memory.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <asm/pgalloc.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/tlb.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/pgtable.h>
  53. #include <linux/swapops.h>
  54. #include <linux/elf.h>
  55. #ifndef CONFIG_NEED_MULTIPLE_NODES
  56. /* use the per-pgdat data instead for discontigmem - mbligh */
  57. unsigned long max_mapnr;
  58. struct page *mem_map;
  59. EXPORT_SYMBOL(max_mapnr);
  60. EXPORT_SYMBOL(mem_map);
  61. #endif
  62. unsigned long num_physpages;
  63. /*
  64. * A number of key systems in x86 including ioremap() rely on the assumption
  65. * that high_memory defines the upper bound on direct map memory, then end
  66. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  67. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  68. * and ZONE_HIGHMEM.
  69. */
  70. void * high_memory;
  71. unsigned long vmalloc_earlyreserve;
  72. EXPORT_SYMBOL(num_physpages);
  73. EXPORT_SYMBOL(high_memory);
  74. EXPORT_SYMBOL(vmalloc_earlyreserve);
  75. int randomize_va_space __read_mostly = 1;
  76. static int __init disable_randmaps(char *s)
  77. {
  78. randomize_va_space = 0;
  79. return 1;
  80. }
  81. __setup("norandmaps", disable_randmaps);
  82. /*
  83. * If a p?d_bad entry is found while walking page tables, report
  84. * the error, before resetting entry to p?d_none. Usually (but
  85. * very seldom) called out from the p?d_none_or_clear_bad macros.
  86. */
  87. void pgd_clear_bad(pgd_t *pgd)
  88. {
  89. pgd_ERROR(*pgd);
  90. pgd_clear(pgd);
  91. }
  92. void pud_clear_bad(pud_t *pud)
  93. {
  94. pud_ERROR(*pud);
  95. pud_clear(pud);
  96. }
  97. void pmd_clear_bad(pmd_t *pmd)
  98. {
  99. pmd_ERROR(*pmd);
  100. pmd_clear(pmd);
  101. }
  102. /*
  103. * Note: this doesn't free the actual pages themselves. That
  104. * has been handled earlier when unmapping all the memory regions.
  105. */
  106. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  107. {
  108. struct page *page = pmd_page(*pmd);
  109. pmd_clear(pmd);
  110. pte_lock_deinit(page);
  111. pte_free_tlb(tlb, page);
  112. dec_zone_page_state(page, NR_PAGETABLE);
  113. tlb->mm->nr_ptes--;
  114. }
  115. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  116. unsigned long addr, unsigned long end,
  117. unsigned long floor, unsigned long ceiling)
  118. {
  119. pmd_t *pmd;
  120. unsigned long next;
  121. unsigned long start;
  122. start = addr;
  123. pmd = pmd_offset(pud, addr);
  124. do {
  125. next = pmd_addr_end(addr, end);
  126. if (pmd_none_or_clear_bad(pmd))
  127. continue;
  128. free_pte_range(tlb, pmd);
  129. } while (pmd++, addr = next, addr != end);
  130. start &= PUD_MASK;
  131. if (start < floor)
  132. return;
  133. if (ceiling) {
  134. ceiling &= PUD_MASK;
  135. if (!ceiling)
  136. return;
  137. }
  138. if (end - 1 > ceiling - 1)
  139. return;
  140. pmd = pmd_offset(pud, start);
  141. pud_clear(pud);
  142. pmd_free_tlb(tlb, pmd);
  143. }
  144. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  145. unsigned long addr, unsigned long end,
  146. unsigned long floor, unsigned long ceiling)
  147. {
  148. pud_t *pud;
  149. unsigned long next;
  150. unsigned long start;
  151. start = addr;
  152. pud = pud_offset(pgd, addr);
  153. do {
  154. next = pud_addr_end(addr, end);
  155. if (pud_none_or_clear_bad(pud))
  156. continue;
  157. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  158. } while (pud++, addr = next, addr != end);
  159. start &= PGDIR_MASK;
  160. if (start < floor)
  161. return;
  162. if (ceiling) {
  163. ceiling &= PGDIR_MASK;
  164. if (!ceiling)
  165. return;
  166. }
  167. if (end - 1 > ceiling - 1)
  168. return;
  169. pud = pud_offset(pgd, start);
  170. pgd_clear(pgd);
  171. pud_free_tlb(tlb, pud);
  172. }
  173. /*
  174. * This function frees user-level page tables of a process.
  175. *
  176. * Must be called with pagetable lock held.
  177. */
  178. void free_pgd_range(struct mmu_gather **tlb,
  179. unsigned long addr, unsigned long end,
  180. unsigned long floor, unsigned long ceiling)
  181. {
  182. pgd_t *pgd;
  183. unsigned long next;
  184. unsigned long start;
  185. /*
  186. * The next few lines have given us lots of grief...
  187. *
  188. * Why are we testing PMD* at this top level? Because often
  189. * there will be no work to do at all, and we'd prefer not to
  190. * go all the way down to the bottom just to discover that.
  191. *
  192. * Why all these "- 1"s? Because 0 represents both the bottom
  193. * of the address space and the top of it (using -1 for the
  194. * top wouldn't help much: the masks would do the wrong thing).
  195. * The rule is that addr 0 and floor 0 refer to the bottom of
  196. * the address space, but end 0 and ceiling 0 refer to the top
  197. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  198. * that end 0 case should be mythical).
  199. *
  200. * Wherever addr is brought up or ceiling brought down, we must
  201. * be careful to reject "the opposite 0" before it confuses the
  202. * subsequent tests. But what about where end is brought down
  203. * by PMD_SIZE below? no, end can't go down to 0 there.
  204. *
  205. * Whereas we round start (addr) and ceiling down, by different
  206. * masks at different levels, in order to test whether a table
  207. * now has no other vmas using it, so can be freed, we don't
  208. * bother to round floor or end up - the tests don't need that.
  209. */
  210. addr &= PMD_MASK;
  211. if (addr < floor) {
  212. addr += PMD_SIZE;
  213. if (!addr)
  214. return;
  215. }
  216. if (ceiling) {
  217. ceiling &= PMD_MASK;
  218. if (!ceiling)
  219. return;
  220. }
  221. if (end - 1 > ceiling - 1)
  222. end -= PMD_SIZE;
  223. if (addr > end - 1)
  224. return;
  225. start = addr;
  226. pgd = pgd_offset((*tlb)->mm, addr);
  227. do {
  228. next = pgd_addr_end(addr, end);
  229. if (pgd_none_or_clear_bad(pgd))
  230. continue;
  231. free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
  232. } while (pgd++, addr = next, addr != end);
  233. if (!(*tlb)->fullmm)
  234. flush_tlb_pgtables((*tlb)->mm, start, end);
  235. }
  236. void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
  237. unsigned long floor, unsigned long ceiling)
  238. {
  239. while (vma) {
  240. struct vm_area_struct *next = vma->vm_next;
  241. unsigned long addr = vma->vm_start;
  242. /*
  243. * Hide vma from rmap and vmtruncate before freeing pgtables
  244. */
  245. anon_vma_unlink(vma);
  246. unlink_file_vma(vma);
  247. if (is_vm_hugetlb_page(vma)) {
  248. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  249. floor, next? next->vm_start: ceiling);
  250. } else {
  251. /*
  252. * Optimization: gather nearby vmas into one call down
  253. */
  254. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  255. && !is_vm_hugetlb_page(next)) {
  256. vma = next;
  257. next = vma->vm_next;
  258. anon_vma_unlink(vma);
  259. unlink_file_vma(vma);
  260. }
  261. free_pgd_range(tlb, addr, vma->vm_end,
  262. floor, next? next->vm_start: ceiling);
  263. }
  264. vma = next;
  265. }
  266. }
  267. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  268. {
  269. struct page *new = pte_alloc_one(mm, address);
  270. if (!new)
  271. return -ENOMEM;
  272. pte_lock_init(new);
  273. spin_lock(&mm->page_table_lock);
  274. if (pmd_present(*pmd)) { /* Another has populated it */
  275. pte_lock_deinit(new);
  276. pte_free(new);
  277. } else {
  278. mm->nr_ptes++;
  279. inc_zone_page_state(new, NR_PAGETABLE);
  280. pmd_populate(mm, pmd, new);
  281. }
  282. spin_unlock(&mm->page_table_lock);
  283. return 0;
  284. }
  285. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  286. {
  287. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  288. if (!new)
  289. return -ENOMEM;
  290. spin_lock(&init_mm.page_table_lock);
  291. if (pmd_present(*pmd)) /* Another has populated it */
  292. pte_free_kernel(new);
  293. else
  294. pmd_populate_kernel(&init_mm, pmd, new);
  295. spin_unlock(&init_mm.page_table_lock);
  296. return 0;
  297. }
  298. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  299. {
  300. if (file_rss)
  301. add_mm_counter(mm, file_rss, file_rss);
  302. if (anon_rss)
  303. add_mm_counter(mm, anon_rss, anon_rss);
  304. }
  305. /*
  306. * This function is called to print an error when a bad pte
  307. * is found. For example, we might have a PFN-mapped pte in
  308. * a region that doesn't allow it.
  309. *
  310. * The calling function must still handle the error.
  311. */
  312. void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
  313. {
  314. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  315. "vm_flags = %lx, vaddr = %lx\n",
  316. (long long)pte_val(pte),
  317. (vma->vm_mm == current->mm ? current->comm : "???"),
  318. vma->vm_flags, vaddr);
  319. dump_stack();
  320. }
  321. static inline int is_cow_mapping(unsigned int flags)
  322. {
  323. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  324. }
  325. /*
  326. * This function gets the "struct page" associated with a pte.
  327. *
  328. * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
  329. * will have each page table entry just pointing to a raw page frame
  330. * number, and as far as the VM layer is concerned, those do not have
  331. * pages associated with them - even if the PFN might point to memory
  332. * that otherwise is perfectly fine and has a "struct page".
  333. *
  334. * The way we recognize those mappings is through the rules set up
  335. * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
  336. * and the vm_pgoff will point to the first PFN mapped: thus every
  337. * page that is a raw mapping will always honor the rule
  338. *
  339. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  340. *
  341. * and if that isn't true, the page has been COW'ed (in which case it
  342. * _does_ have a "struct page" associated with it even if it is in a
  343. * VM_PFNMAP range).
