MS_BIND)
  1624. err = change_mount_flags(path->mnt, flags);
  1625. else
  1626. err = do_remount_sb(sb, flags, data, 0);
  1627. if (!err) {
  1628. br_write_lock(vfsmount_lock);
  1629. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1630. mnt->mnt.mnt_flags = mnt_flags;
  1631. br_write_unlock(vfsmount_lock);
  1632. }
  1633. up_write(&sb->s_umount);
  1634. if (!err) {
  1635. br_write_lock(vfsmount_lock);
  1636. touch_mnt_namespace(mnt->mnt_ns);
  1637. br_write_unlock(vfsmount_lock);
  1638. }
  1639. return err;
  1640. }
  1641. static inline int tree_contains_unbindable(struct mount *mnt)
  1642. {
  1643. struct mount *p;
  1644. for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
  1645. if (IS_MNT_UNBINDABLE(p))
  1646. return 1;
  1647. }
  1648. return 0;
  1649. }
  1650. static int do_move_mount(struct path *path, char *old_name)
  1651. {
  1652. struct path old_path, parent_path;
  1653. struct mount *p;
  1654. struct mount *old;
  1655. int err = 0;
  1656. if (!capable(CAP_SYS_ADMIN))
  1657. return -EPERM;
  1658. if (!old_name || !*old_name)
  1659. return -EINVAL;
  1660. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1661. if (err)
  1662. return err;
  1663. err = lock_mount(path);
  1664. if (err < 0)
  1665. goto out;
  1666. old = real_mount(old_path.mnt);
  1667. p = real_mount(path->mnt);
  1668. err = -EINVAL;
  1669. if (!check_mnt(p) || !check_mnt(old))
  1670. goto out1;
  1671. if (d_unlinked(path->dentry))
  1672. goto out1;
  1673. err = -EINVAL;
  1674. if (old_path.dentry != old_path.mnt->mnt_root)
  1675. goto out1;
  1676. if (!mnt_has_parent(old))
  1677. goto out1;
  1678. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1679. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1680. goto out1;
  1681. /*
  1682. * Don't move a mount residing in a shared parent.
  1683. */
  1684. if (IS_MNT_SHARED(old->mnt_parent))
  1685. goto out1;
  1686. /*
  1687. * Don't move a mount tree containing unbindable mounts to a destination
  1688. * mount which is shared.
  1689. */
  1690. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1691. goto out1;
  1692. err = -ELOOP;
  1693. for (; mnt_has_parent(p); p = p->mnt_parent)
  1694. if (p == old)
  1695. goto out1;
  1696. err = attach_recursive_mnt(old, path, &parent_path);
  1697. if (err)
  1698. goto out1;
  1699. /* if the mount is moved, it should no longer be expire
  1700. * automatically */
  1701. list_del_init(&old->mnt_expire);
  1702. out1:
  1703. unlock_mount(path);
  1704. out:
  1705. if (!err)
  1706. path_put(&parent_path);
  1707. path_put(&old_path);
  1708. return err;
  1709. }
  1710. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1711. {
  1712. int err;
  1713. const char *subtype = strchr(fstype, '.');
  1714. if (subtype) {
  1715. subtype++;
  1716. err = -EINVAL;
  1717. if (!subtype[0])
  1718. goto err;
  1719. } else
  1720. subtype = "";
  1721. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1722. err = -ENOMEM;
  1723. if (!mnt->mnt_sb->s_subtype)
  1724. goto err;
  1725. return mnt;
  1726. err:
  1727. mntput(mnt);
  1728. return ERR_PTR(err);
  1729. }
  1730. static struct vfsmount *
  1731. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1732. {
  1733. struct file_system_type *type = get_fs_type(fstype);
  1734. struct vfsmount *mnt;
  1735. if (!type)
  1736. return ERR_PTR(-ENODEV);
  1737. mnt = vfs_kern_mount(type, flags, name, data);
  1738. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1739. !mnt->mnt_sb->s_subtype)
  1740. mnt = fs_set_subtype(mnt, fstype);
  1741. put_filesystem(type);
  1742. return mnt;
  1743. }
  1744. /*
  1745. * add a mount into a namespace's mount tree
  1746. */
  1747. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1748. {
  1749. int err;
  1750. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1751. err = lock_mount(path);
  1752. if (err)
  1753. return err;
  1754. err = -EINVAL;
  1755. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
  1756. goto unlock;
  1757. /* Refuse the same filesystem on the same mount point */
