af_iucv.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. /*
  2. * linux/net/iucv/af_iucv.c
  3. *
  4. * IUCV protocol stack for Linux on zSeries
  5. *
  6. * Copyright 2006 IBM Corporation
  7. *
  8. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  9. */
  10. #include <linux/module.h>
  11. #include <linux/types.h>
  12. #include <linux/list.h>
  13. #include <linux/errno.h>
  14. #include <linux/kernel.h>
  15. #include <linux/sched.h>
  16. #include <linux/slab.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/init.h>
  19. #include <linux/poll.h>
  20. #include <net/sock.h>
  21. #include <asm/ebcdic.h>
  22. #include <asm/cpcmd.h>
  23. #include <linux/kmod.h>
  24. #include <net/iucv/iucv.h>
  25. #include <net/iucv/af_iucv.h>
  26. #define CONFIG_IUCV_SOCK_DEBUG 1
  27. #define IPRMDATA 0x80
  28. #define VERSION "1.0"
  29. static char iucv_userid[80];
  30. static struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. /* Call Back functions */
  37. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  38. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  39. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  40. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  41. u8 ipuser[16]);
  42. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  43. static struct iucv_sock_list iucv_sk_list = {
  44. .lock = RW_LOCK_UNLOCKED,
  45. .autobind_name = ATOMIC_INIT(0)
  46. };
  47. static struct iucv_handler af_iucv_handler = {
  48. .path_pending = iucv_callback_connreq,
  49. .path_complete = iucv_callback_connack,
  50. .path_severed = iucv_callback_connrej,
  51. .message_pending = iucv_callback_rx,
  52. .message_complete = iucv_callback_txdone
  53. };
  54. static inline void high_nmcpy(unsigned char *dst, char *src)
  55. {
  56. memcpy(dst, src, 8);
  57. }
  58. static inline void low_nmcpy(unsigned char *dst, char *src)
  59. {
  60. memcpy(&dst[8], src, 8);
  61. }
  62. /* Timers */
  63. static void iucv_sock_timeout(unsigned long arg)
  64. {
  65. struct sock *sk = (struct sock *)arg;
  66. bh_lock_sock(sk);
  67. sk->sk_err = ETIMEDOUT;
  68. sk->sk_state_change(sk);
  69. bh_unlock_sock(sk);
  70. iucv_sock_kill(sk);
  71. sock_put(sk);
  72. }
  73. static void iucv_sock_clear_timer(struct sock *sk)
  74. {
  75. sk_stop_timer(sk, &sk->sk_timer);
  76. }
  77. static void iucv_sock_init_timer(struct sock *sk)
  78. {
  79. init_timer(&sk->sk_timer);
  80. sk->sk_timer.function = iucv_sock_timeout;
  81. sk->sk_timer.data = (unsigned long)sk;
  82. }
  83. static struct sock *__iucv_get_sock_by_name(char *nm)
  84. {
  85. struct sock *sk;
  86. struct hlist_node *node;
  87. sk_for_each(sk, node, &iucv_sk_list.head)
  88. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  89. return sk;
  90. return NULL;
  91. }
  92. static void iucv_sock_destruct(struct sock *sk)
  93. {
  94. skb_queue_purge(&sk->sk_receive_queue);
  95. skb_queue_purge(&sk->sk_write_queue);
  96. }
  97. /* Cleanup Listen */
  98. static void iucv_sock_cleanup_listen(struct sock *parent)
  99. {
  100. struct sock *sk;
  101. /* Close non-accepted connections */
  102. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  103. iucv_sock_close(sk);
  104. iucv_sock_kill(sk);
  105. }
  106. parent->sk_state = IUCV_CLOSED;
  107. sock_set_flag(parent, SOCK_ZAPPED);
  108. }
  109. /* Kill socket */
  110. static void iucv_sock_kill(struct sock *sk)
  111. {
  112. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  113. return;
  114. iucv_sock_unlink(&iucv_sk_list, sk);
  115. sock_set_flag(sk, SOCK_DEAD);
  116. sock_put(sk);
  117. }
  118. /* Close an IUCV socket */