  344. */
  345. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  346. {
  347. unsigned long pfn = pte_pfn(pte);
  348. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  349. unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
  350. if (pfn == vma->vm_pgoff + off)
  351. return NULL;
  352. if (!is_cow_mapping(vma->vm_flags))
  353. return NULL;
  354. }
  355. /*
  356. * Add some anal sanity checks for now. Eventually,
  357. * we should just do "return pfn_to_page(pfn)", but
  358. * in the meantime we check that we get a valid pfn,
  359. * and that the resulting page looks ok.
  360. */
  361. if (unlikely(!pfn_valid(pfn))) {
  362. print_bad_pte(vma, pte, addr);
  363. return NULL;
  364. }
  365. /*
  366. * NOTE! We still have PageReserved() pages in the page
  367. * tables.
  368. *
  369. * The PAGE_ZERO() pages and various VDSO mappings can
  370. * cause them to exist.
  371. */
  372. return pfn_to_page(pfn);
  373. }
  374. /*
  375. * copy one vm_area from one task to the other. Assumes the page tables
  376. * already present in the new task to be cleared in the whole range
  377. * covered by this vma.
  378. */
  379. static inline void
  380. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  381. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  382. unsigned long addr, int *rss)
  383. {
  384. unsigned long vm_flags = vma->vm_flags;
  385. pte_t pte = *src_pte;
  386. struct page *page;
  387. /* pte contains position in swap or file, so copy. */
  388. if (unlikely(!pte_present(pte))) {
  389. if (!pte_file(pte)) {
  390. swp_entry_t entry = pte_to_swp_entry(pte);
  391. swap_duplicate(entry);
  392. /* make sure dst_mm is on swapoff's mmlist. */
  393. if (unlikely(list_empty(&dst_mm->mmlist))) {
  394. spin_lock(&mmlist_lock);
  395. if (list_empty(&dst_mm->mmlist))
  396. list_add(&dst_mm->mmlist,
  397. &src_mm->mmlist);
  398. spin_unlock(&mmlist_lock);
  399. }
  400. if (is_write_migration_entry(entry) &&
  401. is_cow_mapping(vm_flags)) {
  402. /*
  403. * COW mappings require pages in both parent
  404. * and child to be set to read.
  405. */
  406. make_migration_entry_read(&entry);
  407. pte = swp_entry_to_pte(entry);
  408. set_pte_at(src_mm, addr, src_pte, pte);
  409. }
  410. }
  411. goto out_set_pte;
  412. }
  413. /*
  414. * If it's a COW mapping, write protect it both
  415. * in the parent and the child
  416. */
  417. if (is_cow_mapping(vm_flags)) {
  418. ptep_set_wrprotect(src_mm, addr, src_pte);
  419. pte = pte_wrprotect(pte);
  420. }
  421. /*
  422. * If it's a shared mapping, mark it clean in
  423. * the child
  424. */
  425. if (vm_flags & VM_SHARED)
  426. pte = pte_mkclean(pte);
  427. pte = pte_mkold(pte);
  428. page = vm_normal_page(vma, addr, pte);
  429. if (page) {
  430. get_page(page);
  431. page_dup_rmap(page);
  432. rss[!!PageAnon(page)]++;
  433. }
  434. out_set_pte:
  435. set_pte_at(dst_mm, addr, dst_pte, pte);
  436. }
  437. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  438. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  439. unsigned long addr, unsigned long end)
  440. {
  441. pte_t *src_pte, *dst_pte;
  442. spinlock_t *src_ptl, *dst_ptl;
  443. int progress = 0;
  444. int rss[2];
  445. again:
  446. rss[1] = rss[0] = 0;
  447. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  448. if (!dst_pte)
  449. return -ENOMEM;
  450. src_pte = pte_offset_map_nested(src_pmd, addr);
  451. src_ptl = pte_lockptr(src_mm, src_pmd);
  452. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  453. arch_enter_lazy_mmu_mode();
  454. do {
  455. /*
  456. * We are holding two locks at this point - either of them
  457. * could generate latencies in another task on another CPU.
  458. */
  459. if (progress >= 32) {
  460. progress = 0;
  461. if (need_resched() ||
  462. need_lockbreak(src_ptl) ||
  463. need_lockbreak(dst_ptl))
  464. break;
  465. }
  466. if (pte_none(*src_pte)) {
  467. progress++;
  468. continue;
  469. }
  470. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  471. progress += 8;
  472. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  473. arch_leave_lazy_mmu_mode();
  474. spin_unlock(src_ptl);
  475. pte_unmap_nested(src_pte - 1);
  476. add_mm_rss(dst_mm, rss[0], rss[1]);
  477. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  478. cond_resched();
  479. if (addr != end)
  480. goto again;
  481. return 0;
  482. }
  483. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  484. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  485. unsigned long addr, unsigned long end)
  486. {
  487. pmd_t *src_pmd, *dst_pmd;
  488. unsigned long next;
  489. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  490. if (!dst_pmd)
  491. return -ENOMEM;
  492. src_pmd = pmd_offset(src_pud, addr);
  493. do {
  494. next = pmd_addr_end(addr, end);
  495. if (pmd_none_or_clear_bad(src_pmd))
  496. continue;
  497. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  498. vma, addr, next))
  499. return -ENOMEM;
  500. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  501. return 0;
  502. }
  503. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  504. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  505. unsigned long addr, unsigned long end)
  506. {
  507. pud_t *src_pud, *dst_pud;
  508. unsigned long next;
  509. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  510. if (!dst_pud)
  511. return -ENOMEM;
  512. src_pud = pud_offset(src_pgd, addr);
  513. do {
  514. next = pud_addr_end(addr, end);
  515. if (pud_none_or_clear_bad(src_pud))
  516. continue;
  517. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  518. vma, addr, next))
  519. return -ENOMEM;
  520. } while (dst_pud++, src_pud++, addr = next, addr != end);
  521. return 0;
  522. }
  523. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  524. struct vm_area_struct *vma)
  525. {
  526. pgd_t *src_pgd, *dst_pgd;
  527. unsigned long next;
  528. unsigned long addr = vma->vm_start;
  529. unsigned long end = vma->vm_end;
  530. /*
  531. * Don't copy ptes where a page fault will fill them correctly.
  532. * Fork becomes much lighter when there are big shared or private
  533. * readonly mappings. The tradeoff is that copy_page_range is more
  534. * efficient than faulting.
  535. */
  536. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  537. if (!vma->anon_vma)
  538. return 0;
  539. }
  540. if (is_vm_hugetlb_page(vma))
  541. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  542. dst_pgd = pgd_offset(dst_mm, addr);
  543. src_pgd = pgd_offset(src_mm, addr);
  544. do {
  545. next = pgd_addr_end(addr, end);
  546. if (pgd_none_or_clear_bad(src_pgd))
  547. continue;
  548. if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  549. vma, addr, next))
  550. return -ENOMEM;
  551. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  552. return 0;
  553. }
  554. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  555. struct vm_area_struct *vma, pmd_t *pmd,
  556. unsigned long addr, unsigned long end,
  557. long *zap_work, struct zap_details *details)
  558. {
  559. struct mm_struct *mm = tlb->mm;
  560. pte_t *pte;
  561. spinlock_t *ptl;
  562. int file_rss = 0;
  563. int anon_rss = 0;
  564. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  565. arch_enter_lazy_mmu_mode();
  566. do {
  567. pte_t ptent = *pte;
  568. if (pte_none(ptent)) {
  569. (*zap_work)--;
  570. continue;
  571. }
  572. (*zap_work) -= PAGE_SIZE;
  573. if (pte_present(ptent)) {
  574. struct page *page;
  575. page = vm_normal_page(vma, addr, ptent);
  576. if (unlikely(details) && page) {
  577. /*
  578. * unmap_shared_mapping_pages() wants to
  579. * invalidate cache without truncating:
  580. * unmap shared but keep private pages.
  581. */
  582. if (details->check_mapping &&
  583. details->check_mapping != page->mapping)
  584. continue;
  585. /*
  586. * Each page->index must be checked when
  587. * invalidating or truncating nonlinear.
  588. */
  589. if (details->nonlinear_vma &&
  590. (page->index < details->first_index ||
  591. page->index > details->last_index))
  592. continue;
  593. }
  594. ptent = ptep_get_and_clear_full(mm, addr, pte,
  595. tlb->fullmm);
  596. tlb_remove_tlb_entry(tlb, pte, addr);
  597. if (unlikely(!page))
  598. continue;
  599. if (unlikely(details) && details->nonlinear_vma
  600. && linear_page_index(details->nonlinear_vma,
  601. addr) != page->index)
  602. set_pte_at(mm, addr, pte,
  603. pgoff_to_pte(page->index));
  604. if (PageAnon(page))
  605. anon_rss--;
  606. else {
  607. if (pte_dirty(ptent))
  608. set_page_dirty(page);
  609. if (pte_young(ptent))
  610. SetPageReferenced(page);
  611. file_rss--;
  612. }
  613. page_remove_rmap(page, vma);
  614. tlb_remove_page(tlb, page);
  615. continue;
  616. }
  617. /*
  618. * If details->check_mapping, we leave swap entries;
  619. * if details->nonlinear_vma, we leave file entries.
  620. */
  621. if (unlikely(details))
  622. continue;
  623. if (!pte_file(ptent))
  624. free_swap_and_cache(pte_to_swp_entry(ptent));
  625. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  626. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  627. add_mm_rss(mm, file_rss, anon_rss);
  628. arch_leave_lazy_mmu_mode();
  629. pte_unmap_unlock(pte - 1, ptl);
  630. return addr;
  631. }
  632. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  633. struct vm_area_struct *vma, pud_t *pud,
  634. unsigned long addr, unsigned long end,
  635. long *zap_work, struct zap_details *details)
  636. {
  637. pmd_t *pmd;
  638. unsigned long next;
  639. pmd = pmd_offset(pud, addr);
  640. do {
  641. next = pmd_addr_end(addr, end);
  642. if (pmd_none_or_clear_bad(pmd)) {
  643. (*zap_work)--;
  644. continue;
  645. }
  646. next = zap_pte_range(tlb, vma, pmd, addr, next,
  647. zap_work, details);
  648. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  649. return addr;
  650. }
  651. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  652. struct vm_area_struct *vma, pgd_t *pgd,
  653. unsigned long addr, unsigned long end,
  654. long *zap_work, struct zap_details *details)
  655. {
  656. pud_t *pud;
  657. unsigned long next;
  658. pud = pud_offset(pgd, addr);
  659. do {
  660. next = pud_addr_end(addr, end);
  661. if (pud_none_or_clear_bad(pud)) {
  662. (*zap_work)--;
  663. continue;
  664. }
  665. next = zap_pmd_range(tlb, vma, pud, addr, next,
  666. zap_work, details);
  667. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  668. return addr;
  669. }
  670. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  671. struct vm_area_struct *vma,
  672. unsigned long addr, unsigned long end,
  673. long *zap_work, struct zap_details *details)
  674. {
  675. pgd_t *pgd;
  676. unsigned long next;
  677. if (details && !details->check_mapping && !details->nonlinear_vma)
  678. details = NULL;
  679. BUG_ON(addr >= end);
  680. tlb_start_vma(tlb, vma);
  681. pgd = pgd_offset(vma->vm_mm, addr);
  682. do {
  683. next = pgd_addr_end(addr, end);
  684. if (pgd_none_or_clear_bad(pgd)) {
  685. (*zap_work)--;
  686. continue;
  687. }
  688. next = zap_pud_range(tlb, vma, pgd, addr, next,
  689. zap_work, details);
  690. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  691. tlb_end_vma(tlb, vma);
  692. return addr;
  693. }
  694. #ifdef CONFIG_PREEMPT
  695. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  696. #else
  697. /* No preempt: go for improved straight-line efficiency */
  698. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  699. #endif
  700. /**
  701. * unmap_vmas - unmap a range of memory covered by a list of vma's
  702. * @tlbp: address of the caller's struct mmu_gather
  703. * @vma: the starting vma
  704. * @start_addr: virtual address at which to start unmapping
  705. * @end_addr: virtual address at which to end unmapping
  706. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  707. * @details: details of nonlinear truncation or shared cache invalidation
  708. *
  709. * Returns the end address of the unmapping (restart addr if interrupted).
