rmap.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. */
  39. #include <linux/mm.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/swapops.h>
  43. #include <linux/slab.h>
  44. #include <linux/init.h>
  45. #include <linux/rmap.h>
  46. #include <linux/rcupdate.h>
  47. #include <linux/module.h>
  48. #include <linux/kallsyms.h>
  49. #include <asm/tlbflush.h>
  50. struct kmem_cache *anon_vma_cachep;
  51. static inline void validate_anon_vma(struct vm_area_struct *find_vma)
  52. {
  53. #ifdef CONFIG_DEBUG_VM
  54. struct anon_vma *anon_vma = find_vma->anon_vma;
  55. struct vm_area_struct *vma;
  56. unsigned int mapcount = 0;
  57. int found = 0;
  58. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  59. mapcount++;
  60. BUG_ON(mapcount > 100000);
  61. if (vma == find_vma)
  62. found = 1;
  63. }
  64. BUG_ON(!found);
  65. #endif
  66. }
  67. /* This must be called under the mmap_sem. */
  68. int anon_vma_prepare(struct vm_area_struct *vma)
  69. {
  70. struct anon_vma *anon_vma = vma->anon_vma;
  71. might_sleep();
  72. if (unlikely(!anon_vma)) {
  73. struct mm_struct *mm = vma->vm_mm;
  74. struct anon_vma *allocated, *locked;
  75. anon_vma = find_mergeable_anon_vma(vma);
  76. if (anon_vma) {
  77. allocated = NULL;
  78. locked = anon_vma;
  79. spin_lock(&locked->lock);
  80. } else {
  81. anon_vma = anon_vma_alloc();
  82. if (unlikely(!anon_vma))
  83. return -ENOMEM;
  84. allocated = anon_vma;
  85. locked = NULL;
  86. }
  87. /* page_table_lock to protect against threads */
  88. spin_lock(&mm->page_table_lock);
  89. if (likely(!vma->anon_vma)) {
  90. vma->anon_vma = anon_vma;
  91. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  92. allocated = NULL;
  93. }
  94. spin_unlock(&mm->page_table_lock);
  95. if (locked)
  96. spin_unlock(&locked->lock);
  97. if (unlikely(allocated))
  98. anon_vma_free(allocated);
  99. }
  100. return 0;
  101. }
  102. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  103. {
  104. BUG_ON(vma->anon_vma != next->anon_vma);
  105. list_del(&next->anon_vma_node);
  106. }
  107. void __anon_vma_link(struct vm_area_struct *vma)
  108. {
  109. struct anon_vma *anon_vma = vma->anon_vma;
  110. if (anon_vma) {
  111. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  112. validate_anon_vma(vma);
  113. }
  114. }
  115. void anon_vma_link(struct vm_area_struct *vma)
  116. {
  117. struct anon_vma *anon_vma = vma->anon_vma;
  118. if (anon_vma) {
  119. spin_lock(&anon_vma->lock);
  120. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  121. validate_anon_vma(vma);
  122. spin_unlock(&anon_vma->lock);
  123. }
  124. }
  125. void anon_vma_unlink(struct vm_area_struct *vma)
  126. {
  127. struct anon_vma *anon_vma = vma->anon_vma;
  128. int empty;
  129. if (!anon_vma)
  130. return;
  131. spin_lock(&anon_vma->lock);
  132. validate_anon_vma(vma);
  133. list_del(&vma->anon_vma_node);
  134. /* We must garbage collect the anon_vma if it's empty */
  135. empty = list_empty(&anon_vma->head);
  136. spin_unlock(&anon_vma->lock);
  137. if (empty)
  138. anon_vma_free(anon_vma);
  139. }
  140. static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
  141. unsigned long flags)
  142. {
  143. if (flags & SLAB_CTOR_CONSTRUCTOR) {
  144. struct anon_vma *anon_vma = data;
  145. spin_lock_init(&anon_vma->lock);
  146. INIT_LIST_HEAD(&anon_vma->head);
  147. }
  148. }
  149. void __init anon_vma_init(void)
  150. {
  151. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  152. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
  153. }
  154. /*
  155. * Getting a lock on a stable anon_vma from a page off the LRU is
  156. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  157. */
  158. static struct anon_vma *page_lock_anon_vma(struct page *page)
  159. {
  160. struct anon_vma *anon_vma;
  161. unsigned long anon_mapping;
  162. rcu_read_lock();
  163. anon_mapping = (unsigned long) page->mapping;
  164. if (!(anon_mapping & PAGE_MAPPING_ANON))
  165. goto out;
  166. if (!page_mapped(page))
  167. goto out;
  168. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  169. spin_lock(&anon_vma->lock);
  170. return anon_vma;
  171. out:
  172. rcu_read_unlock();
  173. return NULL;
  174. }
  175. static void page_unlock_anon_vma(struct anon_vma *anon_vma)
  176. {
  177. spin_unlock(&anon_vma->lock);
  178. rcu_read_unlock();
  179. }
  180. /*
  181. * At what user virtual address is page expected in vma?