  119. static void iucv_sock_close(struct sock *sk)
  120. {
  121. unsigned char user_data[16];
  122. struct iucv_sock *iucv = iucv_sk(sk);
  123. int err;
  124. unsigned long timeo;
  125. iucv_sock_clear_timer(sk);
  126. lock_sock(sk);
  127. switch (sk->sk_state) {
  128. case IUCV_LISTEN:
  129. iucv_sock_cleanup_listen(sk);
  130. break;
  131. case IUCV_CONNECTED:
  132. case IUCV_DISCONN:
  133. err = 0;
  134. sk->sk_state = IUCV_CLOSING;
  135. sk->sk_state_change(sk);
  136. if (!skb_queue_empty(&iucv->send_skb_q)) {
  137. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  138. timeo = sk->sk_lingertime;
  139. else
  140. timeo = IUCV_DISCONN_TIMEOUT;
  141. err = iucv_sock_wait_state(sk, IUCV_CLOSED, 0, timeo);
  142. }
  143. sk->sk_state = IUCV_CLOSED;
  144. sk->sk_state_change(sk);
  145. if (iucv->path) {
  146. low_nmcpy(user_data, iucv->src_name);
  147. high_nmcpy(user_data, iucv->dst_name);
  148. ASCEBC(user_data, sizeof(user_data));
  149. err = iucv_path_sever(iucv->path, user_data);
  150. iucv_path_free(iucv->path);
  151. iucv->path = NULL;
  152. }
  153. sk->sk_err = ECONNRESET;
  154. sk->sk_state_change(sk);
  155. skb_queue_purge(&iucv->send_skb_q);
  156. skb_queue_purge(&iucv->backlog_skb_q);
  157. sock_set_flag(sk, SOCK_ZAPPED);
  158. break;
  159. default:
  160. sock_set_flag(sk, SOCK_ZAPPED);
  161. break;
  162. }
  163. release_sock(sk);
  164. iucv_sock_kill(sk);
  165. }
  166. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  167. {
  168. if (parent)
  169. sk->sk_type = parent->sk_type;
  170. }
  171. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  172. {
  173. struct sock *sk;
  174. sk = sk_alloc(PF_IUCV, prio, &iucv_proto, 1);
  175. if (!sk)
  176. return NULL;
  177. sock_init_data(sock, sk);
  178. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  179. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  180. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  181. iucv_sk(sk)->send_tag = 0;
  182. sk->sk_destruct = iucv_sock_destruct;
  183. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  184. sk->sk_allocation = GFP_DMA;
  185. sock_reset_flag(sk, SOCK_ZAPPED);
  186. sk->sk_protocol = proto;
  187. sk->sk_state = IUCV_OPEN;
  188. iucv_sock_init_timer(sk);
  189. iucv_sock_link(&iucv_sk_list, sk);
  190. return sk;
  191. }
  192. /* Create an IUCV socket */
  193. static int iucv_sock_create(struct socket *sock, int protocol)
  194. {
  195. struct sock *sk;
  196. if (sock->type != SOCK_STREAM)
  197. return -ESOCKTNOSUPPORT;
  198. sock->state = SS_UNCONNECTED;
  199. sock->ops = &iucv_sock_ops;
  200. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  201. if (!sk)
  202. return -ENOMEM;
  203. iucv_sock_init(sk, NULL);
  204. return 0;
  205. }
  206. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  207. {
  208. write_lock_bh(&l->lock);
  209. sk_add_node(sk, &l->head);
  210. write_unlock_bh(&l->lock);
  211. }
  212. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  213. {
  214. write_lock_bh(&l->lock);
  215. sk_del_node_init(sk);
  216. write_unlock_bh(&l->lock);
  217. }
  218. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  219. {
  220. sock_hold(sk);
  221. list_add_tail(&iucv_sk(sk)->accept_q, &iucv_sk(parent)->accept_q);
  222. iucv_sk(sk)->parent = parent;
  223. parent->sk_ack_backlog++;
  224. }
  225. void iucv_accept_unlink(struct sock *sk)
  226. {
  227. list_del_init(&iucv_sk(sk)->accept_q);
  228. iucv_sk(sk)->parent->sk_ack_backlog--;
  229. iucv_sk(sk)->parent = NULL;
  230. sock_put(sk);
  231. }
  232. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  233. {
  234. struct iucv_sock *isk, *n;