  710. *
  711. * Unmap all pages in the vma list.
  712. *
  713. * We aim to not hold locks for too long (for scheduling latency reasons).
  714. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  715. * return the ending mmu_gather to the caller.
  716. *
  717. * Only addresses between `start' and `end' will be unmapped.
  718. *
  719. * The VMA list must be sorted in ascending virtual address order.
  720. *
  721. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  722. * range after unmap_vmas() returns. So the only responsibility here is to
  723. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  724. * drops the lock and schedules.
  725. */
  726. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  727. struct vm_area_struct *vma, unsigned long start_addr,
  728. unsigned long end_addr, unsigned long *nr_accounted,
  729. struct zap_details *details)
  730. {
  731. long zap_work = ZAP_BLOCK_SIZE;
  732. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  733. int tlb_start_valid = 0;
  734. unsigned long start = start_addr;
  735. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  736. int fullmm = (*tlbp)->fullmm;
  737. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  738. unsigned long end;
  739. start = max(vma->vm_start, start_addr);
  740. if (start >= vma->vm_end)
  741. continue;
  742. end = min(vma->vm_end, end_addr);
  743. if (end <= vma->vm_start)
  744. continue;
  745. if (vma->vm_flags & VM_ACCOUNT)
  746. *nr_accounted += (end - start) >> PAGE_SHIFT;
  747. while (start != end) {
  748. if (!tlb_start_valid) {
  749. tlb_start = start;
  750. tlb_start_valid = 1;
  751. }
  752. if (unlikely(is_vm_hugetlb_page(vma))) {
  753. unmap_hugepage_range(vma, start, end);
  754. zap_work -= (end - start) /
  755. (HPAGE_SIZE / PAGE_SIZE);
  756. start = end;
  757. } else
  758. start = unmap_page_range(*tlbp, vma,
  759. start, end, &zap_work, details);
  760. if (zap_work > 0) {
  761. BUG_ON(start != end);
  762. break;
  763. }
  764. tlb_finish_mmu(*tlbp, tlb_start, start);
  765. if (need_resched() ||
  766. (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
  767. if (i_mmap_lock) {
  768. *tlbp = NULL;
  769. goto out;
  770. }
  771. cond_resched();
  772. }
  773. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  774. tlb_start_valid = 0;
  775. zap_work = ZAP_BLOCK_SIZE;
  776. }
  777. }
  778. out:
  779. return start; /* which is now the end (or restart) address */
  780. }
  781. /**
  782. * zap_page_range - remove user pages in a given range
  783. * @vma: vm_area_struct holding the applicable pages
  784. * @address: starting address of pages to zap
  785. * @size: number of bytes to zap
  786. * @details: details of nonlinear truncation or shared cache invalidation
  787. */
  788. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  789. unsigned long size, struct zap_details *details)
  790. {
  791. struct mm_struct *mm = vma->vm_mm;
  792. struct mmu_gather *tlb;
  793. unsigned long end = address + size;
  794. unsigned long nr_accounted = 0;
  795. lru_add_drain();
  796. tlb = tlb_gather_mmu(mm, 0);
  797. update_hiwater_rss(mm);
  798. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  799. if (tlb)
  800. tlb_finish_mmu(tlb, address, end);
  801. return end;
  802. }
  803. /*
  804. * Do a quick page-table lookup for a single page.
  805. */
  806. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  807. unsigned int flags)
  808. {
  809. pgd_t *pgd;
  810. pud_t *pud;
  811. pmd_t *pmd;
  812. pte_t *ptep, pte;
  813. spinlock_t *ptl;
  814. struct page *page;
  815. struct mm_struct *mm = vma->vm_mm;
  816. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  817. if (!IS_ERR(page)) {
  818. BUG_ON(flags & FOLL_GET);
  819. goto out;
  820. }
  821. page = NULL;
  822. pgd = pgd_offset(mm, address);
  823. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  824. goto no_page_table;
  825. pud = pud_offset(pgd, address);
  826. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  827. goto no_page_table;
  828. pmd = pmd_offset(pud, address);
  829. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  830. goto no_page_table;
  831. if (pmd_huge(*pmd)) {
  832. BUG_ON(flags & FOLL_GET);
  833. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  834. goto out;
  835. }
  836. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  837. if (!ptep)
  838. goto out;
  839. pte = *ptep;
  840. if (!pte_present(pte))
  841. goto unlock;
  842. if ((flags & FOLL_WRITE) && !pte_write(pte))
  843. goto unlock;
  844. page = vm_normal_page(vma, address, pte);
  845. if (unlikely(!page))
  846. goto unlock;
  847. if (flags & FOLL_GET)
  848. get_page(page);
  849. if (flags & FOLL_TOUCH) {
  850. if ((flags & FOLL_WRITE) &&
  851. !pte_dirty(pte) && !PageDirty(page))
  852. set_page_dirty(page);
  853. mark_page_accessed(page);
  854. }
  855. unlock:
  856. pte_unmap_unlock(ptep, ptl);
  857. out:
  858. return page;
  859. no_page_table:
  860. /*
  861. * When core dumping an enormous anonymous area that nobody
  862. * has touched so far, we don't want to allocate page tables.
  863. */
  864. if (flags & FOLL_ANON) {
  865. page = ZERO_PAGE(address);
  866. if (flags & FOLL_GET)
  867. get_page(page);
  868. BUG_ON(flags & FOLL_WRITE);
  869. }
  870. return page;
  871. }
  872. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  873. unsigned long start, int len, int write, int force,
  874. struct page **pages, struct vm_area_struct **vmas)
  875. {
  876. int i;
  877. unsigned int vm_flags;
  878. /*
  879. * Require read or write permissions.
  880. * If 'force' is set, we only require the "MAY" flags.
  881. */
  882. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  883. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  884. i = 0;
  885. do {
  886. struct vm_area_struct *vma;
  887. unsigned int foll_flags;
  888. vma = find_extend_vma(mm, start);
  889. if (!vma && in_gate_area(tsk, start)) {
  890. unsigned long pg = start & PAGE_MASK;
  891. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  892. pgd_t *pgd;
  893. pud_t *pud;
  894. pmd_t *pmd;
  895. pte_t *pte;
  896. if (write) /* user gate pages are read-only */
  897. return i ? : -EFAULT;
  898. if (pg > TASK_SIZE)
  899. pgd = pgd_offset_k(pg);
  900. else
  901. pgd = pgd_offset_gate(mm, pg);
  902. BUG_ON(pgd_none(*pgd));
  903. pud = pud_offset(pgd, pg);
  904. BUG_ON(pud_none(*pud));
  905. pmd = pmd_offset(pud, pg);
  906. if (pmd_none(*pmd))
  907. return i ? : -EFAULT;
  908. pte = pte_offset_map(pmd, pg);
  909. if (pte_none(*pte)) {
  910. pte_unmap(pte);
  911. return i ? : -EFAULT;
  912. }
  913. if (pages) {
  914. struct page *page = vm_normal_page(gate_vma, start, *pte);
  915. pages[i] = page;
  916. if (page)
  917. get_page(page);
  918. }
  919. pte_unmap(pte);
  920. if (vmas)
  921. vmas[i] = gate_vma;
  922. i++;
  923. start += PAGE_SIZE;
  924. len--;
  925. continue;
  926. }
  927. if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
  928. || !(vm_flags & vma->vm_flags))
  929. return i ? : -EFAULT;
  930. if (is_vm_hugetlb_page(vma)) {
  931. i = follow_hugetlb_page(mm, vma, pages, vmas,
  932. &start, &len, i);
  933. continue;
  934. }
  935. foll_flags = FOLL_TOUCH;
  936. if (pages)
  937. foll_flags |= FOLL_GET;
  938. if (!write && !(vma->vm_flags & VM_LOCKED) &&
  939. (!vma->vm_ops || !vma->vm_ops->nopage))
  940. foll_flags |= FOLL_ANON;
  941. do {
  942. struct page *page;
  943. if (write)
  944. foll_flags |= FOLL_WRITE;
  945. cond_resched();
  946. while (!(page = follow_page(vma, start, foll_flags))) {
  947. int ret;
  948. ret = __handle_mm_fault(mm, vma, start,
  949. foll_flags & FOLL_WRITE);
  950. /*
  951. * The VM_FAULT_WRITE bit tells us that do_wp_page has
  952. * broken COW when necessary, even if maybe_mkwrite
  953. * decided not to set pte_write. We can thus safely do
  954. * subsequent page lookups as if they were reads.
