align.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /* align.c - handle alignment exceptions for the Power PC.
  2. *
  3. * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
  4. * Copyright (c) 1998-1999 TiVo, Inc.
  5. * PowerPC 403GCX modifications.
  6. * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
  7. * PowerPC 403GCX/405GP modifications.
  8. * Copyright (c) 2001-2002 PPC64 team, IBM Corp
  9. * 64-bit and Power4 support
  10. * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
  11. * <benh@kernel.crashing.org>
  12. * Merge ppc32 and ppc64 implementations
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License
  16. * as published by the Free Software Foundation; either version
  17. * 2 of the License, or (at your option) any later version.
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/mm.h>
  21. #include <asm/processor.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/system.h>
  24. #include <asm/cache.h>
  25. #include <asm/cputable.h>
  26. struct aligninfo {
  27. unsigned char len;
  28. unsigned char flags;
  29. };
  30. #define IS_XFORM(inst) (((inst) >> 26) == 31)
  31. #define IS_DSFORM(inst) (((inst) >> 26) >= 56)
  32. #define INVALID { 0, 0 }
  33. /* Bits in the flags field */
  34. #define LD 0 /* load */
  35. #define ST 1 /* store */
  36. #define SE 2 /* sign-extend value, or FP ld/st as word */
  37. #define F 4 /* to/from fp regs */
  38. #define U 8 /* update index register */
  39. #define M 0x10 /* multiple load/store */
  40. #define SW 0x20 /* byte swap */
  41. #define S 0x40 /* single-precision fp or... */
  42. #define SX 0x40 /* ... byte count in XER */
  43. #define HARD 0x80 /* string, stwcx. */
  44. #define E4 0x40 /* SPE endianness is word */
  45. #define E8 0x80 /* SPE endianness is double word */
  46. #define SPLT 0x80 /* VSX SPLAT load */
  47. /* DSISR bits reported for a DCBZ instruction: */
  48. #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
  49. #define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
  50. /*
  51. * The PowerPC stores certain bits of the instruction that caused the
  52. * alignment exception in the DSISR register. This array maps those
  53. * bits to information about the operand length and what the
  54. * instruction would do.
  55. */
  56. static struct aligninfo aligninfo[128] = {
  57. { 4, LD }, /* 00 0 0000: lwz / lwarx */
  58. INVALID, /* 00 0 0001 */
  59. { 4, ST }, /* 00 0 0010: stw */
  60. INVALID, /* 00 0 0011 */
  61. { 2, LD }, /* 00 0 0100: lhz */
  62. { 2, LD+SE }, /* 00 0 0101: lha */
  63. { 2, ST }, /* 00 0 0110: sth */
  64. { 4, LD+M }, /* 00 0 0111: lmw */
  65. { 4, LD+F+S }, /* 00 0 1000: lfs */
  66. { 8, LD+F }, /* 00 0 1001: lfd */
  67. { 4, ST+F+S }, /* 00 0 1010: stfs */
  68. { 8, ST+F }, /* 00 0 1011: stfd */
  69. INVALID, /* 00 0 1100 */
  70. { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
  71. INVALID, /* 00 0 1110 */
  72. { 8, ST }, /* 00 0 1111: std/stdu */
  73. { 4, LD+U }, /* 00 1 0000: lwzu */
  74. INVALID, /* 00 1 0001 */
  75. { 4, ST+U }, /* 00 1 0010: stwu */
  76. INVALID, /* 00 1 0011 */
  77. { 2, LD+U }, /* 00 1 0100: lhzu */
  78. { 2, LD+SE+U }, /* 00 1 0101: lhau */
  79. { 2, ST+U }, /* 00 1 0110: sthu */
  80. { 4, ST+M }, /* 00 1 0111: stmw */
  81. { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
  82. { 8, LD+F+U }, /* 00 1 1001: lfdu */
  83. { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
  84. { 8, ST+F+U }, /* 00 1 1011: stfdu */
  85. { 16, LD+F }, /* 00 1 1100: lfdp */
  86. INVALID, /* 00 1 1101 */
  87. { 16, ST+F }, /* 00 1 1110: stfdp */
  88. INVALID, /* 00 1 1111 */
  89. { 8, LD }, /* 01 0 0000: ldx */