  182. */
  183. static inline unsigned long
  184. vma_address(struct page *page, struct vm_area_struct *vma)
  185. {
  186. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  187. unsigned long address;
  188. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  189. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  190. /* page should be within any vma from prio_tree_next */
  191. BUG_ON(!PageAnon(page));
  192. return -EFAULT;
  193. }
  194. return address;
  195. }
  196. /*
  197. * At what user virtual address is page expected in vma? checking that the
  198. * page matches the vma: currently only used on anon pages, by unuse_vma;
  199. */
  200. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  201. {
  202. if (PageAnon(page)) {
  203. if ((void *)vma->anon_vma !=
  204. (void *)page->mapping - PAGE_MAPPING_ANON)
  205. return -EFAULT;
  206. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  207. if (!vma->vm_file ||
  208. vma->vm_file->f_mapping != page->mapping)
  209. return -EFAULT;
  210. } else
  211. return -EFAULT;
  212. return vma_address(page, vma);
  213. }
  214. /*
  215. * Check that @page is mapped at @address into @mm.
  216. *
  217. * On success returns with pte mapped and locked.
  218. */
  219. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  220. unsigned long address, spinlock_t **ptlp)
  221. {
  222. pgd_t *pgd;
  223. pud_t *pud;
  224. pmd_t *pmd;
  225. pte_t *pte;
  226. spinlock_t *ptl;
  227. pgd = pgd_offset(mm, address);
  228. if (!pgd_present(*pgd))
  229. return NULL;
  230. pud = pud_offset(pgd, address);
  231. if (!pud_present(*pud))
  232. return NULL;
  233. pmd = pmd_offset(pud, address);
  234. if (!pmd_present(*pmd))
  235. return NULL;
  236. pte = pte_offset_map(pmd, address);
  237. /* Make a quick check before getting the lock */
  238. if (!pte_present(*pte)) {
  239. pte_unmap(pte);
  240. return NULL;
  241. }
  242. ptl = pte_lockptr(mm, pmd);
  243. spin_lock(ptl);
  244. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  245. *ptlp = ptl;
  246. return pte;
  247. }
  248. pte_unmap_unlock(pte, ptl);
  249. return NULL;
  250. }
  251. /*
  252. * Subfunctions of page_referenced: page_referenced_one called
  253. * repeatedly from either page_referenced_anon or page_referenced_file.