  955. */
  956. if (ret & VM_FAULT_WRITE)
  957. foll_flags &= ~FOLL_WRITE;
  958. switch (ret & ~VM_FAULT_WRITE) {
  959. case VM_FAULT_MINOR:
  960. tsk->min_flt++;
  961. break;
  962. case VM_FAULT_MAJOR:
  963. tsk->maj_flt++;
  964. break;
  965. case VM_FAULT_SIGBUS:
  966. return i ? i : -EFAULT;
  967. case VM_FAULT_OOM:
  968. return i ? i : -ENOMEM;
  969. default:
  970. BUG();
  971. }
  972. cond_resched();
  973. }
  974. if (pages) {
  975. pages[i] = page;
  976. flush_anon_page(vma, page, start);
  977. flush_dcache_page(page);
  978. }
  979. if (vmas)
  980. vmas[i] = vma;
  981. i++;
  982. start += PAGE_SIZE;
  983. len--;
  984. } while (len && start < vma->vm_end);
  985. } while (len);
  986. return i;
  987. }
  988. EXPORT_SYMBOL(get_user_pages);
  989. static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  990. unsigned long addr, unsigned long end, pgprot_t prot)
  991. {
  992. pte_t *pte;
  993. spinlock_t *ptl;
  994. int err = 0;
  995. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  996. if (!pte)
  997. return -EAGAIN;
  998. arch_enter_lazy_mmu_mode();
  999. do {
  1000. struct page *page = ZERO_PAGE(addr);
  1001. pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
  1002. if (unlikely(!pte_none(*pte))) {
  1003. err = -EEXIST;
  1004. pte++;
  1005. break;
  1006. }
  1007. page_cache_get(page);
  1008. page_add_file_rmap(page);
  1009. inc_mm_counter(mm, file_rss);
  1010. set_pte_at(mm, addr, pte, zero_pte);
  1011. } while (pte++, addr += PAGE_SIZE, addr != end);
  1012. arch_leave_lazy_mmu_mode();
  1013. pte_unmap_unlock(pte - 1, ptl);
  1014. return err;
  1015. }
  1016. static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1017. unsigned long addr, unsigned long end, pgprot_t prot)
  1018. {
  1019. pmd_t *pmd;
  1020. unsigned long next;
  1021. int err;
  1022. pmd = pmd_alloc(mm, pud, addr);
  1023. if (!pmd)
  1024. return -EAGAIN;
  1025. do {
  1026. next = pmd_addr_end(addr, end);
  1027. err = zeromap_pte_range(mm, pmd, addr, next, prot);
  1028. if (err)
  1029. break;
  1030. } while (pmd++, addr = next, addr != end);
  1031. return err;
  1032. }
  1033. static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1034. unsigned long addr, unsigned long end, pgprot_t prot)
  1035. {
  1036. pud_t *pud;
  1037. unsigned long next;
  1038. int err;
  1039. pud = pud_alloc(mm, pgd, addr);
  1040. if (!pud)
  1041. return -EAGAIN;
  1042. do {
  1043. next = pud_addr_end(addr, end);
  1044. err = zeromap_pmd_range(mm, pud, addr, next, prot);
  1045. if (err)
  1046. break;
  1047. } while (pud++, addr = next, addr != end);
  1048. return err;
  1049. }
  1050. int zeromap_page_range(struct vm_area_struct *vma,
  1051. unsigned long addr, unsigned long size, pgprot_t prot)
  1052. {
  1053. pgd_t *pgd;
  1054. unsigned long next;
  1055. unsigned long end = addr + size;
  1056. struct mm_struct *mm = vma->vm_mm;
  1057. int err;
  1058. BUG_ON(addr >= end);
  1059. pgd = pgd_offset(mm, addr);
  1060. flush_cache_range(vma, addr, end);
  1061. do {
  1062. next = pgd_addr_end(addr, end);
  1063. err = zeromap_pud_range(mm, pgd, addr, next, prot);
  1064. if (err)
  1065. break;
  1066. } while (pgd++, addr = next, addr != end);
  1067. return err;
  1068. }
  1069. pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
  1070. {
  1071. pgd_t * pgd = pgd_offset(mm, addr);
  1072. pud_t * pud = pud_alloc(mm, pgd, addr);
  1073. if (pud) {
  1074. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1075. if (pmd)
  1076. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1077. }
  1078. return NULL;
  1079. }
  1080. /*
  1081. * This is the old fallback for page remapping.
  1082. *
  1083. * For historical reasons, it only allows reserved pages. Only
  1084. * old drivers should use this, and they needed to mark their
  1085. * pages reserved for the old functions anyway.
  1086. */
  1087. static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
  1088. {
  1089. int retval;
  1090. pte_t *pte;
  1091. spinlock_t *ptl;
  1092. retval = -EINVAL;
  1093. if (PageAnon(page))
  1094. goto out;
  1095. retval = -ENOMEM;
  1096. flush_dcache_page(page);
  1097. pte = get_locked_pte(mm, addr, &ptl);
  1098. if (!pte)
  1099. goto out;
  1100. retval = -EBUSY;
  1101. if (!pte_none(*pte))
  1102. goto out_unlock;
  1103. /* Ok, finally just insert the thing.. */
  1104. get_page(page);
  1105. inc_mm_counter(mm, file_rss);
  1106. page_add_file_rmap(page);
  1107. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1108. retval = 0;
  1109. out_unlock:
  1110. pte_unmap_unlock(pte, ptl);
  1111. out:
  1112. return retval;
  1113. }
  1114. /**
  1115. * vm_insert_page - insert single page into user vma
  1116. * @vma: user vma to map to
  1117. * @addr: target user address of this page
  1118. * @page: source kernel page
  1119. *
  1120. * This allows drivers to insert individual pages they've allocated
  1121. * into a user vma.
  1122. *
  1123. * The page has to be a nice clean _individual_ kernel allocation.
  1124. * If you allocate a compound page, you need to have marked it as
  1125. * such (__GFP_COMP), or manually just split the page up yourself
  1126. * (see split_page()).
  1127. *
  1128. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1129. * took an arbitrary page protection parameter. This doesn't allow
  1130. * that. Your vma protection will have to be set up correctly, which
  1131. * means that if you want a shared writable mapping, you'd better
  1132. * ask for a shared writable mapping!
  1133. *
  1134. * The page does not need to be reserved.
  1135. */
  1136. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
  1137. {
  1138. if (addr < vma->vm_start || addr >= vma->vm_end)
  1139. return -EFAULT;
  1140. if (!page_count(page))
  1141. return -EINVAL;
  1142. vma->vm_flags |= VM_INSERTPAGE;
  1143. return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
  1144. }
  1145. EXPORT_SYMBOL(vm_insert_page);
  1146. /**
  1147. * vm_insert_pfn - insert single pfn into user vma
  1148. * @vma: user vma to map to
  1149. * @addr: target user address of this page
  1150. * @pfn: source kernel pfn
  1151. *
  1152. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1153. * they've allocated into a user vma. Same comments apply.
  1154. *
  1155. * This function should only be called from a vm_ops->fault handler, and
  1156. * in that case the handler should return NULL.
  1157. */
  1158. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1159. unsigned long pfn)
  1160. {
  1161. struct mm_struct *mm = vma->vm_mm;
  1162. int retval;
  1163. pte_t *pte, entry;
  1164. spinlock_t *ptl;
  1165. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  1166. BUG_ON(is_cow_mapping(vma->vm_flags));
  1167. retval = -ENOMEM;
  1168. pte = get_locked_pte(mm, addr, &ptl);
  1169. if (!pte)
  1170. goto out;
  1171. retval = -EBUSY;
  1172. if (!pte_none(*pte))
  1173. goto out_unlock;
  1174. /* Ok, finally just insert the thing.. */
  1175. entry = pfn_pte(pfn, vma->vm_page_prot);
  1176. set_pte_at(mm, addr, pte, entry);
  1177. update_mmu_cache(vma, addr, entry);
  1178. retval = 0;
  1179. out_unlock:
  1180. pte_unmap_unlock(pte, ptl);
  1181. out:
  1182. return retval;
  1183. }
  1184. EXPORT_SYMBOL(vm_insert_pfn);
  1185. /*
  1186. * maps a range of physical memory into the requested pages. the old
  1187. * mappings are removed. any references to nonexistent pages results
  1188. * in null mappings (currently treated as "copy-on-access")
  1189. */
  1190. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1191. unsigned long addr, unsigned long end,
  1192. unsigned long pfn, pgprot_t prot)
  1193. {
  1194. pte_t *pte;
  1195. spinlock_t *ptl;
  1196. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1197. if (!pte)
  1198. return -ENOMEM;
  1199. arch_enter_lazy_mmu_mode();
  1200. do {
  1201. BUG_ON(!pte_none(*pte));
  1202. set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
  1203. pfn++;
  1204. } while (pte++, addr += PAGE_SIZE, addr != end);
  1205. arch_leave_lazy_mmu_mode();
  1206. pte_unmap_unlock(pte - 1, ptl);
  1207. return 0;
  1208. }
  1209. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1210. unsigned long addr, unsigned long end,
  1211. unsigned long pfn, pgprot_t prot)
  1212. {
  1213. pmd_t *pmd;
  1214. unsigned long next;
  1215. pfn -= addr >> PAGE_SHIFT;
  1216. pmd = pmd_alloc(mm, pud, addr);
  1217. if (!pmd)
  1218. return -ENOMEM;
  1219. do {
  1220. next = pmd_addr_end(addr, end);
  1221. if (remap_pte_range(mm, pmd, addr, next,
  1222. pfn + (addr >> PAGE_SHIFT), prot))
  1223. return -ENOMEM;
  1224. } while (pmd++, addr = next, addr != end);
  1225. return 0;
  1226. }
  1227. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1228. unsigned long addr, unsigned long end,
  1229. unsigned long pfn, pgprot_t prot)
  1230. {
  1231. pud_t *pud;
  1232. unsigned long next;
  1233. pfn -= addr >> PAGE_SHIFT;
  1234. pud = pud_alloc(mm, pgd, addr);
  1235. if (!pud)
  1236. return -ENOMEM;
  1237. do {
  1238. next = pud_addr_end(addr, end);
  1239. if (remap_pmd_range(mm, pud, addr, next,
  1240. pfn + (addr >> PAGE_SHIFT), prot))
  1241. return -ENOMEM;
  1242. } while (pud++, addr = next, addr != end);
  1243. return 0;
  1244. }
  1245. /**
  1246. * remap_pfn_range - remap kernel memory to userspace
  1247. * @vma: user vma to map to
  1248. * @addr: target user address to start at
  1249. * @pfn: physical address of kernel memory
  1250. * @size: size of map area
  1251. * @prot: page protection flags for this mapping
  1252. *
  1253. * Note: this is only safe if the mm semaphore is held when called.
  1254. */
  1255. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1256. unsigned long pfn, unsigned long size, pgprot_t prot)
  1257. {
  1258. pgd_t *pgd;
  1259. unsigned long next;
  1260. unsigned long end = addr + PAGE_ALIGN(size);
  1261. struct mm_struct *mm = vma->vm_mm;
  1262. int err;
  1263. /*
  1264. * Physically remapped pages are special. Tell the
  1265. * rest of the world about it:
  1266. * VM_IO tells people not to look at these pages
  1267. * (accesses can have side effects).