  90. INVALID, /* 01 0 0001 */
  91. { 8, ST }, /* 01 0 0010: stdx */
  92. INVALID, /* 01 0 0011 */
  93. INVALID, /* 01 0 0100 */
  94. { 4, LD+SE }, /* 01 0 0101: lwax */
  95. INVALID, /* 01 0 0110 */
  96. INVALID, /* 01 0 0111 */
  97. { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
  98. { 4, LD+M+HARD }, /* 01 0 1001: lswi */
  99. { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
  100. { 4, ST+M+HARD }, /* 01 0 1011: stswi */
  101. INVALID, /* 01 0 1100 */
  102. { 8, LD+U }, /* 01 0 1101: ldu */
  103. INVALID, /* 01 0 1110 */
  104. { 8, ST+U }, /* 01 0 1111: stdu */
  105. { 8, LD+U }, /* 01 1 0000: ldux */
  106. INVALID, /* 01 1 0001 */
  107. { 8, ST+U }, /* 01 1 0010: stdux */
  108. INVALID, /* 01 1 0011 */
  109. INVALID, /* 01 1 0100 */
  110. { 4, LD+SE+U }, /* 01 1 0101: lwaux */
  111. INVALID, /* 01 1 0110 */
  112. INVALID, /* 01 1 0111 */
  113. INVALID, /* 01 1 1000 */
  114. INVALID, /* 01 1 1001 */
  115. INVALID, /* 01 1 1010 */
  116. INVALID, /* 01 1 1011 */
  117. INVALID, /* 01 1 1100 */
  118. INVALID, /* 01 1 1101 */
  119. INVALID, /* 01 1 1110 */
  120. INVALID, /* 01 1 1111 */
  121. INVALID, /* 10 0 0000 */
  122. INVALID, /* 10 0 0001 */
  123. INVALID, /* 10 0 0010: stwcx. */
  124. INVALID, /* 10 0 0011 */
  125. INVALID, /* 10 0 0100 */
  126. INVALID, /* 10 0 0101 */
  127. INVALID, /* 10 0 0110 */
  128. INVALID, /* 10 0 0111 */
  129. { 4, LD+SW }, /* 10 0 1000: lwbrx */
  130. INVALID, /* 10 0 1001 */
  131. { 4, ST+SW }, /* 10 0 1010: stwbrx */
  132. INVALID, /* 10 0 1011 */
  133. { 2, LD+SW }, /* 10 0 1100: lhbrx */
  134. { 4, LD+SE }, /* 10 0 1101 lwa */
  135. { 2, ST+SW }, /* 10 0 1110: sthbrx */
  136. INVALID, /* 10 0 1111 */
  137. INVALID, /* 10 1 0000 */
  138. INVALID, /* 10 1 0001 */
  139. INVALID, /* 10 1 0010 */
  140. INVALID, /* 10 1 0011 */
  141. INVALID, /* 10 1 0100 */
  142. INVALID, /* 10 1 0101 */
  143. INVALID, /* 10 1 0110 */
  144. INVALID, /* 10 1 0111 */
  145. INVALID, /* 10 1 1000 */
  146. INVALID, /* 10 1 1001 */
  147. INVALID, /* 10 1 1010 */
  148. INVALID, /* 10 1 1011 */
  149. INVALID, /* 10 1 1100 */
  150. INVALID, /* 10 1 1101 */
  151. INVALID, /* 10 1 1110 */
  152. { 0, ST+HARD }, /* 10 1 1111: dcbz */
  153. { 4, LD }, /* 11 0 0000: lwzx */
  154. INVALID, /* 11 0 0001 */
  155. { 4, ST }, /* 11 0 0010: stwx */
  156. INVALID, /* 11 0 0011 */
  157. { 2, LD }, /* 11 0 0100: lhzx */
  158. { 2, LD+SE }, /* 11 0 0101: lhax */
  159. { 2, ST }, /* 11 0 0110: sthx */
  160. INVALID, /* 11 0 0111 */
  161. { 4, LD+F+S }, /* 11 0 1000: lfsx */
  162. { 8, LD+F }, /* 11 0 1001: lfdx */
  163. { 4, ST+F+S }, /* 11 0 1010: stfsx */
  164. { 8, ST+F }, /* 11 0 1011: stfdx */
  165. { 16, LD+F }, /* 11 0 1100: lfdpx */
  166. { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
  167. { 16, ST+F }, /* 11 0 1110: stfdpx */
  168. { 4, ST+F }, /* 11 0 1111: stfiwx */
  169. { 4, LD+U }, /* 11 1 0000: lwzux */
  170. INVALID, /* 11 1 0001 */
  171. { 4, ST+U }, /* 11 1 0010: stwux */
  172. INVALID, /* 11 1 0011 */
  173. { 2, LD+U }, /* 11 1 0100: lhzux */
  174. { 2, LD+SE+U }, /* 11 1 0101: lhaux */
  175. { 2, ST+U }, /* 11 1 0110: sthux */
  176. INVALID, /* 11 1 0111 */
  177. { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
  178. { 8, LD+F+U }, /* 11 1 1001: lfdux */
  179. { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
  180. { 8, ST+F+U }, /* 11 1 1011: stfdux */
  181. INVALID, /* 11 1 1100 */
  182. INVALID, /* 11 1 1101 */
  183. INVALID, /* 11 1 1110 */
  184. INVALID, /* 11 1 1111 */
  185. };
  186. /*
  187. * Create a DSISR value from the instruction
  188. */
  189. static inline unsigned make_dsisr(unsigned instr)