  254. */
  255. static int page_referenced_one(struct page *page,
  256. struct vm_area_struct *vma, unsigned int *mapcount)
  257. {
  258. struct mm_struct *mm = vma->vm_mm;
  259. unsigned long address;
  260. pte_t *pte;
  261. spinlock_t *ptl;
  262. int referenced = 0;
  263. address = vma_address(page, vma);
  264. if (address == -EFAULT)
  265. goto out;
  266. pte = page_check_address(page, mm, address, &ptl);
  267. if (!pte)
  268. goto out;
  269. if (ptep_clear_flush_young(vma, address, pte))
  270. referenced++;
  271. /* Pretend the page is referenced if the task has the
  272. swap token and is in the middle of a page fault. */
  273. if (mm != current->mm && has_swap_token(mm) &&
  274. rwsem_is_locked(&mm->mmap_sem))
  275. referenced++;
  276. (*mapcount)--;
  277. pte_unmap_unlock(pte, ptl);
  278. out:
  279. return referenced;
  280. }
  281. static int page_referenced_anon(struct page *page)
  282. {
  283. unsigned int mapcount;
  284. struct anon_vma *anon_vma;
  285. struct vm_area_struct *vma;
  286. int referenced = 0;
  287. anon_vma = page_lock_anon_vma(page);
  288. if (!anon_vma)
  289. return referenced;
  290. mapcount = page_mapcount(page);
  291. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  292. referenced += page_referenced_one(page, vma, &mapcount);
  293. if (!mapcount)
  294. break;
  295. }
  296. page_unlock_anon_vma(anon_vma);
  297. return referenced;
  298. }
  299. /**
  300. * page_referenced_file - referenced check for object-based rmap
  301. * @page: the page we're checking references on.
  302. *
  303. * For an object-based mapped page, find all the places it is mapped and
  304. * check/clear the referenced flag. This is done by following the page->mapping
  305. * pointer, then walking the chain of vmas it holds. It returns the number
  306. * of references it found.
  307. *
  308. * This function is only called from page_referenced for object-based pages.
  309. */
  310. static int page_referenced_file(struct page *page)
  311. {
  312. unsigned int mapcount;
  313. struct address_space *mapping = page->mapping;
  314. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  315. struct vm_area_struct *vma;
  316. struct prio_tree_iter iter;
  317. int referenced = 0;
  318. /*
  319. * The caller's checks on page->mapping and !PageAnon have made
  320. * sure that this is a file page: the check for page->mapping
  321. * excludes the case just before it gets set on an anon page.
  322. */
  323. BUG_ON(PageAnon(page));
  324. /*
  325. * The page lock not only makes sure that page->mapping cannot
  326. * suddenly be NULLified by truncation, it makes sure that the
  327. * structure at mapping cannot be freed and reused yet,
  328. * so we can safely take mapping->i_mmap_lock.
  329. */
  330. BUG_ON(!PageLocked(page));
  331. spin_lock(&mapping->i_mmap_lock);
  332. /*
  333. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  334. * is more likely to be accurate if we note it after spinning.
  335. */
  336. mapcount = page_mapcount(page);
  337. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  338. if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
  339. == (VM_LOCKED|VM_MAYSHARE)) {
  340. referenced++;
  341. break;
  342. }
  343. referenced += page_referenced_one(page, vma, &mapcount);
  344. if (!mapcount)
  345. break;
  346. }
  347. spin_unlock(&mapping->i_mmap_lock);
  348. return referenced;
  349. }
  350. /**
  351. * page_referenced - test if the page was referenced
  352. * @page: the page to test
  353. * @is_locked: caller holds lock on the page
  354. *
  355. * Quick test_and_clear_referenced for all mappings to a page,
  356. * returns the number of ptes which referenced the page.