  1268. * VM_RESERVED is specified all over the place, because
  1269. * in 2.4 it kept swapout's vma scan off this vma; but
  1270. * in 2.6 the LRU scan won't even find its pages, so this
  1271. * flag means no more than count its pages in reserved_vm,
  1272. * and omit it from core dump, even when VM_IO turned off.
  1273. * VM_PFNMAP tells the core MM that the base pages are just
  1274. * raw PFN mappings, and do not have a "struct page" associated
  1275. * with them.
  1276. *
  1277. * There's a horrible special case to handle copy-on-write
  1278. * behaviour that some programs depend on. We mark the "original"
  1279. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1280. */
  1281. if (is_cow_mapping(vma->vm_flags)) {
  1282. if (addr != vma->vm_start || end != vma->vm_end)
  1283. return -EINVAL;
  1284. vma->vm_pgoff = pfn;
  1285. }
  1286. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1287. BUG_ON(addr >= end);
  1288. pfn -= addr >> PAGE_SHIFT;
  1289. pgd = pgd_offset(mm, addr);
  1290. flush_cache_range(vma, addr, end);
  1291. do {
  1292. next = pgd_addr_end(addr, end);
  1293. err = remap_pud_range(mm, pgd, addr, next,
  1294. pfn + (addr >> PAGE_SHIFT), prot);
  1295. if (err)
  1296. break;
  1297. } while (pgd++, addr = next, addr != end);
  1298. return err;
  1299. }
  1300. EXPORT_SYMBOL(remap_pfn_range);
  1301. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1302. unsigned long addr, unsigned long end,
  1303. pte_fn_t fn, void *data)
  1304. {
  1305. pte_t *pte;
  1306. int err;
  1307. struct page *pmd_page;
  1308. spinlock_t *uninitialized_var(ptl);
  1309. pte = (mm == &init_mm) ?
  1310. pte_alloc_kernel(pmd, addr) :
  1311. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1312. if (!pte)
  1313. return -ENOMEM;
  1314. BUG_ON(pmd_huge(*pmd));
  1315. pmd_page = pmd_page(*pmd);
  1316. do {
  1317. err = fn(pte, pmd_page, addr, data);
  1318. if (err)
  1319. break;
  1320. } while (pte++, addr += PAGE_SIZE, addr != end);
  1321. if (mm != &init_mm)
  1322. pte_unmap_unlock(pte-1, ptl);
  1323. return err;
  1324. }
  1325. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1326. unsigned long addr, unsigned long end,
  1327. pte_fn_t fn, void *data)
  1328. {
  1329. pmd_t *pmd;
  1330. unsigned long next;
  1331. int err;
  1332. pmd = pmd_alloc(mm, pud, addr);
  1333. if (!pmd)
  1334. return -ENOMEM;
  1335. do {
  1336. next = pmd_addr_end(addr, end);
  1337. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1338. if (err)
  1339. break;
  1340. } while (pmd++, addr = next, addr != end);
  1341. return err;
  1342. }
  1343. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1344. unsigned long addr, unsigned long end,
  1345. pte_fn_t fn, void *data)
  1346. {
  1347. pud_t *pud;
  1348. unsigned long next;
  1349. int err;
  1350. pud = pud_alloc(mm, pgd, addr);
  1351. if (!pud)
  1352. return -ENOMEM;
  1353. do {
  1354. next = pud_addr_end(addr, end);
  1355. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1356. if (err)
  1357. break;
  1358. } while (pud++, addr = next, addr != end);
  1359. return err;
  1360. }
  1361. /*
  1362. * Scan a region of virtual memory, filling in page tables as necessary
  1363. * and calling a provided function on each leaf page table.
  1364. */
  1365. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1366. unsigned long size, pte_fn_t fn, void *data)
  1367. {
  1368. pgd_t *pgd;
  1369. unsigned long next;
  1370. unsigned long end = addr + size;
  1371. int err;
  1372. BUG_ON(addr >= end);
  1373. pgd = pgd_offset(mm, addr);
  1374. do {
  1375. next = pgd_addr_end(addr, end);
  1376. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1377. if (err)
  1378. break;
  1379. } while (pgd++, addr = next, addr != end);
  1380. return err;
  1381. }
  1382. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1383. /*
  1384. * handle_pte_fault chooses page fault handler according to an entry
  1385. * which was read non-atomically. Before making any commitment, on
  1386. * those architectures or configurations (e.g. i386 with PAE) which
  1387. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1388. * must check under lock before unmapping the pte and proceeding
  1389. * (but do_wp_page is only called after already making such a check;
  1390. * and do_anonymous_page and do_no_page can safely check later on).
  1391. */
  1392. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1393. pte_t *page_table, pte_t orig_pte)
  1394. {
  1395. int same = 1;
  1396. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1397. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1398. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1399. spin_lock(ptl);
  1400. same = pte_same(*page_table, orig_pte);
  1401. spin_unlock(ptl);
  1402. }
  1403. #endif
  1404. pte_unmap(page_table);
  1405. return same;
  1406. }
  1407. /*
  1408. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1409. * servicing faults for write access. In the normal case, do always want
  1410. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1411. * that do not have writing enabled, when used by access_process_vm.
  1412. */
  1413. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1414. {
  1415. if (likely(vma->vm_flags & VM_WRITE))
  1416. pte = pte_mkwrite(pte);
  1417. return pte;
  1418. }
  1419. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1420. {
  1421. /*
  1422. * If the source page was a PFN mapping, we don't have
  1423. * a "struct page" for it. We do a best-effort copy by
  1424. * just copying from the original user address. If that
  1425. * fails, we just zero-fill it. Live with it.
  1426. */
  1427. if (unlikely(!src)) {
  1428. void *kaddr = kmap_atomic(dst, KM_USER0);
  1429. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1430. /*
  1431. * This really shouldn't fail, because the page is there
  1432. * in the page tables. But it might just be unreadable,
  1433. * in which case we just give up and fill the result with
  1434. * zeroes.
  1435. */
  1436. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1437. memset(kaddr, 0, PAGE_SIZE);
  1438. kunmap_atomic(kaddr, KM_USER0);
  1439. flush_dcache_page(dst);
  1440. return;
  1441. }
  1442. copy_user_highpage(dst, src, va, vma);
  1443. }
  1444. /*
  1445. * This routine handles present pages, when users try to write
  1446. * to a shared page. It is done by copying the page to a new address
  1447. * and decrementing the shared-page counter for the old page.
  1448. *
  1449. * Note that this routine assumes that the protection checks have been
  1450. * done by the caller (the low-level page fault routine in most cases).
  1451. * Thus we can safely just mark it writable once we've done any necessary
  1452. * COW.
  1453. *
  1454. * We also mark the page dirty at this point even though the page will
  1455. * change only once the write actually happens. This avoids a few races,
  1456. * and potentially makes it more efficient.
  1457. *
  1458. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1459. * but allow concurrent faults), with pte both mapped and locked.
  1460. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1461. */
  1462. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1463. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1464. spinlock_t *ptl, pte_t orig_pte)
  1465. {
  1466. struct page *old_page, *new_page;
  1467. pte_t entry;
  1468. int reuse = 0, ret = VM_FAULT_MINOR;
  1469. struct page *dirty_page = NULL;
  1470. old_page = vm_normal_page(vma, address, orig_pte);
  1471. if (!old_page)
  1472. goto gotten;
  1473. /*
  1474. * Take out anonymous pages first, anonymous shared vmas are
  1475. * not dirty accountable.
  1476. */
  1477. if (PageAnon(old_page)) {
  1478. if (!TestSetPageLocked(old_page)) {
  1479. reuse = can_share_swap_page(old_page);
  1480. unlock_page(old_page);
  1481. }
  1482. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1483. (VM_WRITE|VM_SHARED))) {
  1484. /*
  1485. * Only catch write-faults on shared writable pages,
  1486. * read-only shared pages can get COWed by
  1487. * get_user_pages(.write=1, .force=1).
  1488. */
  1489. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1490. /*
  1491. * Notify the address space that the page is about to
  1492. * become writable so that it can prohibit this or wait
  1493. * for the page to get into an appropriate state.
  1494. *
  1495. * We do this without the lock held, so that it can
  1496. * sleep if it needs to.
  1497. */
  1498. page_cache_get(old_page);
  1499. pte_unmap_unlock(page_table, ptl);
  1500. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1501. goto unwritable_page;
  1502. /*
  1503. * Since we dropped the lock we need to revalidate
  1504. * the PTE as someone else may have changed it. If
  1505. * they did, we just return, as we can count on the
  1506. * MMU to tell us if they didn't also make it writable.
  1507. */
  1508. page_table = pte_offset_map_lock(mm, pmd, address,
  1509. &ptl);
  1510. page_cache_release(old_page);
  1511. if (!pte_same(*page_table, orig_pte))
  1512. goto unlock;
  1513. }
  1514. dirty_page = old_page;
  1515. get_page(dirty_page);
  1516. reuse = 1;
  1517. }
  1518. if (reuse) {
  1519. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1520. entry = pte_mkyoung(orig_pte);
  1521. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1522. ptep_set_access_flags(vma, address, page_table, entry, 1);
  1523. update_mmu_cache(vma, address, entry);
  1524. lazy_mmu_prot_update(entry);
  1525. ret |= VM_FAULT_WRITE;
  1526. goto unlock;
  1527. }
  1528. /*
  1529. * Ok, we need to copy. Oh, well..
  1530. */
  1531. page_cache_get(old_page);
  1532. gotten:
  1533. pte_unmap_unlock(page_table, ptl);
  1534. if (unlikely(anon_vma_prepare(vma)))
  1535. goto oom;
  1536. if (old_page == ZERO_PAGE(address)) {
  1537. new_page = alloc_zeroed_user_highpage(vma, address);
  1538. if (!new_page)
  1539. goto oom;
  1540. } else {
  1541. new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  1542. if (!new_page)
  1543. goto oom;
  1544. cow_user_page(new_page, old_page, address, vma);
  1545. }
  1546. /*
  1547. * Re-check the pte - we dropped the lock
  1548. */
  1549. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1550. if (likely(pte_same(*page_table, orig_pte))) {
  1551. if (old_page) {
  1552. page_remove_rmap(old_page, vma);
  1553. if (!PageAnon(old_page)) {
  1554. dec_mm_counter(mm, file_rss);
  1555. inc_mm_counter(mm, anon_rss);
  1556. }
  1557. } else
  1558. inc_mm_counter(mm, anon_rss);
  1559. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1560. entry = mk_pte(new_page, vma->vm_page_prot);
  1561. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1562. lazy_mmu_prot_update(entry);
  1563. /*
  1564. * Clear the pte entry and flush it first, before updating the
  1565. * pte with the new entry. This will avoid a race condition
  1566. * seen in the presence of one thread doing SMC and another
  1567. * thread doing COW.