  190. {
  191. unsigned dsisr;
  192. /* bits 6:15 --> 22:31 */
  193. dsisr = (instr & 0x03ff0000) >> 16;
  194. if (IS_XFORM(instr)) {
  195. /* bits 29:30 --> 15:16 */
  196. dsisr |= (instr & 0x00000006) << 14;
  197. /* bit 25 --> 17 */
  198. dsisr |= (instr & 0x00000040) << 8;
  199. /* bits 21:24 --> 18:21 */
  200. dsisr |= (instr & 0x00000780) << 3;
  201. } else {
  202. /* bit 5 --> 17 */
  203. dsisr |= (instr & 0x04000000) >> 12;
  204. /* bits 1: 4 --> 18:21 */
  205. dsisr |= (instr & 0x78000000) >> 17;
  206. /* bits 30:31 --> 12:13 */
  207. if (IS_DSFORM(instr))
  208. dsisr |= (instr & 0x00000003) << 18;
  209. }
  210. return dsisr;
  211. }
  212. /*
  213. * The dcbz (data cache block zero) instruction
  214. * gives an alignment fault if used on non-cacheable
  215. * memory. We handle the fault mainly for the
  216. * case when we are running with the cache disabled
  217. * for debugging.
  218. */
  219. static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
  220. {
  221. long __user *p;
  222. int i, size;
  223. #ifdef __powerpc64__
  224. size = ppc64_caches.dline_size;
  225. #else
  226. size = L1_CACHE_BYTES;
  227. #endif
  228. p = (long __user *) (regs->dar & -size);
  229. if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
  230. return -EFAULT;
  231. for (i = 0; i < size / sizeof(long); ++i)
  232. if (__put_user_inatomic(0, p+i))
  233. return -EFAULT;
  234. return 1;
  235. }
  236. /*
  237. * Emulate load & store multiple instructions
  238. * On 64-bit machines, these instructions only affect/use the
  239. * bottom 4 bytes of each register, and the loads clear the
  240. * top 4 bytes of the affected register.
  241. */
  242. #ifdef CONFIG_PPC64
  243. #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
  244. #else
  245. #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
  246. #endif
  247. #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
  248. static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
  249. unsigned int reg, unsigned int nb,
  250. unsigned int flags, unsigned int instr,
  251. unsigned long swiz)
  252. {
  253. unsigned long *rptr;
  254. unsigned int nb0, i, bswiz;
  255. unsigned long p;
  256. /*
  257. * We do not try to emulate 8 bytes multiple as they aren't really
  258. * available in our operating environments and we don't try to
  259. * emulate multiples operations in kernel land as they should never
  260. * be used/generated there at least not on unaligned boundaries
  261. */
  262. if (unlikely((nb > 4) || !user_mode(regs)))
  263. return 0;
  264. /* lmw, stmw, lswi/x, stswi/x */
  265. nb0 = 0;
  266. if (flags & HARD) {
  267. if (flags & SX) {
  268. nb = regs->xer & 127;
  269. if (nb == 0)
  270. return 1;
  271. } else {
  272. unsigned long pc = regs->nip ^ (swiz & 4);
  273. if (__get_user_inatomic(instr,
  274. (unsigned int __user *)pc))
  275. return -EFAULT;
  276. if (swiz == 0 && (flags & SW))
  277. instr = cpu_to_le32(instr);
  278. nb = (instr >> 11) & 0x1f;
  279. if (nb == 0)
  280. nb = 32;
  281. }
  282. if (nb + reg * 4 > 128) {
  283. nb0 = nb + reg * 4 - 128;
  284. nb = 128 - reg * 4;
  285. }
  286. } else {
  287. /* lwm, stmw */
  288. nb = (32 - reg) * 4;
  289. }
  290. if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
  291. return -EFAULT; /* bad address */
  292. rptr = &regs->gpr[reg];
  293. p = (unsigned long) addr;
  294. bswiz = (flags & SW)? 3: 0;
  295. if (!(flags & ST)) {
  296. /*
  297. * This zeroes the top 4 bytes of the affected registers
  298. * in 64-bit mode, and also zeroes out any remaining
  299. * bytes of the last register for lsw*.
