svm.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "kvm_svm.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <asm/desc.h>
  27. #include <asm/virtext.h>
  28. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. #define IOPM_ALLOC_ORDER 2
  32. #define MSRPM_ALLOC_ORDER 1
  33. #define DR7_GD_MASK (1 << 13)
  34. #define DR6_BD_MASK (1 << 13)
  35. #define SEG_TYPE_LDT 2
  36. #define SEG_TYPE_BUSY_TSS16 3
  37. #define SVM_FEATURE_NPT (1 << 0)
  38. #define SVM_FEATURE_LBRV (1 << 1)
  39. #define SVM_FEATURE_SVML (1 << 2)
  40. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  41. /* enable NPT for AMD64 and X86 with PAE */
  42. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  43. static bool npt_enabled = true;
  44. #else
  45. static bool npt_enabled = false;
  46. #endif
  47. static int npt = 1;
  48. module_param(npt, int, S_IRUGO);
  49. static void kvm_reput_irq(struct vcpu_svm *svm);
  50. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  51. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  52. {
  53. return container_of(vcpu, struct vcpu_svm, vcpu);
  54. }
  55. static unsigned long iopm_base;
  56. struct kvm_ldttss_desc {
  57. u16 limit0;
  58. u16 base0;
  59. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  60. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  61. u32 base3;
  62. u32 zero1;
  63. } __attribute__((packed));
  64. struct svm_cpu_data {
  65. int cpu;
  66. u64 asid_generation;
  67. u32 max_asid;
  68. u32 next_asid;
  69. struct kvm_ldttss_desc *tss_desc;
  70. struct page *save_area;
  71. };
  72. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  73. static uint32_t svm_features;
  74. struct svm_init_data {
  75. int cpu;
  76. int r;
  77. };
  78. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  79. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  80. #define MSRS_RANGE_SIZE 2048
  81. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  82. #define MAX_INST_SIZE 15
  83. static inline u32 svm_has(u32 feat)
  84. {
  85. return svm_features & feat;
  86. }
  87. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  88. {
  89. int word_index = __ffs(vcpu->arch.irq_summary);
  90. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  91. int irq = word_index * BITS_PER_LONG + bit_index;
  92. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  93. if (!vcpu->arch.irq_pending[word_index])
  94. clear_bit(word_index, &vcpu->arch.irq_summary);
  95. return irq;
  96. }
  97. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  98. {
  99. set_bit(irq, vcpu->arch.irq_pending);
  100. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  101. }
  102. static inline void clgi(void)
  103. {
  104. asm volatile (__ex(SVM_CLGI));
  105. }
  106. static inline void stgi(void)
  107. {
  108. asm volatile (__ex(SVM_STGI));
  109. }
  110. static inline void invlpga(unsigned long addr, u32 asid)
  111. {
  112. asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
  113. }
  114. static inline unsigned long kvm_read_cr2(void)
  115. {
  116. unsigned long cr2;
  117. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  118. return cr2;
  119. }
  120. static inline void kvm_write_cr2(unsigned long val)
  121. {
  122. asm volatile ("mov %0, %%cr2" :: "r" (val));
  123. }
  124. static inline unsigned long read_dr6(void)
  125. {
  126. unsigned long dr6;
  127. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  128. return dr6;
  129. }
  130. static inline void write_dr6(unsigned long val)
  131. {
  132. asm volatile ("mov %0, %%dr6" :: "r" (val));
  133. }
  134. static inline unsigned long read_dr7(void)
  135. {
  136. unsigned long dr7;
  137. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  138. return dr7;
  139. }
  140. static inline void write_dr7(unsigned long val)
  141. {
  142. asm volatile ("mov %0, %%dr7" :: "r" (val));
  143. }
  144. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  145. {
  146. to_svm(vcpu)->asid_generation--;
  147. }
  148. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  149. {
  150. force_new_asid(vcpu);
  151. }
  152. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  153. {
  154. if (!npt_enabled && !(efer & EFER_LMA))
  155. efer &= ~EFER_LME;
  156. to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  157. vcpu->arch.shadow_efer = efer;
  158. }
  159. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  160. bool has_error_code, u32 error_code)
  161. {
  162. struct vcpu_svm *svm = to_svm(vcpu);
  163. svm->vmcb->control.event_inj = nr
  164. | SVM_EVTINJ_VALID
  165. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  166. | SVM_EVTINJ_TYPE_EXEPT;
  167. svm->vmcb->control.event_inj_err = error_code;
  168. }
  169. static bool svm_exception_injected(struct kvm_vcpu *vcpu)
  170. {
  171. struct vcpu_svm *svm = to_svm(vcpu);
  172. return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
  173. }
  174. static int is_external_interrupt(u32 info)
  175. {
  176. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  177. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  178. }
  179. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  180. {
  181. struct vcpu_svm *svm = to_svm(vcpu);
  182. if (!svm->next_rip) {
  183. printk(KERN_DEBUG "%s: NOP\n", __func__);
  184. return;
  185. }
  186. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  187. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  188. __func__, kvm_rip_read(vcpu), svm->next_rip);
  189. kvm_rip_write(vcpu, svm->next_rip);
  190. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  191. vcpu->arch.interrupt_window_open = 1;
  192. }
  193. static int has_svm(void)
  194. {
  195. const char *msg;
  196. if (!cpu_has_svm(&msg)) {
  197. printk(KERN_INFO "has_svn: %s\n", msg);
  198. return 0;
  199. }
  200. return 1;
  201. }
  202. static void svm_hardware_disable(void *garbage)
  203. {
  204. cpu_svm_disable();
  205. }
  206. static void svm_hardware_enable(void *garbage)
  207. {
  208. struct svm_cpu_data *svm_data;
  209. uint64_t efer;
  210. struct desc_ptr gdt_descr;
  211. struct desc_struct *gdt;
  212. int me = raw_smp_processor_id();
  213. if (!has_svm()) {
  214. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  215. return;
  216. }
  217. svm_data = per_cpu(svm_data, me);
  218. if (!svm_data) {
  219. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  220. me);
  221. return;
  222. }
  223. svm_data->asid_generation = 1;
  224. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  225. svm_data->next_asid = svm_data->max_asid + 1;
  226. asm volatile ("sgdt %0" : "=m"(gdt_descr));
  227. gdt = (struct desc_struct *)gdt_descr.address;
  228. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  229. rdmsrl(MSR_EFER, efer);
  230. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  231. wrmsrl(MSR_VM_HSAVE_PA,
  232. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  233. }
  234. static void svm_cpu_uninit(int cpu)
  235. {
  236. struct svm_cpu_data *svm_data