  1568. */
  1569. ptep_clear_flush(vma, address, page_table);
  1570. set_pte_at(mm, address, page_table, entry);
  1571. update_mmu_cache(vma, address, entry);
  1572. lru_cache_add_active(new_page);
  1573. page_add_new_anon_rmap(new_page, vma, address);
  1574. /* Free the old page.. */
  1575. new_page = old_page;
  1576. ret |= VM_FAULT_WRITE;
  1577. }
  1578. if (new_page)
  1579. page_cache_release(new_page);
  1580. if (old_page)
  1581. page_cache_release(old_page);
  1582. unlock:
  1583. pte_unmap_unlock(page_table, ptl);
  1584. if (dirty_page) {
  1585. set_page_dirty_balance(dirty_page);
  1586. put_page(dirty_page);
  1587. }
  1588. return ret;
  1589. oom:
  1590. if (old_page)
  1591. page_cache_release(old_page);
  1592. return VM_FAULT_OOM;
  1593. unwritable_page:
  1594. page_cache_release(old_page);
  1595. return VM_FAULT_SIGBUS;
  1596. }
  1597. /*
  1598. * Helper functions for unmap_mapping_range().
  1599. *
  1600. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1601. *
  1602. * We have to restart searching the prio_tree whenever we drop the lock,
  1603. * since the iterator is only valid while the lock is held, and anyway
  1604. * a later vma might be split and reinserted earlier while lock dropped.
  1605. *
  1606. * The list of nonlinear vmas could be handled more efficiently, using
  1607. * a placeholder, but handle it in the same way until a need is shown.
  1608. * It is important to search the prio_tree before nonlinear list: a vma
  1609. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1610. * while the lock is dropped; but never shifted from list to prio_tree.
  1611. *
  1612. * In order to make forward progress despite restarting the search,
  1613. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1614. * quickly skip it next time around. Since the prio_tree search only
  1615. * shows us those vmas affected by unmapping the range in question, we
  1616. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1617. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1618. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1619. * i_mmap_lock.
  1620. *
  1621. * In order to make forward progress despite repeatedly restarting some
  1622. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1623. * and restart from that address when we reach that vma again. It might
  1624. * have been split or merged, shrunk or extended, but never shifted: so
  1625. * restart_addr remains valid so long as it remains in the vma's range.
  1626. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1627. * values so we can save vma's restart_addr in its truncate_count field.
  1628. */
  1629. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1630. static void reset_vma_truncate_counts(struct address_space *mapping)
  1631. {
  1632. struct vm_area_struct *vma;
  1633. struct prio_tree_iter iter;
  1634. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1635. vma->vm_truncate_count = 0;
  1636. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1637. vma->vm_truncate_count = 0;
  1638. }
  1639. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1640. unsigned long start_addr, unsigned long end_addr,
  1641. struct zap_details *details)
  1642. {
  1643. unsigned long restart_addr;
  1644. int need_break;
  1645. again:
  1646. restart_addr = vma->vm_truncate_count;
  1647. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1648. start_addr = restart_addr;
  1649. if (start_addr >= end_addr) {
  1650. /* Top of vma has been split off since last time */
  1651. vma->vm_truncate_count = details->truncate_count;
  1652. return 0;
  1653. }
  1654. }
  1655. restart_addr = zap_page_range(vma, start_addr,
  1656. end_addr - start_addr, details);
  1657. need_break = need_resched() ||
  1658. need_lockbreak(details->i_mmap_lock);
  1659. if (restart_addr >= end_addr) {
  1660. /* We have now completed this vma: mark it so */
  1661. vma->vm_truncate_count = details->truncate_count;
  1662. if (!need_break)
  1663. return 0;
  1664. } else {
  1665. /* Note restart_addr in vma's truncate_count field */
  1666. vma->vm_truncate_count = restart_addr;
  1667. if (!need_break)
  1668. goto again;
  1669. }
  1670. spin_unlock(details->i_mmap_lock);
  1671. cond_resched();
  1672. spin_lock(details->i_mmap_lock);
  1673. return -EINTR;
  1674. }
  1675. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1676. struct zap_details *details)
  1677. {
  1678. struct vm_area_struct *vma;
  1679. struct prio_tree_iter iter;
  1680. pgoff_t vba, vea, zba, zea;
  1681. restart:
  1682. vma_prio_tree_foreach(vma, &iter, root,
  1683. details->first_index, details->last_index) {
  1684. /* Skip quickly over those we have already dealt with */
  1685. if (vma->vm_truncate_count == details->truncate_count)
  1686. continue;
  1687. vba = vma->vm_pgoff;
  1688. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1689. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1690. zba = details->first_index;
  1691. if (zba < vba)
  1692. zba = vba;
  1693. zea = details->last_index;
  1694. if (zea > vea)
  1695. zea = vea;
  1696. if (unmap_mapping_range_vma(vma,
  1697. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1698. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1699. details) < 0)
  1700. goto restart;
  1701. }
  1702. }
  1703. static inline void unmap_mapping_range_list(struct list_head *head,
  1704. struct zap_details *details)
  1705. {
  1706. struct vm_area_struct *vma;
  1707. /*
  1708. * In nonlinear VMAs there is no correspondence between virtual address
  1709. * offset and file offset. So we must perform an exhaustive search
  1710. * across *all* the pages in each nonlinear VMA, not just the pages
  1711. * whose virtual address lies outside the file truncation point.
  1712. */
  1713. restart:
  1714. list_for_each_entry(vma, head, shared.vm_set.list) {
  1715. /* Skip quickly over those we have already dealt with */
  1716. if (vma->vm_truncate_count == details->truncate_count)
  1717. continue;
  1718. details->nonlinear_vma = vma;
  1719. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1720. vma->vm_end, details) < 0)
  1721. goto restart;
  1722. }
  1723. }
  1724. /**
  1725. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1726. * @mapping: the address space containing mmaps to be unmapped.
  1727. * @holebegin: byte in first page to unmap, relative to the start of
  1728. * the underlying file. This will be rounded down to a PAGE_SIZE
  1729. * boundary. Note that this is different from vmtruncate(), which
  1730. * must keep the partial page. In contrast, we must get rid of
  1731. * partial pages.
  1732. * @holelen: size of prospective hole in bytes. This will be rounded
  1733. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1734. * end of the file.
  1735. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1736. * but 0 when invalidating pagecache, don't throw away private data.
  1737. */
  1738. void unmap_mapping_range(struct address_space *mapping,
  1739. loff_t const holebegin, loff_t const holelen, int even_cows)
  1740. {
  1741. struct zap_details details;
  1742. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1743. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1744. /* Check for overflow. */
  1745. if (sizeof(holelen) > sizeof(hlen)) {
  1746. long long holeend =
  1747. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1748. if (holeend & ~(long long)ULONG_MAX)
  1749. hlen = ULONG_MAX - hba + 1;
  1750. }
  1751. details.check_mapping = even_cows? NULL: mapping;
  1752. details.nonlinear_vma = NULL;
  1753. details.first_index = hba;
  1754. details.last_index = hba + hlen - 1;
  1755. if (details.last_index < details.first_index)
  1756. details.last_index = ULONG_MAX;
  1757. details.i_mmap_lock = &mapping->i_mmap_lock;
  1758. spin_lock(&mapping->i_mmap_lock);
  1759. /* serialize i_size write against truncate_count write */
  1760. smp_wmb();
  1761. /* Protect against page faults, and endless unmapping loops */
  1762. mapping->truncate_count++;
  1763. /*
  1764. * For archs where spin_lock has inclusive semantics like ia64
  1765. * this smp_mb() will prevent to read pagetable contents
  1766. * before the truncate_count increment is visible to
  1767. * other cpus.
  1768. */
  1769. smp_mb();
  1770. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  1771. if (mapping->truncate_count == 0)
  1772. reset_vma_truncate_counts(mapping);
  1773. mapping->truncate_count++;
  1774. }
  1775. details.truncate_count = mapping->truncate_count;
  1776. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  1777. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  1778. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  1779. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  1780. spin_unlock(&mapping->i_mmap_lock);
  1781. }
  1782. EXPORT_SYMBOL(unmap_mapping_range);
  1783. /**
  1784. * vmtruncate - unmap mappings "freed" by truncate() syscall
  1785. * @inode: inode of the file used
  1786. * @offset: file offset to start truncating
  1787. *
  1788. * NOTE! We have to be ready to update the memory sharing
  1789. * between the file and the memory map for a potential last
  1790. * incomplete page. Ugly, but necessary.
  1791. */
  1792. int vmtruncate(struct inode * inode, loff_t offset)
  1793. {
  1794. struct address_space *mapping = inode->i_mapping;
  1795. unsigned long limit;
  1796. if (inode->i_size < offset)
  1797. goto do_expand;
  1798. /*
  1799. * truncation of in-use swapfiles is disallowed - it would cause
  1800. * subsequent swapout to scribble on the now-freed blocks.
  1801. */
  1802. if (IS_SWAPFILE(inode))
  1803. goto out_busy;
  1804. i_size_write(inode, offset);
  1805. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  1806. truncate_inode_pages(mapping, offset);
  1807. goto out_truncate;
  1808. do_expand:
  1809. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  1810. if (limit != RLIM_INFINITY && offset > limit)
  1811. goto out_sig;
  1812. if (offset > inode->i_sb->s_maxbytes)
  1813. goto out_big;
  1814. i_size_write(inode, offset);
  1815. out_truncate:
  1816. if (inode->i_op && inode->i_op->truncate)
  1817. inode->i_op->truncate(inode);
  1818. return 0;
  1819. out_sig:
  1820. send_sig(SIGXFSZ, current, 0);
  1821. out_big:
  1822. return -EFBIG;
  1823. out_busy:
  1824. return -ETXTBSY;
  1825. }
  1826. EXPORT_SYMBOL(vmtruncate);
  1827. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  1828. {
  1829. struct address_space *mapping = inode->i_mapping;
  1830. /*
  1831. * If the underlying filesystem is not going to provide
  1832. * a way to truncate a range of blocks (punch a hole) -
  1833. * we should return failure right now.