  300. */
  301. memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
  302. if (nb0 > 0)
  303. memset(&regs->gpr[0], 0,
  304. ((nb0 + 3) / 4) * sizeof(unsigned long));
  305. for (i = 0; i < nb; ++i, ++p)
  306. if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
  307. SWIZ_PTR(p)))
  308. return -EFAULT;
  309. if (nb0 > 0) {
  310. rptr = &regs->gpr[0];
  311. addr += nb;
  312. for (i = 0; i < nb0; ++i, ++p)
  313. if (__get_user_inatomic(REG_BYTE(rptr,
  314. i ^ bswiz),
  315. SWIZ_PTR(p)))
  316. return -EFAULT;
  317. }
  318. } else {
  319. for (i = 0; i < nb; ++i, ++p)
  320. if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
  321. SWIZ_PTR(p)))
  322. return -EFAULT;
  323. if (nb0 > 0) {
  324. rptr = &regs->gpr[0];
  325. addr += nb;
  326. for (i = 0; i < nb0; ++i, ++p)
  327. if (__put_user_inatomic(REG_BYTE(rptr,
  328. i ^ bswiz),
  329. SWIZ_PTR(p)))
  330. return -EFAULT;
  331. }
  332. }
  333. return 1;
  334. }
  335. /*
  336. * Emulate floating-point pair loads and stores.
  337. * Only POWER6 has these instructions, and it does true little-endian,
  338. * so we don't need the address swizzling.
  339. */
  340. static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
  341. unsigned int flags)
  342. {
  343. char *ptr = (char *) &current->thread.TS_FPR(reg);
  344. int i, ret;
  345. if (!(flags & F))
  346. return 0;
  347. if (reg & 1)
  348. return 0; /* invalid form: FRS/FRT must be even */
  349. if (!(flags & SW)) {
  350. /* not byte-swapped - easy */
  351. if (!(flags & ST))
  352. ret = __copy_from_user(ptr, addr, 16);
  353. else
  354. ret = __copy_to_user(addr, ptr, 16);
  355. } else {
  356. /* each FPR value is byte-swapped separately */
  357. ret = 0;
  358. for (i = 0; i < 16; ++i) {
  359. if (!(flags & ST))
  360. ret |= __get_user(ptr[i^7], addr + i);
  361. else
  362. ret |= __put_user(ptr[i^7], addr + i);
  363. }
  364. }
  365. if (ret)
  366. return -EFAULT;
  367. return 1; /* exception handled and fixed up */
  368. }
  369. #ifdef CONFIG_SPE
  370. static struct aligninfo spe_aligninfo[32] = {
  371. { 8, LD+E8 }, /* 0 00 00: evldd[x] */
  372. { 8, LD+E4 }, /* 0 00 01: evldw[x] */
  373. { 8, LD }, /* 0 00 10: evldh[x] */
  374. INVALID, /* 0 00 11 */
  375. { 2, LD }, /* 0 01 00: evlhhesplat[x] */
  376. INVALID, /* 0 01 01 */
  377. { 2, LD }, /* 0 01 10: evlhhousplat[x] */
  378. { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
  379. { 4, LD }, /* 0 10 00: evlwhe[x] */
  380. INVALID, /* 0 10 01 */
  381. { 4, LD }, /* 0 10 10: evlwhou[x] */
  382. { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
  383. { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
  384. INVALID, /* 0 11 01 */
  385. { 4, LD }, /* 0 11 10: evlwhsplat[x] */
  386. INVALID, /* 0 11 11 */
  387. { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
  388. { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