  1758. err = -EBUSY;
  1759. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1760. path->mnt->mnt_root == path->dentry)
  1761. goto unlock;
  1762. err = -EINVAL;
  1763. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1764. goto unlock;
  1765. newmnt->mnt.mnt_flags = mnt_flags;
  1766. err = graft_tree(newmnt, path);
  1767. unlock:
  1768. unlock_mount(path);
  1769. return err;
  1770. }
  1771. /*
  1772. * create a new mount for userspace and request it to be added into the
  1773. * namespace's tree
  1774. */
  1775. static int do_new_mount(struct path *path, char *type, int flags,
  1776. int mnt_flags, char *name, void *data)
  1777. {
  1778. struct vfsmount *mnt;
  1779. int err;
  1780. if (!type)
  1781. return -EINVAL;
  1782. /* we need capabilities... */
  1783. if (!capable(CAP_SYS_ADMIN))
  1784. return -EPERM;
  1785. mnt = do_kern_mount(type, flags, name, data);
  1786. if (IS_ERR(mnt))
  1787. return PTR_ERR(mnt);
  1788. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1789. if (err)
  1790. mntput(mnt);
  1791. return err;
  1792. }
  1793. int finish_automount(struct vfsmount *m, struct path *path)
  1794. {
  1795. struct mount *mnt = real_mount(m);
  1796. int err;
  1797. /* The new mount record should have at least 2 refs to prevent it being
  1798. * expired before we get a chance to add it
  1799. */
  1800. BUG_ON(mnt_get_count(mnt) < 2);
  1801. if (m->mnt_sb == path->mnt->mnt_sb &&
  1802. m->mnt_root == path->dentry) {
  1803. err = -ELOOP;
  1804. goto fail;
  1805. }
  1806. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1807. if (!err)
  1808. return 0;
  1809. fail:
  1810. /* remove m from any expiration list it may be on */
  1811. if (!list_empty(&mnt->mnt_expire)) {
  1812. down_write(&namespace_sem);
  1813. br_write_lock(vfsmount_lock);
  1814. list_del_init(&mnt->mnt_expire);
  1815. br_write_unlock(vfsmount_lock);
  1816. up_write(&namespace_sem);
  1817. }
  1818. mntput(m);
  1819. mntput(m);
  1820. return err;
  1821. }
  1822. /**
  1823. * mnt_set_expiry - Put a mount on an expiration list
  1824. * @mnt: The mount to list.
  1825. * @expiry_list: The list to add the mount to.
  1826. */
  1827. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1828. {
  1829. down_write(&namespace_sem);
  1830. br_write_lock(vfsmount_lock);
  1831. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1832. br_write_unlock(vfsmount_lock);
  1833. up_write(&namespace_sem);
  1834. }
  1835. EXPORT_SYMBOL(mnt_set_expiry);
  1836. /*
  1837. * process a list of expirable mountpoints with the intent of discarding any
  1838. * mountpoints that aren't in use and haven't been touched since last we came
  1839. * here
  1840. */
  1841. void mark_mounts_for_expiry(struct list_head *mounts)
  1842. {
  1843. struct mount *mnt, *next;
  1844. LIST_HEAD(graveyard);
  1845. LIST_HEAD(umounts);
  1846. if (list_empty(mounts))
  1847. return;
  1848. down_write(&namespace_sem);
  1849. br_write_lock(vfsmount_lock);
  1850. /* extract from the expiration list every vfsmount that matches the
  1851. * following criteria:
  1852. * - only referenced by its parent vfsmount
  1853. * - still marked for expiry (marked on the last call here; marks are
  1854. * cleared by mntput())
  1855. */
  1856. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1857. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1858. propagate_mount_busy(mnt, 1))
  1859. continue;
  1860. list_move(&mnt->mnt_expire, &graveyard);
  1861. }
  1862. while (!list_empty(&graveyard)) {
  1863. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1864. touch_mnt_namespace(mnt->mnt_ns);
  1865. umount_tree(mnt, 1, &umounts);
  1866. }
  1867. br_write_unlock(vfsmount_lock);
  1868. up_write(&namespace_sem);
  1869. release_mounts(&umounts);
  1870. }
  1871. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1872. /*
  1873. * Ripoff of 'select_parent()'
  1874. *
  1875. * search the list of submounts for a given mountpoint, and move any
  1876. * shrinkable submounts to the 'graveyard' list.