  237. = per_cpu(svm_data, raw_smp_processor_id());
  238. if (!svm_data)
  239. return;
  240. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  241. __free_page(svm_data->save_area);
  242. kfree(svm_data);
  243. }
  244. static int svm_cpu_init(int cpu)
  245. {
  246. struct svm_cpu_data *svm_data;
  247. int r;
  248. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  249. if (!svm_data)
  250. return -ENOMEM;
  251. svm_data->cpu = cpu;
  252. svm_data->save_area = alloc_page(GFP_KERNEL);
  253. r = -ENOMEM;
  254. if (!svm_data->save_area)
  255. goto err_1;
  256. per_cpu(svm_data, cpu) = svm_data;
  257. return 0;
  258. err_1:
  259. kfree(svm_data);
  260. return r;
  261. }
  262. static void set_msr_interception(u32 *msrpm, unsigned msr,
  263. int read, int write)
  264. {
  265. int i;
  266. for (i = 0; i < NUM_MSR_MAPS; i++) {
  267. if (msr >= msrpm_ranges[i] &&
  268. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  269. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  270. msrpm_ranges[i]) * 2;
  271. u32 *base = msrpm + (msr_offset / 32);
  272. u32 msr_shift = msr_offset % 32;
  273. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  274. *base = (*base & ~(0x3 << msr_shift)) |
  275. (mask << msr_shift);
  276. return;
  277. }
  278. }
  279. BUG();
  280. }
  281. static void svm_vcpu_init_msrpm(u32 *msrpm)
  282. {
  283. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  284. #ifdef CONFIG_X86_64
  285. set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
  286. set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
  287. set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
  288. set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
  289. set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
  290. set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
  291. #endif
  292. set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
  293. set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
  294. set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
  295. set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
  296. }
  297. static void svm_enable_lbrv(struct vcpu_svm *svm)
  298. {
  299. u32 *msrpm = svm->msrpm;
  300. svm->vmcb->control.lbr_ctl = 1;
  301. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  302. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  303. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  304. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  305. }
  306. static void svm_disable_lbrv(struct vcpu_svm *svm)
  307. {
  308. u32 *msrpm = svm->msrpm;
  309. svm->vmcb->control.lbr_ctl = 0;
  310. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  311. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  312. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  313. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  314. }
  315. static __init int svm_hardware_setup(void)
  316. {
  317. int cpu;
  318. struct page *iopm_pages;
  319. void *iopm_va;
  320. int r;
  321. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  322. if (!iopm_pages)
  323. return -ENOMEM;
  324. iopm_va = page_address(iopm_pages);
  325. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  326. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  327. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  328. if (boot_cpu_has(X86_FEATURE_NX))
  329. kvm_enable_efer_bits(EFER_NX);
  330. for_each_online_cpu(cpu) {
  331. r = svm_cpu_init(cpu);
  332. if (r)
  333. goto err;
  334. }
  335. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  336. if (!svm_has(SVM_FEATURE_NPT))
  337. npt_enabled = false;
  338. if (npt_enabled && !npt) {
  339. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  340. npt_enabled = false;
  341. }
  342. if (npt_enabled) {
  343. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  344. kvm_enable_tdp();
  345. } else
  346. kvm_disable_tdp();
  347. return 0;
  348. err:
  349. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  350. iopm_base = 0;
  351. return r;
  352. }
  353. static __exit void svm_hardware_unsetup(void)
  354. {
  355. int cpu;
  356. for_each_online_cpu(cpu)
  357. svm_cpu_uninit(cpu);
  358. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  359. iopm_base = 0;
  360. }
  361. static void init_seg(struct vmcb_seg *seg)
  362. {
  363. seg->selector = 0;
  364. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  365. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  366. seg->limit = 0xffff;
  367. seg->base = 0;
  368. }
  369. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  370. {
  371. seg->selector = 0;
  372. seg->attrib = SVM_SELECTOR_P_MASK | type;
  373. seg->limit = 0xffff;
  374. seg->base = 0;
  375. }
  376. static void init_vmcb(struct vcpu_svm *svm)
  377. {
  378. struct vmcb_control_area *control = &svm->vmcb->control;
  379. struct vmcb_save_area *save = &svm->vmcb->save;
  380. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  381. INTERCEPT_CR3_MASK |
  382. INTERCEPT_CR4_MASK;
  383. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  384. INTERCEPT_CR3_MASK |
  385. INTERCEPT_CR4_MASK |
  386. INTERCEPT_CR8_MASK;
  387. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  388. INTERCEPT_DR1_MASK |
  389. INTERCEPT_DR2_MASK |
  390. INTERCEPT_DR3_MASK;
  391. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  392. INTERCEPT_DR1_MASK |
  393. INTERCEPT_DR2_MASK |
  394. INTERCEPT_DR3_MASK |
  395. INTERCEPT_DR5_MASK |
  396. INTERCEPT_DR7_MASK;
  397. control->intercept_exceptions = (1 << PF_VECTOR) |
  398. (1 << UD_VECTOR) |
  399. (1 << MC_VECTOR);
  400. control->intercept = (1ULL << INTERCEPT_INTR) |
  401. (1ULL << INTERCEPT_NMI) |
  402. (1ULL << INTERCEPT_SMI) |
  403. (1ULL << INTERCEPT_CPUID) |
  404. (1ULL << INTERCEPT_INVD) |
  405. (1ULL << INTERCEPT_HLT) |
  406. (1ULL << INTERCEPT_INVLPG) |
  407. (1ULL << INTERCEPT_INVLPGA) |
  408. (1ULL << INTERCEPT_IOIO_PROT) |
  409. (1ULL << INTERCEPT_MSR_PROT) |
  410. (1ULL << INTERCEPT_TASK_SWITCH) |
  411. (1ULL << INTERCEPT_SHUTDOWN) |
  412. (1ULL << INTERCEPT_VMRUN) |
  413. (1ULL << INTERCEPT_VMMCALL) |
  414. (1ULL << INTERCEPT_VMLOAD) |
  415. (1ULL << INTERCEPT_VMSAVE) |
  416. (1ULL << INTERCEPT_STGI) |
  417. (1ULL << INTERCEPT_CLGI) |
  418. (1ULL << INTERCEPT_SKINIT) |
  419. (1ULL << INTERCEPT_WBINVD) |
  420. (1ULL << INTERCEPT_MONITOR) |
  421. (1ULL << INTERCEPT_MWAIT);
  422. control->iopm_base_pa = iopm_base;
  423. control->msrpm_base_pa = __pa(svm->msrpm);
  424. control->tsc_offset = 0;
  425. control->int_ctl = V_INTR_MASKING_MASK;
  426. init_seg(&save->es);
  427. init_seg(&save->ss);
  428. init_seg(&save->ds);
  429. init_seg(&save->fs);
  430. init_seg(&save->gs);
  431. save->cs.selector = 0xf000;
  432. /* Executable/Readable Code Segment */
  433. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  434. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  435. save->cs.limit = 0xffff;
  436. /*
  437. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  438. * be consistent with it.
