intel_display.c 246 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 10, .max = 22 },
  141. .m2 = { .min = 5, .max = 9 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 10, .max = 22 },
  154. .m2 = { .min = 5, .max = 9 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. unsigned long flags;
  384. u32 val = 0;
  385. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  386. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  387. DRM_ERROR("DPIO idle wait timed out\n");
  388. goto out_unlock;
  389. }
  390. I915_WRITE(DPIO_REG, reg);
  391. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  392. DPIO_BYTE);
  393. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  394. DRM_ERROR("DPIO read wait timed out\n");
  395. goto out_unlock;
  396. }
  397. val = I915_READ(DPIO_DATA);
  398. out_unlock:
  399. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  400. return val;
  401. }
  402. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  403. u32 val)
  404. {
  405. unsigned long flags;
  406. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO idle wait timed out\n");
  409. goto out_unlock;
  410. }
  411. I915_WRITE(DPIO_DATA, val);
  412. I915_WRITE(DPIO_REG, reg);
  413. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  414. DPIO_BYTE);
  415. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  416. DRM_ERROR("DPIO write wait timed out\n");
  417. out_unlock:
  418. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  419. }
  420. static void vlv_init_dpio(struct drm_device *dev)
  421. {
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. /* Reset the DPIO config */
  424. I915_WRITE(DPIO_CTL, 0);
  425. POSTING_READ(DPIO_CTL);
  426. I915_WRITE(DPIO_CTL, 1);
  427. POSTING_READ(DPIO_CTL);
  428. }
  429. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  430. int refclk)
  431. {
  432. struct drm_device *dev = crtc->dev;
  433. const intel_limit_t *limit;
  434. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  435. if (intel_is_dual_link_lvds(dev)) {
  436. /* LVDS dual channel */
  437. if (refclk == 100000)
  438. limit = &intel_limits_ironlake_dual_lvds_100m;
  439. else
  440. limit = &intel_limits_ironlake_dual_lvds;
  441. } else {
  442. if (refclk == 100000)
  443. limit = &intel_limits_ironlake_single_lvds_100m;
  444. else
  445. limit = &intel_limits_ironlake_single_lvds;
  446. }
  447. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  448. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  449. limit = &intel_limits_ironlake_display_port;
  450. else
  451. limit = &intel_limits_ironlake_dac;
  452. return limit;
  453. }
  454. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  455. {
  456. struct drm_device *dev = crtc->dev;
  457. const intel_limit_t *limit;
  458. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  459. if (intel_is_dual_link_lvds(dev))
  460. /* LVDS with dual channel */
  461. limit = &intel_limits_g4x_dual_channel_lvds;
  462. else
  463. /* LVDS with dual channel */
  464. limit = &intel_limits_g4x_single_channel_lvds;
  465. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  466. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  467. limit = &intel_limits_g4x_hdmi;
  468. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  469. limit = &intel_limits_g4x_sdvo;
  470. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  471. limit = &intel_limits_g4x_display_port;
  472. } else /* The option is for other outputs */
  473. limit = &intel_limits_i9xx_sdvo;
  474. return limit;
  475. }
  476. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  477. {
  478. struct drm_device *dev = crtc->dev;
  479. const intel_limit_t *limit;
  480. if (HAS_PCH_SPLIT(dev))
  481. limit = intel_ironlake_limit(crtc, refclk);
  482. else if (IS_G4X(dev)) {
  483. limit = intel_g4x_limit(crtc);
  484. } else if (IS_PINEVIEW(dev)) {
  485. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  486. limit = &intel_limits_pineview_lvds;
  487. else
  488. limit = &intel_limits_pineview_sdvo;
  489. } else if (IS_VALLEYVIEW(dev)) {
  490. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  491. limit = &intel_limits_vlv_dac;
  492. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  493. limit = &intel_limits_vlv_hdmi;
  494. else
  495. limit = &intel_limits_vlv_dp;
  496. } else if (!IS_GEN2(dev)) {
  497. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  498. limit = &intel_limits_i9xx_lvds;
  499. else
  500. limit = &intel_limits_i9xx_sdvo;
  501. } else {
  502. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  503. limit = &intel_limits_i8xx_lvds;
  504. else
  505. limit = &intel_limits_i8xx_dvo;
  506. }
  507. return limit;
  508. }
  509. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  510. static void pineview_clock(int refclk, intel_clock_t *clock)
  511. {
  512. clock->m = clock->m2 + 2;
  513. clock->p = clock->p1 * clock->p2;
  514. clock->vco = refclk * clock->m / clock->n;
  515. clock->dot = clock->vco / clock->p;
  516. }
  517. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  518. {
  519. if (IS_PINEVIEW(dev)) {
  520. pineview_clock(refclk, clock);
  521. return;
  522. }
  523. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  524. clock->p = clock->p1 * clock->p2;
  525. clock->vco = refclk * clock->m / (clock->n + 2);
  526. clock->dot = clock->vco / clock->p;
  527. }
  528. /**
  529. * Returns whether any output on the specified pipe is of the specified type
  530. */
  531. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  532. {
  533. struct drm_device *dev = crtc->dev;
  534. struct intel_encoder *encoder;
  535. for_each_encoder_on_crtc(dev, crtc, encoder)
  536. if (encoder->type == type)
  537. return true;
  538. return false;
  539. }
  540. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  541. /**
  542. * Returns whether the given set of divisors are valid for a given refclk with
  543. * the given connectors.
  544. */
  545. static bool intel_PLL_is_valid(struct drm_device *dev,
  546. const intel_limit_t *limit,
  547. const intel_clock_t *clock)
  548. {
  549. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  550. INTELPllInvalid("p1 out of range\n");
  551. if (clock->p < limit->p.min || limit->p.max < clock->p)
  552. INTELPllInvalid("p out of range\n");
  553. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  554. INTELPllInvalid("m2 out of range\n");
  555. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  556. INTELPllInvalid("m1 out of range\n");
  557. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  558. INTELPllInvalid("m1 <= m2\n");
  559. if (clock->m < limit->m.min || limit->m.max < clock->m)
  560. INTELPllInvalid("m out of range\n");
  561. if (clock->n < limit->n.min || limit->n.max < clock->n)
  562. INTELPllInvalid("n out of range\n");
  563. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  564. INTELPllInvalid("vco out of range\n");
  565. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  566. * connector, etc., rather than just a single range.
  567. */
  568. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  569. INTELPllInvalid("dot out of range\n");
  570. return true;
  571. }
  572. static bool
  573. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  574. int target, int refclk, intel_clock_t *match_clock,
  575. intel_clock_t *best_clock)
  576. {
  577. struct drm_device *dev = crtc->dev;
  578. intel_clock_t clock;
  579. int err = target;
  580. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  581. /*
  582. * For LVDS just rely on its current settings for dual-channel.
  583. * We haven't figured out how to reliably set up different
  584. * single/dual channel state, if we even can.
  585. */
  586. if (intel_is_dual_link_lvds(dev))
  587. clock.p2 = limit->p2.p2_fast;
  588. else
  589. clock.p2 = limit->p2.p2_slow;
  590. } else {
  591. if (target < limit->p2.dot_limit)
  592. clock.p2 = limit->p2.p2_slow;
  593. else
  594. clock.p2 = limit->p2.p2_fast;
  595. }
  596. memset(best_clock, 0, sizeof(*best_clock));
  597. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  598. clock.m1++) {
  599. for (clock.m2 = limit->m2.min;
  600. clock.m2 <= limit->m2.max; clock.m2++) {
  601. /* m1 is always 0 in Pineview */
  602. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  603. break;
  604. for (clock.n = limit->n.min;
  605. clock.n <= limit->n.max; clock.n++) {
  606. for (clock.p1 = limit->p1.min;
  607. clock.p1 <= limit->p1.max; clock.p1++) {
  608. int this_err;
  609. intel_clock(dev, refclk, &clock);
  610. if (!intel_PLL_is_valid(dev, limit,
  611. &clock))
  612. continue;
  613. if (match_clock &&
  614. clock.p != match_clock->p)
  615. continue;
  616. this_err = abs(clock.dot - target);
  617. if (this_err < err) {
  618. *best_clock = clock;
  619. err = this_err;
  620. }
  621. }
  622. }
  623. }
  624. }
  625. return (err != target);
  626. }
  627. static bool
  628. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  629. int target, int refclk, intel_clock_t *match_clock,
  630. intel_clock_t *best_clock)
  631. {
  632. struct drm_device *dev = crtc->dev;
  633. intel_clock_t clock;
  634. int max_n;
  635. bool found;
  636. /* approximately equals target * 0.00585 */
  637. int err_most = (target >> 8) + (target >> 9);
  638. found = false;
  639. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  640. int lvds_reg;
  641. if (HAS_PCH_SPLIT(dev))
  642. lvds_reg = PCH_LVDS;
  643. else
  644. lvds_reg = LVDS;
  645. if (intel_is_dual_link_lvds(dev))
  646. clock.p2 = limit->p2.p2_fast;
  647. else
  648. clock.p2 = limit->p2.p2_slow;
  649. } else {
  650. if (target < limit->p2.dot_limit)
  651. clock.p2 = limit->p2.p2_slow;
  652. else
  653. clock.p2 = limit->p2.p2_fast;
  654. }
  655. memset(best_clock, 0, sizeof(*best_clock));
  656. max_n = limit->n.max;
  657. /* based on hardware requirement, prefer smaller n to precision */
  658. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  659. /* based on hardware requirement, prefere larger m1,m2 */
  660. for (clock.m1 = limit->m1.max;
  661. clock.m1 >= limit->m1.min; clock.m1--) {
  662. for (clock.m2 = limit->m2.max;
  663. clock.m2 >= limit->m2.min; clock.m2--) {
  664. for (clock.p1 = limit->p1.max;
  665. clock.p1 >= limit->p1.min; clock.p1--) {
  666. int this_err;
  667. intel_clock(dev, refclk, &clock);
  668. if (!intel_PLL_is_valid(dev, limit,
  669. &clock))
  670. continue;
  671. if (match_clock &&
  672. clock.p != match_clock->p)
  673. continue;
  674. this_err = abs(clock.dot - target);
  675. if (this_err < err_most) {
  676. *best_clock = clock;
  677. err_most = this_err;
  678. max_n = clock.n;
  679. found = true;
  680. }
  681. }
  682. }
  683. }
  684. }
  685. return found;
  686. }
  687. static bool
  688. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  689. int target, int refclk, intel_clock_t *match_clock,
  690. intel_clock_t *best_clock)
  691. {
  692. struct drm_device *dev = crtc->dev;
  693. intel_clock_t clock;
  694. if (target < 200000) {
  695. clock.n = 1;
  696. clock.p1 = 2;
  697. clock.p2 = 10;
  698. clock.m1 = 12;
  699. clock.m2 = 9;
  700. } else {
  701. clock.n = 2;
  702. clock.p1 = 1;
  703. clock.p2 = 10;
  704. clock.m1 = 14;
  705. clock.m2 = 8;
  706. }
  707. intel_clock(dev, refclk, &clock);
  708. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  709. return true;
  710. }
  711. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  712. static bool
  713. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  714. int target, int refclk, intel_clock_t *match_clock,
  715. intel_clock_t *best_clock)
  716. {
  717. intel_clock_t clock;
  718. if (target < 200000) {
  719. clock.p1 = 2;
  720. clock.p2 = 10;
  721. clock.n = 2;
  722. clock.m1 = 23;
  723. clock.m2 = 8;
  724. } else {
  725. clock.p1 = 1;
  726. clock.p2 = 10;
  727. clock.n = 1;
  728. clock.m1 = 14;
  729. clock.m2 = 2;
  730. }
  731. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  732. clock.p = (clock.p1 * clock.p2);
  733. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  734. clock.vco = 0;
  735. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  736. return true;
  737. }
  738. static bool
  739. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  740. int target, int refclk, intel_clock_t *match_clock,
  741. intel_clock_t *best_clock)
  742. {
  743. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  744. u32 m, n, fastclk;
  745. u32 updrate, minupdate, fracbits, p;
  746. unsigned long bestppm, ppm, absppm;
  747. int dotclk, flag;
  748. flag = 0;
  749. dotclk = target * 1000;
  750. bestppm = 1000000;
  751. ppm = absppm = 0;
  752. fastclk = dotclk / (2*100);
  753. updrate = 0;
  754. minupdate = 19200;
  755. fracbits = 1;
  756. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  757. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  758. /* based on hardware requirement, prefer smaller n to precision */
  759. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  760. updrate = refclk / n;
  761. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  762. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  763. if (p2 > 10)
  764. p2 = p2 - 1;
  765. p = p1 * p2;
  766. /* based on hardware requirement, prefer bigger m1,m2 values */
  767. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  768. m2 = (((2*(fastclk * p * n / m1 )) +
  769. refclk) / (2*refclk));
  770. m = m1 * m2;
  771. vco = updrate * m;
  772. if (vco >= limit->vco.min && vco < limit->vco.max) {
  773. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  774. absppm = (ppm > 0) ? ppm : (-ppm);
  775. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  776. bestppm = 0;
  777. flag = 1;
  778. }
  779. if (absppm < bestppm - 10) {
  780. bestppm = absppm;
  781. flag = 1;
  782. }
  783. if (flag) {
  784. bestn = n;
  785. bestm1 = m1;
  786. bestm2 = m2;
  787. bestp1 = p1;
  788. bestp2 = p2;
  789. flag = 0;
  790. }
  791. }
  792. }
  793. }
  794. }
  795. }
  796. best_clock->n = bestn;
  797. best_clock->m1 = bestm1;
  798. best_clock->m2 = bestm2;
  799. best_clock->p1 = bestp1;
  800. best_clock->p2 = bestp2;
  801. return true;
  802. }
  803. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  804. enum pipe pipe)
  805. {
  806. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  807. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  808. return intel_crtc->cpu_transcoder;
  809. }
  810. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  811. {
  812. struct drm_i915_private *dev_priv = dev->dev_private;
  813. u32 frame, frame_reg = PIPEFRAME(pipe);
  814. frame = I915_READ(frame_reg);
  815. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  816. DRM_DEBUG_KMS("vblank wait timed out\n");
  817. }
  818. /**
  819. * intel_wait_for_vblank - wait for vblank on a given pipe
  820. * @dev: drm device
  821. * @pipe: pipe to wait for
  822. *
  823. * Wait for vblank to occur on a given pipe. Needed for various bits of
  824. * mode setting code.
  825. */
  826. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  827. {
  828. struct drm_i915_private *dev_priv = dev->dev_private;
  829. int pipestat_reg = PIPESTAT(pipe);
  830. if (INTEL_INFO(dev)->gen >= 5) {
  831. ironlake_wait_for_vblank(dev, pipe);
  832. return;
  833. }
  834. /* Clear existing vblank status. Note this will clear any other
  835. * sticky status fields as well.
  836. *
  837. * This races with i915_driver_irq_handler() with the result
  838. * that either function could miss a vblank event. Here it is not
  839. * fatal, as we will either wait upon the next vblank interrupt or
  840. * timeout. Generally speaking intel_wait_for_vblank() is only
  841. * called during modeset at which time the GPU should be idle and
  842. * should *not* be performing page flips and thus not waiting on
  843. * vblanks...
  844. * Currently, the result of us stealing a vblank from the irq
  845. * handler is that a single frame will be skipped during swapbuffers.
  846. */
  847. I915_WRITE(pipestat_reg,
  848. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  849. /* Wait for vblank interrupt bit to set */
  850. if (wait_for(I915_READ(pipestat_reg) &
  851. PIPE_VBLANK_INTERRUPT_STATUS,
  852. 50))
  853. DRM_DEBUG_KMS("vblank wait timed out\n");
  854. }
  855. /*
  856. * intel_wait_for_pipe_off - wait for pipe to turn off
  857. * @dev: drm device
  858. * @pipe: pipe to wait for
  859. *
  860. * After disabling a pipe, we can't wait for vblank in the usual way,
  861. * spinning on the vblank interrupt status bit, since we won't actually
  862. * see an interrupt when the pipe is disabled.
  863. *
  864. * On Gen4 and above:
  865. * wait for the pipe register state bit to turn off
  866. *
  867. * Otherwise:
  868. * wait for the display line value to settle (it usually
  869. * ends up stopping at the start of the next frame).
  870. *
  871. */
  872. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  873. {
  874. struct drm_i915_private *dev_priv = dev->dev_private;
  875. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  876. pipe);
  877. if (INTEL_INFO(dev)->gen >= 4) {
  878. int reg = PIPECONF(cpu_transcoder);
  879. /* Wait for the Pipe State to go off */
  880. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  881. 100))
  882. WARN(1, "pipe_off wait timed out\n");
  883. } else {
  884. u32 last_line, line_mask;
  885. int reg = PIPEDSL(pipe);
  886. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  887. if (IS_GEN2(dev))
  888. line_mask = DSL_LINEMASK_GEN2;
  889. else
  890. line_mask = DSL_LINEMASK_GEN3;
  891. /* Wait for the display line to settle */
  892. do {
  893. last_line = I915_READ(reg) & line_mask;
  894. mdelay(5);
  895. } while (((I915_READ(reg) & line_mask) != last_line) &&
  896. time_after(timeout, jiffies));
  897. if (time_after(jiffies, timeout))
  898. WARN(1, "pipe_off wait timed out\n");
  899. }
  900. }
  901. static const char *state_string(bool enabled)
  902. {
  903. return enabled ? "on" : "off";
  904. }
  905. /* Only for pre-ILK configs */
  906. static void assert_pll(struct drm_i915_private *dev_priv,
  907. enum pipe pipe, bool state)
  908. {
  909. int reg;
  910. u32 val;
  911. bool cur_state;
  912. reg = DPLL(pipe);
  913. val = I915_READ(reg);
  914. cur_state = !!(val & DPLL_VCO_ENABLE);
  915. WARN(cur_state != state,
  916. "PLL state assertion failure (expected %s, current %s)\n",
  917. state_string(state), state_string(cur_state));
  918. }
  919. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  920. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  921. /* For ILK+ */
  922. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  923. struct intel_pch_pll *pll,
  924. struct intel_crtc *crtc,
  925. bool state)
  926. {
  927. u32 val;
  928. bool cur_state;
  929. if (HAS_PCH_LPT(dev_priv->dev)) {
  930. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  931. return;
  932. }
  933. if (WARN (!pll,
  934. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  935. return;
  936. val = I915_READ(pll->pll_reg);
  937. cur_state = !!(val & DPLL_VCO_ENABLE);
  938. WARN(cur_state != state,
  939. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  940. pll->pll_reg, state_string(state), state_string(cur_state), val);
  941. /* Make sure the selected PLL is correctly attached to the transcoder */
  942. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  943. u32 pch_dpll;
  944. pch_dpll = I915_READ(PCH_DPLL_SEL);
  945. cur_state = pll->pll_reg == _PCH_DPLL_B;
  946. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  947. "PLL[%d] not attached to this transcoder %d: %08x\n",
  948. cur_state, crtc->pipe, pch_dpll)) {
  949. cur_state = !!(val >> (4*crtc->pipe + 3));
  950. WARN(cur_state != state,
  951. "PLL[%d] not %s on this transcoder %d: %08x\n",
  952. pll->pll_reg == _PCH_DPLL_B,
  953. state_string(state),
  954. crtc->pipe,
  955. val);
  956. }
  957. }
  958. }
  959. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  960. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  961. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  962. enum pipe pipe, bool state)
  963. {
  964. int reg;
  965. u32 val;
  966. bool cur_state;
  967. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  968. pipe);
  969. if (IS_HASWELL(dev_priv->dev)) {
  970. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  971. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  974. } else {
  975. reg = FDI_TX_CTL(pipe);
  976. val = I915_READ(reg);
  977. cur_state = !!(val & FDI_TX_ENABLE);
  978. }
  979. WARN(cur_state != state,
  980. "FDI TX state assertion failure (expected %s, current %s)\n",
  981. state_string(state), state_string(cur_state));
  982. }
  983. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  984. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  985. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  986. enum pipe pipe, bool state)
  987. {
  988. int reg;
  989. u32 val;
  990. bool cur_state;
  991. reg = FDI_RX_CTL(pipe);
  992. val = I915_READ(reg);
  993. cur_state = !!(val & FDI_RX_ENABLE);
  994. WARN(cur_state != state,
  995. "FDI RX state assertion failure (expected %s, current %s)\n",
  996. state_string(state), state_string(cur_state));
  997. }
  998. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  999. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1000. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1001. enum pipe pipe)
  1002. {
  1003. int reg;
  1004. u32 val;
  1005. /* ILK FDI PLL is always enabled */
  1006. if (dev_priv->info->gen == 5)
  1007. return;
  1008. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1009. if (IS_HASWELL(dev_priv->dev))
  1010. return;
  1011. reg = FDI_TX_CTL(pipe);
  1012. val = I915_READ(reg);
  1013. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1014. }
  1015. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. reg = FDI_RX_CTL(pipe);
  1021. val = I915_READ(reg);
  1022. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1023. }
  1024. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1025. enum pipe pipe)
  1026. {
  1027. int pp_reg, lvds_reg;
  1028. u32 val;
  1029. enum pipe panel_pipe = PIPE_A;
  1030. bool locked = true;
  1031. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1032. pp_reg = PCH_PP_CONTROL;
  1033. lvds_reg = PCH_LVDS;
  1034. } else {
  1035. pp_reg = PP_CONTROL;
  1036. lvds_reg = LVDS;
  1037. }
  1038. val = I915_READ(pp_reg);
  1039. if (!(val & PANEL_POWER_ON) ||
  1040. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1041. locked = false;
  1042. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1043. panel_pipe = PIPE_B;
  1044. WARN(panel_pipe == pipe && locked,
  1045. "panel assertion failure, pipe %c regs locked\n",
  1046. pipe_name(pipe));
  1047. }
  1048. void assert_pipe(struct drm_i915_private *dev_priv,
  1049. enum pipe pipe, bool state)
  1050. {
  1051. int reg;
  1052. u32 val;
  1053. bool cur_state;
  1054. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1055. pipe);
  1056. /* if we need the pipe A quirk it must be always on */
  1057. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1058. state = true;
  1059. reg = PIPECONF(cpu_transcoder);
  1060. val = I915_READ(reg);
  1061. cur_state = !!(val & PIPECONF_ENABLE);
  1062. WARN(cur_state != state,
  1063. "pipe %c assertion failure (expected %s, current %s)\n",
  1064. pipe_name(pipe), state_string(state), state_string(cur_state));
  1065. }
  1066. static void assert_plane(struct drm_i915_private *dev_priv,
  1067. enum plane plane, bool state)
  1068. {
  1069. int reg;
  1070. u32 val;
  1071. bool cur_state;
  1072. reg = DSPCNTR(plane);
  1073. val = I915_READ(reg);
  1074. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1075. WARN(cur_state != state,
  1076. "plane %c assertion failure (expected %s, current %s)\n",
  1077. plane_name(plane), state_string(state), state_string(cur_state));
  1078. }
  1079. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1080. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1081. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1082. enum pipe pipe)
  1083. {
  1084. int reg, i;
  1085. u32 val;
  1086. int cur_pipe;
  1087. /* Planes are fixed to pipes on ILK+ */
  1088. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1089. reg = DSPCNTR(pipe);
  1090. val = I915_READ(reg);
  1091. WARN((val & DISPLAY_PLANE_ENABLE),
  1092. "plane %c assertion failure, should be disabled but not\n",
  1093. plane_name(pipe));
  1094. return;
  1095. }
  1096. /* Need to check both planes against the pipe */
  1097. for (i = 0; i < 2; i++) {
  1098. reg = DSPCNTR(i);
  1099. val = I915_READ(reg);
  1100. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1101. DISPPLANE_SEL_PIPE_SHIFT;
  1102. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1103. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1104. plane_name(i), pipe_name(pipe));
  1105. }
  1106. }
  1107. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1108. {
  1109. u32 val;
  1110. bool enabled;
  1111. if (HAS_PCH_LPT(dev_priv->dev)) {
  1112. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1113. return;
  1114. }
  1115. val = I915_READ(PCH_DREF_CONTROL);
  1116. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1117. DREF_SUPERSPREAD_SOURCE_MASK));
  1118. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1119. }
  1120. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1121. enum pipe pipe)
  1122. {
  1123. int reg;
  1124. u32 val;
  1125. bool enabled;
  1126. reg = TRANSCONF(pipe);
  1127. val = I915_READ(reg);
  1128. enabled = !!(val & TRANS_ENABLE);
  1129. WARN(enabled,
  1130. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1131. pipe_name(pipe));
  1132. }
  1133. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, u32 port_sel, u32 val)
  1135. {
  1136. if ((val & DP_PORT_EN) == 0)
  1137. return false;
  1138. if (HAS_PCH_CPT(dev_priv->dev)) {
  1139. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1140. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1141. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1142. return false;
  1143. } else {
  1144. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, u32 val)
  1151. {
  1152. if ((val & PORT_ENABLE) == 0)
  1153. return false;
  1154. if (HAS_PCH_CPT(dev_priv->dev)) {
  1155. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1156. return false;
  1157. } else {
  1158. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1159. return false;
  1160. }
  1161. return true;
  1162. }
  1163. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1164. enum pipe pipe, u32 val)
  1165. {
  1166. if ((val & LVDS_PORT_EN) == 0)
  1167. return false;
  1168. if (HAS_PCH_CPT(dev_priv->dev)) {
  1169. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1170. return false;
  1171. } else {
  1172. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1173. return false;
  1174. }
  1175. return true;
  1176. }
  1177. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1178. enum pipe pipe, u32 val)
  1179. {
  1180. if ((val & ADPA_DAC_ENABLE) == 0)
  1181. return false;
  1182. if (HAS_PCH_CPT(dev_priv->dev)) {
  1183. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1184. return false;
  1185. } else {
  1186. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1187. return false;
  1188. }
  1189. return true;
  1190. }
  1191. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1192. enum pipe pipe, int reg, u32 port_sel)
  1193. {
  1194. u32 val = I915_READ(reg);
  1195. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1196. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1197. reg, pipe_name(pipe));
  1198. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1199. && (val & DP_PIPEB_SELECT),
  1200. "IBX PCH dp port still using transcoder B\n");
  1201. }
  1202. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1203. enum pipe pipe, int reg)
  1204. {
  1205. u32 val = I915_READ(reg);
  1206. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1207. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1208. reg, pipe_name(pipe));
  1209. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1210. && (val & SDVO_PIPE_B_SELECT),
  1211. "IBX PCH hdmi port still using transcoder B\n");
  1212. }
  1213. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1214. enum pipe pipe)
  1215. {
  1216. int reg;
  1217. u32 val;
  1218. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1219. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1220. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1221. reg = PCH_ADPA;
  1222. val = I915_READ(reg);
  1223. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1224. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1225. pipe_name(pipe));
  1226. reg = PCH_LVDS;
  1227. val = I915_READ(reg);
  1228. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1229. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1230. pipe_name(pipe));
  1231. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1232. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1233. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1234. }
  1235. /**
  1236. * intel_enable_pll - enable a PLL
  1237. * @dev_priv: i915 private structure
  1238. * @pipe: pipe PLL to enable
  1239. *
  1240. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1241. * make sure the PLL reg is writable first though, since the panel write
  1242. * protect mechanism may be enabled.
  1243. *
  1244. * Note! This is for pre-ILK only.
  1245. *
  1246. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1247. */
  1248. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1249. {
  1250. int reg;
  1251. u32 val;
  1252. /* No really, not for ILK+ */
  1253. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1254. /* PLL is protected by panel, make sure we can write it */
  1255. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1256. assert_panel_unlocked(dev_priv, pipe);
  1257. reg = DPLL(pipe);
  1258. val = I915_READ(reg);
  1259. val |= DPLL_VCO_ENABLE;
  1260. /* We do this three times for luck */
  1261. I915_WRITE(reg, val);
  1262. POSTING_READ(reg);
  1263. udelay(150); /* wait for warmup */
  1264. I915_WRITE(reg, val);
  1265. POSTING_READ(reg);
  1266. udelay(150); /* wait for warmup */
  1267. I915_WRITE(reg, val);
  1268. POSTING_READ(reg);
  1269. udelay(150); /* wait for warmup */
  1270. }
  1271. /**
  1272. * intel_disable_pll - disable a PLL
  1273. * @dev_priv: i915 private structure
  1274. * @pipe: pipe PLL to disable
  1275. *
  1276. * Disable the PLL for @pipe, making sure the pipe is off first.
  1277. *
  1278. * Note! This is for pre-ILK only.
  1279. */
  1280. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1281. {
  1282. int reg;
  1283. u32 val;
  1284. /* Don't disable pipe A or pipe A PLLs if needed */
  1285. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1286. return;
  1287. /* Make sure the pipe isn't still relying on us */
  1288. assert_pipe_disabled(dev_priv, pipe);
  1289. reg = DPLL(pipe);
  1290. val = I915_READ(reg);
  1291. val &= ~DPLL_VCO_ENABLE;
  1292. I915_WRITE(reg, val);
  1293. POSTING_READ(reg);
  1294. }
  1295. /* SBI access */
  1296. static void
  1297. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1298. {
  1299. unsigned long flags;
  1300. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1301. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1302. 100)) {
  1303. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1304. goto out_unlock;
  1305. }
  1306. I915_WRITE(SBI_ADDR,
  1307. (reg << 16));
  1308. I915_WRITE(SBI_DATA,
  1309. value);
  1310. I915_WRITE(SBI_CTL_STAT,
  1311. SBI_BUSY |
  1312. SBI_CTL_OP_CRWR);
  1313. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1314. 100)) {
  1315. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1316. goto out_unlock;
  1317. }
  1318. out_unlock:
  1319. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1320. }
  1321. static u32
  1322. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1323. {
  1324. unsigned long flags;
  1325. u32 value = 0;
  1326. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1327. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1328. 100)) {
  1329. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1330. goto out_unlock;
  1331. }
  1332. I915_WRITE(SBI_ADDR,
  1333. (reg << 16));
  1334. I915_WRITE(SBI_CTL_STAT,
  1335. SBI_BUSY |
  1336. SBI_CTL_OP_CRRD);
  1337. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1338. 100)) {
  1339. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1340. goto out_unlock;
  1341. }
  1342. value = I915_READ(SBI_DATA);
  1343. out_unlock:
  1344. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1345. return value;
  1346. }
  1347. /**
  1348. * ironlake_enable_pch_pll - enable PCH PLL
  1349. * @dev_priv: i915 private structure
  1350. * @pipe: pipe PLL to enable
  1351. *
  1352. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1353. * drives the transcoder clock.