  357. */
  358. int page_referenced(struct page *page, int is_locked)
  359. {
  360. int referenced = 0;
  361. if (page_test_and_clear_young(page))
  362. referenced++;
  363. if (TestClearPageReferenced(page))
  364. referenced++;
  365. if (page_mapped(page) && page->mapping) {
  366. if (PageAnon(page))
  367. referenced += page_referenced_anon(page);
  368. else if (is_locked)
  369. referenced += page_referenced_file(page);
  370. else if (TestSetPageLocked(page))
  371. referenced++;
  372. else {
  373. if (page->mapping)
  374. referenced += page_referenced_file(page);
  375. unlock_page(page);
  376. }
  377. }
  378. return referenced;
  379. }
  380. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
  381. {
  382. struct mm_struct *mm = vma->vm_mm;
  383. unsigned long address;
  384. pte_t *pte;
  385. spinlock_t *ptl;
  386. int ret = 0;
  387. address = vma_address(page, vma);
  388. if (address == -EFAULT)
  389. goto out;
  390. pte = page_check_address(page, mm, address, &ptl);
  391. if (!pte)
  392. goto out;
  393. if (pte_dirty(*pte) || pte_write(*pte)) {
  394. pte_t entry;
  395. flush_cache_page(vma, address, pte_pfn(*pte));
  396. entry = ptep_clear_flush(vma, address, pte);
  397. entry = pte_wrprotect(entry);
  398. entry = pte_mkclean(entry);
  399. set_pte_at(mm, address, pte, entry);
  400. lazy_mmu_prot_update(entry);
  401. ret = 1;
  402. }
  403. pte_unmap_unlock(pte, ptl);
  404. out:
  405. return ret;
  406. }
  407. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  408. {
  409. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  410. struct vm_area_struct *vma;
  411. struct prio_tree_iter iter;
  412. int ret = 0;
  413. BUG_ON(PageAnon(page));
  414. spin_lock(&mapping->i_mmap_lock);
  415. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  416. if (vma->vm_flags & VM_SHARED)
  417. ret += page_mkclean_one(page, vma);
  418. }
  419. spin_unlock(&mapping->i_mmap_lock);
  420. return ret;
  421. }
  422. int page_mkclean(struct page *page)
  423. {
  424. int ret = 0;
  425. BUG_ON(!PageLocked(page));
  426. if (page_mapped(page)) {
  427. struct address_space *mapping = page_mapping(page);
  428. if (mapping)
  429. ret = page_mkclean_file(mapping, page);
  430. if (page_test_dirty(page)) {
  431. page_clear_dirty(page);
  432. ret = 1;
  433. }
  434. }
  435. return ret;
  436. }
  437. EXPORT_SYMBOL_GPL(page_mkclean);
  438. /**
  439. * page_set_anon_rmap - setup new anonymous rmap
  440. * @page: the page to add the mapping to
  441. * @vma: the vm area in which the mapping is added
  442. * @address: the user virtual address mapped
  443. */
  444. static void __page_set_anon_rmap(struct page *page,
  445. struct vm_area_struct *vma, unsigned long address)
  446. {
  447. struct anon_vma *anon_vma = vma->anon_vma;
  448. BUG_ON(!anon_vma);
  449. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  450. page->mapping = (struct address_space *) anon_vma;
  451. page->index = linear_page_index(vma, address);
  452. /*
  453. * nr_mapped state can be updated without turning off
  454. * interrupts because it is not modified via interrupt.
  455. */
  456. __inc_zone_page_state(page, NR_ANON_PAGES);
  457. }
  458. /**
  459. * page_add_anon_rmap - add pte mapping to an anonymous page
  460. * @page: the page to add the mapping to
  461. * @vma: the vm area in which the mapping is added
  462. * @address: the user virtual address mapped
  463. *
  464. * The caller needs to hold the pte lock.
  465. */
  466. void page_add_anon_rmap(struct page *page,
  467. struct vm_area_struct *vma, unsigned long address)
  468. {
  469. if (atomic_inc_and_test(&page->_mapcount))
  470. __page_set_anon_rmap(page, vma, address);
  471. /* else checking page index and mapping is racy */
  472. }
  473. /*
  474. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  475. * @page: the page to add the mapping to
  476. * @vma: the vm area in which the mapping is added
  477. * @address: the user virtual address mapped
  478. *
  479. * Same as page_add_anon_rmap but must only be called on *new* pages.
  480. * This means the inc-and-test can be bypassed.
  481. */
  482. void page_add_new_anon_rmap(struct page *page,
  483. struct vm_area_struct *vma, unsigned long address)
  484. {
  485. atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
  486. __page_set_anon_rmap(page, vma, address);
  487. }
  488. /**
  489. * page_add_file_rmap - add pte mapping to a file page
  490. * @page: the page to add the mapping to
  491. *
  492. * The caller needs to hold the pte lock.
  493. */
  494. void page_add_file_rmap(struct page *page)
  495. {
  496. if (atomic_inc_and_test(&page->_mapcount))
  497. __inc_zone_page_state(page, NR_FILE_MAPPED);
  498. }
  499. /**
  500. * page_remove_rmap - take down pte mapping from a page
  501. * @page: page to remove mapping from
  502. *
  503. * The caller needs to hold the pte lock.