  1877. */
  1878. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1879. {
  1880. struct mount *this_parent = parent;
  1881. struct list_head *next;
  1882. int found = 0;
  1883. repeat:
  1884. next = this_parent->mnt_mounts.next;
  1885. resume:
  1886. while (next != &this_parent->mnt_mounts) {
  1887. struct list_head *tmp = next;
  1888. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1889. next = tmp->next;
  1890. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1891. continue;
  1892. /*
  1893. * Descend a level if the d_mounts list is non-empty.
  1894. */
  1895. if (!list_empty(&mnt->mnt_mounts)) {
  1896. this_parent = mnt;
  1897. goto repeat;
  1898. }
  1899. if (!propagate_mount_busy(mnt, 1)) {
  1900. list_move_tail(&mnt->mnt_expire, graveyard);
  1901. found++;
  1902. }
  1903. }
  1904. /*
  1905. * All done at this level ... ascend and resume the search
  1906. */
  1907. if (this_parent != parent) {
  1908. next = this_parent->mnt_child.next;
  1909. this_parent = this_parent->mnt_parent;
  1910. goto resume;
  1911. }
  1912. return found;
  1913. }
  1914. /*
  1915. * process a list of expirable mountpoints with the intent of discarding any
  1916. * submounts of a specific parent mountpoint
  1917. *
  1918. * vfsmount_lock must be held for write
  1919. */
  1920. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1921. {
  1922. LIST_HEAD(graveyard);
  1923. struct mount *m;
  1924. /* extract submounts of 'mountpoint' from the expiration list */
  1925. while (select_submounts(mnt, &graveyard)) {
  1926. while (!list_empty(&graveyard)) {
  1927. m = list_first_entry(&graveyard, struct mount,
  1928. mnt_expire);
  1929. touch_mnt_namespace(m->mnt_ns);
  1930. umount_tree(m, 1, umounts);
  1931. }
  1932. }
  1933. }
  1934. /*
  1935. * Some copy_from_user() implementations do not return the exact number of
  1936. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1937. * Note that this function differs from copy_from_user() in that it will oops
  1938. * on bad values of `to', rather than returning a short copy.
  1939. */
  1940. static long exact_copy_from_user(void *to, const void __user * from,
  1941. unsigned long n)
  1942. {
  1943. char *t = to;
  1944. const char __user *f = from;
  1945. char c;
  1946. if (!access_ok(VERIFY_READ, from, n))
  1947. return n;
  1948. while (n) {
  1949. if (__get_user(c, f)) {
  1950. memset(t, 0, n);
  1951. break;
  1952. }
  1953. *t++ = c;
  1954. f++;
  1955. n--;
  1956. }
  1957. return n;
  1958. }
  1959. int copy_mount_options(const void __user * data, unsigned long *where)
  1960. {
  1961. int i;
  1962. unsigned long page;
  1963. unsigned long size;
  1964. *where = 0;
  1965. if (!data)
  1966. return 0;
  1967. if (!(page = __get_free_page(GFP_KERNEL)))
  1968. return -ENOMEM;
  1969. /* We only care that *some* data at the address the user
  1970. * gave us is valid. Just in case, we'll zero
  1971. * the remainder of the page.
  1972. */
  1973. /* copy_from_user cannot cross TASK_SIZE ! */
  1974. size = TASK_SIZE - (unsigned long)data;
  1975. if (size > PAGE_SIZE)
  1976. size = PAGE_SIZE;
  1977. i = size - exact_copy_from_user((void *)page, data, size);
  1978. if (!i) {
  1979. free_page(page);
  1980. return -EFAULT;
  1981. }
  1982. if (i != PAGE_SIZE)
  1983. memset((char *)page + i, 0, PAGE_SIZE - i);
  1984. *where = page;
  1985. return 0;
  1986. }
  1987. int copy_mount_string(const void __user *data, char **where)
  1988. {
  1989. char *tmp;
  1990. if (!data) {
  1991. *where = NULL;
  1992. return 0;
  1993. }
  1994. tmp = strndup_user(data, PAGE_SIZE);
  1995. if (IS_ERR(tmp))
  1996. return PTR_ERR(tmp);
  1997. *where = tmp;
  1998. return 0;
  1999. }
  2000. /*
  2001. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2002. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2003. *
  2004. * data is a (void *) that can point to any structure up to
  2005. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2006. * information (or be NULL).