  1354. */
  1355. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1356. {
  1357. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1358. struct intel_pch_pll *pll;
  1359. int reg;
  1360. u32 val;
  1361. /* PCH PLLs only available on ILK, SNB and IVB */
  1362. BUG_ON(dev_priv->info->gen < 5);
  1363. pll = intel_crtc->pch_pll;
  1364. if (pll == NULL)
  1365. return;
  1366. if (WARN_ON(pll->refcount == 0))
  1367. return;
  1368. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1369. pll->pll_reg, pll->active, pll->on,
  1370. intel_crtc->base.base.id);
  1371. /* PCH refclock must be enabled first */
  1372. assert_pch_refclk_enabled(dev_priv);
  1373. if (pll->active++ && pll->on) {
  1374. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1375. return;
  1376. }
  1377. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1378. reg = pll->pll_reg;
  1379. val = I915_READ(reg);
  1380. val |= DPLL_VCO_ENABLE;
  1381. I915_WRITE(reg, val);
  1382. POSTING_READ(reg);
  1383. udelay(200);
  1384. pll->on = true;
  1385. }
  1386. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1387. {
  1388. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1389. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1390. int reg;
  1391. u32 val;
  1392. /* PCH only available on ILK+ */
  1393. BUG_ON(dev_priv->info->gen < 5);
  1394. if (pll == NULL)
  1395. return;
  1396. if (WARN_ON(pll->refcount == 0))
  1397. return;
  1398. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1399. pll->pll_reg, pll->active, pll->on,
  1400. intel_crtc->base.base.id);
  1401. if (WARN_ON(pll->active == 0)) {
  1402. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1403. return;
  1404. }
  1405. if (--pll->active) {
  1406. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1407. return;
  1408. }
  1409. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1410. /* Make sure transcoder isn't still depending on us */
  1411. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1412. reg = pll->pll_reg;
  1413. val = I915_READ(reg);
  1414. val &= ~DPLL_VCO_ENABLE;
  1415. I915_WRITE(reg, val);
  1416. POSTING_READ(reg);
  1417. udelay(200);
  1418. pll->on = false;
  1419. }
  1420. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1421. enum pipe pipe)
  1422. {
  1423. struct drm_device *dev = dev_priv->dev;
  1424. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1425. uint32_t reg, val, pipeconf_val;
  1426. /* PCH only available on ILK+ */
  1427. BUG_ON(dev_priv->info->gen < 5);
  1428. /* Make sure PCH DPLL is enabled */
  1429. assert_pch_pll_enabled(dev_priv,
  1430. to_intel_crtc(crtc)->pch_pll,
  1431. to_intel_crtc(crtc));
  1432. /* FDI must be feeding us bits for PCH ports */
  1433. assert_fdi_tx_enabled(dev_priv, pipe);
  1434. assert_fdi_rx_enabled(dev_priv, pipe);
  1435. if (HAS_PCH_CPT(dev)) {
  1436. /* Workaround: Set the timing override bit before enabling the
  1437. * pch transcoder. */
  1438. reg = TRANS_CHICKEN2(pipe);
  1439. val = I915_READ(reg);
  1440. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1441. I915_WRITE(reg, val);
  1442. }
  1443. reg = TRANSCONF(pipe);
  1444. val = I915_READ(reg);
  1445. pipeconf_val = I915_READ(PIPECONF(pipe));
  1446. if (HAS_PCH_IBX(dev_priv->dev)) {
  1447. /*
  1448. * make the BPC in transcoder be consistent with
  1449. * that in pipeconf reg.
  1450. */
  1451. val &= ~PIPE_BPC_MASK;
  1452. val |= pipeconf_val & PIPE_BPC_MASK;
  1453. }
  1454. val &= ~TRANS_INTERLACE_MASK;
  1455. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1456. if (HAS_PCH_IBX(dev_priv->dev) &&
  1457. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1458. val |= TRANS_LEGACY_INTERLACED_ILK;
  1459. else
  1460. val |= TRANS_INTERLACED;
  1461. else
  1462. val |= TRANS_PROGRESSIVE;
  1463. I915_WRITE(reg, val | TRANS_ENABLE);
  1464. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1465. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1466. }
  1467. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1468. enum transcoder cpu_transcoder)
  1469. {
  1470. u32 val, pipeconf_val;
  1471. /* PCH only available on ILK+ */
  1472. BUG_ON(dev_priv->info->gen < 5);
  1473. /* FDI must be feeding us bits for PCH ports */
  1474. assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
  1475. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1476. /* Workaround: set timing override bit. */
  1477. val = I915_READ(_TRANSA_CHICKEN2);
  1478. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1479. I915_WRITE(_TRANSA_CHICKEN2, val);
  1480. val = TRANS_ENABLE;
  1481. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1482. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1483. PIPECONF_INTERLACED_ILK)
  1484. val |= TRANS_INTERLACED;
  1485. else
  1486. val |= TRANS_PROGRESSIVE;
  1487. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1488. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1489. DRM_ERROR("Failed to enable PCH transcoder\n");
  1490. }
  1491. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1492. enum pipe pipe)
  1493. {
  1494. struct drm_device *dev = dev_priv->dev;
  1495. uint32_t reg, val;
  1496. /* FDI relies on the transcoder */
  1497. assert_fdi_tx_disabled(dev_priv, pipe);
  1498. assert_fdi_rx_disabled(dev_priv, pipe);
  1499. /* Ports must be off as well */
  1500. assert_pch_ports_disabled(dev_priv, pipe);
  1501. reg = TRANSCONF(pipe);
  1502. val = I915_READ(reg);
  1503. val &= ~TRANS_ENABLE;
  1504. I915_WRITE(reg, val);
  1505. /* wait for PCH transcoder off, transcoder state */
  1506. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1507. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1508. if (!HAS_PCH_IBX(dev)) {
  1509. /* Workaround: Clear the timing override chicken bit again. */
  1510. reg = TRANS_CHICKEN2(pipe);
  1511. val = I915_READ(reg);
  1512. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1513. I915_WRITE(reg, val);
  1514. }
  1515. }
  1516. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1517. {
  1518. u32 val;
  1519. val = I915_READ(_TRANSACONF);
  1520. val &= ~TRANS_ENABLE;
  1521. I915_WRITE(_TRANSACONF, val);
  1522. /* wait for PCH transcoder off, transcoder state */
  1523. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1524. DRM_ERROR("Failed to disable PCH transcoder\n");
  1525. /* Workaround: clear timing override bit. */
  1526. val = I915_READ(_TRANSA_CHICKEN2);
  1527. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1528. I915_WRITE(_TRANSA_CHICKEN2, val);
  1529. }
  1530. /**
  1531. * intel_enable_pipe - enable a pipe, asserting requirements
  1532. * @dev_priv: i915 private structure
  1533. * @pipe: pipe to enable
  1534. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1535. *
  1536. * Enable @pipe, making sure that various hardware specific requirements
  1537. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1538. *
  1539. * @pipe should be %PIPE_A or %PIPE_B.
  1540. *
  1541. * Will wait until the pipe is actually running (i.e. first vblank) before
  1542. * returning.
  1543. */
  1544. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1545. bool pch_port)
  1546. {
  1547. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1548. pipe);
  1549. enum transcoder pch_transcoder;
  1550. int reg;
  1551. u32 val;
  1552. if (IS_HASWELL(dev_priv->dev))
  1553. pch_transcoder = TRANSCODER_A;
  1554. else
  1555. pch_transcoder = pipe;
  1556. /*
  1557. * A pipe without a PLL won't actually be able to drive bits from
  1558. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1559. * need the check.
  1560. */
  1561. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1562. assert_pll_enabled(dev_priv, pipe);
  1563. else {
  1564. if (pch_port) {
  1565. /* if driving the PCH, we need FDI enabled */
  1566. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1567. assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
  1568. }
  1569. /* FIXME: assert CPU port conditions for SNB+ */
  1570. }
  1571. reg = PIPECONF(cpu_transcoder);
  1572. val = I915_READ(reg);
  1573. if (val & PIPECONF_ENABLE)
  1574. return;
  1575. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1576. intel_wait_for_vblank(dev_priv->dev, pipe);
  1577. }
  1578. /**
  1579. * intel_disable_pipe - disable a pipe, asserting requirements
  1580. * @dev_priv: i915 private structure
  1581. * @pipe: pipe to disable
  1582. *
  1583. * Disable @pipe, making sure that various hardware specific requirements
  1584. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1585. *
  1586. * @pipe should be %PIPE_A or %PIPE_B.
  1587. *
  1588. * Will wait until the pipe has shut down before returning.
  1589. */
  1590. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1591. enum pipe pipe)
  1592. {
  1593. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1594. pipe);
  1595. int reg;
  1596. u32 val;
  1597. /*
  1598. * Make sure planes won't keep trying to pump pixels to us,
  1599. * or we might hang the display.
  1600. */
  1601. assert_planes_disabled(dev_priv, pipe);
  1602. /* Don't disable pipe A or pipe A PLLs if needed */
  1603. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1604. return;
  1605. reg = PIPECONF(cpu_transcoder);
  1606. val = I915_READ(reg);
  1607. if ((val & PIPECONF_ENABLE) == 0)
  1608. return;
  1609. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1610. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1611. }
  1612. /*
  1613. * Plane regs are double buffered, going from enabled->disabled needs a
  1614. * trigger in order to latch. The display address reg provides this.
  1615. */
  1616. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1617. enum plane plane)
  1618. {
  1619. if (dev_priv->info->gen >= 4)
  1620. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1621. else
  1622. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1623. }
  1624. /**
  1625. * intel_enable_plane - enable a display plane on a given pipe
  1626. * @dev_priv: i915 private structure
  1627. * @plane: plane to enable
  1628. * @pipe: pipe being fed
  1629. *
  1630. * Enable @plane on @pipe, making sure that @pipe is running first.
  1631. */
  1632. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1633. enum plane plane, enum pipe pipe)
  1634. {
  1635. int reg;
  1636. u32 val;
  1637. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1638. assert_pipe_enabled(dev_priv, pipe);
  1639. reg = DSPCNTR(plane);
  1640. val = I915_READ(reg);
  1641. if (val & DISPLAY_PLANE_ENABLE)
  1642. return;
  1643. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1644. intel_flush_display_plane(dev_priv, plane);
  1645. intel_wait_for_vblank(dev_priv->dev, pipe);
  1646. }
  1647. /**
  1648. * intel_disable_plane - disable a display plane
  1649. * @dev_priv: i915 private structure
  1650. * @plane: plane to disable
  1651. * @pipe: pipe consuming the data
  1652. *
  1653. * Disable @plane; should be an independent operation.
  1654. */
  1655. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1656. enum plane plane, enum pipe pipe)
  1657. {
  1658. int reg;
  1659. u32 val;
  1660. reg = DSPCNTR(plane);
  1661. val = I915_READ(reg);
  1662. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1663. return;
  1664. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1665. intel_flush_display_plane(dev_priv, plane);
  1666. intel_wait_for_vblank(dev_priv->dev, pipe);
  1667. }
  1668. int
  1669. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1670. struct drm_i915_gem_object *obj,
  1671. struct intel_ring_buffer *pipelined)
  1672. {
  1673. struct drm_i915_private *dev_priv = dev->dev_private;
  1674. u32 alignment;
  1675. int ret;
  1676. switch (obj->tiling_mode) {
  1677. case I915_TILING_NONE:
  1678. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1679. alignment = 128 * 1024;
  1680. else if (INTEL_INFO(dev)->gen >= 4)
  1681. alignment = 4 * 1024;
  1682. else
  1683. alignment = 64 * 1024;
  1684. break;
  1685. case I915_TILING_X:
  1686. /* pin() will align the object as required by fence */
  1687. alignment = 0;
  1688. break;
  1689. case I915_TILING_Y:
  1690. /* FIXME: Is this true? */
  1691. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1692. return -EINVAL;
  1693. default:
  1694. BUG();
  1695. }
  1696. dev_priv->mm.interruptible = false;
  1697. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1698. if (ret)
  1699. goto err_interruptible;
  1700. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1701. * fence, whereas 965+ only requires a fence if using
  1702. * framebuffer compression. For simplicity, we always install
  1703. * a fence as the cost is not that onerous.
  1704. */
  1705. ret = i915_gem_object_get_fence(obj);
  1706. if (ret)
  1707. goto err_unpin;
  1708. i915_gem_object_pin_fence(obj);
  1709. dev_priv->mm.interruptible = true;
  1710. return 0;
  1711. err_unpin:
  1712. i915_gem_object_unpin(obj);
  1713. err_interruptible:
  1714. dev_priv->mm.interruptible = true;
  1715. return ret;
  1716. }
  1717. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1718. {
  1719. i915_gem_object_unpin_fence(obj);
  1720. i915_gem_object_unpin(obj);
  1721. }
  1722. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1723. * is assumed to be a power-of-two. */
  1724. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1725. unsigned int bpp,
  1726. unsigned int pitch)
  1727. {
  1728. int tile_rows, tiles;
  1729. tile_rows = *y / 8;
  1730. *y %= 8;
  1731. tiles = *x / (512/bpp);
  1732. *x %= 512/bpp;
  1733. return tile_rows * pitch * 8 + tiles * 4096;
  1734. }
  1735. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1736. int x, int y)
  1737. {
  1738. struct drm_device *dev = crtc->dev;
  1739. struct drm_i915_private *dev_priv = dev->dev_private;
  1740. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1741. struct intel_framebuffer *intel_fb;
  1742. struct drm_i915_gem_object *obj;
  1743. int plane = intel_crtc->plane;
  1744. unsigned long linear_offset;
  1745. u32 dspcntr;
  1746. u32 reg;
  1747. switch (plane) {
  1748. case 0:
  1749. case 1:
  1750. break;
  1751. default:
  1752. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1753. return -EINVAL;
  1754. }
  1755. intel_fb = to_intel_framebuffer(fb);
  1756. obj = intel_fb->obj;
  1757. reg = DSPCNTR(plane);
  1758. dspcntr = I915_READ(reg);
  1759. /* Mask out pixel format bits in case we change it */
  1760. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1761. switch (fb->pixel_format) {
  1762. case DRM_FORMAT_C8:
  1763. dspcntr |= DISPPLANE_8BPP;
  1764. break;
  1765. case DRM_FORMAT_XRGB1555:
  1766. case DRM_FORMAT_ARGB1555:
  1767. dspcntr |= DISPPLANE_BGRX555;
  1768. break;
  1769. case DRM_FORMAT_RGB565:
  1770. dspcntr |= DISPPLANE_BGRX565;
  1771. break;
  1772. case DRM_FORMAT_XRGB8888:
  1773. case DRM_FORMAT_ARGB8888:
  1774. dspcntr |= DISPPLANE_BGRX888;
  1775. break;
  1776. case DRM_FORMAT_XBGR8888:
  1777. case DRM_FORMAT_ABGR8888:
  1778. dspcntr |= DISPPLANE_RGBX888;
  1779. break;
  1780. case DRM_FORMAT_XRGB2101010:
  1781. case DRM_FORMAT_ARGB2101010:
  1782. dspcntr |= DISPPLANE_BGRX101010;
  1783. break;
  1784. case DRM_FORMAT_XBGR2101010:
  1785. case DRM_FORMAT_ABGR2101010:
  1786. dspcntr |= DISPPLANE_RGBX101010;
  1787. break;
  1788. default:
  1789. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1790. return -EINVAL;
  1791. }
  1792. if (INTEL_INFO(dev)->gen >= 4) {
  1793. if (obj->tiling_mode != I915_TILING_NONE)
  1794. dspcntr |= DISPPLANE_TILED;
  1795. else
  1796. dspcntr &= ~DISPPLANE_TILED;
  1797. }
  1798. I915_WRITE(reg, dspcntr);
  1799. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1800. if (INTEL_INFO(dev)->gen >= 4) {
  1801. intel_crtc->dspaddr_offset =
  1802. intel_gen4_compute_offset_xtiled(&x, &y,
  1803. fb->bits_per_pixel / 8,
  1804. fb->pitches[0]);
  1805. linear_offset -= intel_crtc->dspaddr_offset;
  1806. } else {
  1807. intel_crtc->dspaddr_offset = linear_offset;
  1808. }
  1809. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1810. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1811. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1812. if (INTEL_INFO(dev)->gen >= 4) {
  1813. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1814. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1815. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1816. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1817. } else
  1818. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1819. POSTING_READ(reg);
  1820. return 0;
  1821. }
  1822. static int ironlake_update_plane(struct drm_crtc *crtc,
  1823. struct drm_framebuffer *fb, int x, int y)
  1824. {
  1825. struct drm_device *dev = crtc->dev;
  1826. struct drm_i915_private *dev_priv = dev->dev_private;
  1827. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1828. struct intel_framebuffer *intel_fb;
  1829. struct drm_i915_gem_object *obj;
  1830. int plane = intel_crtc->plane;
  1831. unsigned long linear_offset;
  1832. u32 dspcntr;
  1833. u32 reg;
  1834. switch (plane) {
  1835. case 0:
  1836. case 1:
  1837. case 2:
  1838. break;
  1839. default:
  1840. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1841. return -EINVAL;
  1842. }
  1843. intel_fb = to_intel_framebuffer(fb);
  1844. obj = intel_fb->obj;
  1845. reg = DSPCNTR(plane);
  1846. dspcntr = I915_READ(reg);
  1847. /* Mask out pixel format bits in case we change it */
  1848. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1849. switch (fb->pixel_format) {
  1850. case DRM_FORMAT_C8:
  1851. dspcntr |= DISPPLANE_8BPP;
  1852. break;
  1853. case DRM_FORMAT_RGB565:
  1854. dspcntr |= DISPPLANE_BGRX565;
  1855. break;
  1856. case DRM_FORMAT_XRGB8888:
  1857. case DRM_FORMAT_ARGB8888:
  1858. dspcntr |= DISPPLANE_BGRX888;
  1859. break;
  1860. case DRM_FORMAT_XBGR8888:
  1861. case DRM_FORMAT_ABGR8888:
  1862. dspcntr |= DISPPLANE_RGBX888;
  1863. break;
  1864. case DRM_FORMAT_XRGB2101010:
  1865. case DRM_FORMAT_ARGB2101010:
  1866. dspcntr |= DISPPLANE_BGRX101010;
  1867. break;
  1868. case DRM_FORMAT_XBGR2101010:
  1869. case DRM_FORMAT_ABGR2101010:
  1870. dspcntr |= DISPPLANE_RGBX101010;
  1871. break;
  1872. default:
  1873. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1874. return -EINVAL;
  1875. }
  1876. if (obj->tiling_mode != I915_TILING_NONE)
  1877. dspcntr |= DISPPLANE_TILED;
  1878. else
  1879. dspcntr &= ~DISPPLANE_TILED;
  1880. /* must disable */
  1881. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1882. I915_WRITE(reg, dspcntr);
  1883. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1884. intel_crtc->dspaddr_offset =
  1885. intel_gen4_compute_offset_xtiled(&x, &y,
  1886. fb->bits_per_pixel / 8,
  1887. fb->pitches[0]);
  1888. linear_offset -= intel_crtc->dspaddr_offset;
  1889. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1890. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1891. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1892. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1893. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1894. if (IS_HASWELL(dev)) {
  1895. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1896. } else {
  1897. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1898. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1899. }
  1900. POSTING_READ(reg);
  1901. return 0;
  1902. }
  1903. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1904. static int
  1905. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1906. int x, int y, enum mode_set_atomic state)
  1907. {
  1908. struct drm_device *dev = crtc->dev;
  1909. struct drm_i915_private *dev_priv = dev->dev_private;
  1910. if (dev_priv->display.disable_fbc)
  1911. dev_priv->display.disable_fbc(dev);
  1912. intel_increase_pllclock(crtc);
  1913. return dev_priv->display.update_plane(crtc, fb, x, y);
  1914. }
  1915. static int
  1916. intel_finish_fb(struct drm_framebuffer *old_fb)
  1917. {
  1918. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1919. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1920. bool was_interruptible = dev_priv->mm.interruptible;
  1921. int ret;
  1922. wait_event(dev_priv->pending_flip_queue,
  1923. atomic_read(&dev_priv->mm.wedged) ||
  1924. atomic_read(&obj->pending_flip) == 0);
  1925. /* Big Hammer, we also need to ensure that any pending
  1926. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1927. * current scanout is retired before unpinning the old
  1928. * framebuffer.
  1929. *
  1930. * This should only fail upon a hung GPU, in which case we
  1931. * can safely continue.
  1932. */
  1933. dev_priv->mm.interruptible = false;
  1934. ret = i915_gem_object_finish_gpu(obj);
  1935. dev_priv->mm.interruptible = was_interruptible;
  1936. return ret;
  1937. }
  1938. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1939. {
  1940. struct drm_device *dev = crtc->dev;
  1941. struct drm_i915_master_private *master_priv;
  1942. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1943. if (!dev->primary->master)
  1944. return;
  1945. master_priv = dev->primary->master->driver_priv;
  1946. if (!master_priv->sarea_priv)
  1947. return;
  1948. switch (intel_crtc->pipe) {
  1949. case 0:
  1950. master_priv->sarea_priv->pipeA_x = x;
  1951. master_priv->sarea_priv->pipeA_y = y;
  1952. break;
  1953. case 1:
  1954. master_priv->sarea_priv->pipeB_x = x;
  1955. master_priv->sarea_priv->pipeB_y = y;
  1956. break;
  1957. default:
  1958. break;
  1959. }
  1960. }
  1961. static int
  1962. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1963. struct drm_framebuffer *fb)
  1964. {
  1965. struct drm_device *dev = crtc->dev;
  1966. struct drm_i915_private *dev_priv = dev->dev_private;
  1967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1968. struct drm_framebuffer *old_fb;
  1969. int ret;
  1970. /* no fb bound */
  1971. if (!fb) {
  1972. DRM_ERROR("No FB bound\n");
  1973. return 0;
  1974. }
  1975. if(intel_crtc->plane > dev_priv->num_pipe) {
  1976. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1977. intel_crtc->plane,
  1978. dev_priv->num_pipe);
  1979. return -EINVAL;
  1980. }
  1981. mutex_lock(&dev->struct_mutex);
  1982. ret = intel_pin_and_fence_fb_obj(dev,
  1983. to_intel_framebuffer(fb)->obj,
  1984. NULL);
  1985. if (ret != 0) {
  1986. mutex_unlock(&dev->struct_mutex);
  1987. DRM_ERROR("pin & fence failed\n");
  1988. return ret;
  1989. }
  1990. if (crtc->fb)
  1991. intel_finish_fb(crtc->fb);
  1992. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1993. if (ret) {
  1994. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1995. mutex_unlock(&dev->struct_mutex);
  1996. DRM_ERROR("failed to update base address\n");
  1997. return ret;
  1998. }
  1999. old_fb = crtc->fb;
  2000. crtc->fb = fb;
  2001. crtc->x = x;
  2002. crtc->y = y;
  2003. if (old_fb) {
  2004. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2005. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2006. }
  2007. intel_update_fbc(dev);
  2008. mutex_unlock(&dev->struct_mutex);
  2009. intel_crtc_update_sarea_pos(crtc, x, y);
  2010. return 0;
  2011. }
  2012. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2013. {
  2014. struct drm_device *dev = crtc->dev;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. u32 dpa_ctl;
  2017. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2018. dpa_ctl = I915_READ(DP_A);
  2019. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2020. if (clock < 200000) {
  2021. u32 temp;
  2022. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2023. /* workaround for 160Mhz:
  2024. 1) program 0x4600c bits 15:0 = 0x8124
  2025. 2) program 0x46010 bit 0 = 1
  2026. 3) program 0x46034 bit 24 = 1
  2027. 4) program 0x64000 bit 14 = 1
  2028. */
  2029. temp = I915_READ(0x4600c);
  2030. temp &= 0xffff0000;
  2031. I915_WRITE(0x4600c, temp | 0x8124);
  2032. temp = I915_READ(0x46010);
  2033. I915_WRITE(0x46010, temp | 1);
  2034. temp = I915_READ(0x46034);
  2035. I915_WRITE(0x46034, temp | (1 << 24));
  2036. } else {
  2037. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2038. }
  2039. I915_WRITE(DP_A, dpa_ctl);
  2040. POSTING_READ(DP_A);
  2041. udelay(500);
  2042. }
  2043. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2044. {
  2045. struct drm_device *dev = crtc->dev;
  2046. struct drm_i915_private *dev_priv = dev->dev_private;
  2047. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2048. int pipe = intel_crtc->pipe;
  2049. u32 reg, temp;
  2050. /* enable normal train */
  2051. reg = FDI_TX_CTL(pipe);
  2052. temp = I915_READ(reg);
  2053. if (IS_IVYBRIDGE(dev)) {
  2054. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2055. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2056. } else {
  2057. temp &= ~FDI_LINK_TRAIN_NONE;
  2058. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2059. }
  2060. I915_WRITE(reg, temp);
  2061. reg = FDI_RX_CTL(pipe);
  2062. temp = I915_READ(reg);
  2063. if (HAS_PCH_CPT(dev)) {
  2064. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2065. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2066. } else {
  2067. temp &= ~FDI_LINK_TRAIN_NONE;
  2068. temp |= FDI_LINK_TRAIN_NONE;
  2069. }
  2070. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2071. /* wait one idle pattern time */
  2072. POSTING_READ(reg);
  2073. udelay(1000);
  2074. /* IVB wants error correction enabled */
  2075. if (IS_IVYBRIDGE(dev))
  2076. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2077. FDI_FE_ERRC_ENABLE);
  2078. }
  2079. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2080. {
  2081. struct drm_i915_private *dev_priv = dev->dev_private;
  2082. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2083. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2084. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2085. flags |= FDI_PHASE_SYNC_EN(pipe);
  2086. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2087. POSTING_READ(SOUTH_CHICKEN1);
  2088. }
  2089. static void ivb_modeset_global_resources(struct drm_device *dev)
  2090. {
  2091. struct drm_i915_private *dev_priv = dev->dev_private;
  2092. struct intel_crtc *pipe_B_crtc =
  2093. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2094. struct intel_crtc *pipe_C_crtc =
  2095. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2096. uint32_t temp;
  2097. /* When everything is off disable fdi C so that we could enable fdi B
  2098. * with all lanes. XXX: This misses the case where a pipe is not using
  2099. * any pch resources and so doesn't need any fdi lanes. */
  2100. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2101. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2102. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2103. temp = I915_READ(SOUTH_CHICKEN1);
  2104. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2105. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2106. I915_WRITE(SOUTH_CHICKEN1, temp);
  2107. }
  2108. }
  2109. /* The FDI link training functions for ILK/Ibexpeak. */
  2110. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2111. {
  2112. struct drm_device *dev = crtc->dev;
  2113. struct drm_i915_private *dev_priv = dev->dev_private;
  2114. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2115. int pipe = intel_crtc->pipe;
  2116. int plane = intel_crtc->plane;
  2117. u32 reg, temp, tries;
  2118. /* FDI needs bits from pipe & plane first */
  2119. assert_pipe_enabled(dev_priv, pipe);
  2120. assert_plane_enabled(dev_priv, plane);
  2121. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2122. for train result */
  2123. reg = FDI_RX_IMR(pipe);
  2124. temp = I915_READ(reg);
  2125. temp &= ~FDI_RX_SYMBOL_LOCK;
  2126. temp &= ~FDI_RX_BIT_LOCK;
  2127. I915_WRITE(reg, temp);
  2128. I915_READ(reg);
  2129. udelay(150);
  2130. /* enable CPU FDI TX and PCH FDI RX */
  2131. reg = FDI_TX_CTL(pipe);
  2132. temp = I915_READ(reg);
  2133. temp &= ~(7 << 19);
  2134. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2135. temp &= ~FDI_LINK_TRAIN_NONE;
  2136. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2137. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2138. reg = FDI_RX_CTL(pipe);
  2139. temp = I915_READ(reg);
  2140. temp &= ~FDI_LINK_TRAIN_NONE;
  2141. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2142. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2143. POSTING_READ(reg);
  2144. udelay(150);
  2145. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2146. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2147. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2148. FDI_RX_PHASE_SYNC_POINTER_EN);
  2149. reg = FDI_RX_IIR(pipe);
  2150. for (tries = 0; tries < 5; tries++) {
  2151. temp = I915_READ(reg);
  2152. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2153. if ((temp & FDI_RX_BIT_LOCK)) {
  2154. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2155. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2156. break;
  2157. }
  2158. }
  2159. if (tries == 5)
  2160. DRM_ERROR("FDI train 1 fail!\n");
  2161. /* Train 2 */
  2162. reg = FDI_TX_CTL(pipe);
  2163. temp = I915_READ(reg);
  2164. temp &= ~FDI_LINK_TRAIN_NONE;
  2165. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2166. I915_WRITE(reg, temp);
  2167. reg = FDI_RX_CTL(pipe);
  2168. temp = I915_READ(reg);
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2171. I915_WRITE(reg, temp);
  2172. POSTING_READ(reg);
  2173. udelay(150);
  2174. reg = FDI_RX_IIR(pipe);
  2175. for (tries = 0; tries < 5; tries++) {
  2176. temp = I915_READ(reg);
  2177. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2178. if (temp & FDI_RX_SYMBOL_LOCK) {
  2179. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2180. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2181. break;
  2182. }
  2183. }
  2184. if (tries == 5)
  2185. DRM_ERROR("FDI train 2 fail!\n");
  2186. DRM_DEBUG_KMS("FDI train done\n");
  2187. }
  2188. static const int snb_b_fdi_train_param[] = {
  2189. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2190. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2191. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2192. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2193. };
  2194. /* The FDI link training functions for SNB/Cougarpoint. */
  2195. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2196. {
  2197. struct drm_device *dev = crtc->dev;
  2198. struct drm_i915_private *dev_priv = dev->dev_private;
  2199. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2200. int pipe = intel_crtc->pipe;
  2201. u32 reg, temp, i, retry;
  2202. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2203. for train result */
  2204. reg = FDI_RX_IMR(pipe);
  2205. temp = I915_READ(reg);
  2206. temp &= ~FDI_RX_SYMBOL_LOCK;
  2207. temp &= ~FDI_RX_BIT_LOCK;
  2208. I915_WRITE(reg, temp);
  2209. POSTING_READ(reg);
  2210. udelay(150);
  2211. /* enable CPU FDI TX and PCH FDI RX */
  2212. reg = FDI_TX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. temp &= ~(7 << 19);
  2215. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2218. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2219. /* SNB-B */
  2220. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2221. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2222. I915_WRITE(FDI_RX_MISC(pipe),
  2223. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2224. reg = FDI_RX_CTL(pipe);
  2225. temp = I915_READ(reg);
  2226. if (HAS_PCH_CPT(dev)) {
  2227. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2229. } else {
  2230. temp &= ~FDI_LINK_TRAIN_NONE;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2232. }
  2233. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2234. POSTING_READ(reg);
  2235. udelay(150);
  2236. cpt_phase_pointer_enable(dev, pipe);
  2237. for (i = 0; i < 4; i++) {
  2238. reg = FDI_TX_CTL(pipe);
  2239. temp = I915_READ(reg);
  2240. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2241. temp |= snb_b_fdi_train_param[i];
  2242. I915_WRITE(reg, temp);
  2243. POSTING_READ(reg);
  2244. udelay(500);
  2245. for (retry = 0; retry < 5; retry++) {
  2246. reg = FDI_RX_IIR(pipe);
  2247. temp = I915_READ(reg);
  2248. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2249. if (temp & FDI_RX_BIT_LOCK) {
  2250. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2251. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2252. break;
  2253. }
  2254. udelay(50);
  2255. }
  2256. if (retry < 5)
  2257. break;
  2258. }
  2259. if (i == 4)
  2260. DRM_ERROR("FDI train 1 fail!\n");
  2261. /* Train 2 */
  2262. reg = FDI_TX_CTL(pipe);
  2263. temp = I915_READ(reg);
  2264. temp &= ~FDI_LINK_TRAIN_NONE;
  2265. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2266. if (IS_GEN6(dev)) {
  2267. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2268. /* SNB-B */
  2269. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2270. }
  2271. I915_WRITE(reg, temp);
  2272. reg = FDI_RX_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. if (HAS_PCH_CPT(dev)) {
  2275. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2276. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2277. } else {
  2278. temp &= ~FDI_LINK_TRAIN_NONE;
  2279. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2280. }
  2281. I915_WRITE(reg, temp);
  2282. POSTING_READ(reg);
  2283. udelay(150);
  2284. for (i = 0; i < 4; i++) {
  2285. reg = FDI_TX_CTL(pipe);
  2286. temp = I915_READ(reg);
  2287. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2288. temp |= snb_b_fdi_train_param[i];
  2289. I915_WRITE(reg, temp);
  2290. POSTING_READ(reg);
  2291. udelay(500);
  2292. for (retry = 0; retry < 5; retry++) {
  2293. reg = FDI_RX_IIR(pipe);
  2294. temp = I915_READ(reg);
  2295. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2296. if (temp & FDI_RX_SYMBOL_LOCK) {