  235. struct sock *sk;
  236. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  237. sk = (struct sock *) isk;
  238. lock_sock(sk);
  239. if (sk->sk_state == IUCV_CLOSED) {
  240. release_sock(sk);
  241. iucv_accept_unlink(sk);
  242. continue;
  243. }
  244. if (sk->sk_state == IUCV_CONNECTED ||
  245. sk->sk_state == IUCV_SEVERED ||
  246. !newsock) {
  247. iucv_accept_unlink(sk);
  248. if (newsock)
  249. sock_graft(sk, newsock);
  250. if (sk->sk_state == IUCV_SEVERED)
  251. sk->sk_state = IUCV_DISCONN;
  252. release_sock(sk);
  253. return sk;
  254. }
  255. release_sock(sk);
  256. }
  257. return NULL;
  258. }
  259. int iucv_sock_wait_state(struct sock *sk, int state, int state2,
  260. unsigned long timeo)
  261. {
  262. DECLARE_WAITQUEUE(wait, current);
  263. int err = 0;
  264. add_wait_queue(sk->sk_sleep, &wait);
  265. while (sk->sk_state != state && sk->sk_state != state2) {
  266. set_current_state(TASK_INTERRUPTIBLE);
  267. if (!timeo) {
  268. err = -EAGAIN;
  269. break;
  270. }
  271. if (signal_pending(current)) {
  272. err = sock_intr_errno(timeo);
  273. break;
  274. }
  275. release_sock(sk);
  276. timeo = schedule_timeout(timeo);
  277. lock_sock(sk);
  278. err = sock_error(sk);
  279. if (err)
  280. break;
  281. }
  282. set_current_state(TASK_RUNNING);
  283. remove_wait_queue(sk->sk_sleep, &wait);
  284. return err;
  285. }
  286. /* Bind an unbound socket */
  287. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  288. int addr_len)
  289. {
  290. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  291. struct sock *sk = sock->sk;
  292. struct iucv_sock *iucv;
  293. int err;
  294. /* Verify the input sockaddr */
  295. if (!addr || addr->sa_family != AF_IUCV)
  296. return -EINVAL;
  297. lock_sock(sk);
  298. if (sk->sk_state != IUCV_OPEN) {
  299. err = -EBADFD;
  300. goto done;
  301. }
  302. write_lock_bh(&iucv_sk_list.lock);
  303. iucv = iucv_sk(sk);
  304. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  305. err = -EADDRINUSE;
  306. goto done_unlock;
  307. }
  308. if (iucv->path) {
  309. err = 0;
  310. goto done_unlock;
  311. }
  312. /* Bind the socket */
  313. memcpy(iucv->src_name, sa->siucv_name, 8);
  314. /* Copy the user id */
  315. memcpy(iucv->src_user_id, iucv_userid, 8);
  316. sk->sk_state = IUCV_BOUND;
  317. err = 0;
  318. done_unlock:
  319. /* Release the socket list lock */
  320. write_unlock_bh(&iucv_sk_list.lock);
  321. done:
  322. release_sock(sk);
  323. return err;
  324. }
  325. /* Automatically bind an unbound socket */
  326. static int iucv_sock_autobind(struct sock *sk)
  327. {
  328. struct iucv_sock *iucv = iucv_sk(sk);
  329. char query_buffer[80];
  330. char name[12];
  331. int err = 0;
  332. /* Set the userid and name */
  333. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  334. if (unlikely(err))
  335. return -EPROTO;
  336. memcpy(iucv->src_user_id, query_buffer, 8);
  337. write_lock_bh(&iucv_sk_list.lock);
  338. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  339. while (__iucv_get_sock_by_name(name)) {
  340. sprintf(name, "%08x",
  341. atomic_inc_return(&iucv_sk_list.autobind_name));
  342. }
  343. write_unlock_bh(&iucv_sk_list.lock);
  344. memcpy(&iucv->src_name, name, 8);
  345. return err;
  346. }
  347. /* Connect an unconnected socket */
  348. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  349. int alen, int flags)
  350. {
  351. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  352. struct sock *sk = sock->sk;
  353. struct iucv_sock *iucv;
  354. unsigned char user_data[16];
  355. int err;