  504. */
  505. void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
  506. {
  507. if (atomic_add_negative(-1, &page->_mapcount)) {
  508. if (unlikely(page_mapcount(page) < 0)) {
  509. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  510. printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
  511. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  512. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  513. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  514. print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
  515. if (vma->vm_ops)
  516. print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
  517. if (vma->vm_file && vma->vm_file->f_op)
  518. print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
  519. BUG();
  520. }
  521. /*
  522. * It would be tidy to reset the PageAnon mapping here,
  523. * but that might overwrite a racing page_add_anon_rmap
  524. * which increments mapcount after us but sets mapping
  525. * before us: so leave the reset to free_hot_cold_page,
  526. * and remember that it's only reliable while mapped.
  527. * Leaving it set also helps swapoff to reinstate ptes
  528. * faster for those pages still in swapcache.
  529. */
  530. if (page_test_dirty(page)) {
  531. page_clear_dirty(page);
  532. set_page_dirty(page);
  533. }
  534. __dec_zone_page_state(page,
  535. PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
  536. }
  537. }
  538. /*
  539. * Subfunctions of try_to_unmap: try_to_unmap_one called
  540. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  541. */
  542. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  543. int migration)
  544. {
  545. struct mm_struct *mm = vma->vm_mm;
  546. unsigned long address;
  547. pte_t *pte;
  548. pte_t pteval;
  549. spinlock_t *ptl;
  550. int ret = SWAP_AGAIN;
  551. address = vma_address(page, vma);
  552. if (address == -EFAULT)
  553. goto out;
  554. pte = page_check_address(page, mm, address, &ptl);
  555. if (!pte)
  556. goto out;
  557. /*
  558. * If the page is mlock()d, we cannot swap it out.
  559. * If it's recently referenced (perhaps page_referenced
  560. * skipped over this mm) then we should reactivate it.
  561. */
  562. if (!migration && ((vma->vm_flags & VM_LOCKED) ||
  563. (ptep_clear_flush_young(vma, address, pte)))) {
  564. ret = SWAP_FAIL;
  565. goto out_unmap;
  566. }
  567. /* Nuke the page table entry. */
  568. flush_cache_page(vma, address, page_to_pfn(page));
  569. pteval = ptep_clear_flush(vma, address, pte);
  570. /* Move the dirty bit to the physical page now the pte is gone. */
  571. if (pte_dirty(pteval))
  572. set_page_dirty(page);
  573. /* Update high watermark before we lower rss */
  574. update_hiwater_rss(mm);
  575. if (PageAnon(page)) {
  576. swp_entry_t entry = { .val = page_private(page) };
  577. if (PageSwapCache(page)) {
  578. /*
  579. * Store the swap location in the pte.
  580. * See handle_pte_fault() ...
  581. */
  582. swap_duplicate(entry);
  583. if (list_empty(&mm->mmlist)) {
  584. spin_lock(&mmlist_lock);
  585. if (list_empty(&mm->mmlist))
  586. list_add(&mm->mmlist, &init_mm.mmlist);
  587. spin_unlock(&mmlist_lock);
  588. }
  589. dec_mm_counter(mm, anon_rss);
  590. #ifdef CONFIG_MIGRATION
  591. } else {
  592. /*
  593. * Store the pfn of the page in a special migration
  594. * pte. do_swap_page() will wait until the migration
  595. * pte is removed and then restart fault handling.
  596. */
  597. BUG_ON(!migration);
  598. entry = make_migration_entry(page, pte_write(pteval));
  599. #endif
  600. }
  601. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  602. BUG_ON(pte_file(*pte));
  603. } else
  604. #ifdef CONFIG_MIGRATION
  605. if (migration) {
  606. /* Establish migration entry for a file page */
  607. swp_entry_t entry;
  608. entry = make_migration_entry(page, pte_write(pteval));
  609. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  610. } else
  611. #endif
  612. dec_mm_counter(mm, file_rss);
  613. page_remove_rmap(page, vma);
  614. page_cache_release(page);
  615. out_unmap:
  616. pte_unmap_unlock(pte, ptl);
  617. out:
  618. return ret;
  619. }
  620. /*
  621. * objrmap doesn't work for nonlinear VMAs because the assumption that
  622. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  623. * Consequently, given a particular page and its ->index, we cannot locate the
  624. * ptes which are mapping that page without an exhaustive linear search.