  2297. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2298. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2299. break;
  2300. }
  2301. udelay(50);
  2302. }
  2303. if (retry < 5)
  2304. break;
  2305. }
  2306. if (i == 4)
  2307. DRM_ERROR("FDI train 2 fail!\n");
  2308. DRM_DEBUG_KMS("FDI train done.\n");
  2309. }
  2310. /* Manual link training for Ivy Bridge A0 parts */
  2311. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2312. {
  2313. struct drm_device *dev = crtc->dev;
  2314. struct drm_i915_private *dev_priv = dev->dev_private;
  2315. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2316. int pipe = intel_crtc->pipe;
  2317. u32 reg, temp, i;
  2318. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2319. for train result */
  2320. reg = FDI_RX_IMR(pipe);
  2321. temp = I915_READ(reg);
  2322. temp &= ~FDI_RX_SYMBOL_LOCK;
  2323. temp &= ~FDI_RX_BIT_LOCK;
  2324. I915_WRITE(reg, temp);
  2325. POSTING_READ(reg);
  2326. udelay(150);
  2327. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2328. I915_READ(FDI_RX_IIR(pipe)));
  2329. /* enable CPU FDI TX and PCH FDI RX */
  2330. reg = FDI_TX_CTL(pipe);
  2331. temp = I915_READ(reg);
  2332. temp &= ~(7 << 19);
  2333. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2334. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2335. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2336. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2337. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2338. temp |= FDI_COMPOSITE_SYNC;
  2339. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2340. I915_WRITE(FDI_RX_MISC(pipe),
  2341. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2342. reg = FDI_RX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. temp &= ~FDI_LINK_TRAIN_AUTO;
  2345. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2346. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2347. temp |= FDI_COMPOSITE_SYNC;
  2348. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2349. POSTING_READ(reg);
  2350. udelay(150);
  2351. cpt_phase_pointer_enable(dev, pipe);
  2352. for (i = 0; i < 4; i++) {
  2353. reg = FDI_TX_CTL(pipe);
  2354. temp = I915_READ(reg);
  2355. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2356. temp |= snb_b_fdi_train_param[i];
  2357. I915_WRITE(reg, temp);
  2358. POSTING_READ(reg);
  2359. udelay(500);
  2360. reg = FDI_RX_IIR(pipe);
  2361. temp = I915_READ(reg);
  2362. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2363. if (temp & FDI_RX_BIT_LOCK ||
  2364. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2365. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2366. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2367. break;
  2368. }
  2369. }
  2370. if (i == 4)
  2371. DRM_ERROR("FDI train 1 fail!\n");
  2372. /* Train 2 */
  2373. reg = FDI_TX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2376. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2377. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2378. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2379. I915_WRITE(reg, temp);
  2380. reg = FDI_RX_CTL(pipe);
  2381. temp = I915_READ(reg);
  2382. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2383. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2384. I915_WRITE(reg, temp);
  2385. POSTING_READ(reg);
  2386. udelay(150);
  2387. for (i = 0; i < 4; i++) {
  2388. reg = FDI_TX_CTL(pipe);
  2389. temp = I915_READ(reg);
  2390. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2391. temp |= snb_b_fdi_train_param[i];
  2392. I915_WRITE(reg, temp);
  2393. POSTING_READ(reg);
  2394. udelay(500);
  2395. reg = FDI_RX_IIR(pipe);
  2396. temp = I915_READ(reg);
  2397. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2398. if (temp & FDI_RX_SYMBOL_LOCK) {
  2399. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2400. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2401. break;
  2402. }
  2403. }
  2404. if (i == 4)
  2405. DRM_ERROR("FDI train 2 fail!\n");
  2406. DRM_DEBUG_KMS("FDI train done.\n");
  2407. }
  2408. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2409. {
  2410. struct drm_device *dev = intel_crtc->base.dev;
  2411. struct drm_i915_private *dev_priv = dev->dev_private;
  2412. int pipe = intel_crtc->pipe;
  2413. u32 reg, temp;
  2414. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2415. reg = FDI_RX_CTL(pipe);
  2416. temp = I915_READ(reg);
  2417. temp &= ~((0x7 << 19) | (0x7 << 16));
  2418. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2419. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2420. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2421. POSTING_READ(reg);
  2422. udelay(200);
  2423. /* Switch from Rawclk to PCDclk */
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp | FDI_PCDCLK);
  2426. POSTING_READ(reg);
  2427. udelay(200);
  2428. /* On Haswell, the PLL configuration for ports and pipes is handled
  2429. * separately, as part of DDI setup */
  2430. if (!IS_HASWELL(dev)) {
  2431. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2432. reg = FDI_TX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2435. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2436. POSTING_READ(reg);
  2437. udelay(100);
  2438. }
  2439. }
  2440. }
  2441. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2442. {
  2443. struct drm_device *dev = intel_crtc->base.dev;
  2444. struct drm_i915_private *dev_priv = dev->dev_private;
  2445. int pipe = intel_crtc->pipe;
  2446. u32 reg, temp;
  2447. /* Switch from PCDclk to Rawclk */
  2448. reg = FDI_RX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2451. /* Disable CPU FDI TX PLL */
  2452. reg = FDI_TX_CTL(pipe);
  2453. temp = I915_READ(reg);
  2454. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2455. POSTING_READ(reg);
  2456. udelay(100);
  2457. reg = FDI_RX_CTL(pipe);
  2458. temp = I915_READ(reg);
  2459. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2460. /* Wait for the clocks to turn off. */
  2461. POSTING_READ(reg);
  2462. udelay(100);
  2463. }
  2464. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2465. {
  2466. struct drm_i915_private *dev_priv = dev->dev_private;
  2467. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2468. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2469. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2470. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2471. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2472. POSTING_READ(SOUTH_CHICKEN1);
  2473. }
  2474. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2475. {
  2476. struct drm_device *dev = crtc->dev;
  2477. struct drm_i915_private *dev_priv = dev->dev_private;
  2478. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2479. int pipe = intel_crtc->pipe;
  2480. u32 reg, temp;
  2481. /* disable CPU FDI tx and PCH FDI rx */
  2482. reg = FDI_TX_CTL(pipe);
  2483. temp = I915_READ(reg);
  2484. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2485. POSTING_READ(reg);
  2486. reg = FDI_RX_CTL(pipe);
  2487. temp = I915_READ(reg);
  2488. temp &= ~(0x7 << 16);
  2489. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2490. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2491. POSTING_READ(reg);
  2492. udelay(100);
  2493. /* Ironlake workaround, disable clock pointer after downing FDI */
  2494. if (HAS_PCH_IBX(dev)) {
  2495. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2496. } else if (HAS_PCH_CPT(dev)) {
  2497. cpt_phase_pointer_disable(dev, pipe);
  2498. }
  2499. /* still set train pattern 1 */
  2500. reg = FDI_TX_CTL(pipe);
  2501. temp = I915_READ(reg);
  2502. temp &= ~FDI_LINK_TRAIN_NONE;
  2503. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2504. I915_WRITE(reg, temp);
  2505. reg = FDI_RX_CTL(pipe);
  2506. temp = I915_READ(reg);
  2507. if (HAS_PCH_CPT(dev)) {
  2508. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2509. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2510. } else {
  2511. temp &= ~FDI_LINK_TRAIN_NONE;
  2512. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2513. }
  2514. /* BPC in FDI rx is consistent with that in PIPECONF */
  2515. temp &= ~(0x07 << 16);
  2516. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2517. I915_WRITE(reg, temp);
  2518. POSTING_READ(reg);
  2519. udelay(100);
  2520. }
  2521. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2522. {
  2523. struct drm_device *dev = crtc->dev;
  2524. struct drm_i915_private *dev_priv = dev->dev_private;
  2525. unsigned long flags;
  2526. bool pending;
  2527. if (atomic_read(&dev_priv->mm.wedged))
  2528. return false;
  2529. spin_lock_irqsave(&dev->event_lock, flags);
  2530. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2531. spin_unlock_irqrestore(&dev->event_lock, flags);
  2532. return pending;
  2533. }
  2534. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2535. {
  2536. struct drm_device *dev = crtc->dev;
  2537. struct drm_i915_private *dev_priv = dev->dev_private;
  2538. if (crtc->fb == NULL)
  2539. return;
  2540. wait_event(dev_priv->pending_flip_queue,
  2541. !intel_crtc_has_pending_flip(crtc));
  2542. mutex_lock(&dev->struct_mutex);
  2543. intel_finish_fb(crtc->fb);
  2544. mutex_unlock(&dev->struct_mutex);
  2545. }
  2546. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2547. {
  2548. struct drm_device *dev = crtc->dev;
  2549. struct intel_encoder *intel_encoder;
  2550. /*
  2551. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2552. * must be driven by its own crtc; no sharing is possible.
  2553. */
  2554. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2555. switch (intel_encoder->type) {
  2556. case INTEL_OUTPUT_EDP:
  2557. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2558. return false;
  2559. continue;
  2560. }
  2561. }
  2562. return true;
  2563. }
  2564. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2565. {
  2566. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2567. }
  2568. /* Program iCLKIP clock to the desired frequency */
  2569. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2570. {
  2571. struct drm_device *dev = crtc->dev;
  2572. struct drm_i915_private *dev_priv = dev->dev_private;
  2573. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2574. u32 temp;
  2575. /* It is necessary to ungate the pixclk gate prior to programming
  2576. * the divisors, and gate it back when it is done.
  2577. */
  2578. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2579. /* Disable SSCCTL */
  2580. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2581. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2582. SBI_SSCCTL_DISABLE);
  2583. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2584. if (crtc->mode.clock == 20000) {
  2585. auxdiv = 1;
  2586. divsel = 0x41;
  2587. phaseinc = 0x20;
  2588. } else {
  2589. /* The iCLK virtual clock root frequency is in MHz,
  2590. * but the crtc->mode.clock in in KHz. To get the divisors,
  2591. * it is necessary to divide one by another, so we
  2592. * convert the virtual clock precision to KHz here for higher
  2593. * precision.
  2594. */
  2595. u32 iclk_virtual_root_freq = 172800 * 1000;
  2596. u32 iclk_pi_range = 64;
  2597. u32 desired_divisor, msb_divisor_value, pi_value;
  2598. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2599. msb_divisor_value = desired_divisor / iclk_pi_range;
  2600. pi_value = desired_divisor % iclk_pi_range;
  2601. auxdiv = 0;
  2602. divsel = msb_divisor_value - 2;
  2603. phaseinc = pi_value;
  2604. }
  2605. /* This should not happen with any sane values */
  2606. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2607. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2608. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2609. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2610. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2611. crtc->mode.clock,
  2612. auxdiv,
  2613. divsel,
  2614. phasedir,
  2615. phaseinc);
  2616. /* Program SSCDIVINTPHASE6 */
  2617. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2618. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2619. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2620. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2621. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2622. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2623. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2624. intel_sbi_write(dev_priv,
  2625. SBI_SSCDIVINTPHASE6,
  2626. temp);
  2627. /* Program SSCAUXDIV */
  2628. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2629. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2630. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2631. intel_sbi_write(dev_priv,
  2632. SBI_SSCAUXDIV6,
  2633. temp);
  2634. /* Enable modulator and associated divider */
  2635. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2636. temp &= ~SBI_SSCCTL_DISABLE;
  2637. intel_sbi_write(dev_priv,
  2638. SBI_SSCCTL6,
  2639. temp);
  2640. /* Wait for initialization time */
  2641. udelay(24);
  2642. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2643. }
  2644. /*
  2645. * Enable PCH resources required for PCH ports:
  2646. * - PCH PLLs
  2647. * - FDI training & RX/TX
  2648. * - update transcoder timings
  2649. * - DP transcoding bits
  2650. * - transcoder
  2651. */
  2652. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2653. {
  2654. struct drm_device *dev = crtc->dev;
  2655. struct drm_i915_private *dev_priv = dev->dev_private;
  2656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2657. int pipe = intel_crtc->pipe;
  2658. u32 reg, temp;
  2659. assert_transcoder_disabled(dev_priv, pipe);
  2660. /* Write the TU size bits before fdi link training, so that error
  2661. * detection works. */
  2662. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2663. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2664. /* For PCH output, training FDI link */
  2665. dev_priv->display.fdi_link_train(crtc);
  2666. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2667. * transcoder, and we actually should do this to not upset any PCH
  2668. * transcoder that already use the clock when we share it.
  2669. *
  2670. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2671. * unconditionally resets the pll - we need that to have the right LVDS
  2672. * enable sequence. */
  2673. ironlake_enable_pch_pll(intel_crtc);
  2674. if (HAS_PCH_CPT(dev)) {
  2675. u32 sel;
  2676. temp = I915_READ(PCH_DPLL_SEL);
  2677. switch (pipe) {
  2678. default:
  2679. case 0:
  2680. temp |= TRANSA_DPLL_ENABLE;
  2681. sel = TRANSA_DPLLB_SEL;
  2682. break;
  2683. case 1:
  2684. temp |= TRANSB_DPLL_ENABLE;
  2685. sel = TRANSB_DPLLB_SEL;
  2686. break;
  2687. case 2:
  2688. temp |= TRANSC_DPLL_ENABLE;
  2689. sel = TRANSC_DPLLB_SEL;
  2690. break;
  2691. }
  2692. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2693. temp |= sel;
  2694. else
  2695. temp &= ~sel;
  2696. I915_WRITE(PCH_DPLL_SEL, temp);
  2697. }
  2698. /* set transcoder timing, panel must allow it */
  2699. assert_panel_unlocked(dev_priv, pipe);
  2700. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2701. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2702. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2703. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2704. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2705. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2706. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2707. intel_fdi_normal_train(crtc);
  2708. /* For PCH DP, enable TRANS_DP_CTL */
  2709. if (HAS_PCH_CPT(dev) &&
  2710. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2711. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2712. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2713. reg = TRANS_DP_CTL(pipe);
  2714. temp = I915_READ(reg);
  2715. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2716. TRANS_DP_SYNC_MASK |
  2717. TRANS_DP_BPC_MASK);
  2718. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2719. TRANS_DP_ENH_FRAMING);
  2720. temp |= bpc << 9; /* same format but at 11:9 */
  2721. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2722. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2723. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2724. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2725. switch (intel_trans_dp_port_sel(crtc)) {
  2726. case PCH_DP_B:
  2727. temp |= TRANS_DP_PORT_SEL_B;
  2728. break;
  2729. case PCH_DP_C:
  2730. temp |= TRANS_DP_PORT_SEL_C;
  2731. break;
  2732. case PCH_DP_D:
  2733. temp |= TRANS_DP_PORT_SEL_D;
  2734. break;
  2735. default:
  2736. BUG();
  2737. }
  2738. I915_WRITE(reg, temp);
  2739. }
  2740. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2741. }
  2742. static void lpt_pch_enable(struct drm_crtc *crtc)
  2743. {
  2744. struct drm_device *dev = crtc->dev;
  2745. struct drm_i915_private *dev_priv = dev->dev_private;
  2746. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2747. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2748. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2749. lpt_program_iclkip(crtc);
  2750. /* Set transcoder timing. */
  2751. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2752. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2753. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2754. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2755. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2756. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2757. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2758. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2759. }
  2760. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2761. {
  2762. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2763. if (pll == NULL)
  2764. return;
  2765. if (pll->refcount == 0) {
  2766. WARN(1, "bad PCH PLL refcount\n");
  2767. return;
  2768. }
  2769. --pll->refcount;
  2770. intel_crtc->pch_pll = NULL;
  2771. }
  2772. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2773. {
  2774. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2775. struct intel_pch_pll *pll;
  2776. int i;
  2777. pll = intel_crtc->pch_pll;
  2778. if (pll) {
  2779. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2780. intel_crtc->base.base.id, pll->pll_reg);
  2781. goto prepare;
  2782. }
  2783. if (HAS_PCH_IBX(dev_priv->dev)) {
  2784. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2785. i = intel_crtc->pipe;
  2786. pll = &dev_priv->pch_plls[i];
  2787. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2788. intel_crtc->base.base.id, pll->pll_reg);
  2789. goto found;
  2790. }
  2791. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2792. pll = &dev_priv->pch_plls[i];
  2793. /* Only want to check enabled timings first */
  2794. if (pll->refcount == 0)
  2795. continue;
  2796. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2797. fp == I915_READ(pll->fp0_reg)) {
  2798. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2799. intel_crtc->base.base.id,
  2800. pll->pll_reg, pll->refcount, pll->active);
  2801. goto found;
  2802. }
  2803. }
  2804. /* Ok no matching timings, maybe there's a free one? */
  2805. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2806. pll = &dev_priv->pch_plls[i];
  2807. if (pll->refcount == 0) {
  2808. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2809. intel_crtc->base.base.id, pll->pll_reg);
  2810. goto found;
  2811. }
  2812. }
  2813. return NULL;
  2814. found:
  2815. intel_crtc->pch_pll = pll;
  2816. pll->refcount++;
  2817. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2818. prepare: /* separate function? */
  2819. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2820. /* Wait for the clocks to stabilize before rewriting the regs */
  2821. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2822. POSTING_READ(pll->pll_reg);
  2823. udelay(150);
  2824. I915_WRITE(pll->fp0_reg, fp);
  2825. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2826. pll->on = false;
  2827. return pll;
  2828. }
  2829. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2830. {
  2831. struct drm_i915_private *dev_priv = dev->dev_private;
  2832. int dslreg = PIPEDSL(pipe);
  2833. u32 temp;
  2834. temp = I915_READ(dslreg);
  2835. udelay(500);
  2836. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2837. if (wait_for(I915_READ(dslreg) != temp, 5))
  2838. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2839. }
  2840. }
  2841. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2842. {
  2843. struct drm_device *dev = crtc->dev;
  2844. struct drm_i915_private *dev_priv = dev->dev_private;
  2845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2846. struct intel_encoder *encoder;
  2847. int pipe = intel_crtc->pipe;
  2848. int plane = intel_crtc->plane;
  2849. u32 temp;
  2850. bool is_pch_port;
  2851. WARN_ON(!crtc->enabled);
  2852. if (intel_crtc->active)
  2853. return;
  2854. intel_crtc->active = true;
  2855. intel_update_watermarks(dev);
  2856. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2857. temp = I915_READ(PCH_LVDS);
  2858. if ((temp & LVDS_PORT_EN) == 0)
  2859. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2860. }
  2861. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2862. if (is_pch_port) {
  2863. /* Note: FDI PLL enabling _must_ be done before we enable the
  2864. * cpu pipes, hence this is separate from all the other fdi/pch
  2865. * enabling. */
  2866. ironlake_fdi_pll_enable(intel_crtc);
  2867. } else {
  2868. assert_fdi_tx_disabled(dev_priv, pipe);
  2869. assert_fdi_rx_disabled(dev_priv, pipe);
  2870. }
  2871. for_each_encoder_on_crtc(dev, crtc, encoder)
  2872. if (encoder->pre_enable)
  2873. encoder->pre_enable(encoder);
  2874. /* Enable panel fitting for LVDS */
  2875. if (dev_priv->pch_pf_size &&
  2876. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2877. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2878. /* Force use of hard-coded filter coefficients
  2879. * as some pre-programmed values are broken,
  2880. * e.g. x201.
  2881. */
  2882. if (IS_IVYBRIDGE(dev))
  2883. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2884. PF_PIPE_SEL_IVB(pipe));
  2885. else
  2886. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2887. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2888. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2889. }
  2890. /*
  2891. * On ILK+ LUT must be loaded before the pipe is running but with
  2892. * clocks enabled
  2893. */
  2894. intel_crtc_load_lut(crtc);
  2895. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2896. intel_enable_plane(dev_priv, plane, pipe);
  2897. if (is_pch_port)
  2898. ironlake_pch_enable(crtc);
  2899. mutex_lock(&dev->struct_mutex);
  2900. intel_update_fbc(dev);
  2901. mutex_unlock(&dev->struct_mutex);
  2902. intel_crtc_update_cursor(crtc, true);
  2903. for_each_encoder_on_crtc(dev, crtc, encoder)
  2904. encoder->enable(encoder);
  2905. if (HAS_PCH_CPT(dev))
  2906. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2907. /*
  2908. * There seems to be a race in PCH platform hw (at least on some
  2909. * outputs) where an enabled pipe still completes any pageflip right
  2910. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2911. * as the first vblank happend, everything works as expected. Hence just
  2912. * wait for one vblank before returning to avoid strange things
  2913. * happening.
  2914. */
  2915. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2916. }
  2917. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2918. {
  2919. struct drm_device *dev = crtc->dev;
  2920. struct drm_i915_private *dev_priv = dev->dev_private;
  2921. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2922. struct intel_encoder *encoder;
  2923. int pipe = intel_crtc->pipe;
  2924. int plane = intel_crtc->plane;
  2925. bool is_pch_port;
  2926. WARN_ON(!crtc->enabled);
  2927. if (intel_crtc->active)
  2928. return;
  2929. intel_crtc->active = true;
  2930. intel_update_watermarks(dev);
  2931. is_pch_port = haswell_crtc_driving_pch(crtc);
  2932. if (is_pch_port)
  2933. dev_priv->display.fdi_link_train(crtc);
  2934. for_each_encoder_on_crtc(dev, crtc, encoder)
  2935. if (encoder->pre_enable)
  2936. encoder->pre_enable(encoder);
  2937. intel_ddi_enable_pipe_clock(intel_crtc);
  2938. /* Enable panel fitting for eDP */
  2939. if (dev_priv->pch_pf_size &&
  2940. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2941. /* Force use of hard-coded filter coefficients
  2942. * as some pre-programmed values are broken,
  2943. * e.g. x201.
  2944. */
  2945. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2946. PF_PIPE_SEL_IVB(pipe));
  2947. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2948. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2949. }
  2950. /*
  2951. * On ILK+ LUT must be loaded before the pipe is running but with
  2952. * clocks enabled
  2953. */
  2954. intel_crtc_load_lut(crtc);
  2955. intel_ddi_set_pipe_settings(crtc);
  2956. intel_ddi_enable_pipe_func(crtc);
  2957. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2958. intel_enable_plane(dev_priv, plane, pipe);
  2959. if (is_pch_port)
  2960. lpt_pch_enable(crtc);
  2961. mutex_lock(&dev->struct_mutex);
  2962. intel_update_fbc(dev);
  2963. mutex_unlock(&dev->struct_mutex);
  2964. intel_crtc_update_cursor(crtc, true);
  2965. for_each_encoder_on_crtc(dev, crtc, encoder)
  2966. encoder->enable(encoder);
  2967. /*
  2968. * There seems to be a race in PCH platform hw (at least on some
  2969. * outputs) where an enabled pipe still completes any pageflip right
  2970. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2971. * as the first vblank happend, everything works as expected. Hence just
  2972. * wait for one vblank before returning to avoid strange things
  2973. * happening.
  2974. */
  2975. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2976. }
  2977. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2978. {
  2979. struct drm_device *dev = crtc->dev;
  2980. struct drm_i915_private *dev_priv = dev->dev_private;
  2981. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2982. struct intel_encoder *encoder;
  2983. int pipe = intel_crtc->pipe;
  2984. int plane = intel_crtc->plane;
  2985. u32 reg, temp;
  2986. if (!intel_crtc->active)
  2987. return;
  2988. for_each_encoder_on_crtc(dev, crtc, encoder)
  2989. encoder->disable(encoder);
  2990. intel_crtc_wait_for_pending_flips(crtc);
  2991. drm_vblank_off(dev, pipe);
  2992. intel_crtc_update_cursor(crtc, false);
  2993. intel_disable_plane(dev_priv, plane, pipe);
  2994. if (dev_priv->cfb_plane == plane)
  2995. intel_disable_fbc(dev);
  2996. intel_disable_pipe(dev_priv, pipe);
  2997. /* Disable PF */
  2998. I915_WRITE(PF_CTL(pipe), 0);
  2999. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3000. for_each_encoder_on_crtc(dev, crtc, encoder)
  3001. if (encoder->post_disable)
  3002. encoder->post_disable(encoder);
  3003. ironlake_fdi_disable(crtc);
  3004. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3005. if (HAS_PCH_CPT(dev)) {
  3006. /* disable TRANS_DP_CTL */
  3007. reg = TRANS_DP_CTL(pipe);
  3008. temp = I915_READ(reg);
  3009. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3010. temp |= TRANS_DP_PORT_SEL_NONE;
  3011. I915_WRITE(reg, temp);
  3012. /* disable DPLL_SEL */
  3013. temp = I915_READ(PCH_DPLL_SEL);
  3014. switch (pipe) {
  3015. case 0:
  3016. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3017. break;
  3018. case 1:
  3019. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3020. break;
  3021. case 2:
  3022. /* C shares PLL A or B */
  3023. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3024. break;
  3025. default:
  3026. BUG(); /* wtf */
  3027. }
  3028. I915_WRITE(PCH_DPLL_SEL, temp);
  3029. }
  3030. /* disable PCH DPLL */
  3031. intel_disable_pch_pll(intel_crtc);
  3032. ironlake_fdi_pll_disable(intel_crtc);
  3033. intel_crtc->active = false;
  3034. intel_update_watermarks(dev);
  3035. mutex_lock(&dev->struct_mutex);
  3036. intel_update_fbc(dev);
  3037. mutex_unlock(&dev->struct_mutex);
  3038. }
  3039. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3040. {
  3041. struct drm_device *dev = crtc->dev;
  3042. struct drm_i915_private *dev_priv = dev->dev_private;
  3043. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3044. struct intel_encoder *encoder;
  3045. int pipe = intel_crtc->pipe;
  3046. int plane = intel_crtc->plane;
  3047. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3048. bool is_pch_port;
  3049. if (!intel_crtc->active)
  3050. return;
  3051. is_pch_port = haswell_crtc_driving_pch(crtc);
  3052. for_each_encoder_on_crtc(dev, crtc, encoder)
  3053. encoder->disable(encoder);
  3054. intel_crtc_wait_for_pending_flips(crtc);
  3055. drm_vblank_off(dev, pipe);
  3056. intel_crtc_update_cursor(crtc, false);
  3057. intel_disable_plane(dev_priv, plane, pipe);
  3058. if (dev_priv->cfb_plane == plane)
  3059. intel_disable_fbc(dev);
  3060. intel_disable_pipe(dev_priv, pipe);
  3061. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3062. /* Disable PF */
  3063. I915_WRITE(PF_CTL(pipe), 0);
  3064. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3065. intel_ddi_disable_pipe_clock(intel_crtc);
  3066. for_each_encoder_on_crtc(dev, crtc, encoder)
  3067. if (encoder->post_disable)
  3068. encoder->post_disable(encoder);
  3069. if (is_pch_port) {
  3070. lpt_disable_pch_transcoder(dev_priv);
  3071. intel_ddi_fdi_disable(crtc);
  3072. }
  3073. intel_crtc->active = false;
  3074. intel_update_watermarks(dev);
  3075. mutex_lock(&dev->struct_mutex);
  3076. intel_update_fbc(dev);
  3077. mutex_unlock(&dev->struct_mutex);
  3078. }
  3079. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3080. {
  3081. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3082. intel_put_pch_pll(intel_crtc);
  3083. }
  3084. static void haswell_crtc_off(struct drm_crtc *crtc)
  3085. {
  3086. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3087. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3088. * start using it. */
  3089. intel_crtc->cpu_transcoder = intel_crtc->pipe;
  3090. intel_ddi_put_crtc_pll(crtc);
  3091. }
  3092. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3093. {
  3094. if (!enable && intel_crtc->overlay) {
  3095. struct drm_device *dev = intel_crtc->base.dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. mutex_lock(&dev->struct_mutex);
  3098. dev_priv->mm.interruptible = false;
  3099. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3100. dev_priv->mm.interruptible = true;
  3101. mutex_unlock(&dev->struct_mutex);
  3102. }
  3103. /* Let userspace switch the overlay on again. In most cases userspace
  3104. * has to recompute where to put it anyway.
  3105. */
  3106. }
  3107. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3108. {
  3109. struct drm_device *dev = crtc->dev;
  3110. struct drm_i915_private *dev_priv = dev->dev_private;
  3111. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3112. struct intel_encoder *encoder;
  3113. int pipe = intel_crtc->pipe;
  3114. int plane = intel_crtc->plane;
  3115. WARN_ON(!crtc->enabled);
  3116. if (intel_crtc->active)
  3117. return;
  3118. intel_crtc->active = true;
  3119. intel_update_watermarks(dev);
  3120. intel_enable_pll(dev_priv, pipe);
  3121. intel_enable_pipe(dev_priv, pipe, false);
  3122. intel_enable_plane(dev_priv, plane, pipe);
  3123. intel_crtc_load_lut(crtc);
  3124. intel_update_fbc(dev);
  3125. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3126. intel_crtc_dpms_overlay(intel_crtc, true);
  3127. intel_crtc_update_cursor(crtc, true);
  3128. for_each_encoder_on_crtc(dev, crtc, encoder)
  3129. encoder->enable(encoder);
  3130. }
  3131. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3132. {
  3133. struct drm_device *dev = crtc->dev;
  3134. struct drm_i915_private *dev_priv = dev->dev_private;
  3135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3136. struct intel_encoder *encoder;
  3137. int pipe = intel_crtc->pipe;
  3138. int plane = intel_crtc->plane;
  3139. if (!intel_crtc->active)
  3140. return;
  3141. for_each_encoder_on_crtc(dev, crtc, encoder)
  3142. encoder->disable(encoder);
  3143. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3144. intel_crtc_wait_for_pending_flips(crtc);
  3145. drm_vblank_off(dev, pipe);
  3146. intel_crtc_dpms_overlay(intel_crtc, false);
  3147. intel_crtc_update_cursor(crtc, false);
  3148. if (dev_priv->cfb_plane == plane)
  3149. intel_disable_fbc(dev);
  3150. intel_disable_plane(dev_priv, plane, pipe);
  3151. intel_disable_pipe(dev_priv, pipe);
  3152. intel_disable_pll(dev_priv, pipe);
  3153. intel_crtc->active = false;
  3154. intel_update_fbc(dev);
  3155. intel_update_watermarks(dev);
  3156. }
  3157. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3158. {
  3159. }
  3160. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3161. bool enabled)
  3162. {
  3163. struct drm_device *dev = crtc->dev;
  3164. struct drm_i915_master_private *master_priv;
  3165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3166. int pipe = intel_crtc->pipe;
  3167. if (!dev->primary->master)
  3168. return;
  3169. master_priv = dev->primary->master->driver_priv;
  3170. if (!master_priv->sarea_priv)
  3171. return;
  3172. switch (pipe) {
  3173. case 0:
  3174. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3175. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3176. break;
  3177. case 1:
  3178. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3179. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3180. break;
  3181. default:
  3182. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3183. break;
  3184. }
  3185. }
  3186. /**
  3187. * Sets the power management mode of the pipe and plane.