  356. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  357. return -EINVAL;
  358. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  359. return -EBADFD;
  360. if (sk->sk_type != SOCK_STREAM)
  361. return -EINVAL;
  362. iucv = iucv_sk(sk);
  363. if (sk->sk_state == IUCV_OPEN) {
  364. err = iucv_sock_autobind(sk);
  365. if (unlikely(err))
  366. return err;
  367. }
  368. lock_sock(sk);
  369. /* Set the destination information */
  370. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  371. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  372. high_nmcpy(user_data, sa->siucv_name);
  373. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  374. ASCEBC(user_data, sizeof(user_data));
  375. iucv = iucv_sk(sk);
  376. /* Create path. */
  377. iucv->path = iucv_path_alloc(IUCV_QUEUELEN_DEFAULT,
  378. IPRMDATA, GFP_KERNEL);
  379. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  380. sa->siucv_user_id, NULL, user_data, sk);
  381. if (err) {
  382. iucv_path_free(iucv->path);
  383. iucv->path = NULL;
  384. err = -ECONNREFUSED;
  385. goto done;
  386. }
  387. if (sk->sk_state != IUCV_CONNECTED) {
  388. err = iucv_sock_wait_state(sk, IUCV_CONNECTED, IUCV_DISCONN,
  389. sock_sndtimeo(sk, flags & O_NONBLOCK));
  390. }
  391. if (sk->sk_state == IUCV_DISCONN) {
  392. release_sock(sk);
  393. return -ECONNREFUSED;
  394. }
  395. done:
  396. release_sock(sk);
  397. return err;
  398. }
  399. /* Move a socket into listening state. */
  400. static int iucv_sock_listen(struct socket *sock, int backlog)
  401. {
  402. struct sock *sk = sock->sk;
  403. int err;
  404. lock_sock(sk);
  405. err = -EINVAL;
  406. if (sk->sk_state != IUCV_BOUND || sock->type != SOCK_STREAM)
  407. goto done;
  408. sk->sk_max_ack_backlog = backlog;
  409. sk->sk_ack_backlog = 0;
  410. sk->sk_state = IUCV_LISTEN;
  411. err = 0;
  412. done:
  413. release_sock(sk);
  414. return err;
  415. }
  416. /* Accept a pending connection */
  417. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  418. int flags)
  419. {
  420. DECLARE_WAITQUEUE(wait, current);
  421. struct sock *sk = sock->sk, *nsk;
  422. long timeo;
  423. int err = 0;
  424. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  425. if (sk->sk_state != IUCV_LISTEN) {
  426. err = -EBADFD;
  427. goto done;
  428. }
  429. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  430. /* Wait for an incoming connection */
  431. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  432. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  433. set_current_state(TASK_INTERRUPTIBLE);
  434. if (!timeo) {
  435. err = -EAGAIN;
  436. break;
  437. }
  438. release_sock(sk);
  439. timeo = schedule_timeout(timeo);
  440. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  441. if (sk->sk_state != IUCV_LISTEN) {
  442. err = -EBADFD;
  443. break;
  444. }
  445. if (signal_pending(current)) {
  446. err = sock_intr_errno(timeo);
  447. break;
  448. }
  449. }
  450. set_current_state(TASK_RUNNING);
  451. remove_wait_queue(sk->sk_sleep, &wait);
  452. if (err)
  453. goto done;
  454. newsock->state = SS_CONNECTED;
  455. done:
  456. release_sock(sk);
  457. return err;
  458. }
  459. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  460. int *len, int peer)
  461. {
  462. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  463. struct sock *sk = sock->sk;
  464. addr->sa_family = AF_IUCV;
  465. *len = sizeof(struct sockaddr_iucv);
  466. if (peer) {
  467. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  468. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  469. } else {
  470. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  471. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  472. }