  389. { 8, ST }, /* 1 00 10: evstdh[x] */
  390. INVALID, /* 1 00 11 */
  391. INVALID, /* 1 01 00 */
  392. INVALID, /* 1 01 01 */
  393. INVALID, /* 1 01 10 */
  394. INVALID, /* 1 01 11 */
  395. { 4, ST }, /* 1 10 00: evstwhe[x] */
  396. INVALID, /* 1 10 01 */
  397. { 4, ST }, /* 1 10 10: evstwho[x] */
  398. INVALID, /* 1 10 11 */
  399. { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
  400. INVALID, /* 1 11 01 */
  401. { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
  402. INVALID, /* 1 11 11 */
  403. };
  404. #define EVLDD 0x00
  405. #define EVLDW 0x01
  406. #define EVLDH 0x02
  407. #define EVLHHESPLAT 0x04
  408. #define EVLHHOUSPLAT 0x06
  409. #define EVLHHOSSPLAT 0x07
  410. #define EVLWHE 0x08
  411. #define EVLWHOU 0x0A
  412. #define EVLWHOS 0x0B
  413. #define EVLWWSPLAT 0x0C
  414. #define EVLWHSPLAT 0x0E
  415. #define EVSTDD 0x10
  416. #define EVSTDW 0x11
  417. #define EVSTDH 0x12
  418. #define EVSTWHE 0x18
  419. #define EVSTWHO 0x1A
  420. #define EVSTWWE 0x1C
  421. #define EVSTWWO 0x1E
  422. /*
  423. * Emulate SPE loads and stores.
  424. * Only Book-E has these instructions, and it does true little-endian,
  425. * so we don't need the address swizzling.
  426. */
  427. static int emulate_spe(struct pt_regs *regs, unsigned int reg,
  428. unsigned int instr)
  429. {
  430. int t, ret;
  431. union {
  432. u64 ll;
  433. u32 w[2];
  434. u16 h[4];
  435. u8 v[8];
  436. } data, temp;
  437. unsigned char __user *p, *addr;
  438. unsigned long *evr = &current->thread.evr[reg];
  439. unsigned int nb, flags;
  440. instr = (instr >> 1) & 0x1f;
  441. /* DAR has the operand effective address */
  442. addr = (unsigned char __user *)regs->dar;
  443. nb = spe_aligninfo[instr].len;
  444. flags = spe_aligninfo[instr].flags;
  445. /* Verify the address of the operand */
  446. if (unlikely(user_mode(regs) &&
  447. !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
  448. addr, nb)))
  449. return -EFAULT;
  450. /* userland only */
  451. if (unlikely(!user_mode(regs)))
  452. return 0;
  453. flush_spe_to_thread(current);
  454. /* If we are loading, get the data from user space, else
  455. * get it from register values
  456. */
  457. if (flags & ST) {
  458. data.ll = 0;
  459. switch (instr) {
  460. case EVSTDD:
  461. case EVSTDW:
  462. case EVSTDH:
  463. data.w[0] = *evr;
  464. data.w[1] = regs->gpr[reg];
  465. break;
  466. case EVSTWHE:
  467. data.h[2] = *evr >> 16;
  468. data.h[3] = regs->gpr[reg] >> 16;
  469. break;
  470. case EVSTWHO:
  471. data.h[2] = *evr & 0xffff;
  472. data.h[3] = regs->gpr[reg] & 0xffff;
  473. break;
  474. case EVSTWWE:
  475. data.w[1] = *evr;
  476. break;
  477. case EVSTWWO:
  478. data.w[1] = regs->gpr[reg];
  479. break;
  480. default:
  481. return -EINVAL;
  482. }
  483. } else {
  484. temp.ll = data.ll = 0;
  485. ret = 0;
  486. p = addr;
  487. switch (nb) {
  488. case 8:
  489. ret |= __get_user_inatomic(temp.v[0], p++);
  490. ret |= __get_user_inatomic(temp.v[1], p++);
  491. ret |= __get_user_inatomic(temp.v[2], p++);
  492. ret |= __get_user_inatomic(temp.v[3], p++);
  493. case 4:
  494. ret |= __get_user_inatomic(temp.v[4], p++);
  495. ret |= __get_user_inatomic(temp.v[5], p++);
  496. case 2:
  497. ret |= __get_user_inatomic(temp.v[6], p++);
  498. ret |= __get_user_inatomic(temp.v[7], p++);
  499. if (unlikely(ret))
  500. return -EFAULT;
  501. }
  502. switch (instr) {
  503. case EVLDD:
  504. case EVLDW:
  505. case EVLDH:
  506. data.ll = temp.ll;
  507. break;
  508. case EVLHHESPLAT:
  509. data.h[0] = temp.h[3];
  510. data.h[2] = temp.h[3];
  511. break;
  512. case EVLHHOUSPLAT:
  513. case EVLHHOSSPLAT:
  514. data.h[1] = temp.h[3];
  515. data.h[3] = temp.h[3];
  516. break;
  517. case EVLWHE:
  518. data.h[0] = temp.h[2];
  519. data.h[2] = temp.h[3];
  520. break;
  521. case EVLWHOU:
  522. case EVLWHOS:
  523. data.h[1] = temp.h[2];
  524. data.h[3] = temp.h[3];
  525. break;
  526. case EVLWWSPLAT:
  527. data.w[0] = temp.w[1];
  528. data.w[1] = temp.w[1];
  529. break;
  530. case EVLWHSPLAT:
  531. data.h[0] = temp.h[2];
  532. data.h[1] = temp.h[2];
  533. data.h[2] = temp.h[3];
  534. data.h[3] = temp.h[3];
  535. break;
  536. default:
  537. return -EINVAL;
  538. }
  539. }
  540. if (flags & SW) {
  541. switch (flags & 0xf0) {
  542. case E8:
  543. SWAP(data.v[0], data.v[7]);
  544. SWAP(data.v[1], data.v[6]);
  545. SWAP(data.v[2], data.v[5]);
  546. SWAP(data.v[3], data.v[4]);
  547. break;
  548. case E4:
  549. SWAP(data.v[0], data.v[3]);
  550. SWAP(data.v[1], data.v[2]);
  551. SWAP(data.v[4], data.v[7]);
  552. SWAP(data.v[5], data.v[6]);
  553. break;
  554. /* Its half word endian */
  555. default:
  556. SWAP(data.v[0], data.v[1]);
  557. SWAP(data.v[2], data.v[3]);
  558. SWAP(data.v[4], data.v[5]);
  559. SWAP(data.v[6], data.v[7]);
  560. break;
  561. }
  562. }
  563. if (flags & SE) {
  564. data.w[0] = (s16)data.h[1];
  565. data.w[1] = (s16)data.h[3];
  566. }
  567. /* Store result to memory or update registers */
  568. if (flags & ST) {
  569. ret = 0;
  570. p = addr;
  571. switch (nb) {
  572. case 8:
  573. ret |= __put_user_inatomic(data.v[0], p++);
  574. ret |= __put_user_inatomic(data.v[1], p++);
  575. ret |= __put_user_inatomic(data.v[2], p++);
  576. ret |= __put_user_inatomic(data.v[3], p++);
  577. case 4:
  578. ret |= __put_user_inatomic(data.v[4], p++);
  579. ret |= __put_user_inatomic(data.v[5], p++);
  580. case 2:
  581. ret |= __put_user_inatomic(data.v[6], p++);
  582. ret |= __put_user_inatomic(data.v[7], p++);
  583. }
  584. if (unlikely(ret))
  585. return -EFAULT;
  586. } else {
  587. *evr = data.w[0];
  588. regs->gpr[reg] = data.w[1];
  589. }
  590. return 1;
  591. }
  592. #endif /* CONFIG_SPE */
  593. #ifdef CONFIG_VSX
  594. /*
  595. * Emulate VSX instructions...