  3188. */
  3189. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3190. {
  3191. struct drm_device *dev = crtc->dev;
  3192. struct drm_i915_private *dev_priv = dev->dev_private;
  3193. struct intel_encoder *intel_encoder;
  3194. bool enable = false;
  3195. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3196. enable |= intel_encoder->connectors_active;
  3197. if (enable)
  3198. dev_priv->display.crtc_enable(crtc);
  3199. else
  3200. dev_priv->display.crtc_disable(crtc);
  3201. intel_crtc_update_sarea(crtc, enable);
  3202. }
  3203. static void intel_crtc_noop(struct drm_crtc *crtc)
  3204. {
  3205. }
  3206. static void intel_crtc_disable(struct drm_crtc *crtc)
  3207. {
  3208. struct drm_device *dev = crtc->dev;
  3209. struct drm_connector *connector;
  3210. struct drm_i915_private *dev_priv = dev->dev_private;
  3211. /* crtc should still be enabled when we disable it. */
  3212. WARN_ON(!crtc->enabled);
  3213. dev_priv->display.crtc_disable(crtc);
  3214. intel_crtc_update_sarea(crtc, false);
  3215. dev_priv->display.off(crtc);
  3216. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3217. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3218. if (crtc->fb) {
  3219. mutex_lock(&dev->struct_mutex);
  3220. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3221. mutex_unlock(&dev->struct_mutex);
  3222. crtc->fb = NULL;
  3223. }
  3224. /* Update computed state. */
  3225. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3226. if (!connector->encoder || !connector->encoder->crtc)
  3227. continue;
  3228. if (connector->encoder->crtc != crtc)
  3229. continue;
  3230. connector->dpms = DRM_MODE_DPMS_OFF;
  3231. to_intel_encoder(connector->encoder)->connectors_active = false;
  3232. }
  3233. }
  3234. void intel_modeset_disable(struct drm_device *dev)
  3235. {
  3236. struct drm_crtc *crtc;
  3237. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3238. if (crtc->enabled)
  3239. intel_crtc_disable(crtc);
  3240. }
  3241. }
  3242. void intel_encoder_noop(struct drm_encoder *encoder)
  3243. {
  3244. }
  3245. void intel_encoder_destroy(struct drm_encoder *encoder)
  3246. {
  3247. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3248. drm_encoder_cleanup(encoder);
  3249. kfree(intel_encoder);
  3250. }
  3251. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3252. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3253. * state of the entire output pipe. */
  3254. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3255. {
  3256. if (mode == DRM_MODE_DPMS_ON) {
  3257. encoder->connectors_active = true;
  3258. intel_crtc_update_dpms(encoder->base.crtc);
  3259. } else {
  3260. encoder->connectors_active = false;
  3261. intel_crtc_update_dpms(encoder->base.crtc);
  3262. }
  3263. }
  3264. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3265. * internal consistency). */
  3266. static void intel_connector_check_state(struct intel_connector *connector)
  3267. {
  3268. if (connector->get_hw_state(connector)) {
  3269. struct intel_encoder *encoder = connector->encoder;
  3270. struct drm_crtc *crtc;
  3271. bool encoder_enabled;
  3272. enum pipe pipe;
  3273. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3274. connector->base.base.id,
  3275. drm_get_connector_name(&connector->base));
  3276. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3277. "wrong connector dpms state\n");
  3278. WARN(connector->base.encoder != &encoder->base,
  3279. "active connector not linked to encoder\n");
  3280. WARN(!encoder->connectors_active,
  3281. "encoder->connectors_active not set\n");
  3282. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3283. WARN(!encoder_enabled, "encoder not enabled\n");
  3284. if (WARN_ON(!encoder->base.crtc))
  3285. return;
  3286. crtc = encoder->base.crtc;
  3287. WARN(!crtc->enabled, "crtc not enabled\n");
  3288. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3289. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3290. "encoder active on the wrong pipe\n");
  3291. }
  3292. }
  3293. /* Even simpler default implementation, if there's really no special case to
  3294. * consider. */
  3295. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3296. {
  3297. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3298. /* All the simple cases only support two dpms states. */
  3299. if (mode != DRM_MODE_DPMS_ON)
  3300. mode = DRM_MODE_DPMS_OFF;
  3301. if (mode == connector->dpms)
  3302. return;
  3303. connector->dpms = mode;
  3304. /* Only need to change hw state when actually enabled */
  3305. if (encoder->base.crtc)
  3306. intel_encoder_dpms(encoder, mode);
  3307. else
  3308. WARN_ON(encoder->connectors_active != false);
  3309. intel_modeset_check_state(connector->dev);
  3310. }
  3311. /* Simple connector->get_hw_state implementation for encoders that support only
  3312. * one connector and no cloning and hence the encoder state determines the state
  3313. * of the connector. */
  3314. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3315. {
  3316. enum pipe pipe = 0;
  3317. struct intel_encoder *encoder = connector->encoder;
  3318. return encoder->get_hw_state(encoder, &pipe);
  3319. }
  3320. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3321. const struct drm_display_mode *mode,
  3322. struct drm_display_mode *adjusted_mode)
  3323. {
  3324. struct drm_device *dev = crtc->dev;
  3325. if (HAS_PCH_SPLIT(dev)) {
  3326. /* FDI link clock is fixed at 2.7G */
  3327. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3328. return false;
  3329. }
  3330. /* All interlaced capable intel hw wants timings in frames. Note though
  3331. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3332. * timings, so we need to be careful not to clobber these.*/
  3333. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3334. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3335. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3336. * with a hsync front porch of 0.
  3337. */
  3338. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3339. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3340. return false;
  3341. return true;
  3342. }
  3343. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3344. {
  3345. return 400000; /* FIXME */
  3346. }
  3347. static int i945_get_display_clock_speed(struct drm_device *dev)
  3348. {
  3349. return 400000;
  3350. }
  3351. static int i915_get_display_clock_speed(struct drm_device *dev)
  3352. {
  3353. return 333000;
  3354. }
  3355. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3356. {
  3357. return 200000;
  3358. }
  3359. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3360. {
  3361. u16 gcfgc = 0;
  3362. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3363. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3364. return 133000;
  3365. else {
  3366. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3367. case GC_DISPLAY_CLOCK_333_MHZ:
  3368. return 333000;
  3369. default:
  3370. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3371. return 190000;
  3372. }
  3373. }
  3374. }
  3375. static int i865_get_display_clock_speed(struct drm_device *dev)
  3376. {
  3377. return 266000;
  3378. }
  3379. static int i855_get_display_clock_speed(struct drm_device *dev)
  3380. {
  3381. u16 hpllcc = 0;
  3382. /* Assume that the hardware is in the high speed state. This
  3383. * should be the default.
  3384. */
  3385. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3386. case GC_CLOCK_133_200:
  3387. case GC_CLOCK_100_200:
  3388. return 200000;
  3389. case GC_CLOCK_166_250:
  3390. return 250000;
  3391. case GC_CLOCK_100_133:
  3392. return 133000;
  3393. }
  3394. /* Shouldn't happen */
  3395. return 0;
  3396. }
  3397. static int i830_get_display_clock_speed(struct drm_device *dev)
  3398. {
  3399. return 133000;
  3400. }
  3401. struct fdi_m_n {
  3402. u32 tu;
  3403. u32 gmch_m;
  3404. u32 gmch_n;
  3405. u32 link_m;
  3406. u32 link_n;
  3407. };
  3408. static void
  3409. fdi_reduce_ratio(u32 *num, u32 *den)
  3410. {
  3411. while (*num > 0xffffff || *den > 0xffffff) {
  3412. *num >>= 1;
  3413. *den >>= 1;
  3414. }
  3415. }
  3416. static void
  3417. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3418. int link_clock, struct fdi_m_n *m_n)
  3419. {
  3420. m_n->tu = 64; /* default size */
  3421. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3422. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3423. m_n->gmch_n = link_clock * nlanes * 8;
  3424. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3425. m_n->link_m = pixel_clock;
  3426. m_n->link_n = link_clock;
  3427. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3428. }
  3429. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3430. {
  3431. if (i915_panel_use_ssc >= 0)
  3432. return i915_panel_use_ssc != 0;
  3433. return dev_priv->lvds_use_ssc
  3434. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3435. }
  3436. /**
  3437. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3438. * @crtc: CRTC structure
  3439. * @mode: requested mode
  3440. *
  3441. * A pipe may be connected to one or more outputs. Based on the depth of the
  3442. * attached framebuffer, choose a good color depth to use on the pipe.
  3443. *
  3444. * If possible, match the pipe depth to the fb depth. In some cases, this
  3445. * isn't ideal, because the connected output supports a lesser or restricted
  3446. * set of depths. Resolve that here:
  3447. * LVDS typically supports only 6bpc, so clamp down in that case
  3448. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3449. * Displays may support a restricted set as well, check EDID and clamp as
  3450. * appropriate.
  3451. * DP may want to dither down to 6bpc to fit larger modes
  3452. *
  3453. * RETURNS:
  3454. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3455. * true if they don't match).
  3456. */
  3457. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3458. struct drm_framebuffer *fb,
  3459. unsigned int *pipe_bpp,
  3460. struct drm_display_mode *mode)
  3461. {
  3462. struct drm_device *dev = crtc->dev;
  3463. struct drm_i915_private *dev_priv = dev->dev_private;
  3464. struct drm_connector *connector;
  3465. struct intel_encoder *intel_encoder;
  3466. unsigned int display_bpc = UINT_MAX, bpc;
  3467. /* Walk the encoders & connectors on this crtc, get min bpc */
  3468. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3469. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3470. unsigned int lvds_bpc;
  3471. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3472. LVDS_A3_POWER_UP)
  3473. lvds_bpc = 8;
  3474. else
  3475. lvds_bpc = 6;
  3476. if (lvds_bpc < display_bpc) {
  3477. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3478. display_bpc = lvds_bpc;
  3479. }
  3480. continue;
  3481. }
  3482. /* Not one of the known troublemakers, check the EDID */
  3483. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3484. head) {
  3485. if (connector->encoder != &intel_encoder->base)
  3486. continue;
  3487. /* Don't use an invalid EDID bpc value */
  3488. if (connector->display_info.bpc &&
  3489. connector->display_info.bpc < display_bpc) {
  3490. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3491. display_bpc = connector->display_info.bpc;
  3492. }
  3493. }
  3494. /*
  3495. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3496. * through, clamp it down. (Note: >12bpc will be caught below.)
  3497. */
  3498. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3499. if (display_bpc > 8 && display_bpc < 12) {
  3500. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3501. display_bpc = 12;
  3502. } else {
  3503. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3504. display_bpc = 8;
  3505. }
  3506. }
  3507. }
  3508. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3509. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3510. display_bpc = 6;
  3511. }
  3512. /*
  3513. * We could just drive the pipe at the highest bpc all the time and
  3514. * enable dithering as needed, but that costs bandwidth. So choose
  3515. * the minimum value that expresses the full color range of the fb but
  3516. * also stays within the max display bpc discovered above.
  3517. */
  3518. switch (fb->depth) {
  3519. case 8:
  3520. bpc = 8; /* since we go through a colormap */
  3521. break;
  3522. case 15:
  3523. case 16:
  3524. bpc = 6; /* min is 18bpp */
  3525. break;
  3526. case 24:
  3527. bpc = 8;
  3528. break;
  3529. case 30:
  3530. bpc = 10;
  3531. break;
  3532. case 48:
  3533. bpc = 12;
  3534. break;
  3535. default:
  3536. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3537. bpc = min((unsigned int)8, display_bpc);
  3538. break;
  3539. }
  3540. display_bpc = min(display_bpc, bpc);
  3541. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3542. bpc, display_bpc);
  3543. *pipe_bpp = display_bpc * 3;
  3544. return display_bpc != bpc;
  3545. }
  3546. static int vlv_get_refclk(struct drm_crtc *crtc)
  3547. {
  3548. struct drm_device *dev = crtc->dev;
  3549. struct drm_i915_private *dev_priv = dev->dev_private;
  3550. int refclk = 27000; /* for DP & HDMI */
  3551. return 100000; /* only one validated so far */
  3552. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3553. refclk = 96000;
  3554. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3555. if (intel_panel_use_ssc(dev_priv))
  3556. refclk = 100000;
  3557. else
  3558. refclk = 96000;
  3559. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3560. refclk = 100000;
  3561. }
  3562. return refclk;
  3563. }
  3564. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3565. {
  3566. struct drm_device *dev = crtc->dev;
  3567. struct drm_i915_private *dev_priv = dev->dev_private;
  3568. int refclk;
  3569. if (IS_VALLEYVIEW(dev)) {
  3570. refclk = vlv_get_refclk(crtc);
  3571. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3572. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3573. refclk = dev_priv->lvds_ssc_freq * 1000;
  3574. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3575. refclk / 1000);
  3576. } else if (!IS_GEN2(dev)) {
  3577. refclk = 96000;
  3578. } else {
  3579. refclk = 48000;
  3580. }
  3581. return refclk;
  3582. }
  3583. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3584. intel_clock_t *clock)
  3585. {
  3586. /* SDVO TV has fixed PLL values depend on its clock range,
  3587. this mirrors vbios setting. */
  3588. if (adjusted_mode->clock >= 100000
  3589. && adjusted_mode->clock < 140500) {
  3590. clock->p1 = 2;
  3591. clock->p2 = 10;
  3592. clock->n = 3;
  3593. clock->m1 = 16;
  3594. clock->m2 = 8;
  3595. } else if (adjusted_mode->clock >= 140500
  3596. && adjusted_mode->clock <= 200000) {
  3597. clock->p1 = 1;
  3598. clock->p2 = 10;
  3599. clock->n = 6;
  3600. clock->m1 = 12;
  3601. clock->m2 = 8;
  3602. }
  3603. }
  3604. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3605. intel_clock_t *clock,
  3606. intel_clock_t *reduced_clock)
  3607. {
  3608. struct drm_device *dev = crtc->dev;
  3609. struct drm_i915_private *dev_priv = dev->dev_private;
  3610. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3611. int pipe = intel_crtc->pipe;
  3612. u32 fp, fp2 = 0;
  3613. if (IS_PINEVIEW(dev)) {
  3614. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3615. if (reduced_clock)
  3616. fp2 = (1 << reduced_clock->n) << 16 |
  3617. reduced_clock->m1 << 8 | reduced_clock->m2;
  3618. } else {
  3619. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3620. if (reduced_clock)
  3621. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3622. reduced_clock->m2;
  3623. }
  3624. I915_WRITE(FP0(pipe), fp);
  3625. intel_crtc->lowfreq_avail = false;
  3626. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3627. reduced_clock && i915_powersave) {
  3628. I915_WRITE(FP1(pipe), fp2);
  3629. intel_crtc->lowfreq_avail = true;
  3630. } else {
  3631. I915_WRITE(FP1(pipe), fp);
  3632. }
  3633. }
  3634. static void vlv_update_pll(struct drm_crtc *crtc,
  3635. struct drm_display_mode *mode,
  3636. struct drm_display_mode *adjusted_mode,
  3637. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3638. int num_connectors)
  3639. {
  3640. struct drm_device *dev = crtc->dev;
  3641. struct drm_i915_private *dev_priv = dev->dev_private;
  3642. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3643. int pipe = intel_crtc->pipe;
  3644. u32 dpll, mdiv, pdiv;
  3645. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3646. bool is_sdvo;
  3647. u32 temp;
  3648. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3649. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3650. dpll = DPLL_VGA_MODE_DIS;
  3651. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3652. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3653. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3654. I915_WRITE(DPLL(pipe), dpll);
  3655. POSTING_READ(DPLL(pipe));
  3656. bestn = clock->n;
  3657. bestm1 = clock->m1;
  3658. bestm2 = clock->m2;
  3659. bestp1 = clock->p1;
  3660. bestp2 = clock->p2;
  3661. /*
  3662. * In Valleyview PLL and program lane counter registers are exposed
  3663. * through DPIO interface
  3664. */
  3665. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3666. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3667. mdiv |= ((bestn << DPIO_N_SHIFT));
  3668. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3669. mdiv |= (1 << DPIO_K_SHIFT);
  3670. mdiv |= DPIO_ENABLE_CALIBRATION;
  3671. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3672. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3673. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3674. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3675. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3676. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3677. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3678. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3679. dpll |= DPLL_VCO_ENABLE;
  3680. I915_WRITE(DPLL(pipe), dpll);
  3681. POSTING_READ(DPLL(pipe));
  3682. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3683. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3684. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3686. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3687. I915_WRITE(DPLL(pipe), dpll);
  3688. /* Wait for the clocks to stabilize. */
  3689. POSTING_READ(DPLL(pipe));
  3690. udelay(150);
  3691. temp = 0;
  3692. if (is_sdvo) {
  3693. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3694. if (temp > 1)
  3695. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3696. else
  3697. temp = 0;
  3698. }
  3699. I915_WRITE(DPLL_MD(pipe), temp);
  3700. POSTING_READ(DPLL_MD(pipe));
  3701. /* Now program lane control registers */
  3702. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3703. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3704. {
  3705. temp = 0x1000C4;
  3706. if(pipe == 1)
  3707. temp |= (1 << 21);
  3708. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3709. }
  3710. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3711. {
  3712. temp = 0x1000C4;
  3713. if(pipe == 1)
  3714. temp |= (1 << 21);
  3715. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3716. }
  3717. }
  3718. static void i9xx_update_pll(struct drm_crtc *crtc,
  3719. struct drm_display_mode *mode,
  3720. struct drm_display_mode *adjusted_mode,
  3721. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3722. int num_connectors)
  3723. {
  3724. struct drm_device *dev = crtc->dev;
  3725. struct drm_i915_private *dev_priv = dev->dev_private;
  3726. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3727. struct intel_encoder *encoder;
  3728. int pipe = intel_crtc->pipe;
  3729. u32 dpll;
  3730. bool is_sdvo;
  3731. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3732. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3733. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3734. dpll = DPLL_VGA_MODE_DIS;
  3735. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3736. dpll |= DPLLB_MODE_LVDS;
  3737. else
  3738. dpll |= DPLLB_MODE_DAC_SERIAL;
  3739. if (is_sdvo) {
  3740. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3741. if (pixel_multiplier > 1) {
  3742. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3743. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3744. }
  3745. dpll |= DPLL_DVO_HIGH_SPEED;
  3746. }
  3747. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3748. dpll |= DPLL_DVO_HIGH_SPEED;
  3749. /* compute bitmask from p1 value */
  3750. if (IS_PINEVIEW(dev))
  3751. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3752. else {
  3753. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3754. if (IS_G4X(dev) && reduced_clock)
  3755. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3756. }
  3757. switch (clock->p2) {
  3758. case 5:
  3759. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3760. break;
  3761. case 7:
  3762. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3763. break;
  3764. case 10:
  3765. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3766. break;
  3767. case 14:
  3768. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3769. break;
  3770. }
  3771. if (INTEL_INFO(dev)->gen >= 4)
  3772. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3773. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3774. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3775. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3776. /* XXX: just matching BIOS for now */
  3777. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3778. dpll |= 3;
  3779. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3780. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3781. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3782. else
  3783. dpll |= PLL_REF_INPUT_DREFCLK;
  3784. dpll |= DPLL_VCO_ENABLE;
  3785. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3786. POSTING_READ(DPLL(pipe));
  3787. udelay(150);
  3788. for_each_encoder_on_crtc(dev, crtc, encoder)
  3789. if (encoder->pre_pll_enable)
  3790. encoder->pre_pll_enable(encoder);
  3791. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3792. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3793. I915_WRITE(DPLL(pipe), dpll);
  3794. /* Wait for the clocks to stabilize. */
  3795. POSTING_READ(DPLL(pipe));
  3796. udelay(150);
  3797. if (INTEL_INFO(dev)->gen >= 4) {
  3798. u32 temp = 0;
  3799. if (is_sdvo) {
  3800. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3801. if (temp > 1)
  3802. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3803. else
  3804. temp = 0;
  3805. }
  3806. I915_WRITE(DPLL_MD(pipe), temp);
  3807. } else {
  3808. /* The pixel multiplier can only be updated once the
  3809. * DPLL is enabled and the clocks are stable.
  3810. *
  3811. * So write it again.
  3812. */
  3813. I915_WRITE(DPLL(pipe), dpll);
  3814. }
  3815. }
  3816. static void i8xx_update_pll(struct drm_crtc *crtc,
  3817. struct drm_display_mode *adjusted_mode,
  3818. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3819. int num_connectors)
  3820. {
  3821. struct drm_device *dev = crtc->dev;
  3822. struct drm_i915_private *dev_priv = dev->dev_private;
  3823. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3824. struct intel_encoder *encoder;
  3825. int pipe = intel_crtc->pipe;
  3826. u32 dpll;
  3827. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3828. dpll = DPLL_VGA_MODE_DIS;
  3829. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3830. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3831. } else {
  3832. if (clock->p1 == 2)
  3833. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3834. else
  3835. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3836. if (clock->p2 == 4)
  3837. dpll |= PLL_P2_DIVIDE_BY_4;
  3838. }
  3839. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3840. /* XXX: just matching BIOS for now */
  3841. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3842. dpll |= 3;
  3843. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3844. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3845. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3846. else
  3847. dpll |= PLL_REF_INPUT_DREFCLK;
  3848. dpll |= DPLL_VCO_ENABLE;
  3849. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3850. POSTING_READ(DPLL(pipe));
  3851. udelay(150);
  3852. for_each_encoder_on_crtc(dev, crtc, encoder)
  3853. if (encoder->pre_pll_enable)
  3854. encoder->pre_pll_enable(encoder);
  3855. I915_WRITE(DPLL(pipe), dpll);
  3856. /* Wait for the clocks to stabilize. */
  3857. POSTING_READ(DPLL(pipe));
  3858. udelay(150);
  3859. /* The pixel multiplier can only be updated once the
  3860. * DPLL is enabled and the clocks are stable.
  3861. *
  3862. * So write it again.
  3863. */
  3864. I915_WRITE(DPLL(pipe), dpll);
  3865. }
  3866. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3867. struct drm_display_mode *mode,
  3868. struct drm_display_mode *adjusted_mode)
  3869. {
  3870. struct drm_device *dev = intel_crtc->base.dev;
  3871. struct drm_i915_private *dev_priv = dev->dev_private;
  3872. enum pipe pipe = intel_crtc->pipe;
  3873. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3874. uint32_t vsyncshift;
  3875. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3876. /* the chip adds 2 halflines automatically */
  3877. adjusted_mode->crtc_vtotal -= 1;
  3878. adjusted_mode->crtc_vblank_end -= 1;
  3879. vsyncshift = adjusted_mode->crtc_hsync_start
  3880. - adjusted_mode->crtc_htotal / 2;
  3881. } else {
  3882. vsyncshift = 0;
  3883. }
  3884. if (INTEL_INFO(dev)->gen > 3)
  3885. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3886. I915_WRITE(HTOTAL(cpu_transcoder),
  3887. (adjusted_mode->crtc_hdisplay - 1) |
  3888. ((adjusted_mode->crtc_htotal - 1) << 16));
  3889. I915_WRITE(HBLANK(cpu_transcoder),
  3890. (adjusted_mode->crtc_hblank_start - 1) |
  3891. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3892. I915_WRITE(HSYNC(cpu_transcoder),
  3893. (adjusted_mode->crtc_hsync_start - 1) |
  3894. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3895. I915_WRITE(VTOTAL(cpu_transcoder),
  3896. (adjusted_mode->crtc_vdisplay - 1) |
  3897. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3898. I915_WRITE(VBLANK(cpu_transcoder),
  3899. (adjusted_mode->crtc_vblank_start - 1) |
  3900. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3901. I915_WRITE(VSYNC(cpu_transcoder),
  3902. (adjusted_mode->crtc_vsync_start - 1) |
  3903. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3904. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3905. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3906. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3907. * bits. */
  3908. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3909. (pipe == PIPE_B || pipe == PIPE_C))
  3910. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3911. /* pipesrc controls the size that is scaled from, which should
  3912. * always be the user's requested size.
  3913. */
  3914. I915_WRITE(PIPESRC(pipe),
  3915. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3916. }
  3917. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3918. struct drm_display_mode *mode,
  3919. struct drm_display_mode *adjusted_mode,
  3920. int x, int y,
  3921. struct drm_framebuffer *fb)
  3922. {
  3923. struct drm_device *dev = crtc->dev;
  3924. struct drm_i915_private *dev_priv = dev->dev_private;
  3925. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3926. int pipe = intel_crtc->pipe;
  3927. int plane = intel_crtc->plane;
  3928. int refclk, num_connectors = 0;
  3929. intel_clock_t clock, reduced_clock;
  3930. u32 dspcntr, pipeconf;
  3931. bool ok, has_reduced_clock = false, is_sdvo = false;
  3932. bool is_lvds = false, is_tv = false, is_dp = false;
  3933. struct intel_encoder *encoder;
  3934. const intel_limit_t *limit;
  3935. int ret;
  3936. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3937. switch (encoder->type) {
  3938. case INTEL_OUTPUT_LVDS:
  3939. is_lvds = true;
  3940. break;
  3941. case INTEL_OUTPUT_SDVO:
  3942. case INTEL_OUTPUT_HDMI:
  3943. is_sdvo = true;
  3944. if (encoder->needs_tv_clock)
  3945. is_tv = true;
  3946. break;
  3947. case INTEL_OUTPUT_TVOUT:
  3948. is_tv = true;
  3949. break;
  3950. case INTEL_OUTPUT_DISPLAYPORT:
  3951. is_dp = true;
  3952. break;
  3953. }
  3954. num_connectors++;
  3955. }
  3956. refclk = i9xx_get_refclk(crtc, num_connectors);
  3957. /*
  3958. * Returns a set of divisors for the desired target clock with the given
  3959. * refclk, or FALSE. The returned values represent the clock equation:
  3960. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3961. */
  3962. limit = intel_limit(crtc, refclk);
  3963. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3964. &clock);
  3965. if (!ok) {
  3966. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3967. return -EINVAL;
  3968. }
  3969. /* Ensure that the cursor is valid for the new mode before changing... */
  3970. intel_crtc_update_cursor(crtc, true);
  3971. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3972. /*
  3973. * Ensure we match the reduced clock's P to the target clock.
  3974. * If the clocks don't match, we can't switch the display clock
  3975. * by using the FP0/FP1. In such case we will disable the LVDS
  3976. * downclock feature.
  3977. */
  3978. has_reduced_clock = limit->find_pll(limit, crtc,
  3979. dev_priv->lvds_downclock,
  3980. refclk,
  3981. &clock,
  3982. &reduced_clock);
  3983. }
  3984. if (is_sdvo && is_tv)
  3985. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3986. if (IS_GEN2(dev))
  3987. i8xx_update_pll(crtc, adjusted_mode, &clock,
  3988. has_reduced_clock ? &reduced_clock : NULL,
  3989. num_connectors);
  3990. else if (IS_VALLEYVIEW(dev))
  3991. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  3992. has_reduced_clock ? &reduced_clock : NULL,
  3993. num_connectors);
  3994. else
  3995. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3996. has_reduced_clock ? &reduced_clock : NULL,
  3997. num_connectors);
  3998. /* setup pipeconf */
  3999. pipeconf = I915_READ(PIPECONF(pipe));
  4000. /* Set up the display plane register */
  4001. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4002. if (pipe == 0)
  4003. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4004. else
  4005. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4006. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4007. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4008. * core speed.
  4009. *
  4010. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4011. * pipe == 0 check?
  4012. */
  4013. if (mode->clock >
  4014. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4015. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4016. else
  4017. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4018. }
  4019. /* default to 8bpc */
  4020. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4021. if (is_dp) {
  4022. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4023. pipeconf |= PIPECONF_BPP_6 |
  4024. PIPECONF_DITHER_EN |
  4025. PIPECONF_DITHER_TYPE_SP;
  4026. }
  4027. }
  4028. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4029. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4030. pipeconf |= PIPECONF_BPP_6 |
  4031. PIPECONF_ENABLE |
  4032. I965_PIPECONF_ACTIVE;
  4033. }
  4034. }
  4035. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4036. drm_mode_debug_printmodeline(mode);
  4037. if (HAS_PIPE_CXSR(dev)) {
  4038. if (intel_crtc->lowfreq_avail) {
  4039. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4040. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4041. } else {
  4042. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4043. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4044. }
  4045. }
  4046. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4047. if (!IS_GEN2(dev) &&
  4048. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4049. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4050. else
  4051. pipeconf |= PIPECONF_PROGRESSIVE;
  4052. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4053. /* pipesrc and dspsize control the size that is scaled from,
  4054. * which should always be the user's requested size.
  4055. */
  4056. I915_WRITE(DSPSIZE(plane),
  4057. ((mode->vdisplay - 1) << 16) |
  4058. (mode->hdisplay - 1));
  4059. I915_WRITE(DSPPOS(plane), 0);
  4060. I915_WRITE(PIPECONF(pipe), pipeconf);
  4061. POSTING_READ(PIPECONF(pipe));
  4062. intel_enable_pipe(dev_priv, pipe, false);
  4063. intel_wait_for_vblank(dev, pipe);
  4064. I915_WRITE(DSPCNTR(plane), dspcntr);
  4065. POSTING_READ(DSPCNTR(plane));
  4066. ret = intel_pipe_set_base(crtc, x, y, fb);
  4067. intel_update_watermarks(dev);
  4068. return ret;
  4069. }
  4070. /*
  4071. * Initialize reference clocks when the driver loads
  4072. */
  4073. void ironlake_init_pch_refclk(struct drm_device *dev)
  4074. {
  4075. struct drm_i915_private *dev_priv = dev->dev_private;
  4076. struct drm_mode_config *mode_config = &dev->mode_config;
  4077. struct intel_encoder *encoder;
  4078. u32 temp;
  4079. bool has_lvds = false;
  4080. bool has_cpu_edp = false;
  4081. bool has_pch_edp = false;
  4082. bool has_panel = false;
  4083. bool has_ck505 = false;
  4084. bool can_ssc = false;
  4085. /* We need to take the global config into account */
  4086. list_for_each_entry(encoder, &mode_config->encoder_list,
  4087. base.head) {
  4088. switch (encoder->type) {
  4089. case INTEL_OUTPUT_LVDS:
  4090. has_panel = true;
  4091. has_lvds = true;
  4092. break;
  4093. case INTEL_OUTPUT_EDP:
  4094. has_panel = true;
  4095. if (intel_encoder_is_pch_edp(&encoder->base))
  4096. has_pch_edp = true;
  4097. else
  4098. has_cpu_edp = true;
  4099. break;
  4100. }
  4101. }
  4102. if (HAS_PCH_IBX(dev)) {
  4103. has_ck505 = dev_priv->display_clock_mode;
  4104. can_ssc = has_ck505;
  4105. } else {
  4106. has_ck505 = false;
  4107. can_ssc = true;
  4108. }
  4109. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4110. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4111. has_ck505);
  4112. /* Ironlake: try to setup display ref clock before DPLL
  4113. * enabling. This is only under driver's control after
  4114. * PCH B stepping, previous chipset stepping should be
  4115. * ignoring this setting.