  1834. */
  1835. if (!inode->i_op || !inode->i_op->truncate_range)
  1836. return -ENOSYS;
  1837. mutex_lock(&inode->i_mutex);
  1838. down_write(&inode->i_alloc_sem);
  1839. unmap_mapping_range(mapping, offset, (end - offset), 1);
  1840. truncate_inode_pages_range(mapping, offset, end);
  1841. inode->i_op->truncate_range(inode, offset, end);
  1842. up_write(&inode->i_alloc_sem);
  1843. mutex_unlock(&inode->i_mutex);
  1844. return 0;
  1845. }
  1846. /**
  1847. * swapin_readahead - swap in pages in hope we need them soon
  1848. * @entry: swap entry of this memory
  1849. * @addr: address to start
  1850. * @vma: user vma this addresses belong to
  1851. *
  1852. * Primitive swap readahead code. We simply read an aligned block of
  1853. * (1 << page_cluster) entries in the swap area. This method is chosen
  1854. * because it doesn't cost us any seek time. We also make sure to queue
  1855. * the 'original' request together with the readahead ones...
  1856. *
  1857. * This has been extended to use the NUMA policies from the mm triggering
  1858. * the readahead.
  1859. *
  1860. * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
  1861. */
  1862. void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
  1863. {
  1864. #ifdef CONFIG_NUMA
  1865. struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
  1866. #endif
  1867. int i, num;
  1868. struct page *new_page;
  1869. unsigned long offset;
  1870. /*
  1871. * Get the number of handles we should do readahead io to.
  1872. */
  1873. num = valid_swaphandles(entry, &offset);
  1874. for (i = 0; i < num; offset++, i++) {
  1875. /* Ok, do the async read-ahead now */
  1876. new_page = read_swap_cache_async(swp_entry(swp_type(entry),
  1877. offset), vma, addr);
  1878. if (!new_page)
  1879. break;
  1880. page_cache_release(new_page);
  1881. #ifdef CONFIG_NUMA
  1882. /*
  1883. * Find the next applicable VMA for the NUMA policy.
  1884. */
  1885. addr += PAGE_SIZE;
  1886. if (addr == 0)
  1887. vma = NULL;
  1888. if (vma) {
  1889. if (addr >= vma->vm_end) {
  1890. vma = next_vma;
  1891. next_vma = vma ? vma->vm_next : NULL;
  1892. }
  1893. if (vma && addr < vma->vm_start)
  1894. vma = NULL;
  1895. } else {
  1896. if (next_vma && addr >= next_vma->vm_start) {
  1897. vma = next_vma;
  1898. next_vma = vma->vm_next;
  1899. }
  1900. }
  1901. #endif
  1902. }
  1903. lru_add_drain(); /* Push any new pages onto the LRU now */
  1904. }
  1905. /*
  1906. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1907. * but allow concurrent faults), and pte mapped but not yet locked.
  1908. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1909. */
  1910. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1911. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1912. int write_access, pte_t orig_pte)
  1913. {
  1914. spinlock_t *ptl;
  1915. struct page *page;
  1916. swp_entry_t entry;
  1917. pte_t pte;
  1918. int ret = VM_FAULT_MINOR;
  1919. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  1920. goto out;
  1921. entry = pte_to_swp_entry(orig_pte);
  1922. if (is_migration_entry(entry)) {
  1923. migration_entry_wait(mm, pmd, address);
  1924. goto out;
  1925. }
  1926. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  1927. page = lookup_swap_cache(entry);
  1928. if (!page) {
  1929. grab_swap_token(); /* Contend for token _before_ read-in */
  1930. swapin_readahead(entry, address, vma);
  1931. page = read_swap_cache_async(entry, vma, address);
  1932. if (!page) {
  1933. /*
  1934. * Back out if somebody else faulted in this pte
  1935. * while we released the pte lock.
  1936. */
  1937. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1938. if (likely(pte_same(*page_table, orig_pte)))
  1939. ret = VM_FAULT_OOM;
  1940. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1941. goto unlock;
  1942. }
  1943. /* Had to read the page from swap area: Major fault */
  1944. ret = VM_FAULT_MAJOR;
  1945. count_vm_event(PGMAJFAULT);
  1946. }
  1947. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  1948. mark_page_accessed(page);
  1949. lock_page(page);
  1950. /*
  1951. * Back out if somebody else already faulted in this pte.
  1952. */
  1953. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1954. if (unlikely(!pte_same(*page_table, orig_pte)))
  1955. goto out_nomap;
  1956. if (unlikely(!PageUptodate(page))) {
  1957. ret = VM_FAULT_SIGBUS;
  1958. goto out_nomap;
  1959. }
  1960. /* The page isn't present yet, go ahead with the fault. */
  1961. inc_mm_counter(mm, anon_rss);
  1962. pte = mk_pte(page, vma->vm_page_prot);
  1963. if (write_access && can_share_swap_page(page)) {
  1964. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  1965. write_access = 0;
  1966. }
  1967. flush_icache_page(vma, page);
  1968. set_pte_at(mm, address, page_table, pte);
  1969. page_add_anon_rmap(page, vma, address);
  1970. swap_free(entry);
  1971. if (vm_swap_full())
  1972. remove_exclusive_swap_page(page);
  1973. unlock_page(page);
  1974. if (write_access) {
  1975. if (do_wp_page(mm, vma, address,
  1976. page_table, pmd, ptl, pte) == VM_FAULT_OOM)
  1977. ret = VM_FAULT_OOM;
  1978. goto out;
  1979. }
  1980. /* No need to invalidate - it was non-present before */
  1981. update_mmu_cache(vma, address, pte);
  1982. lazy_mmu_prot_update(pte);
  1983. unlock:
  1984. pte_unmap_unlock(page_table, ptl);
  1985. out:
  1986. return ret;
  1987. out_nomap:
  1988. pte_unmap_unlock(page_table, ptl);
  1989. unlock_page(page);
  1990. page_cache_release(page);
  1991. return ret;
  1992. }
  1993. /*
  1994. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1995. * but allow concurrent faults), and pte mapped but not yet locked.
  1996. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1997. */
  1998. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1999. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2000. int write_access)
  2001. {
  2002. struct page *page;
  2003. spinlock_t *ptl;
  2004. pte_t entry;
  2005. if (write_access) {
  2006. /* Allocate our own private page. */
  2007. pte_unmap(page_table);
  2008. if (unlikely(anon_vma_prepare(vma)))
  2009. goto oom;
  2010. page = alloc_zeroed_user_highpage(vma, address);
  2011. if (!page)
  2012. goto oom;
  2013. entry = mk_pte(page, vma->vm_page_prot);
  2014. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2015. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2016. if (!pte_none(*page_table))
  2017. goto release;
  2018. inc_mm_counter(mm, anon_rss);
  2019. lru_cache_add_active(page);
  2020. page_add_new_anon_rmap(page, vma, address);
  2021. } else {
  2022. /* Map the ZERO_PAGE - vm_page_prot is readonly */
  2023. page = ZERO_PAGE(address);
  2024. page_cache_get(page);
  2025. entry = mk_pte(page, vma->vm_page_prot);
  2026. ptl = pte_lockptr(mm, pmd);
  2027. spin_lock(ptl);
  2028. if (!pte_none(*page_table))
  2029. goto release;
  2030. inc_mm_counter(mm, file_rss);
  2031. page_add_file_rmap(page);
  2032. }
  2033. set_pte_at(mm, address, page_table, entry);
  2034. /* No need to invalidate - it was non-present before */
  2035. update_mmu_cache(vma, address, entry);
  2036. lazy_mmu_prot_update(entry);
  2037. unlock:
  2038. pte_unmap_unlock(page_table, ptl);
  2039. return VM_FAULT_MINOR;
  2040. release:
  2041. page_cache_release(page);
  2042. goto unlock;
  2043. oom:
  2044. return VM_FAULT_OOM;
  2045. }
  2046. /*
  2047. * do_no_page() tries to create a new page mapping. It aggressively
  2048. * tries to share with existing pages, but makes a separate copy if
  2049. * the "write_access" parameter is true in order to avoid the next
  2050. * page fault.
  2051. *
  2052. * As this is called only for pages that do not currently exist, we
  2053. * do not need to flush old virtual caches or the TLB.
  2054. *
  2055. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2056. * but allow concurrent faults), and pte mapped but not yet locked.
  2057. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2058. */
  2059. static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2060. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2061. int write_access)
  2062. {
  2063. spinlock_t *ptl;
  2064. struct page *new_page;
  2065. struct address_space *mapping = NULL;
  2066. pte_t entry;
  2067. unsigned int sequence = 0;
  2068. int ret = VM_FAULT_MINOR;
  2069. int anon = 0;
  2070. struct page *dirty_page = NULL;
  2071. pte_unmap(page_table);
  2072. BUG_ON(vma->vm_flags & VM_PFNMAP);
  2073. if (vma->vm_file) {
  2074. mapping = vma->vm_file->f_mapping;
  2075. sequence = mapping->truncate_count;
  2076. smp_rmb(); /* serializes i_size against truncate_count */
  2077. }
  2078. retry:
  2079. new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
  2080. /*
  2081. * No smp_rmb is needed here as long as there's a full
  2082. * spin_lock/unlock sequence inside the ->nopage callback
  2083. * (for the pagecache lookup) that acts as an implicit
  2084. * smp_mb() and prevents the i_size read to happen
  2085. * after the next truncate_count read.
  2086. */
  2087. /* no page was available -- either SIGBUS, OOM or REFAULT */
  2088. if (unlikely(new_page == NOPAGE_SIGBUS))
  2089. return VM_FAULT_SIGBUS;
  2090. else if (unlikely(new_page == NOPAGE_OOM))
  2091. return VM_FAULT_OOM;
  2092. else if (unlikely(new_page == NOPAGE_REFAULT))
  2093. return VM_FAULT_MINOR;
  2094. /*
  2095. * Should we do an early C-O-W break?
  2096. */
  2097. if (write_access) {
  2098. if (!(vma->vm_flags & VM_SHARED)) {
  2099. struct page *page;
  2100. if (unlikely(anon_vma_prepare(vma)))
  2101. goto oom;
  2102. page = alloc_page_vma(GFP_HIGHUSER, vma, address);
  2103. if (!page)
  2104. goto oom;
  2105. copy_user_highpage(page, new_page, address, vma);
  2106. page_cache_release(new_page);
  2107. new_page = page;
  2108. anon = 1;
  2109. } else {
  2110. /* if the page will be shareable, see if the backing
  2111. * address space wants to know that the page is about
  2112. * to become writable */
  2113. if (vma->vm_ops->page_mkwrite &&
  2114. vma->vm_ops->page_mkwrite(vma, new_page) < 0
  2115. ) {
  2116. page_cache_release(new_page);
  2117. return VM_FAULT_SIGBUS;
  2118. }
  2119. }
  2120. }
  2121. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2122. /*
  2123. * For a file-backed vma, someone could have truncated or otherwise
  2124. * invalidated this page. If unmap_mapping_range got called,
  2125. * retry getting the page.