  2007. *
  2008. * Pre-0.97 versions of mount() didn't have a flags word.
  2009. * When the flags word was introduced its top half was required
  2010. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2011. * Therefore, if this magic number is present, it carries no information
  2012. * and must be discarded.
  2013. */
  2014. long do_mount(char *dev_name, char *dir_name, char *type_page,
  2015. unsigned long flags, void *data_page)
  2016. {
  2017. struct path path;
  2018. int retval = 0;
  2019. int mnt_flags = 0;
  2020. /* Discard magic */
  2021. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2022. flags &= ~MS_MGC_MSK;
  2023. /* Basic sanity checks */
  2024. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2025. return -EINVAL;
  2026. if (data_page)
  2027. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2028. /* ... and get the mountpoint */
  2029. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2030. if (retval)
  2031. return retval;
  2032. retval = security_sb_mount(dev_name, &path,
  2033. type_page, flags, data_page);
  2034. if (retval)
  2035. goto dput_out;
  2036. /* Default to relatime unless overriden */
  2037. if (!(flags & MS_NOATIME))
  2038. mnt_flags |= MNT_RELATIME;
  2039. /* Separate the per-mountpoint flags */
  2040. if (flags & MS_NOSUID)
  2041. mnt_flags |= MNT_NOSUID;
  2042. if (flags & MS_NODEV)
  2043. mnt_flags |= MNT_NODEV;
  2044. if (flags & MS_NOEXEC)
  2045. mnt_flags |= MNT_NOEXEC;
  2046. if (flags & MS_NOATIME)
  2047. mnt_flags |= MNT_NOATIME;
  2048. if (flags & MS_NODIRATIME)
  2049. mnt_flags |= MNT_NODIRATIME;
  2050. if (flags & MS_STRICTATIME)
  2051. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2052. if (flags & MS_RDONLY)
  2053. mnt_flags |= MNT_READONLY;
  2054. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2055. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2056. MS_STRICTATIME);
  2057. if (flags & MS_REMOUNT)
  2058. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2059. data_page);
  2060. else if (flags & MS_BIND)
  2061. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2062. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2063. retval = do_change_type(&path, flags);
  2064. else if (flags & MS_MOVE)
  2065. retval = do_move_mount(&path, dev_name);
  2066. else
  2067. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2068. dev_name, data_page);
  2069. dput_out:
  2070. path_put(&path);
  2071. return retval;
  2072. }
  2073. static struct mnt_namespace *alloc_mnt_ns(void)
  2074. {
  2075. struct mnt_namespace *new_ns;
  2076. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2077. if (!new_ns)
  2078. return ERR_PTR(-ENOMEM);
  2079. atomic_set(&new_ns->count, 1);
  2080. new_ns->root = NULL;
  2081. INIT_LIST_HEAD(&new_ns->list);
  2082. init_waitqueue_head(&new_ns->poll);
  2083. new_ns->event = 0;
  2084. return new_ns;
  2085. }
  2086. void mnt_make_longterm(struct vfsmount *mnt)
  2087. {
  2088. __mnt_make_longterm(real_mount(mnt));
  2089. }
  2090. void mnt_make_shortterm(struct vfsmount *m)
  2091. {
  2092. #ifdef CONFIG_SMP
  2093. struct mount *mnt = real_mount(m);
  2094. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2095. return;
  2096. br_write_lock(vfsmount_lock);
  2097. atomic_dec(&mnt->mnt_longterm);
  2098. br_write_unlock(vfsmount_lock);
  2099. #endif
  2100. }
  2101. /*
  2102. * Allocate a new namespace structure and populate it with contents
  2103. * copied from the namespace of the passed in task structure.