  4116. */
  4117. temp = I915_READ(PCH_DREF_CONTROL);
  4118. /* Always enable nonspread source */
  4119. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4120. if (has_ck505)
  4121. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4122. else
  4123. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4124. if (has_panel) {
  4125. temp &= ~DREF_SSC_SOURCE_MASK;
  4126. temp |= DREF_SSC_SOURCE_ENABLE;
  4127. /* SSC must be turned on before enabling the CPU output */
  4128. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4129. DRM_DEBUG_KMS("Using SSC on panel\n");
  4130. temp |= DREF_SSC1_ENABLE;
  4131. } else
  4132. temp &= ~DREF_SSC1_ENABLE;
  4133. /* Get SSC going before enabling the outputs */
  4134. I915_WRITE(PCH_DREF_CONTROL, temp);
  4135. POSTING_READ(PCH_DREF_CONTROL);
  4136. udelay(200);
  4137. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4138. /* Enable CPU source on CPU attached eDP */
  4139. if (has_cpu_edp) {
  4140. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4141. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4142. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4143. }
  4144. else
  4145. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4146. } else
  4147. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4148. I915_WRITE(PCH_DREF_CONTROL, temp);
  4149. POSTING_READ(PCH_DREF_CONTROL);
  4150. udelay(200);
  4151. } else {
  4152. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4153. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4154. /* Turn off CPU output */
  4155. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4156. I915_WRITE(PCH_DREF_CONTROL, temp);
  4157. POSTING_READ(PCH_DREF_CONTROL);
  4158. udelay(200);
  4159. /* Turn off the SSC source */
  4160. temp &= ~DREF_SSC_SOURCE_MASK;
  4161. temp |= DREF_SSC_SOURCE_DISABLE;
  4162. /* Turn off SSC1 */
  4163. temp &= ~ DREF_SSC1_ENABLE;
  4164. I915_WRITE(PCH_DREF_CONTROL, temp);
  4165. POSTING_READ(PCH_DREF_CONTROL);
  4166. udelay(200);
  4167. }
  4168. }
  4169. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4170. {
  4171. struct drm_device *dev = crtc->dev;
  4172. struct drm_i915_private *dev_priv = dev->dev_private;
  4173. struct intel_encoder *encoder;
  4174. struct intel_encoder *edp_encoder = NULL;
  4175. int num_connectors = 0;
  4176. bool is_lvds = false;
  4177. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4178. switch (encoder->type) {
  4179. case INTEL_OUTPUT_LVDS:
  4180. is_lvds = true;
  4181. break;
  4182. case INTEL_OUTPUT_EDP:
  4183. edp_encoder = encoder;
  4184. break;
  4185. }
  4186. num_connectors++;
  4187. }
  4188. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4189. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4190. dev_priv->lvds_ssc_freq);
  4191. return dev_priv->lvds_ssc_freq * 1000;
  4192. }
  4193. return 120000;
  4194. }
  4195. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4196. struct drm_display_mode *adjusted_mode,
  4197. bool dither)
  4198. {
  4199. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4200. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4201. int pipe = intel_crtc->pipe;
  4202. uint32_t val;
  4203. val = I915_READ(PIPECONF(pipe));
  4204. val &= ~PIPE_BPC_MASK;
  4205. switch (intel_crtc->bpp) {
  4206. case 18:
  4207. val |= PIPE_6BPC;
  4208. break;
  4209. case 24:
  4210. val |= PIPE_8BPC;
  4211. break;
  4212. case 30:
  4213. val |= PIPE_10BPC;
  4214. break;
  4215. case 36:
  4216. val |= PIPE_12BPC;
  4217. break;
  4218. default:
  4219. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4220. BUG();
  4221. }
  4222. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4223. if (dither)
  4224. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4225. val &= ~PIPECONF_INTERLACE_MASK;
  4226. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4227. val |= PIPECONF_INTERLACED_ILK;
  4228. else
  4229. val |= PIPECONF_PROGRESSIVE;
  4230. I915_WRITE(PIPECONF(pipe), val);
  4231. POSTING_READ(PIPECONF(pipe));
  4232. }
  4233. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4234. struct drm_display_mode *adjusted_mode,
  4235. bool dither)
  4236. {
  4237. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4238. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4239. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4240. uint32_t val;
  4241. val = I915_READ(PIPECONF(cpu_transcoder));
  4242. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4243. if (dither)
  4244. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4245. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4246. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4247. val |= PIPECONF_INTERLACED_ILK;
  4248. else
  4249. val |= PIPECONF_PROGRESSIVE;
  4250. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4251. POSTING_READ(PIPECONF(cpu_transcoder));
  4252. }
  4253. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4254. struct drm_display_mode *adjusted_mode,
  4255. intel_clock_t *clock,
  4256. bool *has_reduced_clock,
  4257. intel_clock_t *reduced_clock)
  4258. {
  4259. struct drm_device *dev = crtc->dev;
  4260. struct drm_i915_private *dev_priv = dev->dev_private;
  4261. struct intel_encoder *intel_encoder;
  4262. int refclk;
  4263. const intel_limit_t *limit;
  4264. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4265. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4266. switch (intel_encoder->type) {
  4267. case INTEL_OUTPUT_LVDS:
  4268. is_lvds = true;
  4269. break;
  4270. case INTEL_OUTPUT_SDVO:
  4271. case INTEL_OUTPUT_HDMI:
  4272. is_sdvo = true;
  4273. if (intel_encoder->needs_tv_clock)
  4274. is_tv = true;
  4275. break;
  4276. case INTEL_OUTPUT_TVOUT:
  4277. is_tv = true;
  4278. break;
  4279. }
  4280. }
  4281. refclk = ironlake_get_refclk(crtc);
  4282. /*
  4283. * Returns a set of divisors for the desired target clock with the given
  4284. * refclk, or FALSE. The returned values represent the clock equation:
  4285. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4286. */
  4287. limit = intel_limit(crtc, refclk);
  4288. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4289. clock);
  4290. if (!ret)
  4291. return false;
  4292. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4293. /*
  4294. * Ensure we match the reduced clock's P to the target clock.
  4295. * If the clocks don't match, we can't switch the display clock
  4296. * by using the FP0/FP1. In such case we will disable the LVDS
  4297. * downclock feature.
  4298. */
  4299. *has_reduced_clock = limit->find_pll(limit, crtc,
  4300. dev_priv->lvds_downclock,
  4301. refclk,
  4302. clock,
  4303. reduced_clock);
  4304. }
  4305. if (is_sdvo && is_tv)
  4306. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4307. return true;
  4308. }
  4309. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4310. {
  4311. struct drm_i915_private *dev_priv = dev->dev_private;
  4312. uint32_t temp;
  4313. temp = I915_READ(SOUTH_CHICKEN1);
  4314. if (temp & FDI_BC_BIFURCATION_SELECT)
  4315. return;
  4316. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4317. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4318. temp |= FDI_BC_BIFURCATION_SELECT;
  4319. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4320. I915_WRITE(SOUTH_CHICKEN1, temp);
  4321. POSTING_READ(SOUTH_CHICKEN1);
  4322. }
  4323. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4324. {
  4325. struct drm_device *dev = intel_crtc->base.dev;
  4326. struct drm_i915_private *dev_priv = dev->dev_private;
  4327. struct intel_crtc *pipe_B_crtc =
  4328. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4329. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4330. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4331. if (intel_crtc->fdi_lanes > 4) {
  4332. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4333. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4334. /* Clamp lanes to avoid programming the hw with bogus values. */
  4335. intel_crtc->fdi_lanes = 4;
  4336. return false;
  4337. }
  4338. if (dev_priv->num_pipe == 2)
  4339. return true;
  4340. switch (intel_crtc->pipe) {
  4341. case PIPE_A:
  4342. return true;
  4343. case PIPE_B:
  4344. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4345. intel_crtc->fdi_lanes > 2) {
  4346. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4347. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4348. /* Clamp lanes to avoid programming the hw with bogus values. */
  4349. intel_crtc->fdi_lanes = 2;
  4350. return false;
  4351. }
  4352. if (intel_crtc->fdi_lanes > 2)
  4353. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4354. else
  4355. cpt_enable_fdi_bc_bifurcation(dev);
  4356. return true;
  4357. case PIPE_C:
  4358. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4359. if (intel_crtc->fdi_lanes > 2) {
  4360. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4361. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4362. /* Clamp lanes to avoid programming the hw with bogus values. */
  4363. intel_crtc->fdi_lanes = 2;
  4364. return false;
  4365. }
  4366. } else {
  4367. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4368. return false;
  4369. }
  4370. cpt_enable_fdi_bc_bifurcation(dev);
  4371. return true;
  4372. default:
  4373. BUG();
  4374. }
  4375. }
  4376. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4377. struct drm_display_mode *mode,
  4378. struct drm_display_mode *adjusted_mode)
  4379. {
  4380. struct drm_device *dev = crtc->dev;
  4381. struct drm_i915_private *dev_priv = dev->dev_private;
  4382. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4383. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4384. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4385. struct fdi_m_n m_n = {0};
  4386. int target_clock, pixel_multiplier, lane, link_bw;
  4387. bool is_dp = false, is_cpu_edp = false;
  4388. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4389. switch (intel_encoder->type) {
  4390. case INTEL_OUTPUT_DISPLAYPORT:
  4391. is_dp = true;
  4392. break;
  4393. case INTEL_OUTPUT_EDP:
  4394. is_dp = true;
  4395. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4396. is_cpu_edp = true;
  4397. edp_encoder = intel_encoder;
  4398. break;
  4399. }
  4400. }
  4401. /* FDI link */
  4402. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4403. lane = 0;
  4404. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4405. according to current link config */
  4406. if (is_cpu_edp) {
  4407. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4408. } else {
  4409. /* FDI is a binary signal running at ~2.7GHz, encoding
  4410. * each output octet as 10 bits. The actual frequency
  4411. * is stored as a divider into a 100MHz clock, and the
  4412. * mode pixel clock is stored in units of 1KHz.
  4413. * Hence the bw of each lane in terms of the mode signal
  4414. * is:
  4415. */
  4416. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4417. }
  4418. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4419. if (edp_encoder)
  4420. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4421. else if (is_dp)
  4422. target_clock = mode->clock;
  4423. else
  4424. target_clock = adjusted_mode->clock;
  4425. if (!lane) {
  4426. /*
  4427. * Account for spread spectrum to avoid
  4428. * oversubscribing the link. Max center spread
  4429. * is 2.5%; use 5% for safety's sake.
  4430. */
  4431. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4432. lane = bps / (link_bw * 8) + 1;
  4433. }
  4434. intel_crtc->fdi_lanes = lane;
  4435. if (pixel_multiplier > 1)
  4436. link_bw *= pixel_multiplier;
  4437. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4438. &m_n);
  4439. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4440. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4441. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4442. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4443. }
  4444. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4445. struct drm_display_mode *adjusted_mode,
  4446. intel_clock_t *clock, u32 fp)
  4447. {
  4448. struct drm_crtc *crtc = &intel_crtc->base;
  4449. struct drm_device *dev = crtc->dev;
  4450. struct drm_i915_private *dev_priv = dev->dev_private;
  4451. struct intel_encoder *intel_encoder;
  4452. uint32_t dpll;
  4453. int factor, pixel_multiplier, num_connectors = 0;
  4454. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4455. bool is_dp = false, is_cpu_edp = false;
  4456. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4457. switch (intel_encoder->type) {
  4458. case INTEL_OUTPUT_LVDS:
  4459. is_lvds = true;
  4460. break;
  4461. case INTEL_OUTPUT_SDVO:
  4462. case INTEL_OUTPUT_HDMI:
  4463. is_sdvo = true;
  4464. if (intel_encoder->needs_tv_clock)
  4465. is_tv = true;
  4466. break;
  4467. case INTEL_OUTPUT_TVOUT:
  4468. is_tv = true;
  4469. break;
  4470. case INTEL_OUTPUT_DISPLAYPORT:
  4471. is_dp = true;
  4472. break;
  4473. case INTEL_OUTPUT_EDP:
  4474. is_dp = true;
  4475. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4476. is_cpu_edp = true;
  4477. break;
  4478. }
  4479. num_connectors++;
  4480. }
  4481. /* Enable autotuning of the PLL clock (if permissible) */
  4482. factor = 21;
  4483. if (is_lvds) {
  4484. if ((intel_panel_use_ssc(dev_priv) &&
  4485. dev_priv->lvds_ssc_freq == 100) ||
  4486. intel_is_dual_link_lvds(dev))
  4487. factor = 25;
  4488. } else if (is_sdvo && is_tv)
  4489. factor = 20;
  4490. if (clock->m < factor * clock->n)
  4491. fp |= FP_CB_TUNE;
  4492. dpll = 0;
  4493. if (is_lvds)
  4494. dpll |= DPLLB_MODE_LVDS;
  4495. else
  4496. dpll |= DPLLB_MODE_DAC_SERIAL;
  4497. if (is_sdvo) {
  4498. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4499. if (pixel_multiplier > 1) {
  4500. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4501. }
  4502. dpll |= DPLL_DVO_HIGH_SPEED;
  4503. }
  4504. if (is_dp && !is_cpu_edp)
  4505. dpll |= DPLL_DVO_HIGH_SPEED;
  4506. /* compute bitmask from p1 value */
  4507. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4508. /* also FPA1 */
  4509. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4510. switch (clock->p2) {
  4511. case 5:
  4512. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4513. break;
  4514. case 7:
  4515. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4516. break;
  4517. case 10:
  4518. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4519. break;
  4520. case 14:
  4521. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4522. break;
  4523. }
  4524. if (is_sdvo && is_tv)
  4525. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4526. else if (is_tv)
  4527. /* XXX: just matching BIOS for now */
  4528. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4529. dpll |= 3;
  4530. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4531. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4532. else
  4533. dpll |= PLL_REF_INPUT_DREFCLK;
  4534. return dpll;
  4535. }
  4536. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4537. struct drm_display_mode *mode,
  4538. struct drm_display_mode *adjusted_mode,
  4539. int x, int y,
  4540. struct drm_framebuffer *fb)
  4541. {
  4542. struct drm_device *dev = crtc->dev;
  4543. struct drm_i915_private *dev_priv = dev->dev_private;
  4544. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4545. int pipe = intel_crtc->pipe;
  4546. int plane = intel_crtc->plane;
  4547. int num_connectors = 0;
  4548. intel_clock_t clock, reduced_clock;
  4549. u32 dpll, fp = 0, fp2 = 0;
  4550. bool ok, has_reduced_clock = false;
  4551. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4552. struct intel_encoder *encoder;
  4553. u32 temp;
  4554. int ret;
  4555. bool dither, fdi_config_ok;
  4556. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4557. switch (encoder->type) {
  4558. case INTEL_OUTPUT_LVDS:
  4559. is_lvds = true;
  4560. break;
  4561. case INTEL_OUTPUT_DISPLAYPORT:
  4562. is_dp = true;
  4563. break;
  4564. case INTEL_OUTPUT_EDP:
  4565. is_dp = true;
  4566. if (!intel_encoder_is_pch_edp(&encoder->base))
  4567. is_cpu_edp = true;
  4568. break;
  4569. }
  4570. num_connectors++;
  4571. }
  4572. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4573. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4574. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4575. &has_reduced_clock, &reduced_clock);
  4576. if (!ok) {
  4577. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4578. return -EINVAL;
  4579. }
  4580. /* Ensure that the cursor is valid for the new mode before changing... */
  4581. intel_crtc_update_cursor(crtc, true);
  4582. /* determine panel color depth */
  4583. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4584. adjusted_mode);
  4585. if (is_lvds && dev_priv->lvds_dither)
  4586. dither = true;
  4587. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4588. if (has_reduced_clock)
  4589. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4590. reduced_clock.m2;
  4591. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4592. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4593. drm_mode_debug_printmodeline(mode);
  4594. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4595. if (!is_cpu_edp) {
  4596. struct intel_pch_pll *pll;
  4597. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4598. if (pll == NULL) {
  4599. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4600. pipe);
  4601. return -EINVAL;
  4602. }
  4603. } else
  4604. intel_put_pch_pll(intel_crtc);
  4605. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4606. * This is an exception to the general rule that mode_set doesn't turn
  4607. * things on.
  4608. */
  4609. if (is_lvds) {
  4610. temp = I915_READ(PCH_LVDS);
  4611. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4612. if (HAS_PCH_CPT(dev)) {
  4613. temp &= ~PORT_TRANS_SEL_MASK;
  4614. temp |= PORT_TRANS_SEL_CPT(pipe);
  4615. } else {
  4616. if (pipe == 1)
  4617. temp |= LVDS_PIPEB_SELECT;
  4618. else
  4619. temp &= ~LVDS_PIPEB_SELECT;
  4620. }
  4621. /* set the corresponsding LVDS_BORDER bit */
  4622. temp |= dev_priv->lvds_border_bits;
  4623. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4624. * set the DPLLs for dual-channel mode or not.
  4625. */
  4626. if (clock.p2 == 7)
  4627. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4628. else
  4629. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4630. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4631. * appropriately here, but we need to look more thoroughly into how
  4632. * panels behave in the two modes.
  4633. */
  4634. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4635. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4636. temp |= LVDS_HSYNC_POLARITY;
  4637. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4638. temp |= LVDS_VSYNC_POLARITY;
  4639. I915_WRITE(PCH_LVDS, temp);
  4640. }
  4641. if (is_dp && !is_cpu_edp) {
  4642. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4643. } else {
  4644. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4645. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4646. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4647. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4648. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4649. }
  4650. for_each_encoder_on_crtc(dev, crtc, encoder)
  4651. if (encoder->pre_pll_enable)
  4652. encoder->pre_pll_enable(encoder);
  4653. if (intel_crtc->pch_pll) {
  4654. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4655. /* Wait for the clocks to stabilize. */
  4656. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4657. udelay(150);
  4658. /* The pixel multiplier can only be updated once the
  4659. * DPLL is enabled and the clocks are stable.
  4660. *
  4661. * So write it again.
  4662. */
  4663. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4664. }
  4665. intel_crtc->lowfreq_avail = false;
  4666. if (intel_crtc->pch_pll) {
  4667. if (is_lvds && has_reduced_clock && i915_powersave) {
  4668. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4669. intel_crtc->lowfreq_avail = true;
  4670. } else {
  4671. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4672. }
  4673. }
  4674. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4675. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4676. * ironlake_check_fdi_lanes. */
  4677. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4678. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4679. if (is_cpu_edp)
  4680. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4681. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4682. intel_wait_for_vblank(dev, pipe);
  4683. /* Set up the display plane register */
  4684. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4685. POSTING_READ(DSPCNTR(plane));
  4686. ret = intel_pipe_set_base(crtc, x, y, fb);
  4687. intel_update_watermarks(dev);
  4688. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4689. return fdi_config_ok ? ret : -EINVAL;
  4690. }
  4691. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4692. struct drm_display_mode *mode,
  4693. struct drm_display_mode *adjusted_mode,
  4694. int x, int y,
  4695. struct drm_framebuffer *fb)
  4696. {
  4697. struct drm_device *dev = crtc->dev;
  4698. struct drm_i915_private *dev_priv = dev->dev_private;
  4699. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4700. int pipe = intel_crtc->pipe;
  4701. int plane = intel_crtc->plane;
  4702. int num_connectors = 0;
  4703. intel_clock_t clock, reduced_clock;
  4704. u32 dpll = 0, fp = 0, fp2 = 0;
  4705. bool ok, has_reduced_clock = false;
  4706. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4707. struct intel_encoder *encoder;
  4708. u32 temp;
  4709. int ret;
  4710. bool dither;
  4711. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4712. switch (encoder->type) {
  4713. case INTEL_OUTPUT_LVDS:
  4714. is_lvds = true;
  4715. break;
  4716. case INTEL_OUTPUT_DISPLAYPORT:
  4717. is_dp = true;
  4718. break;
  4719. case INTEL_OUTPUT_EDP:
  4720. is_dp = true;
  4721. if (!intel_encoder_is_pch_edp(&encoder->base))
  4722. is_cpu_edp = true;
  4723. break;
  4724. }
  4725. num_connectors++;
  4726. }
  4727. if (is_cpu_edp)
  4728. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4729. else
  4730. intel_crtc->cpu_transcoder = pipe;
  4731. /* We are not sure yet this won't happen. */
  4732. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4733. INTEL_PCH_TYPE(dev));
  4734. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4735. num_connectors, pipe_name(pipe));
  4736. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4737. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4738. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4739. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4740. return -EINVAL;
  4741. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4742. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4743. &has_reduced_clock,
  4744. &reduced_clock);
  4745. if (!ok) {
  4746. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4747. return -EINVAL;
  4748. }
  4749. }
  4750. /* Ensure that the cursor is valid for the new mode before changing... */
  4751. intel_crtc_update_cursor(crtc, true);
  4752. /* determine panel color depth */
  4753. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4754. adjusted_mode);
  4755. if (is_lvds && dev_priv->lvds_dither)
  4756. dither = true;
  4757. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4758. drm_mode_debug_printmodeline(mode);
  4759. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4760. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4761. if (has_reduced_clock)
  4762. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4763. reduced_clock.m2;
  4764. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4765. fp);
  4766. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4767. * own on pre-Haswell/LPT generation */
  4768. if (!is_cpu_edp) {
  4769. struct intel_pch_pll *pll;
  4770. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4771. if (pll == NULL) {
  4772. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4773. pipe);
  4774. return -EINVAL;
  4775. }
  4776. } else
  4777. intel_put_pch_pll(intel_crtc);
  4778. /* The LVDS pin pair needs to be on before the DPLLs are
  4779. * enabled. This is an exception to the general rule that
  4780. * mode_set doesn't turn things on.
  4781. */
  4782. if (is_lvds) {
  4783. temp = I915_READ(PCH_LVDS);
  4784. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4785. if (HAS_PCH_CPT(dev)) {
  4786. temp &= ~PORT_TRANS_SEL_MASK;
  4787. temp |= PORT_TRANS_SEL_CPT(pipe);
  4788. } else {
  4789. if (pipe == 1)
  4790. temp |= LVDS_PIPEB_SELECT;
  4791. else
  4792. temp &= ~LVDS_PIPEB_SELECT;
  4793. }
  4794. /* set the corresponsding LVDS_BORDER bit */
  4795. temp |= dev_priv->lvds_border_bits;
  4796. /* Set the B0-B3 data pairs corresponding to whether
  4797. * we're going to set the DPLLs for dual-channel mode or
  4798. * not.
  4799. */
  4800. if (clock.p2 == 7)
  4801. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4802. else
  4803. temp &= ~(LVDS_B0B3_POWER_UP |
  4804. LVDS_CLKB_POWER_UP);
  4805. /* It would be nice to set 24 vs 18-bit mode
  4806. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4807. * look more thoroughly into how panels behave in the
  4808. * two modes.
  4809. */
  4810. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4811. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4812. temp |= LVDS_HSYNC_POLARITY;
  4813. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4814. temp |= LVDS_VSYNC_POLARITY;
  4815. I915_WRITE(PCH_LVDS, temp);
  4816. }
  4817. }
  4818. if (is_dp && !is_cpu_edp) {
  4819. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4820. } else {
  4821. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4822. /* For non-DP output, clear any trans DP clock recovery
  4823. * setting.*/
  4824. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4825. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4826. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4827. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4828. }
  4829. }
  4830. intel_crtc->lowfreq_avail = false;
  4831. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4832. if (intel_crtc->pch_pll) {
  4833. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4834. /* Wait for the clocks to stabilize. */
  4835. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4836. udelay(150);
  4837. /* The pixel multiplier can only be updated once the
  4838. * DPLL is enabled and the clocks are stable.
  4839. *
  4840. * So write it again.
  4841. */
  4842. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4843. }
  4844. if (intel_crtc->pch_pll) {
  4845. if (is_lvds && has_reduced_clock && i915_powersave) {
  4846. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4847. intel_crtc->lowfreq_avail = true;
  4848. } else {
  4849. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4850. }
  4851. }
  4852. }
  4853. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4854. if (!is_dp || is_cpu_edp)
  4855. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4856. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4857. if (is_cpu_edp)
  4858. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4859. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4860. /* Set up the display plane register */
  4861. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4862. POSTING_READ(DSPCNTR(plane));
  4863. ret = intel_pipe_set_base(crtc, x, y, fb);
  4864. intel_update_watermarks(dev);
  4865. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4866. return ret;
  4867. }
  4868. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4869. struct drm_display_mode *mode,
  4870. struct drm_display_mode *adjusted_mode,
  4871. int x, int y,
  4872. struct drm_framebuffer *fb)
  4873. {
  4874. struct drm_device *dev = crtc->dev;
  4875. struct drm_i915_private *dev_priv = dev->dev_private;
  4876. struct drm_encoder_helper_funcs *encoder_funcs;
  4877. struct intel_encoder *encoder;
  4878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4879. int pipe = intel_crtc->pipe;
  4880. int ret;
  4881. drm_vblank_pre_modeset(dev, pipe);
  4882. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4883. x, y, fb);
  4884. drm_vblank_post_modeset(dev, pipe);
  4885. if (ret != 0)
  4886. return ret;
  4887. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4888. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4889. encoder->base.base.id,
  4890. drm_get_encoder_name(&encoder->base),
  4891. mode->base.id, mode->name);
  4892. encoder_funcs = encoder->base.helper_private;
  4893. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4894. }
  4895. return 0;
  4896. }
  4897. static bool intel_eld_uptodate(struct drm_connector *connector,
  4898. int reg_eldv, uint32_t bits_eldv,
  4899. int reg_elda, uint32_t bits_elda,
  4900. int reg_edid)
  4901. {
  4902. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4903. uint8_t *eld = connector->eld;
  4904. uint32_t i;
  4905. i = I915_READ(reg_eldv);
  4906. i &= bits_eldv;
  4907. if (!eld[0])
  4908. return !i;
  4909. if (!i)
  4910. return false;
  4911. i = I915_READ(reg_elda);
  4912. i &= ~bits_elda;
  4913. I915_WRITE(reg_elda, i);
  4914. for (i = 0; i < eld[2]; i++)
  4915. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4916. return false;
  4917. return true;
  4918. }
  4919. static void g4x_write_eld(struct drm_connector *connector,
  4920. struct drm_crtc *crtc)
  4921. {
  4922. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4923. uint8_t *eld = connector->eld;
  4924. uint32_t eldv;
  4925. uint32_t len;
  4926. uint32_t i;
  4927. i = I915_READ(G4X_AUD_VID_DID);
  4928. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4929. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4930. else
  4931. eldv = G4X_ELDV_DEVCTG;
  4932. if (intel_eld_uptodate(connector,
  4933. G4X_AUD_CNTL_ST, eldv,
  4934. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4935. G4X_HDMIW_HDMIEDID))
  4936. return;
  4937. i = I915_READ(G4X_AUD_CNTL_ST);
  4938. i &= ~(eldv | G4X_ELD_ADDR);
  4939. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4940. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4941. if (!eld[0])
  4942. return;
  4943. len = min_t(uint8_t, eld[2], len);
  4944. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4945. for (i = 0; i < len; i++)
  4946. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4947. i = I915_READ(G4X_AUD_CNTL_ST);
  4948. i |= eldv;
  4949. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4950. }
  4951. static void haswell_write_eld(struct drm_connector *connector,
  4952. struct drm_crtc *crtc)
  4953. {
  4954. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4955. uint8_t *eld = connector->eld;
  4956. struct drm_device *dev = crtc->dev;
  4957. uint32_t eldv;
  4958. uint32_t i;
  4959. int len;
  4960. int pipe = to_intel_crtc(crtc)->pipe;
  4961. int tmp;
  4962. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4963. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4964. int aud_config = HSW_AUD_CFG(pipe);
  4965. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4966. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4967. /* Audio output enable */
  4968. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4969. tmp = I915_READ(aud_cntrl_st2);
  4970. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4971. I915_WRITE(aud_cntrl_st2, tmp);
  4972. /* Wait for 1 vertical blank */
  4973. intel_wait_for_vblank(dev, pipe);
  4974. /* Set ELD valid state */
  4975. tmp = I915_READ(aud_cntrl_st2);
  4976. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4977. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4978. I915_WRITE(aud_cntrl_st2, tmp);
  4979. tmp = I915_READ(aud_cntrl_st2);
  4980. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4981. /* Enable HDMI mode */
  4982. tmp = I915_READ(aud_config);
  4983. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4984. /* clear N_programing_enable and N_value_index */
  4985. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4986. I915_WRITE(aud_config, tmp);
  4987. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4988. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4989. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4990. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4991. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4992. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4993. } else
  4994. I915_WRITE(aud_config, 0);
  4995. if (intel_eld_uptodate(connector,
  4996. aud_cntrl_st2, eldv,
  4997. aud_cntl_st, IBX_ELD_ADDRESS,
  4998. hdmiw_hdmiedid))
  4999. return;
  5000. i = I915_READ(aud_cntrl_st2);
  5001. i &= ~eldv;
  5002. I915_WRITE(aud_cntrl_st2, i);
  5003. if (!eld[0])
  5004. return;
  5005. i = I915_READ(aud_cntl_st);
  5006. i &= ~IBX_ELD_ADDRESS;
  5007. I915_WRITE(aud_cntl_st, i);
  5008. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5009. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5010. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5011. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5012. for (i = 0; i < len; i++)
  5013. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5014. i = I915_READ(aud_cntrl_st2);
  5015. i |= eldv;
  5016. I915_WRITE(aud_cntrl_st2, i);
  5017. }
  5018. static void ironlake_write_eld(struct drm_connector *connector,
  5019. struct drm_crtc *crtc)
  5020. {
  5021. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5022. uint8_t *eld = connector->eld;
  5023. uint32_t eldv;
  5024. uint32_t i;
  5025. int len;
  5026. int hdmiw_hdmiedid;
  5027. int aud_config;
  5028. int aud_cntl_st;
  5029. int aud_cntrl_st2;
  5030. int pipe = to_intel_crtc(crtc)->pipe;
  5031. if (HAS_PCH_IBX(connector->dev)) {
  5032. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5033. aud_config = IBX_AUD_CFG(pipe);
  5034. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5035. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5036. } else {
  5037. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5038. aud_config = CPT_AUD_CFG(pipe);
  5039. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5040. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5041. }
  5042. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5043. i = I915_READ(aud_cntl_st);
  5044. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5045. if (!i) {
  5046. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5047. /* operate blindly on all ports */
  5048. eldv = IBX_ELD_VALIDB;
  5049. eldv |= IBX_ELD_VALIDB << 4;
  5050. eldv |= IBX_ELD_VALIDB << 8;
  5051. } else {
  5052. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5053. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5054. }
  5055. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5056. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5057. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5058. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5059. } else
  5060. I915_WRITE(aud_config, 0);
  5061. if (intel_eld_uptodate(connector,
  5062. aud_cntrl_st2, eldv,
  5063. aud_cntl_st, IBX_ELD_ADDRESS,
  5064. hdmiw_hdmiedid))
  5065. return;
  5066. i = I915_READ(aud_cntrl_st2);
  5067. i &= ~eldv;
  5068. I915_WRITE(aud_cntrl_st2, i);
  5069. if (!eld[0])
  5070. return;
  5071. i = I915_READ(aud_cntl_st);
  5072. i &= ~IBX_ELD_ADDRESS;
  5073. I915_WRITE(aud_cntl_st, i);
  5074. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5075. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5076. for (i = 0; i < len; i++)
  5077. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5078. i = I915_READ(aud_cntrl_st2);
  5079. i |= eldv;
  5080. I915_WRITE(aud_cntrl_st2, i);
  5081. }
  5082. void intel_write_eld(struct drm_encoder *encoder,
  5083. struct drm_display_mode *mode)
  5084. {
  5085. struct drm_crtc *crtc = encoder->crtc;
  5086. struct drm_connector *connector;
  5087. struct drm_device *dev = encoder->dev;
  5088. struct drm_i915_private *dev_priv = dev->dev_private;
  5089. connector = drm_select_eld(encoder, mode);
  5090. if (!connector)
  5091. return;
  5092. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5093. connector->base.id,
  5094. drm_get_connector_name(connector),
  5095. connector->encoder->base.id,
  5096. drm_get_encoder_name(connector->encoder));
  5097. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5098. if (dev_priv->display.write_eld)
  5099. dev_priv->display.write_eld(connector, crtc);
  5100. }
  5101. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5102. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5103. {
  5104. struct drm_device *dev = crtc->dev;
  5105. struct drm_i915_private *dev_priv = dev->dev_private;
  5106. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5107. int palreg = PALETTE(intel_crtc->pipe);
  5108. int i;
  5109. /* The clocks have to be on to load the palette. */
  5110. if (!crtc->enabled || !intel_crtc->active)
  5111. return;
  5112. /* use legacy palette for Ironlake */
  5113. if (HAS_PCH_SPLIT(dev))
  5114. palreg = LGC_PALETTE(intel_crtc->pipe);
  5115. for (i = 0; i < 256; i++) {
  5116. I915_WRITE(palreg + 4 * i,
  5117. (intel_crtc->lut_r[i] << 16) |
  5118. (intel_crtc->lut_g[i] << 8) |
  5119. intel_crtc->lut_b[i]);
  5120. }
  5121. }
  5122. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5123. {
  5124. struct drm_device *dev = crtc->dev;
  5125. struct drm_i915_private *dev_priv = dev->dev_private;
  5126. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5127. bool visible = base != 0;
  5128. u32 cntl;
  5129. if (intel_crtc->cursor_visible == visible)
  5130. return;
  5131. cntl = I915_READ(_CURACNTR);
  5132. if (visible) {
  5133. /* On these chipsets we can only modify the base whilst
  5134. * the cursor is disabled.