  473. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  474. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  475. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  476. return 0;
  477. }
  478. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  479. struct msghdr *msg, size_t len)
  480. {
  481. struct sock *sk = sock->sk;
  482. struct iucv_sock *iucv = iucv_sk(sk);
  483. struct sk_buff *skb;
  484. struct iucv_message txmsg;
  485. int err;
  486. err = sock_error(sk);
  487. if (err)
  488. return err;
  489. if (msg->msg_flags & MSG_OOB)
  490. return -EOPNOTSUPP;
  491. lock_sock(sk);
  492. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  493. err = -EPIPE;
  494. goto out;
  495. }
  496. if (sk->sk_state == IUCV_CONNECTED) {
  497. if (!(skb = sock_alloc_send_skb(sk, len,
  498. msg->msg_flags & MSG_DONTWAIT,
  499. &err)))
  500. goto out;
  501. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  502. err = -EFAULT;
  503. goto fail;
  504. }
  505. txmsg.class = 0;
  506. txmsg.tag = iucv->send_tag++;
  507. memcpy(skb->cb, &txmsg.tag, 4);
  508. skb_queue_tail(&iucv->send_skb_q, skb);
  509. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  510. (void *) skb->data, skb->len);
  511. if (err) {
  512. if (err == 3)
  513. printk(KERN_ERR "AF_IUCV msg limit exceeded\n");
  514. skb_unlink(skb, &iucv->send_skb_q);
  515. err = -EPIPE;
  516. goto fail;
  517. }
  518. } else {
  519. err = -ENOTCONN;
  520. goto out;
  521. }
  522. release_sock(sk);
  523. return len;
  524. fail:
  525. kfree_skb(skb);
  526. out:
  527. release_sock(sk);
  528. return err;
  529. }
  530. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  531. struct msghdr *msg, size_t len, int flags)
  532. {
  533. int noblock = flags & MSG_DONTWAIT;
  534. struct sock *sk = sock->sk;
  535. struct iucv_sock *iucv = iucv_sk(sk);
  536. int target, copied = 0;
  537. struct sk_buff *skb, *rskb, *cskb;
  538. int err = 0;
  539. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  540. skb_queue_empty(&iucv->backlog_skb_q) &&
  541. skb_queue_empty(&sk->sk_receive_queue))
  542. return 0;
  543. if (flags & (MSG_OOB))
  544. return -EOPNOTSUPP;
  545. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  546. skb = skb_recv_datagram(sk, flags, noblock, &err);
  547. if (!skb) {
  548. if (sk->sk_shutdown & RCV_SHUTDOWN)
  549. return 0;
  550. return err;
  551. }
  552. copied = min_t(unsigned int, skb->len, len);
  553. cskb = skb;
  554. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  555. skb_queue_head(&sk->sk_receive_queue, skb);
  556. if (copied == 0)
  557. return -EFAULT;
  558. goto done;
  559. }
  560. len -= copied;
  561. /* Mark read part of skb as used */
  562. if (!(flags & MSG_PEEK)) {
  563. skb_pull(skb, copied);
  564. if (skb->len) {
  565. skb_queue_head(&sk->sk_receive_queue, skb);
  566. goto done;
  567. }
  568. kfree_skb(skb);
  569. /* Queue backlog skbs */
  570. rskb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  571. while (rskb) {
  572. if (sock_queue_rcv_skb(sk, rskb)) {
  573. skb_queue_head(&iucv_sk(sk)->backlog_skb_q,
  574. rskb);
  575. break;
  576. } else {
  577. rskb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  578. }
  579. }
  580. } else
  581. skb_queue_head(&sk->sk_receive_queue, skb);
  582. done:
  583. return err ? : copied;
  584. }
  585. static inline unsigned int iucv_accept_poll(struct sock *parent)
  586. {
  587. struct iucv_sock *isk, *n;
  588. struct sock *sk;
  589. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  590. sk = (struct sock *) isk;