  2104. */
  2105. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2106. struct fs_struct *fs)
  2107. {
  2108. struct mnt_namespace *new_ns;
  2109. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2110. struct mount *p, *q;
  2111. struct mount *new;
  2112. new_ns = alloc_mnt_ns();
  2113. if (IS_ERR(new_ns))
  2114. return new_ns;
  2115. down_write(&namespace_sem);
  2116. /* First pass: copy the tree topology */
  2117. new = copy_tree(real_mount(mnt_ns->root), mnt_ns->root->mnt_root,
  2118. CL_COPY_ALL | CL_EXPIRE);
  2119. if (!new) {
  2120. up_write(&namespace_sem);
  2121. kfree(new_ns);
  2122. return ERR_PTR(-ENOMEM);
  2123. }
  2124. new_ns->root = &new->mnt;
  2125. br_write_lock(vfsmount_lock);
  2126. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2127. br_write_unlock(vfsmount_lock);
  2128. /*
  2129. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2130. * as belonging to new namespace. We have already acquired a private
  2131. * fs_struct, so tsk->fs->lock is not needed.
  2132. */
  2133. p = real_mount(mnt_ns->root);
  2134. q = new;
  2135. while (p) {
  2136. q->mnt_ns = new_ns;
  2137. __mnt_make_longterm(q);
  2138. if (fs) {
  2139. if (&p->mnt == fs->root.mnt) {
  2140. fs->root.mnt = mntget(&q->mnt);
  2141. __mnt_make_longterm(q);
  2142. mnt_make_shortterm(&p->mnt);
  2143. rootmnt = &p->mnt;
  2144. }
  2145. if (&p->mnt == fs->pwd.mnt) {
  2146. fs->pwd.mnt = mntget(&q->mnt);
  2147. __mnt_make_longterm(q);
  2148. mnt_make_shortterm(&p->mnt);
  2149. pwdmnt = &p->mnt;
  2150. }
  2151. }
  2152. p = next_mnt(p, mnt_ns->root);
  2153. q = next_mnt(q, new_ns->root);
  2154. }
  2155. up_write(&namespace_sem);
  2156. if (rootmnt)
  2157. mntput(rootmnt);
  2158. if (pwdmnt)
  2159. mntput(pwdmnt);
  2160. return new_ns;
  2161. }
  2162. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2163. struct fs_struct *new_fs)
  2164. {
  2165. struct mnt_namespace *new_ns;
  2166. BUG_ON(!ns);
  2167. get_mnt_ns(ns);
  2168. if (!(flags & CLONE_NEWNS))
  2169. return ns;
  2170. new_ns = dup_mnt_ns(ns, new_fs);
  2171. put_mnt_ns(ns);
  2172. return new_ns;
  2173. }
  2174. /**
  2175. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2176. * @mnt: pointer to the new root filesystem mountpoint
  2177. */
  2178. static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2179. {
  2180. struct mnt_namespace *new_ns;
  2181. new_ns = alloc_mnt_ns();
  2182. if (!IS_ERR(new_ns)) {
  2183. real_mount(mnt)->mnt_ns = new_ns;
  2184. __mnt_make_longterm(real_mount(mnt));
  2185. new_ns->root = mnt;
  2186. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2187. } else {
  2188. mntput(mnt);
  2189. }
  2190. return new_ns;
  2191. }
  2192. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2193. {
  2194. struct mnt_namespace *ns;
  2195. struct super_block *s;
  2196. struct path path;
  2197. int err;
  2198. ns = create_mnt_ns(mnt);
  2199. if (IS_ERR(ns))
  2200. return ERR_CAST(ns);
  2201. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2202. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2203. put_mnt_ns(ns);
  2204. if (err)
  2205. return ERR_PTR(err);
  2206. /* trade a vfsmount reference for active sb one */
  2207. s = path.mnt->mnt_sb;
  2208. atomic_inc(&s->s_active);
  2209. mntput(path.mnt);
  2210. /* lock the sucker */
  2211. down_write(&s->s_umount);
  2212. /* ... and return the root of (sub)tree on it */
  2213. return path.dentry;
  2214. }
  2215. EXPORT_SYMBOL(mount_subtree);
  2216. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2217. char __user *, type, unsigned long, flags, void __user *, data)
  2218. {
  2219. int ret;
  2220. char *kernel_type;
  2221. char *kernel_dir;
  2222. char *kernel_dev;
  2223. unsigned long data_page;
  2224. ret = copy_mount_string(type, &kernel_type);
  2225. if (ret < 0)
  2226. goto out_type;
  2227. kernel_dir = getname(dir_name);