  5135. */
  5136. I915_WRITE(_CURABASE, base);
  5137. cntl &= ~(CURSOR_FORMAT_MASK);
  5138. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5139. cntl |= CURSOR_ENABLE |
  5140. CURSOR_GAMMA_ENABLE |
  5141. CURSOR_FORMAT_ARGB;
  5142. } else
  5143. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5144. I915_WRITE(_CURACNTR, cntl);
  5145. intel_crtc->cursor_visible = visible;
  5146. }
  5147. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5148. {
  5149. struct drm_device *dev = crtc->dev;
  5150. struct drm_i915_private *dev_priv = dev->dev_private;
  5151. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5152. int pipe = intel_crtc->pipe;
  5153. bool visible = base != 0;
  5154. if (intel_crtc->cursor_visible != visible) {
  5155. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5156. if (base) {
  5157. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5158. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5159. cntl |= pipe << 28; /* Connect to correct pipe */
  5160. } else {
  5161. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5162. cntl |= CURSOR_MODE_DISABLE;
  5163. }
  5164. I915_WRITE(CURCNTR(pipe), cntl);
  5165. intel_crtc->cursor_visible = visible;
  5166. }
  5167. /* and commit changes on next vblank */
  5168. I915_WRITE(CURBASE(pipe), base);
  5169. }
  5170. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5171. {
  5172. struct drm_device *dev = crtc->dev;
  5173. struct drm_i915_private *dev_priv = dev->dev_private;
  5174. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5175. int pipe = intel_crtc->pipe;
  5176. bool visible = base != 0;
  5177. if (intel_crtc->cursor_visible != visible) {
  5178. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5179. if (base) {
  5180. cntl &= ~CURSOR_MODE;
  5181. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5182. } else {
  5183. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5184. cntl |= CURSOR_MODE_DISABLE;
  5185. }
  5186. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5187. intel_crtc->cursor_visible = visible;
  5188. }
  5189. /* and commit changes on next vblank */
  5190. I915_WRITE(CURBASE_IVB(pipe), base);
  5191. }
  5192. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5193. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5194. bool on)
  5195. {
  5196. struct drm_device *dev = crtc->dev;
  5197. struct drm_i915_private *dev_priv = dev->dev_private;
  5198. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5199. int pipe = intel_crtc->pipe;
  5200. int x = intel_crtc->cursor_x;
  5201. int y = intel_crtc->cursor_y;
  5202. u32 base, pos;
  5203. bool visible;
  5204. pos = 0;
  5205. if (on && crtc->enabled && crtc->fb) {
  5206. base = intel_crtc->cursor_addr;
  5207. if (x > (int) crtc->fb->width)
  5208. base = 0;
  5209. if (y > (int) crtc->fb->height)
  5210. base = 0;
  5211. } else
  5212. base = 0;
  5213. if (x < 0) {
  5214. if (x + intel_crtc->cursor_width < 0)
  5215. base = 0;
  5216. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5217. x = -x;
  5218. }
  5219. pos |= x << CURSOR_X_SHIFT;
  5220. if (y < 0) {
  5221. if (y + intel_crtc->cursor_height < 0)
  5222. base = 0;
  5223. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5224. y = -y;
  5225. }
  5226. pos |= y << CURSOR_Y_SHIFT;
  5227. visible = base != 0;
  5228. if (!visible && !intel_crtc->cursor_visible)
  5229. return;
  5230. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5231. I915_WRITE(CURPOS_IVB(pipe), pos);
  5232. ivb_update_cursor(crtc, base);
  5233. } else {
  5234. I915_WRITE(CURPOS(pipe), pos);
  5235. if (IS_845G(dev) || IS_I865G(dev))
  5236. i845_update_cursor(crtc, base);
  5237. else
  5238. i9xx_update_cursor(crtc, base);
  5239. }
  5240. }
  5241. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5242. struct drm_file *file,
  5243. uint32_t handle,
  5244. uint32_t width, uint32_t height)
  5245. {
  5246. struct drm_device *dev = crtc->dev;
  5247. struct drm_i915_private *dev_priv = dev->dev_private;
  5248. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5249. struct drm_i915_gem_object *obj;
  5250. uint32_t addr;
  5251. int ret;
  5252. /* if we want to turn off the cursor ignore width and height */
  5253. if (!handle) {
  5254. DRM_DEBUG_KMS("cursor off\n");
  5255. addr = 0;
  5256. obj = NULL;
  5257. mutex_lock(&dev->struct_mutex);
  5258. goto finish;
  5259. }
  5260. /* Currently we only support 64x64 cursors */
  5261. if (width != 64 || height != 64) {
  5262. DRM_ERROR("we currently only support 64x64 cursors\n");
  5263. return -EINVAL;
  5264. }
  5265. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5266. if (&obj->base == NULL)
  5267. return -ENOENT;
  5268. if (obj->base.size < width * height * 4) {
  5269. DRM_ERROR("buffer is to small\n");
  5270. ret = -ENOMEM;
  5271. goto fail;
  5272. }
  5273. /* we only need to pin inside GTT if cursor is non-phy */
  5274. mutex_lock(&dev->struct_mutex);
  5275. if (!dev_priv->info->cursor_needs_physical) {
  5276. if (obj->tiling_mode) {
  5277. DRM_ERROR("cursor cannot be tiled\n");
  5278. ret = -EINVAL;
  5279. goto fail_locked;
  5280. }
  5281. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5282. if (ret) {
  5283. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5284. goto fail_locked;
  5285. }
  5286. ret = i915_gem_object_put_fence(obj);
  5287. if (ret) {
  5288. DRM_ERROR("failed to release fence for cursor");
  5289. goto fail_unpin;
  5290. }
  5291. addr = obj->gtt_offset;
  5292. } else {
  5293. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5294. ret = i915_gem_attach_phys_object(dev, obj,
  5295. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5296. align);
  5297. if (ret) {
  5298. DRM_ERROR("failed to attach phys object\n");
  5299. goto fail_locked;
  5300. }
  5301. addr = obj->phys_obj->handle->busaddr;
  5302. }
  5303. if (IS_GEN2(dev))
  5304. I915_WRITE(CURSIZE, (height << 12) | width);
  5305. finish:
  5306. if (intel_crtc->cursor_bo) {
  5307. if (dev_priv->info->cursor_needs_physical) {
  5308. if (intel_crtc->cursor_bo != obj)
  5309. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5310. } else
  5311. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5312. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5313. }
  5314. mutex_unlock(&dev->struct_mutex);
  5315. intel_crtc->cursor_addr = addr;
  5316. intel_crtc->cursor_bo = obj;
  5317. intel_crtc->cursor_width = width;
  5318. intel_crtc->cursor_height = height;
  5319. intel_crtc_update_cursor(crtc, true);
  5320. return 0;
  5321. fail_unpin:
  5322. i915_gem_object_unpin(obj);
  5323. fail_locked:
  5324. mutex_unlock(&dev->struct_mutex);
  5325. fail:
  5326. drm_gem_object_unreference_unlocked(&obj->base);
  5327. return ret;
  5328. }
  5329. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5330. {
  5331. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5332. intel_crtc->cursor_x = x;
  5333. intel_crtc->cursor_y = y;
  5334. intel_crtc_update_cursor(crtc, true);
  5335. return 0;
  5336. }
  5337. /** Sets the color ramps on behalf of RandR */
  5338. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5339. u16 blue, int regno)
  5340. {
  5341. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5342. intel_crtc->lut_r[regno] = red >> 8;
  5343. intel_crtc->lut_g[regno] = green >> 8;
  5344. intel_crtc->lut_b[regno] = blue >> 8;
  5345. }
  5346. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5347. u16 *blue, int regno)
  5348. {
  5349. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5350. *red = intel_crtc->lut_r[regno] << 8;
  5351. *green = intel_crtc->lut_g[regno] << 8;
  5352. *blue = intel_crtc->lut_b[regno] << 8;
  5353. }
  5354. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5355. u16 *blue, uint32_t start, uint32_t size)
  5356. {
  5357. int end = (start + size > 256) ? 256 : start + size, i;
  5358. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5359. for (i = start; i < end; i++) {
  5360. intel_crtc->lut_r[i] = red[i] >> 8;
  5361. intel_crtc->lut_g[i] = green[i] >> 8;
  5362. intel_crtc->lut_b[i] = blue[i] >> 8;
  5363. }
  5364. intel_crtc_load_lut(crtc);
  5365. }
  5366. /**
  5367. * Get a pipe with a simple mode set on it for doing load-based monitor
  5368. * detection.
  5369. *
  5370. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5371. * its requirements. The pipe will be connected to no other encoders.
  5372. *
  5373. * Currently this code will only succeed if there is a pipe with no encoders
  5374. * configured for it. In the future, it could choose to temporarily disable
  5375. * some outputs to free up a pipe for its use.
  5376. *
  5377. * \return crtc, or NULL if no pipes are available.
  5378. */
  5379. /* VESA 640x480x72Hz mode to set on the pipe */
  5380. static struct drm_display_mode load_detect_mode = {
  5381. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5382. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5383. };
  5384. static struct drm_framebuffer *
  5385. intel_framebuffer_create(struct drm_device *dev,
  5386. struct drm_mode_fb_cmd2 *mode_cmd,
  5387. struct drm_i915_gem_object *obj)
  5388. {
  5389. struct intel_framebuffer *intel_fb;
  5390. int ret;
  5391. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5392. if (!intel_fb) {
  5393. drm_gem_object_unreference_unlocked(&obj->base);
  5394. return ERR_PTR(-ENOMEM);
  5395. }
  5396. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5397. if (ret) {
  5398. drm_gem_object_unreference_unlocked(&obj->base);
  5399. kfree(intel_fb);
  5400. return ERR_PTR(ret);
  5401. }
  5402. return &intel_fb->base;
  5403. }
  5404. static u32
  5405. intel_framebuffer_pitch_for_width(int width, int bpp)
  5406. {
  5407. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5408. return ALIGN(pitch, 64);
  5409. }
  5410. static u32
  5411. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5412. {
  5413. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5414. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5415. }
  5416. static struct drm_framebuffer *
  5417. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5418. struct drm_display_mode *mode,
  5419. int depth, int bpp)
  5420. {
  5421. struct drm_i915_gem_object *obj;
  5422. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5423. obj = i915_gem_alloc_object(dev,
  5424. intel_framebuffer_size_for_mode(mode, bpp));
  5425. if (obj == NULL)
  5426. return ERR_PTR(-ENOMEM);
  5427. mode_cmd.width = mode->hdisplay;
  5428. mode_cmd.height = mode->vdisplay;
  5429. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5430. bpp);
  5431. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5432. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5433. }
  5434. static struct drm_framebuffer *
  5435. mode_fits_in_fbdev(struct drm_device *dev,
  5436. struct drm_display_mode *mode)
  5437. {
  5438. struct drm_i915_private *dev_priv = dev->dev_private;
  5439. struct drm_i915_gem_object *obj;
  5440. struct drm_framebuffer *fb;
  5441. if (dev_priv->fbdev == NULL)
  5442. return NULL;
  5443. obj = dev_priv->fbdev->ifb.obj;
  5444. if (obj == NULL)
  5445. return NULL;
  5446. fb = &dev_priv->fbdev->ifb.base;
  5447. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5448. fb->bits_per_pixel))
  5449. return NULL;
  5450. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5451. return NULL;
  5452. return fb;
  5453. }
  5454. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5455. struct drm_display_mode *mode,
  5456. struct intel_load_detect_pipe *old)
  5457. {
  5458. struct intel_crtc *intel_crtc;
  5459. struct intel_encoder *intel_encoder =
  5460. intel_attached_encoder(connector);
  5461. struct drm_crtc *possible_crtc;
  5462. struct drm_encoder *encoder = &intel_encoder->base;
  5463. struct drm_crtc *crtc = NULL;
  5464. struct drm_device *dev = encoder->dev;
  5465. struct drm_framebuffer *fb;
  5466. int i = -1;
  5467. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5468. connector->base.id, drm_get_connector_name(connector),
  5469. encoder->base.id, drm_get_encoder_name(encoder));
  5470. /*
  5471. * Algorithm gets a little messy:
  5472. *
  5473. * - if the connector already has an assigned crtc, use it (but make
  5474. * sure it's on first)
  5475. *
  5476. * - try to find the first unused crtc that can drive this connector,
  5477. * and use that if we find one
  5478. */
  5479. /* See if we already have a CRTC for this connector */
  5480. if (encoder->crtc) {
  5481. crtc = encoder->crtc;
  5482. old->dpms_mode = connector->dpms;
  5483. old->load_detect_temp = false;
  5484. /* Make sure the crtc and connector are running */
  5485. if (connector->dpms != DRM_MODE_DPMS_ON)
  5486. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5487. return true;
  5488. }
  5489. /* Find an unused one (if possible) */
  5490. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5491. i++;
  5492. if (!(encoder->possible_crtcs & (1 << i)))
  5493. continue;
  5494. if (!possible_crtc->enabled) {
  5495. crtc = possible_crtc;
  5496. break;
  5497. }
  5498. }
  5499. /*
  5500. * If we didn't find an unused CRTC, don't use any.
  5501. */
  5502. if (!crtc) {
  5503. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5504. return false;
  5505. }
  5506. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5507. to_intel_connector(connector)->new_encoder = intel_encoder;
  5508. intel_crtc = to_intel_crtc(crtc);
  5509. old->dpms_mode = connector->dpms;
  5510. old->load_detect_temp = true;
  5511. old->release_fb = NULL;
  5512. if (!mode)
  5513. mode = &load_detect_mode;
  5514. /* We need a framebuffer large enough to accommodate all accesses
  5515. * that the plane may generate whilst we perform load detection.
  5516. * We can not rely on the fbcon either being present (we get called
  5517. * during its initialisation to detect all boot displays, or it may
  5518. * not even exist) or that it is large enough to satisfy the
  5519. * requested mode.
  5520. */
  5521. fb = mode_fits_in_fbdev(dev, mode);
  5522. if (fb == NULL) {
  5523. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5524. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5525. old->release_fb = fb;
  5526. } else
  5527. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5528. if (IS_ERR(fb)) {
  5529. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5530. return false;
  5531. }
  5532. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5533. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5534. if (old->release_fb)
  5535. old->release_fb->funcs->destroy(old->release_fb);
  5536. return false;
  5537. }
  5538. /* let the connector get through one full cycle before testing */
  5539. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5540. return true;
  5541. }
  5542. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5543. struct intel_load_detect_pipe *old)
  5544. {
  5545. struct intel_encoder *intel_encoder =
  5546. intel_attached_encoder(connector);
  5547. struct drm_encoder *encoder = &intel_encoder->base;
  5548. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5549. connector->base.id, drm_get_connector_name(connector),
  5550. encoder->base.id, drm_get_encoder_name(encoder));
  5551. if (old->load_detect_temp) {
  5552. struct drm_crtc *crtc = encoder->crtc;
  5553. to_intel_connector(connector)->new_encoder = NULL;
  5554. intel_encoder->new_crtc = NULL;
  5555. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5556. if (old->release_fb)
  5557. old->release_fb->funcs->destroy(old->release_fb);
  5558. return;
  5559. }
  5560. /* Switch crtc and encoder back off if necessary */
  5561. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5562. connector->funcs->dpms(connector, old->dpms_mode);
  5563. }
  5564. /* Returns the clock of the currently programmed mode of the given pipe. */
  5565. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5566. {
  5567. struct drm_i915_private *dev_priv = dev->dev_private;
  5568. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5569. int pipe = intel_crtc->pipe;
  5570. u32 dpll = I915_READ(DPLL(pipe));
  5571. u32 fp;
  5572. intel_clock_t clock;
  5573. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5574. fp = I915_READ(FP0(pipe));
  5575. else
  5576. fp = I915_READ(FP1(pipe));
  5577. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5578. if (IS_PINEVIEW(dev)) {
  5579. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5580. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5581. } else {
  5582. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5583. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5584. }
  5585. if (!IS_GEN2(dev)) {
  5586. if (IS_PINEVIEW(dev))
  5587. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5588. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5589. else
  5590. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5591. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5592. switch (dpll & DPLL_MODE_MASK) {
  5593. case DPLLB_MODE_DAC_SERIAL:
  5594. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5595. 5 : 10;
  5596. break;
  5597. case DPLLB_MODE_LVDS:
  5598. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5599. 7 : 14;
  5600. break;
  5601. default:
  5602. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5603. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5604. return 0;
  5605. }
  5606. /* XXX: Handle the 100Mhz refclk */
  5607. intel_clock(dev, 96000, &clock);
  5608. } else {
  5609. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5610. if (is_lvds) {
  5611. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5612. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5613. clock.p2 = 14;
  5614. if ((dpll & PLL_REF_INPUT_MASK) ==
  5615. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5616. /* XXX: might not be 66MHz */
  5617. intel_clock(dev, 66000, &clock);
  5618. } else
  5619. intel_clock(dev, 48000, &clock);
  5620. } else {
  5621. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5622. clock.p1 = 2;
  5623. else {
  5624. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5625. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5626. }
  5627. if (dpll & PLL_P2_DIVIDE_BY_4)
  5628. clock.p2 = 4;
  5629. else
  5630. clock.p2 = 2;
  5631. intel_clock(dev, 48000, &clock);
  5632. }
  5633. }
  5634. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5635. * i830PllIsValid() because it relies on the xf86_config connector
  5636. * configuration being accurate, which it isn't necessarily.
  5637. */
  5638. return clock.dot;
  5639. }
  5640. /** Returns the currently programmed mode of the given pipe. */
  5641. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5642. struct drm_crtc *crtc)
  5643. {
  5644. struct drm_i915_private *dev_priv = dev->dev_private;
  5645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5646. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5647. struct drm_display_mode *mode;
  5648. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5649. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5650. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5651. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5652. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5653. if (!mode)
  5654. return NULL;
  5655. mode->clock = intel_crtc_clock_get(dev, crtc);
  5656. mode->hdisplay = (htot & 0xffff) + 1;
  5657. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5658. mode->hsync_start = (hsync & 0xffff) + 1;
  5659. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5660. mode->vdisplay = (vtot & 0xffff) + 1;
  5661. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5662. mode->vsync_start = (vsync & 0xffff) + 1;
  5663. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5664. drm_mode_set_name(mode);
  5665. return mode;
  5666. }
  5667. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5668. {
  5669. struct drm_device *dev = crtc->dev;
  5670. drm_i915_private_t *dev_priv = dev->dev_private;
  5671. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5672. int pipe = intel_crtc->pipe;
  5673. int dpll_reg = DPLL(pipe);
  5674. int dpll;
  5675. if (HAS_PCH_SPLIT(dev))
  5676. return;
  5677. if (!dev_priv->lvds_downclock_avail)
  5678. return;
  5679. dpll = I915_READ(dpll_reg);
  5680. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5681. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5682. assert_panel_unlocked(dev_priv, pipe);
  5683. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5684. I915_WRITE(dpll_reg, dpll);
  5685. intel_wait_for_vblank(dev, pipe);
  5686. dpll = I915_READ(dpll_reg);
  5687. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5688. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5689. }
  5690. }
  5691. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5692. {
  5693. struct drm_device *dev = crtc->dev;
  5694. drm_i915_private_t *dev_priv = dev->dev_private;
  5695. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5696. if (HAS_PCH_SPLIT(dev))
  5697. return;
  5698. if (!dev_priv->lvds_downclock_avail)
  5699. return;
  5700. /*
  5701. * Since this is called by a timer, we should never get here in
  5702. * the manual case.
  5703. */
  5704. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5705. int pipe = intel_crtc->pipe;
  5706. int dpll_reg = DPLL(pipe);
  5707. int dpll;
  5708. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5709. assert_panel_unlocked(dev_priv, pipe);
  5710. dpll = I915_READ(dpll_reg);
  5711. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5712. I915_WRITE(dpll_reg, dpll);
  5713. intel_wait_for_vblank(dev, pipe);
  5714. dpll = I915_READ(dpll_reg);
  5715. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5716. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5717. }
  5718. }
  5719. void intel_mark_busy(struct drm_device *dev)
  5720. {
  5721. i915_update_gfx_val(dev->dev_private);
  5722. }
  5723. void intel_mark_idle(struct drm_device *dev)
  5724. {
  5725. }
  5726. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5727. {
  5728. struct drm_device *dev = obj->base.dev;
  5729. struct drm_crtc *crtc;
  5730. if (!i915_powersave)
  5731. return;
  5732. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5733. if (!crtc->fb)
  5734. continue;
  5735. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5736. intel_increase_pllclock(crtc);
  5737. }
  5738. }
  5739. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5740. {
  5741. struct drm_device *dev = obj->base.dev;
  5742. struct drm_crtc *crtc;
  5743. if (!i915_powersave)
  5744. return;
  5745. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5746. if (!crtc->fb)
  5747. continue;
  5748. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5749. intel_decrease_pllclock(crtc);
  5750. }
  5751. }
  5752. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5753. {
  5754. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5755. struct drm_device *dev = crtc->dev;
  5756. struct intel_unpin_work *work;
  5757. unsigned long flags;
  5758. spin_lock_irqsave(&dev->event_lock, flags);
  5759. work = intel_crtc->unpin_work;
  5760. intel_crtc->unpin_work = NULL;
  5761. spin_unlock_irqrestore(&dev->event_lock, flags);
  5762. if (work) {
  5763. cancel_work_sync(&work->work);
  5764. kfree(work);
  5765. }
  5766. drm_crtc_cleanup(crtc);
  5767. kfree(intel_crtc);
  5768. }
  5769. static void intel_unpin_work_fn(struct work_struct *__work)
  5770. {
  5771. struct intel_unpin_work *work =
  5772. container_of(__work, struct intel_unpin_work, work);
  5773. struct drm_device *dev = work->crtc->dev;
  5774. mutex_lock(&dev->struct_mutex);
  5775. intel_unpin_fb_obj(work->old_fb_obj);
  5776. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5777. drm_gem_object_unreference(&work->old_fb_obj->base);
  5778. intel_update_fbc(dev);
  5779. mutex_unlock(&dev->struct_mutex);
  5780. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5781. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5782. kfree(work);
  5783. }
  5784. static void do_intel_finish_page_flip(struct drm_device *dev,
  5785. struct drm_crtc *crtc)
  5786. {
  5787. drm_i915_private_t *dev_priv = dev->dev_private;
  5788. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5789. struct intel_unpin_work *work;
  5790. struct drm_i915_gem_object *obj;
  5791. unsigned long flags;
  5792. /* Ignore early vblank irqs */
  5793. if (intel_crtc == NULL)
  5794. return;
  5795. spin_lock_irqsave(&dev->event_lock, flags);
  5796. work = intel_crtc->unpin_work;
  5797. if (work == NULL || !work->pending) {
  5798. spin_unlock_irqrestore(&dev->event_lock, flags);
  5799. return;
  5800. }
  5801. intel_crtc->unpin_work = NULL;
  5802. if (work->event)
  5803. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5804. drm_vblank_put(dev, intel_crtc->pipe);
  5805. spin_unlock_irqrestore(&dev->event_lock, flags);
  5806. obj = work->old_fb_obj;
  5807. wake_up(&dev_priv->pending_flip_queue);
  5808. queue_work(dev_priv->wq, &work->work);
  5809. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5810. }
  5811. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5812. {
  5813. drm_i915_private_t *dev_priv = dev->dev_private;
  5814. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5815. do_intel_finish_page_flip(dev, crtc);
  5816. }
  5817. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5818. {
  5819. drm_i915_private_t *dev_priv = dev->dev_private;
  5820. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5821. do_intel_finish_page_flip(dev, crtc);
  5822. }
  5823. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5824. {
  5825. drm_i915_private_t *dev_priv = dev->dev_private;
  5826. struct intel_crtc *intel_crtc =
  5827. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5828. unsigned long flags;
  5829. spin_lock_irqsave(&dev->event_lock, flags);
  5830. if (intel_crtc->unpin_work) {
  5831. if ((++intel_crtc->unpin_work->pending) > 1)
  5832. DRM_ERROR("Prepared flip multiple times\n");
  5833. } else {
  5834. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5835. }
  5836. spin_unlock_irqrestore(&dev->event_lock, flags);
  5837. }
  5838. static int intel_gen2_queue_flip(struct drm_device *dev,
  5839. struct drm_crtc *crtc,
  5840. struct drm_framebuffer *fb,
  5841. struct drm_i915_gem_object *obj)
  5842. {
  5843. struct drm_i915_private *dev_priv = dev->dev_private;
  5844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5845. u32 flip_mask;
  5846. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5847. int ret;
  5848. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5849. if (ret)
  5850. goto err;
  5851. ret = intel_ring_begin(ring, 6);
  5852. if (ret)
  5853. goto err_unpin;
  5854. /* Can't queue multiple flips, so wait for the previous
  5855. * one to finish before executing the next.
  5856. */
  5857. if (intel_crtc->plane)
  5858. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5859. else
  5860. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5861. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5862. intel_ring_emit(ring, MI_NOOP);
  5863. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5864. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5865. intel_ring_emit(ring, fb->pitches[0]);
  5866. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5867. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5868. intel_ring_advance(ring);
  5869. return 0;
  5870. err_unpin:
  5871. intel_unpin_fb_obj(obj);
  5872. err:
  5873. return ret;
  5874. }
  5875. static int intel_gen3_queue_flip(struct drm_device *dev,
  5876. struct drm_crtc *crtc,
  5877. struct drm_framebuffer *fb,
  5878. struct drm_i915_gem_object *obj)
  5879. {
  5880. struct drm_i915_private *dev_priv = dev->dev_private;
  5881. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5882. u32 flip_mask;
  5883. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5884. int ret;
  5885. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5886. if (ret)
  5887. goto err;
  5888. ret = intel_ring_begin(ring, 6);
  5889. if (ret)
  5890. goto err_unpin;
  5891. if (intel_crtc->plane)
  5892. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5893. else
  5894. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5895. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5896. intel_ring_emit(ring, MI_NOOP);
  5897. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5898. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5899. intel_ring_emit(ring, fb->pitches[0]);
  5900. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5901. intel_ring_emit(ring, MI_NOOP);
  5902. intel_ring_advance(ring);
  5903. return 0;
  5904. err_unpin:
  5905. intel_unpin_fb_obj(obj);
  5906. err:
  5907. return ret;
  5908. }
  5909. static int intel_gen4_queue_flip(struct drm_device *dev,
  5910. struct drm_crtc *crtc,
  5911. struct drm_framebuffer *fb,
  5912. struct drm_i915_gem_object *obj)
  5913. {
  5914. struct drm_i915_private *dev_priv = dev->dev_private;
  5915. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5916. uint32_t pf, pipesrc;
  5917. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5918. int ret;
  5919. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5920. if (ret)
  5921. goto err;
  5922. ret = intel_ring_begin(ring, 4);
  5923. if (ret)
  5924. goto err_unpin;
  5925. /* i965+ uses the linear or tiled offsets from the
  5926. * Display Registers (which do not change across a page-flip)
  5927. * so we need only reprogram the base address.
  5928. */
  5929. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5930. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5931. intel_ring_emit(ring, fb->pitches[0]);
  5932. intel_ring_emit(ring,
  5933. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5934. obj->tiling_mode);
  5935. /* XXX Enabling the panel-fitter across page-flip is so far
  5936. * untested on non-native modes, so ignore it for now.
  5937. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5938. */
  5939. pf = 0;
  5940. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5941. intel_ring_emit(ring, pf | pipesrc);
  5942. intel_ring_advance(ring);
  5943. return 0;
  5944. err_unpin:
  5945. intel_unpin_fb_obj(obj);
  5946. err:
  5947. return ret;
  5948. }
  5949. static int intel_gen6_queue_flip(struct drm_device *dev,
  5950. struct drm_crtc *crtc,
  5951. struct drm_framebuffer *fb,
  5952. struct drm_i915_gem_object *obj)
  5953. {
  5954. struct drm_i915_private *dev_priv = dev->dev_private;
  5955. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5956. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5957. uint32_t pf, pipesrc;
  5958. int ret;
  5959. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5960. if (ret)
  5961. goto err;
  5962. ret = intel_ring_begin(ring, 4);
  5963. if (ret)
  5964. goto err_unpin;
  5965. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5966. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5967. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5968. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5969. /* Contrary to the suggestions in the documentation,
  5970. * "Enable Panel Fitter" does not seem to be required when page
  5971. * flipping with a non-native mode, and worse causes a normal
  5972. * modeset to fail.
  5973. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5974. */
  5975. pf = 0;
  5976. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5977. intel_ring_emit(ring, pf | pipesrc);
  5978. intel_ring_advance(ring);
  5979. return 0;
  5980. err_unpin:
  5981. intel_unpin_fb_obj(obj);
  5982. err:
  5983. return ret;
  5984. }
  5985. /*
  5986. * On gen7 we currently use the blit ring because (in early silicon at least)
  5987. * the render ring doesn't give us interrpts for page flip completion, which
  5988. * means clients will hang after the first flip is queued. Fortunately the
  5989. * blit ring generates interrupts properly, so use it instead.