  591. if (sk->sk_state == IUCV_CONNECTED)
  592. return POLLIN | POLLRDNORM;
  593. }
  594. return 0;
  595. }
  596. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  597. poll_table *wait)
  598. {
  599. struct sock *sk = sock->sk;
  600. unsigned int mask = 0;
  601. poll_wait(file, sk->sk_sleep, wait);
  602. if (sk->sk_state == IUCV_LISTEN)
  603. return iucv_accept_poll(sk);
  604. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  605. mask |= POLLERR;
  606. if (sk->sk_shutdown & RCV_SHUTDOWN)
  607. mask |= POLLRDHUP;
  608. if (sk->sk_shutdown == SHUTDOWN_MASK)
  609. mask |= POLLHUP;
  610. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  611. (sk->sk_shutdown & RCV_SHUTDOWN))
  612. mask |= POLLIN | POLLRDNORM;
  613. if (sk->sk_state == IUCV_CLOSED)
  614. mask |= POLLHUP;
  615. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  616. mask |= POLLIN;
  617. if (sock_writeable(sk))
  618. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  619. else
  620. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  621. return mask;
  622. }
  623. static int iucv_sock_shutdown(struct socket *sock, int how)
  624. {
  625. struct sock *sk = sock->sk;
  626. struct iucv_sock *iucv = iucv_sk(sk);
  627. struct iucv_message txmsg;
  628. int err = 0;
  629. u8 prmmsg[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  630. how++;
  631. if ((how & ~SHUTDOWN_MASK) || !how)
  632. return -EINVAL;
  633. lock_sock(sk);
  634. switch (sk->sk_state) {
  635. case IUCV_CLOSED:
  636. err = -ENOTCONN;
  637. goto fail;
  638. default:
  639. sk->sk_shutdown |= how;
  640. break;
  641. }
  642. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  643. txmsg.class = 0;
  644. txmsg.tag = 0;
  645. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  646. (void *) prmmsg, 8);
  647. if (err) {
  648. switch (err) {
  649. case 1:
  650. err = -ENOTCONN;
  651. break;
  652. case 2:
  653. err = -ECONNRESET;
  654. break;
  655. default:
  656. err = -ENOTCONN;
  657. break;
  658. }
  659. }
  660. }
  661. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  662. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  663. if (err)
  664. err = -ENOTCONN;
  665. skb_queue_purge(&sk->sk_receive_queue);
  666. }
  667. /* Wake up anyone sleeping in poll */
  668. sk->sk_state_change(sk);
  669. fail:
  670. release_sock(sk);
  671. return err;
  672. }
  673. static int iucv_sock_release(struct socket *sock)
  674. {
  675. struct sock *sk = sock->sk;
  676. int err = 0;
  677. if (!sk)
  678. return 0;
  679. iucv_sock_close(sk);
  680. /* Unregister with IUCV base support */
  681. if (iucv_sk(sk)->path) {
  682. iucv_path_sever(iucv_sk(sk)->path, NULL);
  683. iucv_path_free(iucv_sk(sk)->path);
  684. iucv_sk(sk)->path = NULL;
  685. }
  686. sock_orphan(sk);
  687. iucv_sock_kill(sk);
  688. return err;
  689. }
  690. /* Callback wrappers - called from iucv base support */
  691. static int iucv_callback_connreq(struct iucv_path *path,
  692. u8 ipvmid[8], u8 ipuser[16])
  693. {
  694. unsigned char user_data[16];
  695. unsigned char nuser_data[16];
  696. unsigned char src_name[8];
  697. struct hlist_node *node;
  698. struct sock *sk, *nsk;
  699. struct iucv_sock *iucv, *niucv;
  700. int err;
  701. memcpy(src_name, ipuser, 8);
  702. EBCASC(src_name, 8);
  703. /* Find out if this path belongs to af_iucv. */
  704. read_lock(&iucv_sk_list.lock);
  705. iucv = NULL;
  706. sk_for_each(sk, node, &iucv_sk_list.head)
  707. if (sk->sk_state == IUCV_LISTEN &&
  708. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  709. /*
  710. * Found a listening socket with
  711. * src_name == ipuser[0-7].