  596. */
  597. static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
  598. unsigned int areg, struct pt_regs *regs,
  599. unsigned int flags, unsigned int length)
  600. {
  601. char *ptr;
  602. int ret = 0;
  603. flush_vsx_to_thread(current);
  604. if (reg < 32)
  605. ptr = (char *) &current->thread.TS_FPR(reg);
  606. else
  607. ptr = (char *) &current->thread.vr[reg - 32];
  608. if (flags & ST)
  609. ret = __copy_to_user(addr, ptr, length);
  610. else {
  611. if (flags & SPLT){
  612. ret = __copy_from_user(ptr, addr, length);
  613. ptr += length;
  614. }
  615. ret |= __copy_from_user(ptr, addr, length);
  616. }
  617. if (flags & U)
  618. regs->gpr[areg] = regs->dar;
  619. if (ret)
  620. return -EFAULT;
  621. return 1;
  622. }
  623. #endif
  624. /*
  625. * Called on alignment exception. Attempts to fixup
  626. *
  627. * Return 1 on success
  628. * Return 0 if unable to handle the interrupt
  629. * Return -EFAULT if data address is bad
  630. */
  631. int fix_alignment(struct pt_regs *regs)
  632. {
  633. unsigned int instr, nb, flags, instruction = 0;
  634. unsigned int reg, areg;
  635. unsigned int dsisr;
  636. unsigned char __user *addr;
  637. unsigned long p, swiz;
  638. int ret, t;
  639. union {
  640. u64 ll;
  641. double dd;
  642. unsigned char v[8];
  643. struct {
  644. unsigned hi32;
  645. int low32;
  646. } x32;
  647. struct {
  648. unsigned char hi48[6];
  649. short low16;
  650. } x16;
  651. } data;
  652. /*
  653. * We require a complete register set, if not, then our assembly
  654. * is broken
  655. */
  656. CHECK_FULL_REGS(regs);
  657. dsisr = regs->dsisr;
  658. /* Some processors don't provide us with a DSISR we can use here,
  659. * let's make one up from the instruction
  660. */
  661. if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
  662. unsigned long pc = regs->nip;
  663. if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
  664. pc ^= 4;
  665. if (unlikely(__get_user_inatomic(instr,
  666. (unsigned int __user *)pc)))
  667. return -EFAULT;
  668. if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
  669. instr = cpu_to_le32(instr);
  670. dsisr = make_dsisr(instr);
  671. instruction = instr;
  672. }
  673. /* extract the operation and registers from the dsisr */
  674. reg = (dsisr >> 5) & 0x1f; /* source/dest register */
  675. areg = dsisr & 0x1f; /* register to update */
  676. #ifdef CONFIG_SPE
  677. if ((instr >> 26) == 0x4)
  678. return emulate_spe(regs, reg, instr);
  679. #endif
  680. instr = (dsisr >> 10) & 0x7f;
  681. instr |= (dsisr >> 13) & 0x60;
  682. /* Lookup the operation in our table */
  683. nb = aligninfo[instr].len;
  684. flags = aligninfo[instr].flags;
  685. /* Byteswap little endian loads and stores */
  686. swiz = 0;
  687. if (regs->msr & MSR_LE) {
  688. flags ^= SW;
  689. /*
  690. * So-called "PowerPC little endian" mode works by
  691. * swizzling addresses rather than by actually doing
  692. * any byte-swapping. To emulate this, we XOR each
  693. * byte address with 7. We also byte-swap, because
  694. * the processor's address swizzling depends on the
  695. * operand size (it xors the address with 7 for bytes,
  696. * 6 for halfwords, 4 for words, 0 for doublewords) but
  697. * we will xor with 7 and load/store each byte separately.