  5990. */
  5991. static int intel_gen7_queue_flip(struct drm_device *dev,
  5992. struct drm_crtc *crtc,
  5993. struct drm_framebuffer *fb,
  5994. struct drm_i915_gem_object *obj)
  5995. {
  5996. struct drm_i915_private *dev_priv = dev->dev_private;
  5997. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5998. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5999. uint32_t plane_bit = 0;
  6000. int ret;
  6001. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6002. if (ret)
  6003. goto err;
  6004. switch(intel_crtc->plane) {
  6005. case PLANE_A:
  6006. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6007. break;
  6008. case PLANE_B:
  6009. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6010. break;
  6011. case PLANE_C:
  6012. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6013. break;
  6014. default:
  6015. WARN_ONCE(1, "unknown plane in flip command\n");
  6016. ret = -ENODEV;
  6017. goto err_unpin;
  6018. }
  6019. ret = intel_ring_begin(ring, 4);
  6020. if (ret)
  6021. goto err_unpin;
  6022. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6023. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6024. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6025. intel_ring_emit(ring, (MI_NOOP));
  6026. intel_ring_advance(ring);
  6027. return 0;
  6028. err_unpin:
  6029. intel_unpin_fb_obj(obj);
  6030. err:
  6031. return ret;
  6032. }
  6033. static int intel_default_queue_flip(struct drm_device *dev,
  6034. struct drm_crtc *crtc,
  6035. struct drm_framebuffer *fb,
  6036. struct drm_i915_gem_object *obj)
  6037. {
  6038. return -ENODEV;
  6039. }
  6040. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6041. struct drm_framebuffer *fb,
  6042. struct drm_pending_vblank_event *event)
  6043. {
  6044. struct drm_device *dev = crtc->dev;
  6045. struct drm_i915_private *dev_priv = dev->dev_private;
  6046. struct intel_framebuffer *intel_fb;
  6047. struct drm_i915_gem_object *obj;
  6048. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6049. struct intel_unpin_work *work;
  6050. unsigned long flags;
  6051. int ret;
  6052. /* Can't change pixel format via MI display flips. */
  6053. if (fb->pixel_format != crtc->fb->pixel_format)
  6054. return -EINVAL;
  6055. /*
  6056. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6057. * Note that pitch changes could also affect these register.
  6058. */
  6059. if (INTEL_INFO(dev)->gen > 3 &&
  6060. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6061. fb->pitches[0] != crtc->fb->pitches[0]))
  6062. return -EINVAL;
  6063. work = kzalloc(sizeof *work, GFP_KERNEL);
  6064. if (work == NULL)
  6065. return -ENOMEM;
  6066. work->event = event;
  6067. work->crtc = crtc;
  6068. intel_fb = to_intel_framebuffer(crtc->fb);
  6069. work->old_fb_obj = intel_fb->obj;
  6070. INIT_WORK(&work->work, intel_unpin_work_fn);
  6071. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6072. if (ret)
  6073. goto free_work;
  6074. /* We borrow the event spin lock for protecting unpin_work */
  6075. spin_lock_irqsave(&dev->event_lock, flags);
  6076. if (intel_crtc->unpin_work) {
  6077. spin_unlock_irqrestore(&dev->event_lock, flags);
  6078. kfree(work);
  6079. drm_vblank_put(dev, intel_crtc->pipe);
  6080. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6081. return -EBUSY;
  6082. }
  6083. intel_crtc->unpin_work = work;
  6084. spin_unlock_irqrestore(&dev->event_lock, flags);
  6085. intel_fb = to_intel_framebuffer(fb);
  6086. obj = intel_fb->obj;
  6087. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6088. flush_workqueue(dev_priv->wq);
  6089. ret = i915_mutex_lock_interruptible(dev);
  6090. if (ret)
  6091. goto cleanup;
  6092. /* Reference the objects for the scheduled work. */
  6093. drm_gem_object_reference(&work->old_fb_obj->base);
  6094. drm_gem_object_reference(&obj->base);
  6095. crtc->fb = fb;
  6096. work->pending_flip_obj = obj;
  6097. work->enable_stall_check = true;
  6098. atomic_inc(&intel_crtc->unpin_work_count);
  6099. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6100. if (ret)
  6101. goto cleanup_pending;
  6102. intel_disable_fbc(dev);
  6103. intel_mark_fb_busy(obj);
  6104. mutex_unlock(&dev->struct_mutex);
  6105. trace_i915_flip_request(intel_crtc->plane, obj);
  6106. return 0;
  6107. cleanup_pending:
  6108. atomic_dec(&intel_crtc->unpin_work_count);
  6109. drm_gem_object_unreference(&work->old_fb_obj->base);
  6110. drm_gem_object_unreference(&obj->base);
  6111. mutex_unlock(&dev->struct_mutex);
  6112. cleanup:
  6113. spin_lock_irqsave(&dev->event_lock, flags);
  6114. intel_crtc->unpin_work = NULL;
  6115. spin_unlock_irqrestore(&dev->event_lock, flags);
  6116. drm_vblank_put(dev, intel_crtc->pipe);
  6117. free_work:
  6118. kfree(work);
  6119. return ret;
  6120. }
  6121. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6122. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6123. .load_lut = intel_crtc_load_lut,
  6124. .disable = intel_crtc_noop,
  6125. };
  6126. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6127. {
  6128. struct intel_encoder *other_encoder;
  6129. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6130. if (WARN_ON(!crtc))
  6131. return false;
  6132. list_for_each_entry(other_encoder,
  6133. &crtc->dev->mode_config.encoder_list,
  6134. base.head) {
  6135. if (&other_encoder->new_crtc->base != crtc ||
  6136. encoder == other_encoder)
  6137. continue;
  6138. else
  6139. return true;
  6140. }
  6141. return false;
  6142. }
  6143. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6144. struct drm_crtc *crtc)
  6145. {
  6146. struct drm_device *dev;
  6147. struct drm_crtc *tmp;
  6148. int crtc_mask = 1;
  6149. WARN(!crtc, "checking null crtc?\n");
  6150. dev = crtc->dev;
  6151. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6152. if (tmp == crtc)
  6153. break;
  6154. crtc_mask <<= 1;
  6155. }
  6156. if (encoder->possible_crtcs & crtc_mask)
  6157. return true;
  6158. return false;
  6159. }
  6160. /**
  6161. * intel_modeset_update_staged_output_state
  6162. *
  6163. * Updates the staged output configuration state, e.g. after we've read out the
  6164. * current hw state.
  6165. */
  6166. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6167. {
  6168. struct intel_encoder *encoder;
  6169. struct intel_connector *connector;
  6170. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6171. base.head) {
  6172. connector->new_encoder =
  6173. to_intel_encoder(connector->base.encoder);
  6174. }
  6175. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6176. base.head) {
  6177. encoder->new_crtc =
  6178. to_intel_crtc(encoder->base.crtc);
  6179. }
  6180. }
  6181. /**
  6182. * intel_modeset_commit_output_state
  6183. *
  6184. * This function copies the stage display pipe configuration to the real one.
  6185. */
  6186. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6187. {
  6188. struct intel_encoder *encoder;
  6189. struct intel_connector *connector;
  6190. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6191. base.head) {
  6192. connector->base.encoder = &connector->new_encoder->base;
  6193. }
  6194. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6195. base.head) {
  6196. encoder->base.crtc = &encoder->new_crtc->base;
  6197. }
  6198. }
  6199. static struct drm_display_mode *
  6200. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6201. struct drm_display_mode *mode)
  6202. {
  6203. struct drm_device *dev = crtc->dev;
  6204. struct drm_display_mode *adjusted_mode;
  6205. struct drm_encoder_helper_funcs *encoder_funcs;
  6206. struct intel_encoder *encoder;
  6207. adjusted_mode = drm_mode_duplicate(dev, mode);
  6208. if (!adjusted_mode)
  6209. return ERR_PTR(-ENOMEM);
  6210. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6211. * adjust it according to limitations or connector properties, and also
  6212. * a chance to reject the mode entirely.
  6213. */
  6214. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6215. base.head) {
  6216. if (&encoder->new_crtc->base != crtc)
  6217. continue;
  6218. encoder_funcs = encoder->base.helper_private;
  6219. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6220. adjusted_mode))) {
  6221. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6222. goto fail;
  6223. }
  6224. }
  6225. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6226. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6227. goto fail;
  6228. }
  6229. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6230. return adjusted_mode;
  6231. fail:
  6232. drm_mode_destroy(dev, adjusted_mode);
  6233. return ERR_PTR(-EINVAL);
  6234. }
  6235. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6236. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6237. static void
  6238. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6239. unsigned *prepare_pipes, unsigned *disable_pipes)
  6240. {
  6241. struct intel_crtc *intel_crtc;
  6242. struct drm_device *dev = crtc->dev;
  6243. struct intel_encoder *encoder;
  6244. struct intel_connector *connector;
  6245. struct drm_crtc *tmp_crtc;
  6246. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6247. /* Check which crtcs have changed outputs connected to them, these need
  6248. * to be part of the prepare_pipes mask. We don't (yet) support global
  6249. * modeset across multiple crtcs, so modeset_pipes will only have one
  6250. * bit set at most. */
  6251. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6252. base.head) {
  6253. if (connector->base.encoder == &connector->new_encoder->base)
  6254. continue;
  6255. if (connector->base.encoder) {
  6256. tmp_crtc = connector->base.encoder->crtc;
  6257. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6258. }
  6259. if (connector->new_encoder)
  6260. *prepare_pipes |=
  6261. 1 << connector->new_encoder->new_crtc->pipe;
  6262. }
  6263. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6264. base.head) {
  6265. if (encoder->base.crtc == &encoder->new_crtc->base)
  6266. continue;
  6267. if (encoder->base.crtc) {
  6268. tmp_crtc = encoder->base.crtc;
  6269. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6270. }
  6271. if (encoder->new_crtc)
  6272. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6273. }
  6274. /* Check for any pipes that will be fully disabled ... */
  6275. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6276. base.head) {
  6277. bool used = false;
  6278. /* Don't try to disable disabled crtcs. */
  6279. if (!intel_crtc->base.enabled)
  6280. continue;
  6281. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6282. base.head) {
  6283. if (encoder->new_crtc == intel_crtc)
  6284. used = true;
  6285. }
  6286. if (!used)
  6287. *disable_pipes |= 1 << intel_crtc->pipe;
  6288. }
  6289. /* set_mode is also used to update properties on life display pipes. */
  6290. intel_crtc = to_intel_crtc(crtc);
  6291. if (crtc->enabled)
  6292. *prepare_pipes |= 1 << intel_crtc->pipe;
  6293. /* We only support modeset on one single crtc, hence we need to do that
  6294. * only for the passed in crtc iff we change anything else than just
  6295. * disable crtcs.
  6296. *
  6297. * This is actually not true, to be fully compatible with the old crtc
  6298. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6299. * connected to the crtc we're modesetting on) if it's disconnected.
  6300. * Which is a rather nutty api (since changed the output configuration
  6301. * without userspace's explicit request can lead to confusion), but
  6302. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6303. if (*prepare_pipes)
  6304. *modeset_pipes = *prepare_pipes;
  6305. /* ... and mask these out. */
  6306. *modeset_pipes &= ~(*disable_pipes);
  6307. *prepare_pipes &= ~(*disable_pipes);
  6308. }
  6309. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6310. {
  6311. struct drm_encoder *encoder;
  6312. struct drm_device *dev = crtc->dev;
  6313. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6314. if (encoder->crtc == crtc)
  6315. return true;
  6316. return false;
  6317. }
  6318. static void
  6319. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6320. {
  6321. struct intel_encoder *intel_encoder;
  6322. struct intel_crtc *intel_crtc;
  6323. struct drm_connector *connector;
  6324. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6325. base.head) {
  6326. if (!intel_encoder->base.crtc)
  6327. continue;
  6328. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6329. if (prepare_pipes & (1 << intel_crtc->pipe))
  6330. intel_encoder->connectors_active = false;
  6331. }
  6332. intel_modeset_commit_output_state(dev);
  6333. /* Update computed state. */
  6334. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6335. base.head) {
  6336. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6337. }
  6338. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6339. if (!connector->encoder || !connector->encoder->crtc)
  6340. continue;
  6341. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6342. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6343. struct drm_property *dpms_property =
  6344. dev->mode_config.dpms_property;
  6345. connector->dpms = DRM_MODE_DPMS_ON;
  6346. drm_object_property_set_value(&connector->base,
  6347. dpms_property,
  6348. DRM_MODE_DPMS_ON);
  6349. intel_encoder = to_intel_encoder(connector->encoder);
  6350. intel_encoder->connectors_active = true;
  6351. }
  6352. }
  6353. }
  6354. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6355. list_for_each_entry((intel_crtc), \
  6356. &(dev)->mode_config.crtc_list, \
  6357. base.head) \
  6358. if (mask & (1 <<(intel_crtc)->pipe)) \
  6359. void
  6360. intel_modeset_check_state(struct drm_device *dev)
  6361. {
  6362. struct intel_crtc *crtc;
  6363. struct intel_encoder *encoder;
  6364. struct intel_connector *connector;
  6365. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6366. base.head) {
  6367. /* This also checks the encoder/connector hw state with the
  6368. * ->get_hw_state callbacks. */
  6369. intel_connector_check_state(connector);
  6370. WARN(&connector->new_encoder->base != connector->base.encoder,
  6371. "connector's staged encoder doesn't match current encoder\n");
  6372. }
  6373. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6374. base.head) {
  6375. bool enabled = false;
  6376. bool active = false;
  6377. enum pipe pipe, tracked_pipe;
  6378. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6379. encoder->base.base.id,
  6380. drm_get_encoder_name(&encoder->base));
  6381. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6382. "encoder's stage crtc doesn't match current crtc\n");
  6383. WARN(encoder->connectors_active && !encoder->base.crtc,
  6384. "encoder's active_connectors set, but no crtc\n");
  6385. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6386. base.head) {
  6387. if (connector->base.encoder != &encoder->base)
  6388. continue;
  6389. enabled = true;
  6390. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6391. active = true;
  6392. }
  6393. WARN(!!encoder->base.crtc != enabled,
  6394. "encoder's enabled state mismatch "
  6395. "(expected %i, found %i)\n",
  6396. !!encoder->base.crtc, enabled);
  6397. WARN(active && !encoder->base.crtc,
  6398. "active encoder with no crtc\n");
  6399. WARN(encoder->connectors_active != active,
  6400. "encoder's computed active state doesn't match tracked active state "
  6401. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6402. active = encoder->get_hw_state(encoder, &pipe);
  6403. WARN(active != encoder->connectors_active,
  6404. "encoder's hw state doesn't match sw tracking "
  6405. "(expected %i, found %i)\n",
  6406. encoder->connectors_active, active);
  6407. if (!encoder->base.crtc)
  6408. continue;
  6409. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6410. WARN(active && pipe != tracked_pipe,
  6411. "active encoder's pipe doesn't match"
  6412. "(expected %i, found %i)\n",
  6413. tracked_pipe, pipe);
  6414. }
  6415. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6416. base.head) {
  6417. bool enabled = false;
  6418. bool active = false;
  6419. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6420. crtc->base.base.id);
  6421. WARN(crtc->active && !crtc->base.enabled,
  6422. "active crtc, but not enabled in sw tracking\n");
  6423. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6424. base.head) {
  6425. if (encoder->base.crtc != &crtc->base)
  6426. continue;
  6427. enabled = true;
  6428. if (encoder->connectors_active)
  6429. active = true;
  6430. }
  6431. WARN(active != crtc->active,
  6432. "crtc's computed active state doesn't match tracked active state "
  6433. "(expected %i, found %i)\n", active, crtc->active);
  6434. WARN(enabled != crtc->base.enabled,
  6435. "crtc's computed enabled state doesn't match tracked enabled state "
  6436. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6437. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6438. }
  6439. }
  6440. bool intel_set_mode(struct drm_crtc *crtc,
  6441. struct drm_display_mode *mode,
  6442. int x, int y, struct drm_framebuffer *fb)
  6443. {
  6444. struct drm_device *dev = crtc->dev;
  6445. drm_i915_private_t *dev_priv = dev->dev_private;
  6446. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6447. struct intel_crtc *intel_crtc;
  6448. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6449. bool ret = true;
  6450. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6451. &prepare_pipes, &disable_pipes);
  6452. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6453. modeset_pipes, prepare_pipes, disable_pipes);
  6454. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6455. intel_crtc_disable(&intel_crtc->base);
  6456. saved_hwmode = crtc->hwmode;
  6457. saved_mode = crtc->mode;
  6458. /* Hack: Because we don't (yet) support global modeset on multiple
  6459. * crtcs, we don't keep track of the new mode for more than one crtc.
  6460. * Hence simply check whether any bit is set in modeset_pipes in all the
  6461. * pieces of code that are not yet converted to deal with mutliple crtcs
  6462. * changing their mode at the same time. */
  6463. adjusted_mode = NULL;
  6464. if (modeset_pipes) {
  6465. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6466. if (IS_ERR(adjusted_mode)) {
  6467. return false;
  6468. }
  6469. }
  6470. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6471. if (intel_crtc->base.enabled)
  6472. dev_priv->display.crtc_disable(&intel_crtc->base);
  6473. }
  6474. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6475. * to set it here already despite that we pass it down the callchain.
  6476. */
  6477. if (modeset_pipes)
  6478. crtc->mode = *mode;
  6479. /* Only after disabling all output pipelines that will be changed can we
  6480. * update the the output configuration. */
  6481. intel_modeset_update_state(dev, prepare_pipes);
  6482. if (dev_priv->display.modeset_global_resources)
  6483. dev_priv->display.modeset_global_resources(dev);
  6484. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6485. * on the DPLL.
  6486. */
  6487. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6488. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6489. mode, adjusted_mode,
  6490. x, y, fb);
  6491. if (!ret)
  6492. goto done;
  6493. }
  6494. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6495. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6496. dev_priv->display.crtc_enable(&intel_crtc->base);
  6497. if (modeset_pipes) {
  6498. /* Store real post-adjustment hardware mode. */
  6499. crtc->hwmode = *adjusted_mode;
  6500. /* Calculate and store various constants which
  6501. * are later needed by vblank and swap-completion
  6502. * timestamping. They are derived from true hwmode.
  6503. */
  6504. drm_calc_timestamping_constants(crtc);
  6505. }
  6506. /* FIXME: add subpixel order */
  6507. done:
  6508. drm_mode_destroy(dev, adjusted_mode);
  6509. if (!ret && crtc->enabled) {
  6510. crtc->hwmode = saved_hwmode;
  6511. crtc->mode = saved_mode;
  6512. } else {
  6513. intel_modeset_check_state(dev);
  6514. }
  6515. return ret;
  6516. }
  6517. #undef for_each_intel_crtc_masked
  6518. static void intel_set_config_free(struct intel_set_config *config)
  6519. {
  6520. if (!config)
  6521. return;
  6522. kfree(config->save_connector_encoders);
  6523. kfree(config->save_encoder_crtcs);
  6524. kfree(config);
  6525. }
  6526. static int intel_set_config_save_state(struct drm_device *dev,
  6527. struct intel_set_config *config)
  6528. {
  6529. struct drm_encoder *encoder;
  6530. struct drm_connector *connector;
  6531. int count;
  6532. config->save_encoder_crtcs =
  6533. kcalloc(dev->mode_config.num_encoder,
  6534. sizeof(struct drm_crtc *), GFP_KERNEL);
  6535. if (!config->save_encoder_crtcs)
  6536. return -ENOMEM;
  6537. config->save_connector_encoders =
  6538. kcalloc(dev->mode_config.num_connector,
  6539. sizeof(struct drm_encoder *), GFP_KERNEL);
  6540. if (!config->save_connector_encoders)
  6541. return -ENOMEM;
  6542. /* Copy data. Note that driver private data is not affected.
  6543. * Should anything bad happen only the expected state is
  6544. * restored, not the drivers personal bookkeeping.
  6545. */
  6546. count = 0;
  6547. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6548. config->save_encoder_crtcs[count++] = encoder->crtc;
  6549. }
  6550. count = 0;
  6551. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6552. config->save_connector_encoders[count++] = connector->encoder;
  6553. }
  6554. return 0;
  6555. }
  6556. static void intel_set_config_restore_state(struct drm_device *dev,
  6557. struct intel_set_config *config)
  6558. {
  6559. struct intel_encoder *encoder;
  6560. struct intel_connector *connector;
  6561. int count;
  6562. count = 0;
  6563. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6564. encoder->new_crtc =
  6565. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6566. }
  6567. count = 0;
  6568. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6569. connector->new_encoder =
  6570. to_intel_encoder(config->save_connector_encoders[count++]);
  6571. }
  6572. }
  6573. static void
  6574. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6575. struct intel_set_config *config)
  6576. {
  6577. /* We should be able to check here if the fb has the same properties
  6578. * and then just flip_or_move it */
  6579. if (set->crtc->fb != set->fb) {
  6580. /* If we have no fb then treat it as a full mode set */
  6581. if (set->crtc->fb == NULL) {
  6582. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6583. config->mode_changed = true;
  6584. } else if (set->fb == NULL) {
  6585. config->mode_changed = true;
  6586. } else if (set->fb->depth != set->crtc->fb->depth) {
  6587. config->mode_changed = true;
  6588. } else if (set->fb->bits_per_pixel !=
  6589. set->crtc->fb->bits_per_pixel) {
  6590. config->mode_changed = true;
  6591. } else
  6592. config->fb_changed = true;
  6593. }
  6594. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6595. config->fb_changed = true;
  6596. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6597. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6598. drm_mode_debug_printmodeline(&set->crtc->mode);
  6599. drm_mode_debug_printmodeline(set->mode);
  6600. config->mode_changed = true;
  6601. }
  6602. }
  6603. static int
  6604. intel_modeset_stage_output_state(struct drm_device *dev,
  6605. struct drm_mode_set *set,
  6606. struct intel_set_config *config)
  6607. {
  6608. struct drm_crtc *new_crtc;
  6609. struct intel_connector *connector;
  6610. struct intel_encoder *encoder;
  6611. int count, ro;
  6612. /* The upper layers ensure that we either disabl a crtc or have a list
  6613. * of connectors. For paranoia, double-check this. */
  6614. WARN_ON(!set->fb && (set->num_connectors != 0));
  6615. WARN_ON(set->fb && (set->num_connectors == 0));
  6616. count = 0;
  6617. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6618. base.head) {
  6619. /* Otherwise traverse passed in connector list and get encoders
  6620. * for them. */
  6621. for (ro = 0; ro < set->num_connectors; ro++) {
  6622. if (set->connectors[ro] == &connector->base) {
  6623. connector->new_encoder = connector->encoder;
  6624. break;
  6625. }
  6626. }
  6627. /* If we disable the crtc, disable all its connectors. Also, if
  6628. * the connector is on the changing crtc but not on the new
  6629. * connector list, disable it. */
  6630. if ((!set->fb || ro == set->num_connectors) &&
  6631. connector->base.encoder &&
  6632. connector->base.encoder->crtc == set->crtc) {
  6633. connector->new_encoder = NULL;
  6634. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6635. connector->base.base.id,
  6636. drm_get_connector_name(&connector->base));
  6637. }
  6638. if (&connector->new_encoder->base != connector->base.encoder) {
  6639. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6640. config->mode_changed = true;
  6641. }
  6642. /* Disable all disconnected encoders. */
  6643. if (connector->base.status == connector_status_disconnected)
  6644. connector->new_encoder = NULL;
  6645. }
  6646. /* connector->new_encoder is now updated for all connectors. */
  6647. /* Update crtc of enabled connectors. */
  6648. count = 0;
  6649. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6650. base.head) {
  6651. if (!connector->new_encoder)
  6652. continue;
  6653. new_crtc = connector->new_encoder->base.crtc;
  6654. for (ro = 0; ro < set->num_connectors; ro++) {
  6655. if (set->connectors[ro] == &connector->base)
  6656. new_crtc = set->crtc;
  6657. }
  6658. /* Make sure the new CRTC will work with the encoder */
  6659. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6660. new_crtc)) {
  6661. return -EINVAL;
  6662. }
  6663. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6664. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6665. connector->base.base.id,
  6666. drm_get_connector_name(&connector->base),
  6667. new_crtc->base.id);
  6668. }
  6669. /* Check for any encoders that needs to be disabled. */
  6670. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6671. base.head) {
  6672. list_for_each_entry(connector,
  6673. &dev->mode_config.connector_list,
  6674. base.head) {
  6675. if (connector->new_encoder == encoder) {
  6676. WARN_ON(!connector->new_encoder->new_crtc);
  6677. goto next_encoder;
  6678. }
  6679. }
  6680. encoder->new_crtc = NULL;
  6681. next_encoder:
  6682. /* Only now check for crtc changes so we don't miss encoders
  6683. * that will be disabled. */
  6684. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6685. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6686. config->mode_changed = true;
  6687. }
  6688. }
  6689. /* Now we've also updated encoder->new_crtc for all encoders. */
  6690. return 0;
  6691. }
  6692. static int intel_crtc_set_config(struct drm_mode_set *set)
  6693. {
  6694. struct drm_device *dev;
  6695. struct drm_mode_set save_set;
  6696. struct intel_set_config *config;
  6697. int ret;
  6698. BUG_ON(!set);
  6699. BUG_ON(!set->crtc);
  6700. BUG_ON(!set->crtc->helper_private);
  6701. if (!set->mode)
  6702. set->fb = NULL;
  6703. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6704. * Unfortunately the crtc helper doesn't do much at all for this case,
  6705. * so we have to cope with this madness until the fb helper is fixed up. */
  6706. if (set->fb && set->num_connectors == 0)
  6707. return 0;
  6708. if (set->fb) {
  6709. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6710. set->crtc->base.id, set->fb->base.id,
  6711. (int)set->num_connectors, set->x, set->y);
  6712. } else {
  6713. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6714. }
  6715. dev = set->crtc->dev;
  6716. ret = -ENOMEM;
  6717. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6718. if (!config)
  6719. goto out_config;
  6720. ret = intel_set_config_save_state(dev, config);
  6721. if (ret)
  6722. goto out_config;
  6723. save_set.crtc = set->crtc;
  6724. save_set.mode = &set->crtc->mode;
  6725. save_set.x = set->crtc->x;
  6726. save_set.y = set->crtc->y;
  6727. save_set.fb = set->crtc->fb;
  6728. /* Compute whether we need a full modeset, only an fb base update or no
  6729. * change at all. In the future we might also check whether only the
  6730. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6731. * such cases. */
  6732. intel_set_config_compute_mode_changes(set, config);
  6733. ret = intel_modeset_stage_output_state(dev, set, config);
  6734. if (ret)
  6735. goto fail;
  6736. if (config->mode_changed) {
  6737. if (set->mode) {
  6738. DRM_DEBUG_KMS("attempting to set mode from"
  6739. " userspace\n");
  6740. drm_mode_debug_printmodeline(set->mode);
  6741. }
  6742. if (!intel_set_mode(set->crtc, set->mode,
  6743. set->x, set->y, set->fb)) {
  6744. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6745. set->crtc->base.id);
  6746. ret = -EINVAL;
  6747. goto fail;
  6748. }
  6749. } else if (config->fb_changed) {
  6750. ret = intel_pipe_set_base(set->crtc,
  6751. set->x, set->y, set->fb);
  6752. }
  6753. intel_set_config_free(config);
  6754. return 0;
  6755. fail:
  6756. intel_set_config_restore_state(dev, config);
  6757. /* Try to restore the config */
  6758. if (config->mode_changed &&
  6759. !intel_set_mode(save_set.crtc, save_set.mode,
  6760. save_set.x, save_set.y, save_set.fb))
  6761. DRM_ERROR("failed to restore config after modeset failure\n");
  6762. out_config:
  6763. intel_set_config_free(config);
  6764. return ret;
  6765. }
  6766. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6767. .cursor_set = intel_crtc_cursor_set,
  6768. .cursor_move = intel_crtc_cursor_move,
  6769. .gamma_set = intel_crtc_gamma_set,
  6770. .set_config = intel_crtc_set_config,
  6771. .destroy = intel_crtc_destroy,
  6772. .page_flip = intel_crtc_page_flip,
  6773. };
  6774. static void intel_cpu_pll_init(struct drm_device *dev)
  6775. {
  6776. if (IS_HASWELL(dev))
  6777. intel_ddi_pll_init(dev);
  6778. }
  6779. static void intel_pch_pll_init(struct drm_device *dev)
  6780. {
  6781. drm_i915_private_t *dev_priv = dev->dev_private;
  6782. int i;
  6783. if (dev_priv->num_pch_pll == 0) {
  6784. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6785. return;
  6786. }
  6787. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6788. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6789. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6790. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6791. }
  6792. }
  6793. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6794. {
  6795. drm_i915_private_t *dev_priv = dev->dev_private;
  6796. struct intel_crtc *intel_crtc;
  6797. int i;
  6798. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6799. if (intel_crtc == NULL)
  6800. return;
  6801. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6802. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6803. for (i = 0; i < 256; i++) {
  6804. intel_crtc->lut_r[i] = i;
  6805. intel_crtc->lut_g[i] = i;
  6806. intel_crtc->lut_b[i] = i;
  6807. }
  6808. /* Swap pipes & planes for FBC on pre-965 */
  6809. intel_crtc->pipe = pipe;
  6810. intel_crtc->plane = pipe;
  6811. intel_crtc->cpu_transcoder = pipe;
  6812. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6813. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6814. intel_crtc->plane = !pipe;
  6815. }
  6816. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6817. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6818. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6819. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6820. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6821. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6822. }
  6823. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6824. struct drm_file *file)
  6825. {
  6826. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6827. struct drm_mode_object *drmmode_obj;
  6828. struct intel_crtc *crtc;
  6829. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6830. return -ENODEV;
  6831. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6832. DRM_MODE_OBJECT_CRTC);
  6833. if (!drmmode_obj) {
  6834. DRM_ERROR("no such CRTC id\n");
  6835. return -EINVAL;
  6836. }
  6837. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6838. pipe_from_crtc_id->pipe = crtc->pipe;
  6839. return 0;
  6840. }
  6841. static int intel_encoder_clones(struct intel_encoder *encoder)
  6842. {
  6843. struct drm_device *dev = encoder->base.dev;
  6844. struct intel_encoder *source_encoder;
  6845. int index_mask = 0;
  6846. int entry = 0;
  6847. list_for_each_entry(source_encoder,
  6848. &dev->mode_config.encoder_list, base.head) {
  6849. if (encoder == source_encoder)
  6850. index_mask |= (1 << entry);
  6851. /* Intel hw has only one MUX where enocoders could be cloned. */
  6852. if (encoder->cloneable && source_encoder->cloneable)
  6853. index_mask |= (1 << entry);
  6854. entry++;
  6855. }
  6856. return index_mask;
  6857. }
  6858. static bool has_edp_a(struct drm_device *dev)
  6859. {
  6860. struct drm_i915_private *dev_priv = dev->dev_private;
  6861. if (!IS_MOBILE(dev))
  6862. return false;
  6863. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6864. return false;
  6865. if (IS_GEN5(dev) &&
  6866. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6867. return false;
  6868. return true;
  6869. }
  6870. static void intel_setup_outputs(struct drm_device *dev)
  6871. {
  6872. struct drm_i915_private *dev_priv = dev->dev_private;
  6873. struct intel_encoder *encoder;
  6874. bool dpd_is_edp = false;
  6875. bool has_lvds;