  712. */
  713. iucv = iucv_sk(sk);
  714. break;
  715. }
  716. read_unlock(&iucv_sk_list.lock);
  717. if (!iucv)
  718. /* No socket found, not one of our paths. */
  719. return -EINVAL;
  720. bh_lock_sock(sk);
  721. /* Check if parent socket is listening */
  722. low_nmcpy(user_data, iucv->src_name);
  723. high_nmcpy(user_data, iucv->dst_name);
  724. ASCEBC(user_data, sizeof(user_data));
  725. if (sk->sk_state != IUCV_LISTEN) {
  726. err = iucv_path_sever(path, user_data);
  727. goto fail;
  728. }
  729. /* Check for backlog size */
  730. if (sk_acceptq_is_full(sk)) {
  731. err = iucv_path_sever(path, user_data);
  732. goto fail;
  733. }
  734. /* Create the new socket */
  735. nsk = iucv_sock_alloc(NULL, SOCK_STREAM, GFP_ATOMIC);
  736. if (!nsk) {
  737. err = iucv_path_sever(path, user_data);
  738. goto fail;
  739. }
  740. niucv = iucv_sk(nsk);
  741. iucv_sock_init(nsk, sk);
  742. /* Set the new iucv_sock */
  743. memcpy(niucv->dst_name, ipuser + 8, 8);
  744. EBCASC(niucv->dst_name, 8);
  745. memcpy(niucv->dst_user_id, ipvmid, 8);
  746. memcpy(niucv->src_name, iucv->src_name, 8);
  747. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  748. niucv->path = path;
  749. /* Call iucv_accept */
  750. high_nmcpy(nuser_data, ipuser + 8);
  751. memcpy(nuser_data + 8, niucv->src_name, 8);
  752. ASCEBC(nuser_data + 8, 8);
  753. path->msglim = IUCV_QUEUELEN_DEFAULT;
  754. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  755. if (err) {
  756. err = iucv_path_sever(path, user_data);
  757. goto fail;
  758. }
  759. iucv_accept_enqueue(sk, nsk);
  760. /* Wake up accept */
  761. nsk->sk_state = IUCV_CONNECTED;
  762. sk->sk_data_ready(sk, 1);
  763. err = 0;
  764. fail:
  765. bh_unlock_sock(sk);
  766. return 0;
  767. }
  768. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  769. {
  770. struct sock *sk = path->private;
  771. sk->sk_state = IUCV_CONNECTED;
  772. sk->sk_state_change(sk);
  773. }
  774. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len,
  775. struct sk_buff_head *fragmented_skb_q)
  776. {
  777. int dataleft, size, copied = 0;
  778. struct sk_buff *nskb;
  779. dataleft = len;
  780. while (dataleft) {
  781. if (dataleft >= sk->sk_rcvbuf / 4)
  782. size = sk->sk_rcvbuf / 4;
  783. else
  784. size = dataleft;
  785. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  786. if (!nskb)
  787. return -ENOMEM;
  788. memcpy(nskb->data, skb->data + copied, size);
  789. copied += size;
  790. dataleft -= size;
  791. skb_reset_transport_header(nskb);
  792. skb_reset_network_header(nskb);
  793. nskb->len = size;
  794. skb_queue_tail(fragmented_skb_q, nskb);
  795. }
  796. return 0;
  797. }
  798. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  799. {
  800. struct sock *sk = path->private;
  801. struct iucv_sock *iucv = iucv_sk(sk);
  802. struct sk_buff *skb, *fskb;
  803. struct sk_buff_head fragmented_skb_q;
  804. int rc;
  805. skb_queue_head_init(&fragmented_skb_q);
  806. if (sk->sk_shutdown & RCV_SHUTDOWN)
  807. return;
  808. skb = alloc_skb(msg->length, GFP_ATOMIC | GFP_DMA);
  809. if (!skb) {
  810. iucv_path_sever(path, NULL);
  811. return;
  812. }
  813. if (msg->flags & IPRMDATA) {
  814. skb->data = NULL;
  815. skb->len = 0;
  816. } else {
  817. rc = iucv_message_receive(path, msg, 0, skb->data,
  818. msg->length, NULL);
  819. if (rc) {
  820. kfree_skb(skb);
  821. return;
  822. }
  823. if (skb->truesize >= sk->sk_rcvbuf / 4) {
  824. rc = iucv_fragment_skb(sk, skb, msg->length,
  825. &fragmented_skb_q);
  826. kfree_skb(skb);
  827. skb = NULL;
  828. if (rc) {
  829. iucv_path_sever(path, NULL);
  830. return;
  831. }
  832. } else {
  833. skb_reset_transport_header(skb);
  834. skb_reset_network_header(skb);
  835. skb->len = msg->length;
  836. }
  837. }
  838. /* Queue the fragmented skb */
  839. fskb = skb_dequeue(&fragmented_skb_q);
  840. while (fskb) {