  2228. if (IS_ERR(kernel_dir)) {
  2229. ret = PTR_ERR(kernel_dir);
  2230. goto out_dir;
  2231. }
  2232. ret = copy_mount_string(dev_name, &kernel_dev);
  2233. if (ret < 0)
  2234. goto out_dev;
  2235. ret = copy_mount_options(data, &data_page);
  2236. if (ret < 0)
  2237. goto out_data;
  2238. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2239. (void *) data_page);
  2240. free_page(data_page);
  2241. out_data:
  2242. kfree(kernel_dev);
  2243. out_dev:
  2244. putname(kernel_dir);
  2245. out_dir:
  2246. kfree(kernel_type);
  2247. out_type:
  2248. return ret;
  2249. }
  2250. /*
  2251. * Return true if path is reachable from root
  2252. *
  2253. * namespace_sem or vfsmount_lock is held
  2254. */
  2255. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2256. const struct path *root)
  2257. {
  2258. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2259. dentry = mnt->mnt_mountpoint;
  2260. mnt = mnt->mnt_parent;
  2261. }
  2262. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2263. }
  2264. int path_is_under(struct path *path1, struct path *path2)
  2265. {
  2266. int res;
  2267. br_read_lock(vfsmount_lock);
  2268. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2269. br_read_unlock(vfsmount_lock);
  2270. return res;
  2271. }
  2272. EXPORT_SYMBOL(path_is_under);
  2273. /*
  2274. * pivot_root Semantics:
  2275. * Moves the root file system of the current process to the directory put_old,
  2276. * makes new_root as the new root file system of the current process, and sets
  2277. * root/cwd of all processes which had them on the current root to new_root.
  2278. *
  2279. * Restrictions:
  2280. * The new_root and put_old must be directories, and must not be on the
  2281. * same file system as the current process root. The put_old must be
  2282. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2283. * pointed to by put_old must yield the same directory as new_root. No other
  2284. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2285. *
  2286. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2287. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2288. * in this situation.
  2289. *
  2290. * Notes:
  2291. * - we don't move root/cwd if they are not at the root (reason: if something
  2292. * cared enough to change them, it's probably wrong to force them elsewhere)
  2293. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2294. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2295. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2296. * first.
  2297. */
  2298. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2299. const char __user *, put_old)
  2300. {
  2301. struct path new, old, parent_path, root_parent, root;
  2302. struct mount *new_mnt, *root_mnt;
  2303. int error;
  2304. if (!capable(CAP_SYS_ADMIN))
  2305. return -EPERM;
  2306. error = user_path_dir(new_root, &new);
  2307. if (error)
  2308. goto out0;
  2309. error = user_path_dir(put_old, &old);
  2310. if (error)
  2311. goto out1;
  2312. error = security_sb_pivotroot(&old, &new);
  2313. if (error)
  2314. goto out2;
  2315. get_fs_root(current->fs, &root);
  2316. error = lock_mount(&old);
  2317. if (error)
  2318. goto out3;
  2319. error = -EINVAL;
  2320. new_mnt = real_mount(new.mnt);
  2321. root_mnt = real_mount(root.mnt);
  2322. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2323. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2324. IS_MNT_SHARED(root_mnt->mnt_parent))
  2325. goto out4;
  2326. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2327. goto out4;
  2328. error = -ENOENT;
  2329. if (d_unlinked(new.dentry))
  2330. goto out4;
  2331. if (d_unlinked(old.dentry))
  2332. goto out4;
  2333. error = -EBUSY;
  2334. if (new.mnt == root.mnt ||
  2335. old.mnt == root.mnt)
  2336. goto out4; /* loop, on the same file system */
  2337. error = -EINVAL;