  439. *
  440. * Replace when we have real mode working for vmx.
  441. */
  442. save->cs.base = 0xf0000;
  443. save->gdtr.limit = 0xffff;
  444. save->idtr.limit = 0xffff;
  445. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  446. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  447. save->efer = MSR_EFER_SVME_MASK;
  448. save->dr6 = 0xffff0ff0;
  449. save->dr7 = 0x400;
  450. save->rflags = 2;
  451. save->rip = 0x0000fff0;
  452. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  453. /*
  454. * cr0 val on cpu init should be 0x60000010, we enable cpu
  455. * cache by default. the orderly way is to enable cache in bios.
  456. */
  457. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  458. save->cr4 = X86_CR4_PAE;
  459. /* rdx = ?? */
  460. if (npt_enabled) {
  461. /* Setup VMCB for Nested Paging */
  462. control->nested_ctl = 1;
  463. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  464. (1ULL << INTERCEPT_INVLPG));
  465. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  466. control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
  467. INTERCEPT_CR3_MASK);
  468. control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
  469. INTERCEPT_CR3_MASK);
  470. save->g_pat = 0x0007040600070406ULL;
  471. /* enable caching because the QEMU Bios doesn't enable it */
  472. save->cr0 = X86_CR0_ET;
  473. save->cr3 = 0;
  474. save->cr4 = 0;
  475. }
  476. force_new_asid(&svm->vcpu);
  477. }
  478. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  479. {
  480. struct vcpu_svm *svm = to_svm(vcpu);
  481. init_vmcb(svm);
  482. if (vcpu->vcpu_id != 0) {
  483. kvm_rip_write(vcpu, 0);
  484. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  485. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  486. }
  487. vcpu->arch.regs_avail = ~0;
  488. vcpu->arch.regs_dirty = ~0;
  489. return 0;
  490. }
  491. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  492. {
  493. struct vcpu_svm *svm;
  494. struct page *page;
  495. struct page *msrpm_pages;
  496. int err;
  497. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  498. if (!svm) {
  499. err = -ENOMEM;
  500. goto out;
  501. }
  502. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  503. if (err)
  504. goto free_svm;
  505. page = alloc_page(GFP_KERNEL);
  506. if (!page) {
  507. err = -ENOMEM;
  508. goto uninit;
  509. }
  510. err = -ENOMEM;
  511. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  512. if (!msrpm_pages)
  513. goto uninit;
  514. svm->msrpm = page_address(msrpm_pages);
  515. svm_vcpu_init_msrpm(svm->msrpm);
  516. svm->vmcb = page_address(page);
  517. clear_page(svm->vmcb);
  518. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  519. svm->asid_generation = 0;
  520. memset(svm->db_regs, 0, sizeof(svm->db_regs));
  521. init_vmcb(svm);
  522. fx_init(&svm->vcpu);
  523. svm->vcpu.fpu_active = 1;
  524. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  525. if (svm->vcpu.vcpu_id == 0)
  526. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  527. return &svm->vcpu;
  528. uninit:
  529. kvm_vcpu_uninit(&svm->vcpu);
  530. free_svm:
  531. kmem_cache_free(kvm_vcpu_cache, svm);
  532. out:
  533. return ERR_PTR(err);
  534. }
  535. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  536. {
  537. struct vcpu_svm *svm = to_svm(vcpu);
  538. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  539. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  540. kvm_vcpu_uninit(vcpu);
  541. kmem_cache_free(kvm_vcpu_cache, svm);
  542. }
  543. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  544. {
  545. struct vcpu_svm *svm = to_svm(vcpu);
  546. int i;
  547. if (unlikely(cpu != vcpu->cpu)) {
  548. u64 tsc_this, delta;
  549. /*
  550. * Make sure that the guest sees a monotonically
  551. * increasing TSC.
  552. */
  553. rdtscll(tsc_this);
  554. delta = vcpu->arch.host_tsc - tsc_this;
  555. svm->vmcb->control.tsc_offset += delta;
  556. vcpu->cpu = cpu;
  557. kvm_migrate_timers(vcpu);
  558. }
  559. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  560. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  561. }
  562. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  563. {
  564. struct vcpu_svm *svm = to_svm(vcpu);
  565. int i;
  566. ++vcpu->stat.host_state_reload;
  567. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  568. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  569. rdtscll(vcpu->arch.host_tsc);
  570. }
  571. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  572. {
  573. return to_svm(vcpu)->vmcb->save.rflags;
  574. }
  575. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  576. {
  577. to_svm(vcpu)->vmcb->save.rflags = rflags;
  578. }
  579. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  580. {
  581. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  582. switch (seg) {
  583. case VCPU_SREG_CS: return &save->cs;
  584. case VCPU_SREG_DS: return &save->ds;
  585. case VCPU_SREG_ES: return &save->es;
  586. case VCPU_SREG_FS: return &save->fs;
  587. case VCPU_SREG_GS: return &save->gs;
  588. case VCPU_SREG_SS: return &save->ss;
  589. case VCPU_SREG_TR: return &save->tr;
  590. case VCPU_SREG_LDTR: return &save->ldtr;
  591. }
  592. BUG();
  593. return NULL;
  594. }
  595. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  596. {
  597. struct vmcb_seg *s = svm_seg(vcpu, seg);
  598. return s->base;
  599. }
  600. static void svm_get_segment(struct kvm_vcpu *vcpu,
  601. struct kvm_segment *var, int seg)
  602. {
  603. struct vmcb_seg *s = svm_seg(vcpu, seg);
  604. var->base = s->base;
  605. var->limit = s->limit;
  606. var->selector = s->selector;
  607. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  608. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  609. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  610. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  611. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  612. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  613. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  614. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  615. /*
  616. * SVM always stores 0 for the 'G' bit in the CS selector in
  617. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  618. * Intel's VMENTRY has a check on the 'G' bit.