  841. if (!skb_queue_empty(&iucv->backlog_skb_q))
  842. skb_queue_tail(&iucv->backlog_skb_q, fskb);
  843. else if (sock_queue_rcv_skb(sk, fskb))
  844. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, fskb);
  845. fskb = skb_dequeue(&fragmented_skb_q);
  846. }
  847. /* Queue the original skb if it exists (was not fragmented) */
  848. if (skb) {
  849. if (!skb_queue_empty(&iucv->backlog_skb_q))
  850. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  851. else if (sock_queue_rcv_skb(sk, skb))
  852. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  853. }
  854. }
  855. static void iucv_callback_txdone(struct iucv_path *path,
  856. struct iucv_message *msg)
  857. {
  858. struct sock *sk = path->private;
  859. struct sk_buff *this;
  860. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  861. struct sk_buff *list_skb = list->next;
  862. unsigned long flags;
  863. if (list_skb) {
  864. spin_lock_irqsave(&list->lock, flags);
  865. do {
  866. this = list_skb;
  867. list_skb = list_skb->next;
  868. } while (memcmp(&msg->tag, this->cb, 4) && list_skb);
  869. spin_unlock_irqrestore(&list->lock, flags);
  870. skb_unlink(this, &iucv_sk(sk)->send_skb_q);
  871. kfree_skb(this);
  872. }
  873. if (sk->sk_state == IUCV_CLOSING) {
  874. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  875. sk->sk_state = IUCV_CLOSED;
  876. sk->sk_state_change(sk);
  877. }
  878. }
  879. }
  880. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  881. {
  882. struct sock *sk = path->private;
  883. if (!list_empty(&iucv_sk(sk)->accept_q))
  884. sk->sk_state = IUCV_SEVERED;
  885. else
  886. sk->sk_state = IUCV_DISCONN;
  887. sk->sk_state_change(sk);
  888. }
  889. static struct proto_ops iucv_sock_ops = {
  890. .family = PF_IUCV,
  891. .owner = THIS_MODULE,
  892. .release = iucv_sock_release,
  893. .bind = iucv_sock_bind,
  894. .connect = iucv_sock_connect,
  895. .listen = iucv_sock_listen,
  896. .accept = iucv_sock_accept,
  897. .getname = iucv_sock_getname,
  898. .sendmsg = iucv_sock_sendmsg,
  899. .recvmsg = iucv_sock_recvmsg,
  900. .poll = iucv_sock_poll,
  901. .ioctl = sock_no_ioctl,
  902. .mmap = sock_no_mmap,
  903. .socketpair = sock_no_socketpair,
  904. .shutdown = iucv_sock_shutdown,
  905. .setsockopt = sock_no_setsockopt,
  906. .getsockopt = sock_no_getsockopt
  907. };
  908. static struct net_proto_family iucv_sock_family_ops = {
  909. .family = AF_IUCV,
  910. .owner = THIS_MODULE,
  911. .create = iucv_sock_create,
  912. };
  913. static int __init afiucv_init(void)
  914. {
  915. int err;
  916. if (!MACHINE_IS_VM) {
  917. printk(KERN_ERR "AF_IUCV connection needs VM as base\n");
  918. err = -EPROTONOSUPPORT;
  919. goto out;
  920. }
  921. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  922. if (unlikely(err)) {
  923. printk(KERN_ERR "AF_IUCV needs the VM userid\n");
  924. err = -EPROTONOSUPPORT;
  925. goto out;
  926. }
  927. err = iucv_register(&af_iucv_handler, 0);
  928. if (err)
  929. goto out;
  930. err = proto_register(&iucv_proto, 0);
  931. if (err)
  932. goto out_iucv;
  933. err = sock_register(&iucv_sock_family_ops);
  934. if (err)
  935. goto out_proto;
  936. printk(KERN_INFO "AF_IUCV lowlevel driver initialized\n");
  937. return 0;
  938. out_proto:
  939. proto_unregister(&iucv_proto);
  940. out_iucv:
  941. iucv_unregister(&af_iucv_handler, 0);
  942. out:
  943. return err;
  944. }
  945. static void __exit afiucv_exit(void)
  946. {
  947. sock_unregister(PF_IUCV);
  948. proto_unregister(&iucv_proto);
  949. iucv_unregister(&af_iucv_handler, 0);
  950. printk(KERN_INFO "AF_IUCV lowlevel driver unloaded\n");
  951. }
  952. module_init(afiucv_init);
  953. module_exit(afiucv_exit);
  954. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  955. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  956. MODULE_VERSION(VERSION);
  957. MODULE_LICENSE("GPL");
  958. MODULE_ALIAS_NETPROTO(PF_IUCV);