  625. *
  626. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  627. * maps the file to which the target page belongs. The ->vm_private_data field
  628. * holds the current cursor into that scan. Successive searches will circulate
  629. * around the vma's virtual address space.
  630. *
  631. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  632. * more scanning pressure is placed against them as well. Eventually pages
  633. * will become fully unmapped and are eligible for eviction.
  634. *
  635. * For very sparsely populated VMAs this is a little inefficient - chances are
  636. * there there won't be many ptes located within the scan cluster. In this case
  637. * maybe we could scan further - to the end of the pte page, perhaps.
  638. */
  639. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  640. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  641. static void try_to_unmap_cluster(unsigned long cursor,
  642. unsigned int *mapcount, struct vm_area_struct *vma)
  643. {
  644. struct mm_struct *mm = vma->vm_mm;
  645. pgd_t *pgd;
  646. pud_t *pud;
  647. pmd_t *pmd;
  648. pte_t *pte;
  649. pte_t pteval;
  650. spinlock_t *ptl;
  651. struct page *page;
  652. unsigned long address;
  653. unsigned long end;
  654. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  655. end = address + CLUSTER_SIZE;
  656. if (address < vma->vm_start)
  657. address = vma->vm_start;
  658. if (end > vma->vm_end)
  659. end = vma->vm_end;
  660. pgd = pgd_offset(mm, address);
  661. if (!pgd_present(*pgd))
  662. return;
  663. pud = pud_offset(pgd, address);
  664. if (!pud_present(*pud))
  665. return;
  666. pmd = pmd_offset(pud, address);
  667. if (!pmd_present(*pmd))
  668. return;
  669. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  670. /* Update high watermark before we lower rss */
  671. update_hiwater_rss(mm);
  672. for (; address < end; pte++, address += PAGE_SIZE) {
  673. if (!pte_present(*pte))
  674. continue;
  675. page = vm_normal_page(vma, address, *pte);
  676. BUG_ON(!page || PageAnon(page));
  677. if (ptep_clear_flush_young(vma, address, pte))
  678. continue;
  679. /* Nuke the page table entry. */
  680. flush_cache_page(vma, address, pte_pfn(*pte));
  681. pteval = ptep_clear_flush(vma, address, pte);
  682. /* If nonlinear, store the file page offset in the pte. */
  683. if (page->index != linear_page_index(vma, address))
  684. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  685. /* Move the dirty bit to the physical page now the pte is gone. */
  686. if (pte_dirty(pteval))
  687. set_page_dirty(page);
  688. page_remove_rmap(page, vma);
  689. page_cache_release(page);
  690. dec_mm_counter(mm, file_rss);
  691. (*mapcount)--;
  692. }
  693. pte_unmap_unlock(pte - 1, ptl);
  694. }
  695. static int try_to_unmap_anon(struct page *page, int migration)
  696. {
  697. struct anon_vma *anon_vma;
  698. struct vm_area_struct *vma;
  699. int ret = SWAP_AGAIN;
  700. anon_vma = page_lock_anon_vma(page);
  701. if (!anon_vma)
  702. return ret;
  703. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  704. ret = try_to_unmap_one(page, vma, migration);
  705. if (ret == SWAP_FAIL || !page_mapped(page))
  706. break;
  707. }
  708. page_unlock_anon_vma(anon_vma);
  709. return ret;
  710. }
  711. /**
  712. * try_to_unmap_file - unmap file page using the object-based rmap method
  713. * @page: the page to unmap
  714. *
  715. * Find all the mappings of a page using the mapping pointer and the vma chains
  716. * contained in the address_space struct it points to.
  717. *
  718. * This function is only called from try_to_unmap for object-based pages.