  619. */
  620. if (seg == VCPU_SREG_CS)
  621. var->g = s->limit > 0xfffff;
  622. /*
  623. * Work around a bug where the busy flag in the tr selector
  624. * isn't exposed
  625. */
  626. if (seg == VCPU_SREG_TR)
  627. var->type |= 0x2;
  628. var->unusable = !var->present;
  629. }
  630. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  631. {
  632. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  633. return save->cpl;
  634. }
  635. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  636. {
  637. struct vcpu_svm *svm = to_svm(vcpu);
  638. dt->limit = svm->vmcb->save.idtr.limit;
  639. dt->base = svm->vmcb->save.idtr.base;
  640. }
  641. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  642. {
  643. struct vcpu_svm *svm = to_svm(vcpu);
  644. svm->vmcb->save.idtr.limit = dt->limit;
  645. svm->vmcb->save.idtr.base = dt->base ;
  646. }
  647. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  648. {
  649. struct vcpu_svm *svm = to_svm(vcpu);
  650. dt->limit = svm->vmcb->save.gdtr.limit;
  651. dt->base = svm->vmcb->save.gdtr.base;
  652. }
  653. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  654. {
  655. struct vcpu_svm *svm = to_svm(vcpu);
  656. svm->vmcb->save.gdtr.limit = dt->limit;
  657. svm->vmcb->save.gdtr.base = dt->base ;
  658. }
  659. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  660. {
  661. }
  662. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  663. {
  664. struct vcpu_svm *svm = to_svm(vcpu);
  665. #ifdef CONFIG_X86_64
  666. if (vcpu->arch.shadow_efer & EFER_LME) {
  667. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  668. vcpu->arch.shadow_efer |= EFER_LMA;
  669. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  670. }
  671. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  672. vcpu->arch.shadow_efer &= ~EFER_LMA;
  673. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  674. }
  675. }
  676. #endif
  677. if (npt_enabled)
  678. goto set;
  679. if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  680. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  681. vcpu->fpu_active = 1;
  682. }
  683. vcpu->arch.cr0 = cr0;
  684. cr0 |= X86_CR0_PG | X86_CR0_WP;
  685. if (!vcpu->fpu_active) {
  686. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  687. cr0 |= X86_CR0_TS;
  688. }
  689. set:
  690. /*
  691. * re-enable caching here because the QEMU bios
  692. * does not do it - this results in some delay at
  693. * reboot
  694. */
  695. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  696. svm->vmcb->save.cr0 = cr0;
  697. }
  698. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  699. {
  700. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  701. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  702. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  703. force_new_asid(vcpu);
  704. vcpu->arch.cr4 = cr4;
  705. if (!npt_enabled)
  706. cr4 |= X86_CR4_PAE;
  707. cr4 |= host_cr4_mce;
  708. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  709. }
  710. static void svm_set_segment(struct kvm_vcpu *vcpu,
  711. struct kvm_segment *var, int seg)
  712. {
  713. struct vcpu_svm *svm = to_svm(vcpu);
  714. struct vmcb_seg *s = svm_seg(vcpu, seg);
  715. s->base = var->base;
  716. s->limit = var->limit;
  717. s->selector = var->selector;
  718. if (var->unusable)
  719. s->attrib = 0;
  720. else {
  721. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  722. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  723. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  724. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  725. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  726. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  727. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  728. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  729. }
  730. if (seg == VCPU_SREG_CS)
  731. svm->vmcb->save.cpl
  732. = (svm->vmcb->save.cs.attrib
  733. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  734. }
  735. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  736. {
  737. return -EOPNOTSUPP;
  738. }
  739. static int svm_get_irq(struct kvm_vcpu *vcpu)
  740. {
  741. struct vcpu_svm *svm = to_svm(vcpu);
  742. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  743. if (is_external_interrupt(exit_int_info))
  744. return exit_int_info & SVM_EVTINJ_VEC_MASK;
  745. return -1;
  746. }
  747. static void load_host_msrs(struct kvm_vcpu *vcpu)
  748. {
  749. #ifdef CONFIG_X86_64
  750. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  751. #endif
  752. }
  753. static void save_host_msrs(struct kvm_vcpu *vcpu)
  754. {
  755. #ifdef CONFIG_X86_64
  756. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  757. #endif
  758. }
  759. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  760. {
  761. if (svm_data->next_asid > svm_data->max_asid) {
  762. ++svm_data->asid_generation;
  763. svm_data->next_asid = 1;
  764. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  765. }
  766. svm->vcpu.cpu = svm_data->cpu;
  767. svm->asid_generation = svm_data->asid_generation;
  768. svm->vmcb->control.asid = svm_data->next_asid++;
  769. }
  770. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  771. {
  772. unsigned long val = to_svm(vcpu)->db_regs[dr];
  773. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  774. return val;
  775. }
  776. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  777. int *exception)
  778. {
  779. struct vcpu_svm *svm = to_svm(vcpu);
  780. *exception = 0;
  781. if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
  782. svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  783. svm->vmcb->save.dr6 |= DR6_BD_MASK;
  784. *exception = DB_VECTOR;
  785. return;
  786. }
  787. switch (dr) {
  788. case 0 ... 3:
  789. svm->db_regs[dr] = value;
  790. return;
  791. case 4 ... 5:
  792. if (vcpu->arch.cr4 & X86_CR4_DE) {
  793. *exception = UD_VECTOR;
  794. return;
  795. }
  796. case 7: {
  797. if (value & ~((1ULL << 32) - 1)) {
  798. *exception = GP_VECTOR;
  799. return;
  800. }
  801. svm->vmcb->save.dr7 = value;
  802. return;
  803. }
  804. default:
  805. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  806. __func__, dr);
  807. *exception = UD_VECTOR;
  808. return;
  809. }
  810. }
  811. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  812. {
  813. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  814. struct kvm *kvm = svm->vcpu.kvm;
  815. u64 fault_address;
  816. u32 error_code;
  817. bool event_injection = false;
  818. if (!irqchip_in_kernel(kvm) &&
  819. is_external_interrupt(exit_int_info)) {
  820. event_injection = true;
  821. push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  822. }
  823. fault_address = svm->vmcb->control.exit_info_2;
  824. error_code = svm->vmcb->control.exit_info_1;
  825. if (!npt_enabled)
  826. KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
  827. (u32)fault_address, (u32)(fault_address >> 32),
  828. handler);
  829. else
  830. KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
  831. (u32)fault_address, (u32)(fault_address >> 32),
  832. handler);
  833. /*
  834. * FIXME: Tis shouldn't be necessary here, but there is a flush
  835. * missing in the MMU code. Until we find this bug, flush the
  836. * complete TLB here on an NPF
  837. */
  838. if (npt_enabled)
  839. svm_flush_tlb(&svm->vcpu);
  840. if (!npt_enabled && event_injection)
  841. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  842. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  843. }
  844. static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  845. {
  846. int er;
  847. er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  848. if (er != EMULATE_DONE)
  849. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  850. return 1;
  851. }
  852. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  853. {
  854. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  855. if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
  856. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  857. svm->vcpu.fpu_active = 1;
  858. return 1;
  859. }
  860. static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  861. {
  862. /*
  863. * On an #MC intercept the MCE handler is not called automatically in
  864. * the host. So do it by hand here.