  6876. has_lvds = intel_lvds_init(dev);
  6877. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6878. /* disable the panel fitter on everything but LVDS */
  6879. I915_WRITE(PFIT_CONTROL, 0);
  6880. }
  6881. if (!(IS_HASWELL(dev) &&
  6882. (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
  6883. intel_crt_init(dev);
  6884. if (IS_HASWELL(dev)) {
  6885. int found;
  6886. /* Haswell uses DDI functions to detect digital outputs */
  6887. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6888. /* DDI A only supports eDP */
  6889. if (found)
  6890. intel_ddi_init(dev, PORT_A);
  6891. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6892. * register */
  6893. found = I915_READ(SFUSE_STRAP);
  6894. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6895. intel_ddi_init(dev, PORT_B);
  6896. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6897. intel_ddi_init(dev, PORT_C);
  6898. if (found & SFUSE_STRAP_DDID_DETECTED)
  6899. intel_ddi_init(dev, PORT_D);
  6900. } else if (HAS_PCH_SPLIT(dev)) {
  6901. int found;
  6902. dpd_is_edp = intel_dpd_is_edp(dev);
  6903. if (has_edp_a(dev))
  6904. intel_dp_init(dev, DP_A, PORT_A);
  6905. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6906. /* PCH SDVOB multiplex with HDMIB */
  6907. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6908. if (!found)
  6909. intel_hdmi_init(dev, HDMIB, PORT_B);
  6910. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6911. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6912. }
  6913. if (I915_READ(HDMIC) & PORT_DETECTED)
  6914. intel_hdmi_init(dev, HDMIC, PORT_C);
  6915. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6916. intel_hdmi_init(dev, HDMID, PORT_D);
  6917. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6918. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6919. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  6920. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6921. } else if (IS_VALLEYVIEW(dev)) {
  6922. int found;
  6923. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  6924. if (I915_READ(DP_C) & DP_DETECTED)
  6925. intel_dp_init(dev, DP_C, PORT_C);
  6926. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6927. /* SDVOB multiplex with HDMIB */
  6928. found = intel_sdvo_init(dev, SDVOB, true);
  6929. if (!found)
  6930. intel_hdmi_init(dev, SDVOB, PORT_B);
  6931. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6932. intel_dp_init(dev, DP_B, PORT_B);
  6933. }
  6934. if (I915_READ(SDVOC) & PORT_DETECTED)
  6935. intel_hdmi_init(dev, SDVOC, PORT_C);
  6936. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6937. bool found = false;
  6938. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6939. DRM_DEBUG_KMS("probing SDVOB\n");
  6940. found = intel_sdvo_init(dev, SDVOB, true);
  6941. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6942. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6943. intel_hdmi_init(dev, SDVOB, PORT_B);
  6944. }
  6945. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6946. DRM_DEBUG_KMS("probing DP_B\n");
  6947. intel_dp_init(dev, DP_B, PORT_B);
  6948. }
  6949. }
  6950. /* Before G4X SDVOC doesn't have its own detect register */
  6951. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6952. DRM_DEBUG_KMS("probing SDVOC\n");
  6953. found = intel_sdvo_init(dev, SDVOC, false);
  6954. }
  6955. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6956. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6957. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6958. intel_hdmi_init(dev, SDVOC, PORT_C);
  6959. }
  6960. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6961. DRM_DEBUG_KMS("probing DP_C\n");
  6962. intel_dp_init(dev, DP_C, PORT_C);
  6963. }
  6964. }
  6965. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6966. (I915_READ(DP_D) & DP_DETECTED)) {
  6967. DRM_DEBUG_KMS("probing DP_D\n");
  6968. intel_dp_init(dev, DP_D, PORT_D);
  6969. }
  6970. } else if (IS_GEN2(dev))
  6971. intel_dvo_init(dev);
  6972. if (SUPPORTS_TV(dev))
  6973. intel_tv_init(dev);
  6974. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6975. encoder->base.possible_crtcs = encoder->crtc_mask;
  6976. encoder->base.possible_clones =
  6977. intel_encoder_clones(encoder);
  6978. }
  6979. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6980. ironlake_init_pch_refclk(dev);
  6981. drm_helper_move_panel_connectors_to_head(dev);
  6982. }
  6983. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6984. {
  6985. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6986. drm_framebuffer_cleanup(fb);
  6987. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6988. kfree(intel_fb);
  6989. }
  6990. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6991. struct drm_file *file,
  6992. unsigned int *handle)
  6993. {
  6994. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6995. struct drm_i915_gem_object *obj = intel_fb->obj;
  6996. return drm_gem_handle_create(file, &obj->base, handle);
  6997. }
  6998. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6999. .destroy = intel_user_framebuffer_destroy,
  7000. .create_handle = intel_user_framebuffer_create_handle,
  7001. };
  7002. int intel_framebuffer_init(struct drm_device *dev,
  7003. struct intel_framebuffer *intel_fb,
  7004. struct drm_mode_fb_cmd2 *mode_cmd,
  7005. struct drm_i915_gem_object *obj)
  7006. {
  7007. int ret;
  7008. if (obj->tiling_mode == I915_TILING_Y)
  7009. return -EINVAL;
  7010. if (mode_cmd->pitches[0] & 63)
  7011. return -EINVAL;
  7012. /* FIXME <= Gen4 stride limits are bit unclear */
  7013. if (mode_cmd->pitches[0] > 32768)
  7014. return -EINVAL;
  7015. if (obj->tiling_mode != I915_TILING_NONE &&
  7016. mode_cmd->pitches[0] != obj->stride)
  7017. return -EINVAL;
  7018. /* Reject formats not supported by any plane early. */
  7019. switch (mode_cmd->pixel_format) {
  7020. case DRM_FORMAT_C8:
  7021. case DRM_FORMAT_RGB565:
  7022. case DRM_FORMAT_XRGB8888:
  7023. case DRM_FORMAT_ARGB8888:
  7024. break;
  7025. case DRM_FORMAT_XRGB1555:
  7026. case DRM_FORMAT_ARGB1555:
  7027. if (INTEL_INFO(dev)->gen > 3)
  7028. return -EINVAL;
  7029. break;
  7030. case DRM_FORMAT_XBGR8888:
  7031. case DRM_FORMAT_ABGR8888:
  7032. case DRM_FORMAT_XRGB2101010:
  7033. case DRM_FORMAT_ARGB2101010:
  7034. case DRM_FORMAT_XBGR2101010:
  7035. case DRM_FORMAT_ABGR2101010:
  7036. if (INTEL_INFO(dev)->gen < 4)
  7037. return -EINVAL;
  7038. break;
  7039. case DRM_FORMAT_YUYV:
  7040. case DRM_FORMAT_UYVY:
  7041. case DRM_FORMAT_YVYU:
  7042. case DRM_FORMAT_VYUY:
  7043. if (INTEL_INFO(dev)->gen < 6)
  7044. return -EINVAL;
  7045. break;
  7046. default:
  7047. DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7048. return -EINVAL;
  7049. }
  7050. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7051. if (mode_cmd->offsets[0] != 0)
  7052. return -EINVAL;
  7053. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7054. if (ret) {
  7055. DRM_ERROR("framebuffer init failed %d\n", ret);
  7056. return ret;
  7057. }
  7058. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7059. intel_fb->obj = obj;
  7060. return 0;
  7061. }
  7062. static struct drm_framebuffer *
  7063. intel_user_framebuffer_create(struct drm_device *dev,
  7064. struct drm_file *filp,
  7065. struct drm_mode_fb_cmd2 *mode_cmd)
  7066. {
  7067. struct drm_i915_gem_object *obj;
  7068. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7069. mode_cmd->handles[0]));
  7070. if (&obj->base == NULL)
  7071. return ERR_PTR(-ENOENT);
  7072. return intel_framebuffer_create(dev, mode_cmd, obj);
  7073. }
  7074. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7075. .fb_create = intel_user_framebuffer_create,
  7076. .output_poll_changed = intel_fb_output_poll_changed,
  7077. };
  7078. /* Set up chip specific display functions */
  7079. static void intel_init_display(struct drm_device *dev)
  7080. {
  7081. struct drm_i915_private *dev_priv = dev->dev_private;
  7082. /* We always want a DPMS function */
  7083. if (IS_HASWELL(dev)) {
  7084. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7085. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7086. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7087. dev_priv->display.off = haswell_crtc_off;
  7088. dev_priv->display.update_plane = ironlake_update_plane;
  7089. } else if (HAS_PCH_SPLIT(dev)) {
  7090. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7091. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7092. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7093. dev_priv->display.off = ironlake_crtc_off;
  7094. dev_priv->display.update_plane = ironlake_update_plane;
  7095. } else {
  7096. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7097. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7098. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7099. dev_priv->display.off = i9xx_crtc_off;
  7100. dev_priv->display.update_plane = i9xx_update_plane;
  7101. }
  7102. /* Returns the core display clock speed */
  7103. if (IS_VALLEYVIEW(dev))
  7104. dev_priv->display.get_display_clock_speed =
  7105. valleyview_get_display_clock_speed;
  7106. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7107. dev_priv->display.get_display_clock_speed =
  7108. i945_get_display_clock_speed;
  7109. else if (IS_I915G(dev))
  7110. dev_priv->display.get_display_clock_speed =
  7111. i915_get_display_clock_speed;
  7112. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7113. dev_priv->display.get_display_clock_speed =
  7114. i9xx_misc_get_display_clock_speed;
  7115. else if (IS_I915GM(dev))
  7116. dev_priv->display.get_display_clock_speed =
  7117. i915gm_get_display_clock_speed;
  7118. else if (IS_I865G(dev))
  7119. dev_priv->display.get_display_clock_speed =
  7120. i865_get_display_clock_speed;
  7121. else if (IS_I85X(dev))
  7122. dev_priv->display.get_display_clock_speed =
  7123. i855_get_display_clock_speed;
  7124. else /* 852, 830 */
  7125. dev_priv->display.get_display_clock_speed =
  7126. i830_get_display_clock_speed;
  7127. if (HAS_PCH_SPLIT(dev)) {
  7128. if (IS_GEN5(dev)) {
  7129. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7130. dev_priv->display.write_eld = ironlake_write_eld;
  7131. } else if (IS_GEN6(dev)) {
  7132. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7133. dev_priv->display.write_eld = ironlake_write_eld;
  7134. } else if (IS_IVYBRIDGE(dev)) {
  7135. /* FIXME: detect B0+ stepping and use auto training */
  7136. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7137. dev_priv->display.write_eld = ironlake_write_eld;
  7138. dev_priv->display.modeset_global_resources =
  7139. ivb_modeset_global_resources;
  7140. } else if (IS_HASWELL(dev)) {
  7141. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7142. dev_priv->display.write_eld = haswell_write_eld;
  7143. } else
  7144. dev_priv->display.update_wm = NULL;
  7145. } else if (IS_G4X(dev)) {
  7146. dev_priv->display.write_eld = g4x_write_eld;
  7147. }
  7148. /* Default just returns -ENODEV to indicate unsupported */
  7149. dev_priv->display.queue_flip = intel_default_queue_flip;
  7150. switch (INTEL_INFO(dev)->gen) {
  7151. case 2:
  7152. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7153. break;
  7154. case 3:
  7155. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7156. break;
  7157. case 4:
  7158. case 5:
  7159. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7160. break;
  7161. case 6:
  7162. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7163. break;
  7164. case 7:
  7165. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7166. break;
  7167. }
  7168. }
  7169. /*
  7170. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7171. * resume, or other times. This quirk makes sure that's the case for
  7172. * affected systems.
  7173. */
  7174. static void quirk_pipea_force(struct drm_device *dev)
  7175. {
  7176. struct drm_i915_private *dev_priv = dev->dev_private;
  7177. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7178. DRM_INFO("applying pipe a force quirk\n");
  7179. }
  7180. /*
  7181. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7182. */
  7183. static void quirk_ssc_force_disable(struct drm_device *dev)
  7184. {
  7185. struct drm_i915_private *dev_priv = dev->dev_private;
  7186. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7187. DRM_INFO("applying lvds SSC disable quirk\n");
  7188. }
  7189. /*
  7190. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7191. * brightness value
  7192. */
  7193. static void quirk_invert_brightness(struct drm_device *dev)
  7194. {
  7195. struct drm_i915_private *dev_priv = dev->dev_private;
  7196. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7197. DRM_INFO("applying inverted panel brightness quirk\n");
  7198. }
  7199. struct intel_quirk {
  7200. int device;
  7201. int subsystem_vendor;
  7202. int subsystem_device;
  7203. void (*hook)(struct drm_device *dev);
  7204. };
  7205. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7206. struct intel_dmi_quirk {
  7207. void (*hook)(struct drm_device *dev);
  7208. const struct dmi_system_id (*dmi_id_list)[];
  7209. };
  7210. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7211. {
  7212. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7213. return 1;
  7214. }
  7215. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7216. {
  7217. .dmi_id_list = &(const struct dmi_system_id[]) {
  7218. {
  7219. .callback = intel_dmi_reverse_brightness,
  7220. .ident = "NCR Corporation",
  7221. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7222. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7223. },
  7224. },
  7225. { } /* terminating entry */
  7226. },
  7227. .hook = quirk_invert_brightness,
  7228. },
  7229. };
  7230. static struct intel_quirk intel_quirks[] = {
  7231. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7232. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7233. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7234. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7235. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7236. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7237. /* 830/845 need to leave pipe A & dpll A up */
  7238. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7239. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7240. /* Lenovo U160 cannot use SSC on LVDS */
  7241. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7242. /* Sony Vaio Y cannot use SSC on LVDS */
  7243. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7244. /* Acer Aspire 5734Z must invert backlight brightness */
  7245. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7246. };
  7247. static void intel_init_quirks(struct drm_device *dev)
  7248. {
  7249. struct pci_dev *d = dev->pdev;
  7250. int i;
  7251. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7252. struct intel_quirk *q = &intel_quirks[i];
  7253. if (d->device == q->device &&
  7254. (d->subsystem_vendor == q->subsystem_vendor ||
  7255. q->subsystem_vendor == PCI_ANY_ID) &&
  7256. (d->subsystem_device == q->subsystem_device ||
  7257. q->subsystem_device == PCI_ANY_ID))
  7258. q->hook(dev);
  7259. }
  7260. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7261. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7262. intel_dmi_quirks[i].hook(dev);
  7263. }
  7264. }
  7265. /* Disable the VGA plane that we never use */
  7266. static void i915_disable_vga(struct drm_device *dev)
  7267. {
  7268. struct drm_i915_private *dev_priv = dev->dev_private;
  7269. u8 sr1;
  7270. u32 vga_reg;
  7271. if (HAS_PCH_SPLIT(dev))
  7272. vga_reg = CPU_VGACNTRL;
  7273. else
  7274. vga_reg = VGACNTRL;
  7275. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7276. outb(SR01, VGA_SR_INDEX);
  7277. sr1 = inb(VGA_SR_DATA);
  7278. outb(sr1 | 1<<5, VGA_SR_DATA);
  7279. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7280. udelay(300);
  7281. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7282. POSTING_READ(vga_reg);
  7283. }
  7284. void intel_modeset_init_hw(struct drm_device *dev)
  7285. {
  7286. /* We attempt to init the necessary power wells early in the initialization
  7287. * time, so the subsystems that expect power to be enabled can work.
  7288. */
  7289. intel_init_power_wells(dev);
  7290. intel_prepare_ddi(dev);
  7291. intel_init_clock_gating(dev);
  7292. mutex_lock(&dev->struct_mutex);
  7293. intel_enable_gt_powersave(dev);
  7294. mutex_unlock(&dev->struct_mutex);
  7295. }
  7296. void intel_modeset_init(struct drm_device *dev)
  7297. {
  7298. struct drm_i915_private *dev_priv = dev->dev_private;
  7299. int i, ret;
  7300. drm_mode_config_init(dev);
  7301. dev->mode_config.min_width = 0;
  7302. dev->mode_config.min_height = 0;
  7303. dev->mode_config.preferred_depth = 24;
  7304. dev->mode_config.prefer_shadow = 1;
  7305. dev->mode_config.funcs = &intel_mode_funcs;
  7306. intel_init_quirks(dev);
  7307. intel_init_pm(dev);
  7308. intel_init_display(dev);
  7309. if (IS_GEN2(dev)) {
  7310. dev->mode_config.max_width = 2048;
  7311. dev->mode_config.max_height = 2048;
  7312. } else if (IS_GEN3(dev)) {
  7313. dev->mode_config.max_width = 4096;
  7314. dev->mode_config.max_height = 4096;
  7315. } else {
  7316. dev->mode_config.max_width = 8192;
  7317. dev->mode_config.max_height = 8192;
  7318. }
  7319. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7320. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7321. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7322. for (i = 0; i < dev_priv->num_pipe; i++) {
  7323. intel_crtc_init(dev, i);
  7324. ret = intel_plane_init(dev, i);
  7325. if (ret)
  7326. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7327. }
  7328. intel_cpu_pll_init(dev);
  7329. intel_pch_pll_init(dev);
  7330. /* Just disable it once at startup */
  7331. i915_disable_vga(dev);
  7332. intel_setup_outputs(dev);
  7333. }
  7334. static void
  7335. intel_connector_break_all_links(struct intel_connector *connector)
  7336. {
  7337. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7338. connector->base.encoder = NULL;
  7339. connector->encoder->connectors_active = false;
  7340. connector->encoder->base.crtc = NULL;
  7341. }
  7342. static void intel_enable_pipe_a(struct drm_device *dev)
  7343. {
  7344. struct intel_connector *connector;
  7345. struct drm_connector *crt = NULL;
  7346. struct intel_load_detect_pipe load_detect_temp;
  7347. /* We can't just switch on the pipe A, we need to set things up with a
  7348. * proper mode and output configuration. As a gross hack, enable pipe A
  7349. * by enabling the load detect pipe once. */
  7350. list_for_each_entry(connector,
  7351. &dev->mode_config.connector_list,
  7352. base.head) {
  7353. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7354. crt = &connector->base;
  7355. break;
  7356. }
  7357. }
  7358. if (!crt)
  7359. return;
  7360. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7361. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7362. }
  7363. static bool
  7364. intel_check_plane_mapping(struct intel_crtc *crtc)
  7365. {
  7366. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7367. u32 reg, val;
  7368. if (dev_priv->num_pipe == 1)
  7369. return true;
  7370. reg = DSPCNTR(!crtc->plane);
  7371. val = I915_READ(reg);
  7372. if ((val & DISPLAY_PLANE_ENABLE) &&
  7373. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7374. return false;
  7375. return true;
  7376. }
  7377. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7378. {
  7379. struct drm_device *dev = crtc->base.dev;
  7380. struct drm_i915_private *dev_priv = dev->dev_private;
  7381. u32 reg;
  7382. /* Clear any frame start delays used for debugging left by the BIOS */
  7383. reg = PIPECONF(crtc->cpu_transcoder);
  7384. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7385. /* We need to sanitize the plane -> pipe mapping first because this will
  7386. * disable the crtc (and hence change the state) if it is wrong. Note
  7387. * that gen4+ has a fixed plane -> pipe mapping. */
  7388. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7389. struct intel_connector *connector;
  7390. bool plane;
  7391. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7392. crtc->base.base.id);
  7393. /* Pipe has the wrong plane attached and the plane is active.
  7394. * Temporarily change the plane mapping and disable everything
  7395. * ... */
  7396. plane = crtc->plane;
  7397. crtc->plane = !plane;
  7398. dev_priv->display.crtc_disable(&crtc->base);
  7399. crtc->plane = plane;
  7400. /* ... and break all links. */
  7401. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7402. base.head) {
  7403. if (connector->encoder->base.crtc != &crtc->base)
  7404. continue;
  7405. intel_connector_break_all_links(connector);
  7406. }
  7407. WARN_ON(crtc->active);
  7408. crtc->base.enabled = false;
  7409. }
  7410. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7411. crtc->pipe == PIPE_A && !crtc->active) {
  7412. /* BIOS forgot to enable pipe A, this mostly happens after
  7413. * resume. Force-enable the pipe to fix this, the update_dpms
  7414. * call below we restore the pipe to the right state, but leave
  7415. * the required bits on. */
  7416. intel_enable_pipe_a(dev);
  7417. }
  7418. /* Adjust the state of the output pipe according to whether we
  7419. * have active connectors/encoders. */
  7420. intel_crtc_update_dpms(&crtc->base);
  7421. if (crtc->active != crtc->base.enabled) {
  7422. struct intel_encoder *encoder;
  7423. /* This can happen either due to bugs in the get_hw_state
  7424. * functions or because the pipe is force-enabled due to the
  7425. * pipe A quirk. */
  7426. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7427. crtc->base.base.id,
  7428. crtc->base.enabled ? "enabled" : "disabled",
  7429. crtc->active ? "enabled" : "disabled");
  7430. crtc->base.enabled = crtc->active;
  7431. /* Because we only establish the connector -> encoder ->
  7432. * crtc links if something is active, this means the
  7433. * crtc is now deactivated. Break the links. connector
  7434. * -> encoder links are only establish when things are
  7435. * actually up, hence no need to break them. */
  7436. WARN_ON(crtc->active);
  7437. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7438. WARN_ON(encoder->connectors_active);
  7439. encoder->base.crtc = NULL;
  7440. }
  7441. }
  7442. }
  7443. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7444. {
  7445. struct intel_connector *connector;
  7446. struct drm_device *dev = encoder->base.dev;
  7447. /* We need to check both for a crtc link (meaning that the
  7448. * encoder is active and trying to read from a pipe) and the
  7449. * pipe itself being active. */
  7450. bool has_active_crtc = encoder->base.crtc &&
  7451. to_intel_crtc(encoder->base.crtc)->active;
  7452. if (encoder->connectors_active && !has_active_crtc) {
  7453. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7454. encoder->base.base.id,
  7455. drm_get_encoder_name(&encoder->base));
  7456. /* Connector is active, but has no active pipe. This is
  7457. * fallout from our resume register restoring. Disable
  7458. * the encoder manually again. */
  7459. if (encoder->base.crtc) {
  7460. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7461. encoder->base.base.id,
  7462. drm_get_encoder_name(&encoder->base));
  7463. encoder->disable(encoder);
  7464. }
  7465. /* Inconsistent output/port/pipe state happens presumably due to
  7466. * a bug in one of the get_hw_state functions. Or someplace else
  7467. * in our code, like the register restore mess on resume. Clamp
  7468. * things to off as a safer default. */
  7469. list_for_each_entry(connector,
  7470. &dev->mode_config.connector_list,
  7471. base.head) {
  7472. if (connector->encoder != encoder)
  7473. continue;
  7474. intel_connector_break_all_links(connector);
  7475. }
  7476. }
  7477. /* Enabled encoders without active connectors will be fixed in
  7478. * the crtc fixup. */
  7479. }
  7480. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7481. * and i915 state tracking structures. */
  7482. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7483. bool force_restore)
  7484. {
  7485. struct drm_i915_private *dev_priv = dev->dev_private;
  7486. enum pipe pipe;
  7487. u32 tmp;
  7488. struct intel_crtc *crtc;
  7489. struct intel_encoder *encoder;
  7490. struct intel_connector *connector;
  7491. if (IS_HASWELL(dev)) {
  7492. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7493. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7494. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7495. case TRANS_DDI_EDP_INPUT_A_ON:
  7496. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7497. pipe = PIPE_A;
  7498. break;
  7499. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7500. pipe = PIPE_B;
  7501. break;
  7502. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7503. pipe = PIPE_C;
  7504. break;
  7505. }
  7506. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7507. crtc->cpu_transcoder = TRANSCODER_EDP;
  7508. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7509. pipe_name(pipe));
  7510. }
  7511. }
  7512. for_each_pipe(pipe) {
  7513. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7514. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7515. if (tmp & PIPECONF_ENABLE)
  7516. crtc->active = true;
  7517. else
  7518. crtc->active = false;
  7519. crtc->base.enabled = crtc->active;
  7520. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7521. crtc->base.base.id,
  7522. crtc->active ? "enabled" : "disabled");
  7523. }
  7524. if (IS_HASWELL(dev))
  7525. intel_ddi_setup_hw_pll_state(dev);
  7526. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7527. base.head) {
  7528. pipe = 0;
  7529. if (encoder->get_hw_state(encoder, &pipe)) {
  7530. encoder->base.crtc =
  7531. dev_priv->pipe_to_crtc_mapping[pipe];
  7532. } else {
  7533. encoder->base.crtc = NULL;
  7534. }
  7535. encoder->connectors_active = false;
  7536. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7537. encoder->base.base.id,
  7538. drm_get_encoder_name(&encoder->base),
  7539. encoder->base.crtc ? "enabled" : "disabled",
  7540. pipe);
  7541. }
  7542. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7543. base.head) {
  7544. if (connector->get_hw_state(connector)) {
  7545. connector->base.dpms = DRM_MODE_DPMS_ON;
  7546. connector->encoder->connectors_active = true;
  7547. connector->base.encoder = &connector->encoder->base;
  7548. } else {
  7549. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7550. connector->base.encoder = NULL;
  7551. }
  7552. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7553. connector->base.base.id,
  7554. drm_get_connector_name(&connector->base),
  7555. connector->base.encoder ? "enabled" : "disabled");
  7556. }
  7557. /* HW state is read out, now we need to sanitize this mess. */
  7558. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7559. base.head) {
  7560. intel_sanitize_encoder(encoder);
  7561. }
  7562. for_each_pipe(pipe) {
  7563. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7564. intel_sanitize_crtc(crtc);
  7565. }
  7566. if (force_restore) {
  7567. for_each_pipe(pipe) {
  7568. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7569. intel_set_mode(&crtc->base, &crtc->base.mode,
  7570. crtc->base.x, crtc->base.y, crtc->base.fb);
  7571. }
  7572. } else {
  7573. intel_modeset_update_staged_output_state(dev);
  7574. }
  7575. intel_modeset_check_state(dev);
  7576. drm_mode_config_reset(dev);
  7577. }
  7578. void intel_modeset_gem_init(struct drm_device *dev)
  7579. {
  7580. intel_modeset_init_hw(dev);
  7581. intel_setup_overlay(dev);
  7582. intel_modeset_setup_hw_state(dev, false);
  7583. }
  7584. void intel_modeset_cleanup(struct drm_device *dev)
  7585. {
  7586. struct drm_i915_private *dev_priv = dev->dev_private;
  7587. struct drm_crtc *crtc;
  7588. struct intel_crtc *intel_crtc;
  7589. drm_kms_helper_poll_fini(dev);
  7590. mutex_lock(&dev->struct_mutex);
  7591. intel_unregister_dsm_handler();
  7592. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7593. /* Skip inactive CRTCs */
  7594. if (!crtc->fb)
  7595. continue;
  7596. intel_crtc = to_intel_crtc(crtc);
  7597. intel_increase_pllclock(crtc);
  7598. }
  7599. intel_disable_fbc(dev);
  7600. intel_disable_gt_powersave(dev);
  7601. ironlake_teardown_rc6(dev);
  7602. if (IS_VALLEYVIEW(dev))
  7603. vlv_init_dpio(dev);
  7604. mutex_unlock(&dev->struct_mutex);
  7605. /* Disable the irq before mode object teardown, for the irq might
  7606. * enqueue unpin/hotplug work. */
  7607. drm_irq_uninstall(dev);
  7608. cancel_work_sync(&dev_priv->hotplug_work);
  7609. cancel_work_sync(&dev_priv->rps.work);
  7610. /* flush any delayed tasks or pending work */
  7611. flush_scheduled_work();
  7612. drm_mode_config_cleanup(dev);
  7613. }
  7614. /*
  7615. * Return which encoder is currently attached for connector.
  7616. */
  7617. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7618. {
  7619. return &intel_attached_encoder(connector)->base;
  7620. }
  7621. void intel_connector_attach_encoder(struct intel_connector *connector,
  7622. struct intel_encoder *encoder)
  7623. {
  7624. connector->encoder = encoder;
  7625. drm_mode_connector_attach_encoder(&connector->base,
  7626. &encoder->base);
  7627. }
  7628. /*
  7629. * set vga decode state - true == enable VGA decode
  7630. */
  7631. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7632. {
  7633. struct drm_i915_private *dev_priv = dev->dev_private;
  7634. u16 gmch_ctrl;
  7635. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7636. if (state)
  7637. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7638. else
  7639. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7640. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7641. return 0;
  7642. }
  7643. #ifdef CONFIG_DEBUG_FS
  7644. #include <linux/seq_file.h>
  7645. struct intel_display_error_state {
  7646. struct intel_cursor_error_state {
  7647. u32 control;
  7648. u32 position;
  7649. u32 base;
  7650. u32 size;
  7651. } cursor[I915_MAX_PIPES];
  7652. struct intel_pipe_error_state {
  7653. u32 conf;
  7654. u32 source;
  7655. u32 htotal;
  7656. u32 hblank;
  7657. u32 hsync;
  7658. u32 vtotal;
  7659. u32 vblank;
  7660. u32 vsync;
  7661. } pipe[I915_MAX_PIPES];
  7662. struct intel_plane_error_state {
  7663. u32 control;
  7664. u32 stride;
  7665. u32 size;
  7666. u32 pos;
  7667. u32 addr;
  7668. u32 surface;
  7669. u32 tile_offset;
  7670. } plane[I915_MAX_PIPES];
  7671. };
  7672. struct intel_display_error_state *
  7673. intel_display_capture_error_state(struct drm_device *dev)
  7674. {
  7675. drm_i915_private_t *dev_priv = dev->dev_private;
  7676. struct intel_display_error_state *error;
  7677. enum transcoder cpu_transcoder;
  7678. int i;
  7679. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7680. if (error == NULL)
  7681. return NULL;
  7682. for_each_pipe(i) {
  7683. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7684. error->cursor[i].control = I915_READ(CURCNTR(i));
  7685. error->cursor[i].position = I915_READ(CURPOS(i));
  7686. error->cursor[i].base = I915_READ(CURBASE(i));
  7687. error->plane[i].control = I915_READ(DSPCNTR(i));
  7688. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7689. error->plane[i].size = I915_READ(DSPSIZE(i));
  7690. error->plane[i].pos = I915_READ(DSPPOS(i));
  7691. error->plane[i].addr = I915_READ(DSPADDR(i));
  7692. if (INTEL_INFO(dev)->gen >= 4) {
  7693. error->plane[i].surface = I915_READ(DSPSURF(i));
  7694. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7695. }
  7696. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7697. error->pipe[i].source = I915_READ(PIPESRC(i));
  7698. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7699. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7700. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7701. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7702. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7703. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7704. }
  7705. return error;
  7706. }
  7707. void
  7708. intel_display_print_error_state(struct seq_file *m,
  7709. struct drm_device *dev,
  7710. struct intel_display_error_state *error)
  7711. {
  7712. drm_i915_private_t *dev_priv = dev->dev_private;
  7713. int i;
  7714. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7715. for_each_pipe(i) {
  7716. seq_printf(m, "Pipe [%d]:\n", i);
  7717. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7718. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7719. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7720. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7721. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7722. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7723. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7724. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7725. seq_printf(m, "Plane [%d]:\n", i);
  7726. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7727. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7728. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7729. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7730. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7731. if (INTEL_INFO(dev)->gen >= 4) {
  7732. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7733. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7734. }
  7735. seq_printf(m, "Cursor [%d]:\n", i);
  7736. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7737. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7738. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7739. }
  7740. }
  7741. #endif