  2338. if (root.mnt->mnt_root != root.dentry)
  2339. goto out4; /* not a mountpoint */
  2340. if (!mnt_has_parent(root_mnt))
  2341. goto out4; /* not attached */
  2342. if (new.mnt->mnt_root != new.dentry)
  2343. goto out4; /* not a mountpoint */
  2344. if (!mnt_has_parent(new_mnt))
  2345. goto out4; /* not attached */
  2346. /* make sure we can reach put_old from new_root */
  2347. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2348. goto out4;
  2349. br_write_lock(vfsmount_lock);
  2350. detach_mnt(new_mnt, &parent_path);
  2351. detach_mnt(root_mnt, &root_parent);
  2352. /* mount old root on put_old */
  2353. attach_mnt(root_mnt, &old);
  2354. /* mount new_root on / */
  2355. attach_mnt(new_mnt, &root_parent);
  2356. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2357. br_write_unlock(vfsmount_lock);
  2358. chroot_fs_refs(&root, &new);
  2359. error = 0;
  2360. out4:
  2361. unlock_mount(&old);
  2362. if (!error) {
  2363. path_put(&root_parent);
  2364. path_put(&parent_path);
  2365. }
  2366. out3:
  2367. path_put(&root);
  2368. out2:
  2369. path_put(&old);
  2370. out1:
  2371. path_put(&new);
  2372. out0:
  2373. return error;
  2374. }
  2375. static void __init init_mount_tree(void)
  2376. {
  2377. struct vfsmount *mnt;
  2378. struct mnt_namespace *ns;
  2379. struct path root;
  2380. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2381. if (IS_ERR(mnt))
  2382. panic("Can't create rootfs");
  2383. ns = create_mnt_ns(mnt);
  2384. if (IS_ERR(ns))
  2385. panic("Can't allocate initial namespace");
  2386. init_task.nsproxy->mnt_ns = ns;
  2387. get_mnt_ns(ns);
  2388. root.mnt = ns->root;
  2389. root.dentry = ns->root->mnt_root;
  2390. set_fs_pwd(current->fs, &root);
  2391. set_fs_root(current->fs, &root);
  2392. }
  2393. void __init mnt_init(void)
  2394. {
  2395. unsigned u;
  2396. int err;
  2397. init_rwsem(&namespace_sem);
  2398. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2399. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2400. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2401. if (!mount_hashtable)
  2402. panic("Failed to allocate mount hash table\n");
  2403. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2404. for (u = 0; u < HASH_SIZE; u++)
  2405. INIT_LIST_HEAD(&mount_hashtable[u]);
  2406. br_lock_init(vfsmount_lock);
  2407. err = sysfs_init();
  2408. if (err)
  2409. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2410. __func__, err);
  2411. fs_kobj = kobject_create_and_add("fs", NULL);
  2412. if (!fs_kobj)
  2413. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2414. init_rootfs();
  2415. init_mount_tree();
  2416. }
  2417. void put_mnt_ns(struct mnt_namespace *ns)
  2418. {
  2419. LIST_HEAD(umount_list);
  2420. if (!atomic_dec_and_test(&ns->count))
  2421. return;
  2422. down_write(&namespace_sem);
  2423. br_write_lock(vfsmount_lock);
  2424. umount_tree(real_mount(ns->root), 0, &umount_list);
  2425. br_write_unlock(vfsmount_lock);
  2426. up_write(&namespace_sem);
  2427. release_mounts(&umount_list);
  2428. kfree(ns);
  2429. }
  2430. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2431. {
  2432. struct vfsmount *mnt;
  2433. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2434. if (!IS_ERR(mnt)) {
  2435. /*
  2436. * it is a longterm mount, don't release mnt until
  2437. * we unmount before file sys is unregistered
  2438. */
  2439. mnt_make_longterm(mnt);
  2440. }
  2441. return mnt;
  2442. }
  2443. EXPORT_SYMBOL_GPL(kern_mount_data);
  2444. void kern_unmount(struct vfsmount *mnt)
  2445. {
  2446. /* release long term mount so mount point can be released */
  2447. if (!IS_ERR_OR_NULL(mnt)) {
  2448. mnt_make_shortterm(mnt);
  2449. mntput(mnt);
  2450. }
  2451. }
  2452. EXPORT_SYMBOL(kern_unmount);
  2453. bool our_mnt(struct vfsmount *mnt)
  2454. {
  2455. return check_mnt(real_mount(mnt));
  2456. }