  865. */
  866. asm volatile (
  867. "int $0x12\n");
  868. /* not sure if we ever come back to this point */
  869. return 1;
  870. }
  871. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  872. {
  873. /*
  874. * VMCB is undefined after a SHUTDOWN intercept
  875. * so reinitialize it.
  876. */
  877. clear_page(svm->vmcb);
  878. init_vmcb(svm);
  879. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  880. return 0;
  881. }
  882. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  883. {
  884. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  885. int size, down, in, string, rep;
  886. unsigned port;
  887. ++svm->vcpu.stat.io_exits;
  888. svm->next_rip = svm->vmcb->control.exit_info_2;
  889. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  890. if (string) {
  891. if (emulate_instruction(&svm->vcpu,
  892. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  893. return 0;
  894. return 1;
  895. }
  896. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  897. port = io_info >> 16;
  898. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  899. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  900. down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  901. skip_emulated_instruction(&svm->vcpu);
  902. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  903. }
  904. static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  905. {
  906. KVMTRACE_0D(NMI, &svm->vcpu, handler);
  907. return 1;
  908. }
  909. static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  910. {
  911. ++svm->vcpu.stat.irq_exits;
  912. KVMTRACE_0D(INTR, &svm->vcpu, handler);
  913. return 1;
  914. }
  915. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  916. {
  917. return 1;
  918. }
  919. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  920. {
  921. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  922. skip_emulated_instruction(&svm->vcpu);
  923. return kvm_emulate_halt(&svm->vcpu);
  924. }
  925. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  926. {
  927. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  928. skip_emulated_instruction(&svm->vcpu);
  929. kvm_emulate_hypercall(&svm->vcpu);
  930. return 1;
  931. }
  932. static int invalid_op_interception(struct vcpu_svm *svm,
  933. struct kvm_run *kvm_run)
  934. {
  935. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  936. return 1;
  937. }
  938. static int task_switch_interception(struct vcpu_svm *svm,
  939. struct kvm_run *kvm_run)
  940. {
  941. u16 tss_selector;
  942. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  943. if (svm->vmcb->control.exit_info_2 &
  944. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  945. return kvm_task_switch(&svm->vcpu, tss_selector,
  946. TASK_SWITCH_IRET);
  947. if (svm->vmcb->control.exit_info_2 &
  948. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  949. return kvm_task_switch(&svm->vcpu, tss_selector,
  950. TASK_SWITCH_JMP);
  951. return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
  952. }
  953. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  954. {
  955. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  956. kvm_emulate_cpuid(&svm->vcpu);
  957. return 1;
  958. }
  959. static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  960. {
  961. if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
  962. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  963. return 1;
  964. }
  965. static int emulate_on_interception(struct vcpu_svm *svm,
  966. struct kvm_run *kvm_run)
  967. {
  968. if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
  969. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  970. return 1;
  971. }
  972. static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  973. {
  974. emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
  975. if (irqchip_in_kernel(svm->vcpu.kvm))
  976. return 1;
  977. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  978. return 0;
  979. }
  980. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  981. {
  982. struct vcpu_svm *svm = to_svm(vcpu);
  983. switch (ecx) {
  984. case MSR_IA32_TIME_STAMP_COUNTER: {
  985. u64 tsc;
  986. rdtscll(tsc);
  987. *data = svm->vmcb->control.tsc_offset + tsc;
  988. break;
  989. }
  990. case MSR_K6_STAR:
  991. *data = svm->vmcb->save.star;
  992. break;
  993. #ifdef CONFIG_X86_64
  994. case MSR_LSTAR:
  995. *data = svm->vmcb->save.lstar;
  996. break;
  997. case MSR_CSTAR:
  998. *data = svm->vmcb->save.cstar;
  999. break;
  1000. case MSR_KERNEL_GS_BASE:
  1001. *data = svm->vmcb->save.kernel_gs_base;
  1002. break;
  1003. case MSR_SYSCALL_MASK:
  1004. *data = svm->vmcb->save.sfmask;
  1005. break;
  1006. #endif
  1007. case MSR_IA32_SYSENTER_CS:
  1008. *data = svm->vmcb->save.sysenter_cs;
  1009. break;
  1010. case MSR_IA32_SYSENTER_EIP:
  1011. *data = svm->vmcb->save.sysenter_eip;
  1012. break;
  1013. case MSR_IA32_SYSENTER_ESP:
  1014. *data = svm->vmcb->save.sysenter_esp;
  1015. break;
  1016. /* Nobody will change the following 5 values in the VMCB so
  1017. we can safely return them on rdmsr. They will always be 0
  1018. until LBRV is implemented. */
  1019. case MSR_IA32_DEBUGCTLMSR:
  1020. *data = svm->vmcb->save.dbgctl;
  1021. break;
  1022. case MSR_IA32_LASTBRANCHFROMIP:
  1023. *data = svm->vmcb->save.br_from;
  1024. break;
  1025. case MSR_IA32_LASTBRANCHTOIP:
  1026. *data = svm->vmcb->save.br_to;
  1027. break;
  1028. case MSR_IA32_LASTINTFROMIP:
  1029. *data = svm->vmcb->save.last_excp_from;
  1030. break;
  1031. case MSR_IA32_LASTINTTOIP:
  1032. *data = svm->vmcb->save.last_excp_to;
  1033. break;
  1034. default:
  1035. return kvm_get_msr_common(vcpu, ecx, data);
  1036. }
  1037. return 0;
  1038. }
  1039. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1040. {
  1041. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1042. u64 data;
  1043. if (svm_get_msr(&svm->vcpu, ecx, &data))
  1044. kvm_inject_gp(&svm->vcpu, 0);
  1045. else {
  1046. KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
  1047. (u32)(data >> 32), handler);
  1048. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  1049. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  1050. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1051. skip_emulated_instruction(&svm->vcpu);
  1052. }
  1053. return 1;
  1054. }
  1055. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1056. {
  1057. struct vcpu_svm *svm = to_svm(vcpu);
  1058. switch (ecx) {
  1059. case MSR_IA32_TIME_STAMP_COUNTER: {
  1060. u64 tsc;
  1061. rdtscll(tsc);
  1062. svm->vmcb->control.tsc_offset = data - tsc;
  1063. break;
  1064. }
  1065. case MSR_K6_STAR:
  1066. svm->vmcb->save.star = data;
  1067. break;
  1068. #ifdef CONFIG_X86_64
  1069. case MSR_LSTAR:
  1070. svm->vmcb->save.lstar = data;
  1071. break;
  1072. case MSR_CSTAR:
  1073. svm->vmcb->save.cstar = data;
  1074. break;
  1075. case MSR_KERNEL_GS_BASE:
  1076. svm->vmcb->save.kernel_gs_base = data;
  1077. break;
  1078. case MSR_SYSCALL_MASK:
  1079. svm->vmcb->save.sfmask = data;
  1080. break;
  1081. #endif
  1082. case MSR_IA32_SYSENTER_CS:
  1083. svm->vmcb->save.sysenter_cs = data;
  1084. break;
  1085. case MSR_IA32_SYSENTER_EIP:
  1086. svm->vmcb->save.sysenter_eip = data;
  1087. break;
  1088. case MSR_IA32_SYSENTER_ESP:
  1089. svm->vmcb->save.sysenter_esp = data;
  1090. break;
  1091. case MSR_IA32_DEBUGCTLMSR:
  1092. if (!svm_has(SVM_FEATURE_LBRV)) {
  1093. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  1094. __func__, data);
  1095. break;
  1096. }
  1097. if (data & DEBUGCTL_RESERVED_BITS)
  1098. return 1;
  1099. svm->vmcb->save.dbgctl = data;
  1100. if (data & (1ULL<<0))
  1101. svm_enable_lbrv(svm);
  1102. else
  1103. svm_disable_lbrv(svm);
  1104. break;
  1105. case MSR_K7_EVNTSEL0:
  1106. case MSR_K7_EVNTSEL1:
  1107. case MSR_K7_EVNTSEL2:
  1108. case MSR_K7_EVNTSEL3:
  1109. case MSR_K7_PERFCTR0:
  1110. case MSR_K7_PERFCTR1:
  1111. case MSR_K7_PERFCTR2:
  1112. case MSR_K7_PERFCTR3:
  1113. /*
  1114. * Just discard all writes to the performance counters; this
  1115. * should keep both older linux and windows 64-bit guests
  1116. * happy
  1117. */
  1118. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
  1119. break;
  1120. default:
  1121. return kvm_set_msr_common(vcpu, ecx, data);
  1122. }
  1123. return 0;
  1124. }
  1125. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1126. {
  1127. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1128. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  1129. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1130. KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
  1131. handler);
  1132. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1133. if (svm_set_msr(&svm->vcpu, ecx, data))
  1134. kvm_inject_gp(&svm->vcpu, 0);
  1135. else
  1136. skip_emulated_instruction(&svm->vcpu);
  1137. return 1;
  1138. }
  1139. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1140. {
  1141. if (svm->vmcb->control.exit_info_1)
  1142. return wrmsr_interception(svm, kvm_run);
  1143. else
  1144. return rdmsr_interception(svm, kvm_run);
  1145. }
  1146. static int interrupt_window_interception(struct vcpu_svm *svm,
  1147. struct kvm_run *kvm_run)
  1148. {
  1149. KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
  1150. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  1151. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1152. /*
  1153. * If the user space waits to inject interrupts, exit as soon as
  1154. * possible
  1155. */
  1156. if (kvm_run->request_interrupt_window &&
  1157. !svm->vcpu.arch.irq_summary) {
  1158. ++svm->vcpu.stat.irq_window_exits;
  1159. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1160. return 0;
  1161. }
  1162. return 1;
  1163. }
  1164. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1165. struct kvm_run *kvm_run) = {
  1166. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1167. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1168. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1169. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  1170. /* for now: */
  1171. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1172. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1173. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1174. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  1175. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1176. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1177. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1178. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1179. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1180. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1181. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1182. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1183. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1184. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1185. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1186. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1187. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1188. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  1189. [SVM_EXIT_INTR] = intr_interception,
  1190. [SVM_EXIT_NMI] = nmi_interception,
  1191. [SVM_EXIT_SMI] = nop_on_interception,
  1192. [SVM_EXIT_INIT] = nop_on_interception,
  1193. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1194. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1195. [SVM_EXIT_CPUID] = cpuid_interception,
  1196. [SVM_EXIT_INVD] = emulate_on_interception,
  1197. [SVM_EXIT_HLT] = halt_interception,
  1198. [SVM_EXIT_INVLPG] = invlpg_interception,
  1199. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1200. [SVM_EXIT_IOIO] = io_interception,
  1201. [SVM_EXIT_MSR] = msr_interception,
  1202. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1203. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1204. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1205. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1206. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1207. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1208. [SVM_EXIT_STGI] = invalid_op_interception,
  1209. [SVM_EXIT_CLGI] = invalid_op_interception,
  1210. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1211. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1212. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1213. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1214. [SVM_EXIT_NPF] = pf_interception,
  1215. };
  1216. static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1217. {
  1218. struct vcpu_svm *svm = to_svm(vcpu);
  1219. u32 exit_code = svm->vmcb->control.exit_code;
  1220. KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
  1221. (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
  1222. if (npt_enabled) {
  1223. int mmu_reload = 0;
  1224. if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
  1225. svm_set_cr0(vcpu, svm->vmcb->save.cr0);
  1226. mmu_reload = 1;
  1227. }
  1228. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  1229. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  1230. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1231. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1232. kvm_inject_gp(vcpu, 0);
  1233. return 1;
  1234. }
  1235. }
  1236. if (mmu_reload) {
  1237. kvm_mmu_reset_context(vcpu);
  1238. kvm_mmu_load(vcpu);
  1239. }
  1240. }
  1241. kvm_reput_irq(svm);
  1242. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1243. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1244. kvm_run->fail_entry.hardware_entry_failure_reason
  1245. = svm->vmcb->control.exit_code;
  1246. return 0;
  1247. }
  1248. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1249. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  1250. exit_code != SVM_EXIT_NPF)
  1251. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1252. "exit_code 0x%x\n",
  1253. __func__, svm->vmcb->control.exit_int_info,
  1254. exit_code);
  1255. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1256. || !svm_exit_handlers[exit_code]) {
  1257. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1258. kvm_run->hw.hardware_exit_reason = exit_code;
  1259. return 0;
  1260. }
  1261. return svm_exit_handlers[exit_code](svm, kvm_run);
  1262. }
  1263. static void reload_tss(struct kvm_vcpu *vcpu)
  1264. {
  1265. int cpu = raw_smp_processor_id();
  1266. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1267. svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
  1268. load_TR_desc();
  1269. }
  1270. static void pre_svm_run(struct vcpu_svm *svm)