  719. */
  720. static int try_to_unmap_file(struct page *page, int migration)
  721. {
  722. struct address_space *mapping = page->mapping;
  723. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  724. struct vm_area_struct *vma;
  725. struct prio_tree_iter iter;
  726. int ret = SWAP_AGAIN;
  727. unsigned long cursor;
  728. unsigned long max_nl_cursor = 0;
  729. unsigned long max_nl_size = 0;
  730. unsigned int mapcount;
  731. spin_lock(&mapping->i_mmap_lock);
  732. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  733. ret = try_to_unmap_one(page, vma, migration);
  734. if (ret == SWAP_FAIL || !page_mapped(page))
  735. goto out;
  736. }
  737. if (list_empty(&mapping->i_mmap_nonlinear))
  738. goto out;
  739. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  740. shared.vm_set.list) {
  741. if ((vma->vm_flags & VM_LOCKED) && !migration)
  742. continue;
  743. cursor = (unsigned long) vma->vm_private_data;
  744. if (cursor > max_nl_cursor)
  745. max_nl_cursor = cursor;
  746. cursor = vma->vm_end - vma->vm_start;
  747. if (cursor > max_nl_size)
  748. max_nl_size = cursor;
  749. }
  750. if (max_nl_size == 0) { /* any nonlinears locked or reserved */
  751. ret = SWAP_FAIL;
  752. goto out;
  753. }
  754. /*
  755. * We don't try to search for this page in the nonlinear vmas,
  756. * and page_referenced wouldn't have found it anyway. Instead
  757. * just walk the nonlinear vmas trying to age and unmap some.
  758. * The mapcount of the page we came in with is irrelevant,
  759. * but even so use it as a guide to how hard we should try?
  760. */
  761. mapcount = page_mapcount(page);
  762. if (!mapcount)
  763. goto out;
  764. cond_resched_lock(&mapping->i_mmap_lock);
  765. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  766. if (max_nl_cursor == 0)
  767. max_nl_cursor = CLUSTER_SIZE;
  768. do {
  769. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  770. shared.vm_set.list) {
  771. if ((vma->vm_flags & VM_LOCKED) && !migration)
  772. continue;
  773. cursor = (unsigned long) vma->vm_private_data;
  774. while ( cursor < max_nl_cursor &&
  775. cursor < vma->vm_end - vma->vm_start) {
  776. try_to_unmap_cluster(cursor, &mapcount, vma);
  777. cursor += CLUSTER_SIZE;
  778. vma->vm_private_data = (void *) cursor;
  779. if ((int)mapcount <= 0)
  780. goto out;
  781. }
  782. vma->vm_private_data = (void *) max_nl_cursor;
  783. }
  784. cond_resched_lock(&mapping->i_mmap_lock);
  785. max_nl_cursor += CLUSTER_SIZE;
  786. } while (max_nl_cursor <= max_nl_size);
  787. /*
  788. * Don't loop forever (perhaps all the remaining pages are
  789. * in locked vmas). Reset cursor on all unreserved nonlinear
  790. * vmas, now forgetting on which ones it had fallen behind.
  791. */
  792. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  793. vma->vm_private_data = NULL;
  794. out:
  795. spin_unlock(&mapping->i_mmap_lock);
  796. return ret;
  797. }
  798. /**
  799. * try_to_unmap - try to remove all page table mappings to a page
  800. * @page: the page to get unmapped
  801. *
  802. * Tries to remove all the page table entries which are mapping this
  803. * page, used in the pageout path. Caller must hold the page lock.
  804. * Return values are:
  805. *
  806. * SWAP_SUCCESS - we succeeded in removing all mappings
  807. * SWAP_AGAIN - we missed a mapping, try again later
  808. * SWAP_FAIL - the page is unswappable
  809. */
  810. int try_to_unmap(struct page *page, int migration)
  811. {
  812. int ret;
  813. BUG_ON(!PageLocked(page));
  814. if (PageAnon(page))
  815. ret = try_to_unmap_anon(page, migration);
  816. else
  817. ret = try_to_unmap_file(page, migration);
  818. if (!page_mapped(page))
  819. ret = SWAP_SUCCESS;
  820. return ret;
  821. }