  698. */
  699. if (cpu_has_feature(CPU_FTR_PPC_LE))
  700. swiz = 7;
  701. }
  702. /* DAR has the operand effective address */
  703. addr = (unsigned char __user *)regs->dar;
  704. #ifdef CONFIG_VSX
  705. if ((instruction & 0xfc00003e) == 0x7c000018) {
  706. /* Additional register addressing bit (64 VSX vs 32 FPR/GPR */
  707. reg |= (instruction & 0x1) << 5;
  708. /* Simple inline decoder instead of a table */
  709. if (instruction & 0x200)
  710. nb = 16;
  711. else if (instruction & 0x080)
  712. nb = 8;
  713. else
  714. nb = 4;
  715. flags = 0;
  716. if (instruction & 0x100)
  717. flags |= ST;
  718. if (instruction & 0x040)
  719. flags |= U;
  720. /* splat load needs a special decoder */
  721. if ((instruction & 0x400) == 0){
  722. flags |= SPLT;
  723. nb = 8;
  724. }
  725. return emulate_vsx(addr, reg, areg, regs, flags, nb);
  726. }
  727. #endif
  728. /* A size of 0 indicates an instruction we don't support, with
  729. * the exception of DCBZ which is handled as a special case here
  730. */
  731. if (instr == DCBZ)
  732. return emulate_dcbz(regs, addr);
  733. if (unlikely(nb == 0))
  734. return 0;
  735. /* Load/Store Multiple instructions are handled in their own
  736. * function
  737. */
  738. if (flags & M)
  739. return emulate_multiple(regs, addr, reg, nb,
  740. flags, instr, swiz);
  741. /* Verify the address of the operand */
  742. if (unlikely(user_mode(regs) &&
  743. !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
  744. addr, nb)))
  745. return -EFAULT;
  746. /* Force the fprs into the save area so we can reference them */
  747. if (flags & F) {
  748. /* userland only */
  749. if (unlikely(!user_mode(regs)))
  750. return 0;
  751. flush_fp_to_thread(current);
  752. }
  753. /* Special case for 16-byte FP loads and stores */
  754. if (nb == 16)
  755. return emulate_fp_pair(addr, reg, flags);
  756. /* If we are loading, get the data from user space, else
  757. * get it from register values
  758. */
  759. if (!(flags & ST)) {
  760. data.ll = 0;
  761. ret = 0;
  762. p = (unsigned long) addr;
  763. switch (nb) {
  764. case 8:
  765. ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
  766. ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
  767. ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
  768. ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
  769. case 4:
  770. ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
  771. ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
  772. case 2:
  773. ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
  774. ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
  775. if (unlikely(ret))
  776. return -EFAULT;
  777. }
  778. } else if (flags & F) {
  779. data.dd = current->thread.TS_FPR(reg);
  780. if (flags & S) {
  781. /* Single-precision FP store requires conversion... */
  782. #ifdef CONFIG_PPC_FPU
  783. preempt_disable();
  784. enable_kernel_fp();
  785. cvt_df(&data.dd, (float *)&data.v[4], &current->thread);
  786. preempt_enable();
  787. #else
  788. return 0;
  789. #endif
  790. }
  791. } else
  792. data.ll = regs->gpr[reg];
  793. if (flags & SW) {
  794. switch (nb) {
  795. case 8:
  796. SWAP(data.v[0], data.v[7]);
  797. SWAP(data.v[1], data.v[6]);
  798. SWAP(data.v[2], data.v[5]);
  799. SWAP(data.v[3], data.v[4]);
  800. break;
  801. case 4:
  802. SWAP(data.v[4], data.v[7]);
  803. SWAP(data.v[5], data.v[6]);
  804. break;
  805. case 2:
  806. SWAP(data.v[6], data.v[7]);
  807. break;
  808. }
  809. }
  810. /* Perform other misc operations like sign extension
  811. * or floating point single precision conversion
  812. */
  813. switch (flags & ~(U|SW)) {
  814. case LD+SE: /* sign extending integer loads */
  815. case LD+F+SE: /* sign extend for lfiwax */
  816. if ( nb == 2 )
  817. data.ll = data.x16.low16;
  818. else /* nb must be 4 */
  819. data.ll = data.x32.low32;
  820. break;
  821. /* Single-precision FP load requires conversion... */
  822. case LD+F+S:
  823. #ifdef CONFIG_PPC_FPU
  824. preempt_disable();
  825. enable_kernel_fp();
  826. cvt_fd((float *)&data.v[4], &data.dd, &current->thread);
  827. preempt_enable();
  828. #else
  829. return 0;
  830. #endif
  831. break;
  832. }
  833. /* Store result to memory or update registers */
  834. if (flags & ST) {
  835. ret = 0;
  836. p = (unsigned long) addr;
  837. switch (nb) {
  838. case 8:
  839. ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
  840. ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
  841. ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
  842. ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
  843. case 4:
  844. ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
  845. ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
  846. case 2:
  847. ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
  848. ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
  849. }
  850. if (unlikely(ret))
  851. return -EFAULT;
  852. } else if (flags & F)
  853. current->thread.TS_FPR(reg) = data.dd;
  854. else
  855. regs->gpr[reg] = data.ll;
  856. /* Update RA as needed */
  857. if (flags & U)
  858. regs->gpr[areg] = regs->dar;
  859. return 1;
  860. }