  1271. {
  1272. int cpu = raw_smp_processor_id();
  1273. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1274. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1275. if (svm->vcpu.cpu != cpu ||
  1276. svm->asid_generation != svm_data->asid_generation)
  1277. new_asid(svm, svm_data);
  1278. }
  1279. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1280. {
  1281. struct vmcb_control_area *control;
  1282. KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
  1283. ++svm->vcpu.stat.irq_injections;
  1284. control = &svm->vmcb->control;
  1285. control->int_vector = irq;
  1286. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1287. control->int_ctl |= V_IRQ_MASK |
  1288. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1289. }
  1290. static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
  1291. {
  1292. struct vcpu_svm *svm = to_svm(vcpu);
  1293. svm_inject_irq(svm, irq);
  1294. }
  1295. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  1296. {
  1297. struct vcpu_svm *svm = to_svm(vcpu);
  1298. struct vmcb *vmcb = svm->vmcb;
  1299. int max_irr, tpr;
  1300. if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
  1301. return;
  1302. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1303. max_irr = kvm_lapic_find_highest_irr(vcpu);
  1304. if (max_irr == -1)
  1305. return;
  1306. tpr = kvm_lapic_get_cr8(vcpu) << 4;
  1307. if (tpr >= (max_irr & 0xf0))
  1308. vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  1309. }
  1310. static void svm_intr_assist(struct kvm_vcpu *vcpu)
  1311. {
  1312. struct vcpu_svm *svm = to_svm(vcpu);
  1313. struct vmcb *vmcb = svm->vmcb;
  1314. int intr_vector = -1;
  1315. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1316. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1317. intr_vector = vmcb->control.exit_int_info &
  1318. SVM_EVTINJ_VEC_MASK;
  1319. vmcb->control.exit_int_info = 0;
  1320. svm_inject_irq(svm, intr_vector);
  1321. goto out;
  1322. }
  1323. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1324. goto out;
  1325. if (!kvm_cpu_has_interrupt(vcpu))
  1326. goto out;
  1327. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1328. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1329. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1330. /* unable to deliver irq, set pending irq */
  1331. vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
  1332. svm_inject_irq(svm, 0x0);
  1333. goto out;
  1334. }
  1335. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1336. intr_vector = kvm_cpu_get_interrupt(vcpu);
  1337. svm_inject_irq(svm, intr_vector);
  1338. out:
  1339. update_cr8_intercept(vcpu);
  1340. }
  1341. static void kvm_reput_irq(struct vcpu_svm *svm)
  1342. {
  1343. struct vmcb_control_area *control = &svm->vmcb->control;
  1344. if ((control->int_ctl & V_IRQ_MASK)
  1345. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1346. control->int_ctl &= ~V_IRQ_MASK;
  1347. push_irq(&svm->vcpu, control->int_vector);
  1348. }
  1349. svm->vcpu.arch.interrupt_window_open =
  1350. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1351. }
  1352. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1353. {
  1354. struct kvm_vcpu *vcpu = &svm->vcpu;
  1355. int word_index = __ffs(vcpu->arch.irq_summary);
  1356. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1357. int irq = word_index * BITS_PER_LONG + bit_index;
  1358. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1359. if (!vcpu->arch.irq_pending[word_index])
  1360. clear_bit(word_index, &vcpu->arch.irq_summary);
  1361. svm_inject_irq(svm, irq);
  1362. }
  1363. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1364. struct kvm_run *kvm_run)
  1365. {
  1366. struct vcpu_svm *svm = to_svm(vcpu);
  1367. struct vmcb_control_area *control = &svm->vmcb->control;
  1368. svm->vcpu.arch.interrupt_window_open =
  1369. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1370. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1371. if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
  1372. /*
  1373. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1374. */
  1375. svm_do_inject_vector(svm);
  1376. /*
  1377. * Interrupts blocked. Wait for unblock.
  1378. */
  1379. if (!svm->vcpu.arch.interrupt_window_open &&
  1380. (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
  1381. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1382. else
  1383. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1384. }
  1385. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1386. {
  1387. return 0;
  1388. }
  1389. static void save_db_regs(unsigned long *db_regs)
  1390. {
  1391. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1392. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1393. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1394. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1395. }
  1396. static void load_db_regs(unsigned long *db_regs)
  1397. {
  1398. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1399. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1400. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1401. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1402. }
  1403. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1404. {
  1405. force_new_asid(vcpu);
  1406. }
  1407. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  1408. {
  1409. }
  1410. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  1411. {
  1412. struct vcpu_svm *svm = to_svm(vcpu);
  1413. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  1414. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  1415. kvm_lapic_set_tpr(vcpu, cr8);
  1416. }
  1417. }
  1418. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  1419. {
  1420. struct vcpu_svm *svm = to_svm(vcpu);
  1421. u64 cr8;
  1422. if (!irqchip_in_kernel(vcpu->kvm))
  1423. return;
  1424. cr8 = kvm_get_cr8(vcpu);
  1425. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  1426. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  1427. }
  1428. #ifdef CONFIG_X86_64
  1429. #define R "r"
  1430. #else
  1431. #define R "e"
  1432. #endif
  1433. static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1434. {
  1435. struct vcpu_svm *svm = to_svm(vcpu);
  1436. u16 fs_selector;
  1437. u16 gs_selector;
  1438. u16 ldt_selector;
  1439. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  1440. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  1441. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  1442. pre_svm_run(svm);
  1443. sync_lapic_to_cr8(vcpu);
  1444. save_host_msrs(vcpu);
  1445. fs_selector = kvm_read_fs();
  1446. gs_selector = kvm_read_gs();
  1447. ldt_selector = kvm_read_ldt();
  1448. svm->host_cr2 = kvm_read_cr2();
  1449. svm->host_dr6 = read_dr6();
  1450. svm->host_dr7 = read_dr7();
  1451. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  1452. /* required for live migration with NPT */
  1453. if (npt_enabled)
  1454. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  1455. if (svm->vmcb->save.dr7 & 0xff) {
  1456. write_dr7(0);
  1457. save_db_regs(svm->host_db_regs);
  1458. load_db_regs(svm->db_regs);
  1459. }
  1460. clgi();
  1461. local_irq_enable();
  1462. asm volatile (
  1463. "push %%"R"bp; \n\t"
  1464. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  1465. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  1466. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  1467. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  1468. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  1469. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  1470. #ifdef CONFIG_X86_64
  1471. "mov %c[r8](%[svm]), %%r8 \n\t"
  1472. "mov %c[r9](%[svm]), %%r9 \n\t"
  1473. "mov %c[r10](%[svm]), %%r10 \n\t"
  1474. "mov %c[r11](%[svm]), %%r11 \n\t"
  1475. "mov %c[r12](%[svm]), %%r12 \n\t"
  1476. "mov %c[r13](%[svm]), %%r13 \n\t"
  1477. "mov %c[r14](%[svm]), %%r14 \n\t"
  1478. "mov %c[r15](%[svm]), %%r15 \n\t"
  1479. #endif
  1480. /* Enter guest mode */
  1481. "push %%"R"ax \n\t"
  1482. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  1483. __ex(SVM_VMLOAD) "\n\t"
  1484. __ex(SVM_VMRUN) "\n\t"
  1485. __ex(SVM_VMSAVE) "\n\t"
  1486. "pop %%"R"ax \n\t"
  1487. /* Save guest registers, load host registers */
  1488. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  1489. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  1490. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  1491. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  1492. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  1493. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  1494. #ifdef CONFIG_X86_64
  1495. "mov %%r8, %c[r8](%[svm]) \n\t"
  1496. "mov %%r9, %c[r9](%[svm]) \n\t"
  1497. "mov %%r10, %c[r10](%[svm]) \n\t"
  1498. "mov %%r11, %c[r11](%[svm]) \n\t"
  1499. "mov %%r12, %c[r12](%[svm]) \n\t"
  1500. "mov %%r13, %c[r13](%[svm]) \n\t"
  1501. "mov %%r14, %c[r14](%[svm]) \n\t"
  1502. "mov %%r15, %c[r15](%[svm]) \n\t"
  1503. #endif
  1504. "pop %%"R"bp"
  1505. :
  1506. : [svm]"a"(svm),
  1507. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1508. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  1509. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  1510. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  1511. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  1512. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  1513. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  1514. #ifdef CONFIG_X86_64
  1515. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  1516. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  1517. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  1518. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  1519. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  1520. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  1521. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  1522. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  1523. #endif
  1524. : "cc", "memory"
  1525. , R"bx", R"cx", R"dx", R"si", R"di"
  1526. #ifdef CONFIG_X86_64
  1527. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  1528. #endif
  1529. );
  1530. if ((svm->vmcb->save.dr7 & 0xff))
  1531. load_db_regs(svm->host_db_regs);
  1532. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  1533. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  1534. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  1535. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  1536. write_dr6(svm->host_dr6);
  1537. write_dr7(svm->host_dr7);
  1538. kvm_write_cr2(svm->host_cr2);
  1539. kvm_load_fs(fs_selector);
  1540. kvm_load_gs(gs_selector);
  1541. kvm_load_ldt(ldt_selector);
  1542. load_host_msrs(vcpu);
  1543. reload_tss(vcpu);
  1544. local_irq_disable();
  1545. stgi();
  1546. sync_cr8_to_lapic(vcpu);
  1547. svm->next_rip = 0;
  1548. }
  1549. #undef R
  1550. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1551. {
  1552. struct vcpu_svm *svm = to_svm(vcpu);
  1553. if (npt_enabled) {
  1554. svm->vmcb->control.nested_cr3 = root;
  1555. force_new_asid(vcpu);
  1556. return;
  1557. }
  1558. svm->vmcb->save.cr3 = root;
  1559. force_new_asid(vcpu);
  1560. if (vcpu->fpu_active) {
  1561. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1562. svm->vmcb->save.cr0 |= X86_CR0_TS;
  1563. vcpu->fpu_active = 0;
  1564. }
  1565. }
  1566. static int is_disabled(void)
  1567. {
  1568. u64 vm_cr;
  1569. rdmsrl(MSR_VM_CR, vm_cr);
  1570. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  1571. return 1;
  1572. return 0;
  1573. }
  1574. static void
  1575. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1576. {
  1577. /*
  1578. * Patch in the VMMCALL instruction:
  1579. */
  1580. hypercall[0] = 0x0f;
  1581. hypercall[1] = 0x01;
  1582. hypercall[2] = 0xd9;
  1583. }
  1584. static void svm_check_processor_compat(void *rtn)
  1585. {
  1586. *(int *)rtn = 0;
  1587. }
  1588. static bool svm_cpu_has_accelerated_tpr(void)
  1589. {
  1590. return false;
  1591. }
  1592. static int get_npt_level(void)
  1593. {
  1594. #ifdef CONFIG_X86_64
  1595. return PT64_ROOT_LEVEL;
  1596. #else
  1597. return PT32E_ROOT_LEVEL;
  1598. #endif
  1599. }
  1600. static int svm_get_mt_mask_shift(void)
  1601. {
  1602. return 0;
  1603. }
  1604. static struct kvm_x86_ops svm_x86_ops = {
  1605. .cpu_has_kvm_support = has_svm,
  1606. .disabled_by_bios = is_disabled,
  1607. .hardware_setup = svm_hardware_setup,
  1608. .hardware_unsetup = svm_hardware_unsetup,
  1609. .check_processor_compatibility = svm_check_processor_compat,
  1610. .hardware_enable = svm_hardware_enable,
  1611. .hardware_disable = svm_hardware_disable,
  1612. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  1613. .vcpu_create = svm_create_vcpu,
  1614. .vcpu_free = svm_free_vcpu,
  1615. .vcpu_reset = svm_vcpu_reset,
  1616. .prepare_guest_switch = svm_prepare_guest_switch,
  1617. .vcpu_load = svm_vcpu_load,
  1618. .vcpu_put = svm_vcpu_put,
  1619. .set_guest_debug = svm_guest_debug,
  1620. .get_msr = svm_get_msr,
  1621. .set_msr = svm_set_msr,
  1622. .get_segment_base = svm_get_segment_base,
  1623. .get_segment = svm_get_segment,
  1624. .set_segment = svm_set_segment,
  1625. .get_cpl = svm_get_cpl,
  1626. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  1627. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1628. .set_cr0 = svm_set_cr0,
  1629. .set_cr3 = svm_set_cr3,
  1630. .set_cr4 = svm_set_cr4,
  1631. .set_efer = svm_set_efer,
  1632. .get_idt = svm_get_idt,
  1633. .set_idt = svm_set_idt,
  1634. .get_gdt = svm_get_gdt,
  1635. .set_gdt = svm_set_gdt,
  1636. .get_dr = svm_get_dr,
  1637. .set_dr = svm_set_dr,
  1638. .get_rflags = svm_get_rflags,
  1639. .set_rflags = svm_set_rflags,
  1640. .tlb_flush = svm_flush_tlb,
  1641. .run = svm_vcpu_run,
  1642. .handle_exit = handle_exit,
  1643. .skip_emulated_instruction = skip_emulated_instruction,
  1644. .patch_hypercall = svm_patch_hypercall,
  1645. .get_irq = svm_get_irq,
  1646. .set_irq = svm_set_irq,
  1647. .queue_exception = svm_queue_exception,
  1648. .exception_injected = svm_exception_injected,
  1649. .inject_pending_irq = svm_intr_assist,
  1650. .inject_pending_vectors = do_interrupt_requests,
  1651. .set_tss_addr = svm_set_tss_addr,
  1652. .get_tdp_level = get_npt_level,
  1653. .get_mt_mask_shift = svm_get_mt_mask_shift,
  1654. };
  1655. static int __init svm_init(void)
  1656. {
  1657. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  1658. THIS_MODULE);
  1659. }
  1660. static void __exit svm_exit(void)
  1661. {
  1662. kvm_exit();
  1663. }
  1664. module_init(svm_init)
  1665. module_exit(svm_exit)