  2126. */
  2127. if (mapping && unlikely(sequence != mapping->truncate_count)) {
  2128. pte_unmap_unlock(page_table, ptl);
  2129. page_cache_release(new_page);
  2130. cond_resched();
  2131. sequence = mapping->truncate_count;
  2132. smp_rmb();
  2133. goto retry;
  2134. }
  2135. /*
  2136. * This silly early PAGE_DIRTY setting removes a race
  2137. * due to the bad i386 page protection. But it's valid
  2138. * for other architectures too.
  2139. *
  2140. * Note that if write_access is true, we either now have
  2141. * an exclusive copy of the page, or this is a shared mapping,
  2142. * so we can make it writable and dirty to avoid having to
  2143. * handle that later.
  2144. */
  2145. /* Only go through if we didn't race with anybody else... */
  2146. if (pte_none(*page_table)) {
  2147. flush_icache_page(vma, new_page);
  2148. entry = mk_pte(new_page, vma->vm_page_prot);
  2149. if (write_access)
  2150. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2151. set_pte_at(mm, address, page_table, entry);
  2152. if (anon) {
  2153. inc_mm_counter(mm, anon_rss);
  2154. lru_cache_add_active(new_page);
  2155. page_add_new_anon_rmap(new_page, vma, address);
  2156. } else {
  2157. inc_mm_counter(mm, file_rss);
  2158. page_add_file_rmap(new_page);
  2159. if (write_access) {
  2160. dirty_page = new_page;
  2161. get_page(dirty_page);
  2162. }
  2163. }
  2164. } else {
  2165. /* One of our sibling threads was faster, back out. */
  2166. page_cache_release(new_page);
  2167. goto unlock;
  2168. }
  2169. /* no need to invalidate: a not-present page shouldn't be cached */
  2170. update_mmu_cache(vma, address, entry);
  2171. lazy_mmu_prot_update(entry);
  2172. unlock:
  2173. pte_unmap_unlock(page_table, ptl);
  2174. if (dirty_page) {
  2175. set_page_dirty_balance(dirty_page);
  2176. put_page(dirty_page);
  2177. }
  2178. return ret;
  2179. oom:
  2180. page_cache_release(new_page);
  2181. return VM_FAULT_OOM;
  2182. }
  2183. /*
  2184. * do_no_pfn() tries to create a new page mapping for a page without
  2185. * a struct_page backing it
  2186. *
  2187. * As this is called only for pages that do not currently exist, we
  2188. * do not need to flush old virtual caches or the TLB.
  2189. *
  2190. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2191. * but allow concurrent faults), and pte mapped but not yet locked.
  2192. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2193. *
  2194. * It is expected that the ->nopfn handler always returns the same pfn
  2195. * for a given virtual mapping.
  2196. *
  2197. * Mark this `noinline' to prevent it from bloating the main pagefault code.
  2198. */
  2199. static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
  2200. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2201. int write_access)
  2202. {
  2203. spinlock_t *ptl;
  2204. pte_t entry;
  2205. unsigned long pfn;
  2206. int ret = VM_FAULT_MINOR;
  2207. pte_unmap(page_table);
  2208. BUG_ON(!(vma->vm_flags & VM_PFNMAP));
  2209. BUG_ON(is_cow_mapping(vma->vm_flags));
  2210. pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
  2211. if (unlikely(pfn == NOPFN_OOM))
  2212. return VM_FAULT_OOM;
  2213. else if (unlikely(pfn == NOPFN_SIGBUS))
  2214. return VM_FAULT_SIGBUS;
  2215. else if (unlikely(pfn == NOPFN_REFAULT))
  2216. return VM_FAULT_MINOR;
  2217. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2218. /* Only go through if we didn't race with anybody else... */
  2219. if (pte_none(*page_table)) {
  2220. entry = pfn_pte(pfn, vma->vm_page_prot);
  2221. if (write_access)
  2222. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2223. set_pte_at(mm, address, page_table, entry);
  2224. }
  2225. pte_unmap_unlock(page_table, ptl);
  2226. return ret;
  2227. }
  2228. /*
  2229. * Fault of a previously existing named mapping. Repopulate the pte
  2230. * from the encoded file_pte if possible. This enables swappable
  2231. * nonlinear vmas.
  2232. *
  2233. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2234. * but allow concurrent faults), and pte mapped but not yet locked.
  2235. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2236. */
  2237. static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2238. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2239. int write_access, pte_t orig_pte)
  2240. {
  2241. pgoff_t pgoff;
  2242. int err;
  2243. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2244. return VM_FAULT_MINOR;
  2245. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2246. /*
  2247. * Page table corrupted: show pte and kill process.
  2248. */
  2249. print_bad_pte(vma, orig_pte, address);
  2250. return VM_FAULT_OOM;
  2251. }
  2252. /* We can then assume vm->vm_ops && vma->vm_ops->populate */
  2253. pgoff = pte_to_pgoff(orig_pte);
  2254. err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
  2255. vma->vm_page_prot, pgoff, 0);
  2256. if (err == -ENOMEM)
  2257. return VM_FAULT_OOM;
  2258. if (err)
  2259. return VM_FAULT_SIGBUS;
  2260. return VM_FAULT_MAJOR;
  2261. }
  2262. /*
  2263. * These routines also need to handle stuff like marking pages dirty
  2264. * and/or accessed for architectures that don't do it in hardware (most
  2265. * RISC architectures). The early dirtying is also good on the i386.
  2266. *
  2267. * There is also a hook called "update_mmu_cache()" that architectures
  2268. * with external mmu caches can use to update those (ie the Sparc or
  2269. * PowerPC hashed page tables that act as extended TLBs).
  2270. *
  2271. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2272. * but allow concurrent faults), and pte mapped but not yet locked.
  2273. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2274. */
  2275. static inline int handle_pte_fault(struct mm_struct *mm,
  2276. struct vm_area_struct *vma, unsigned long address,
  2277. pte_t *pte, pmd_t *pmd, int write_access)
  2278. {
  2279. pte_t entry;
  2280. pte_t old_entry;
  2281. spinlock_t *ptl;
  2282. old_entry = entry = *pte;
  2283. if (!pte_present(entry)) {
  2284. if (pte_none(entry)) {
  2285. if (vma->vm_ops) {
  2286. if (vma->vm_ops->nopage)
  2287. return do_no_page(mm, vma, address,
  2288. pte, pmd,
  2289. write_access);
  2290. if (unlikely(vma->vm_ops->nopfn))
  2291. return do_no_pfn(mm, vma, address, pte,
  2292. pmd, write_access);
  2293. }
  2294. return do_anonymous_page(mm, vma, address,
  2295. pte, pmd, write_access);
  2296. }
  2297. if (pte_file(entry))
  2298. return do_file_page(mm, vma, address,
  2299. pte, pmd, write_access, entry);
  2300. return do_swap_page(mm, vma, address,
  2301. pte, pmd, write_access, entry);
  2302. }
  2303. ptl = pte_lockptr(mm, pmd);
  2304. spin_lock(ptl);
  2305. if (unlikely(!pte_same(*pte, entry)))
  2306. goto unlock;
  2307. if (write_access) {
  2308. if (!pte_write(entry))
  2309. return do_wp_page(mm, vma, address,
  2310. pte, pmd, ptl, entry);
  2311. entry = pte_mkdirty(entry);
  2312. }
  2313. entry = pte_mkyoung(entry);
  2314. if (!pte_same(old_entry, entry)) {
  2315. ptep_set_access_flags(vma, address, pte, entry, write_access);
  2316. update_mmu_cache(vma, address, entry);
  2317. lazy_mmu_prot_update(entry);
  2318. } else {
  2319. /*
  2320. * This is needed only for protection faults but the arch code
  2321. * is not yet telling us if this is a protection fault or not.
  2322. * This still avoids useless tlb flushes for .text page faults
  2323. * with threads.
  2324. */
  2325. if (write_access)
  2326. flush_tlb_page(vma, address);
  2327. }
  2328. unlock:
  2329. pte_unmap_unlock(pte, ptl);
  2330. return VM_FAULT_MINOR;
  2331. }
  2332. /*
  2333. * By the time we get here, we already hold the mm semaphore
  2334. */
  2335. int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2336. unsigned long address, int write_access)
  2337. {
  2338. pgd_t *pgd;
  2339. pud_t *pud;
  2340. pmd_t *pmd;
  2341. pte_t *pte;
  2342. __set_current_state(TASK_RUNNING);
  2343. count_vm_event(PGFAULT);
  2344. if (unlikely(is_vm_hugetlb_page(vma)))
  2345. return hugetlb_fault(mm, vma, address, write_access);
  2346. pgd = pgd_offset(mm, address);
  2347. pud = pud_alloc(mm, pgd, address);
  2348. if (!pud)
  2349. return VM_FAULT_OOM;
  2350. pmd = pmd_alloc(mm, pud, address);
  2351. if (!pmd)
  2352. return VM_FAULT_OOM;
  2353. pte = pte_alloc_map(mm, pmd, address);
  2354. if (!pte)
  2355. return VM_FAULT_OOM;
  2356. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2357. }
  2358. EXPORT_SYMBOL_GPL(__handle_mm_fault);
  2359. #ifndef __PAGETABLE_PUD_FOLDED
  2360. /*
  2361. * Allocate page upper directory.
  2362. * We've already handled the fast-path in-line.
  2363. */
  2364. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2365. {
  2366. pud_t *new = pud_alloc_one(mm, address);
  2367. if (!new)
  2368. return -ENOMEM;
  2369. spin_lock(&mm->page_table_lock);
  2370. if (pgd_present(*pgd)) /* Another has populated it */
  2371. pud_free(new);
  2372. else
  2373. pgd_populate(mm, pgd, new);
  2374. spin_unlock(&mm->page_table_lock);
  2375. return 0;
  2376. }
  2377. #endif /* __PAGETABLE_PUD_FOLDED */
  2378. #ifndef __PAGETABLE_PMD_FOLDED
  2379. /*
  2380. * Allocate page middle directory.
  2381. * We've already handled the fast-path in-line.
  2382. */
  2383. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2384. {
  2385. pmd_t *new = pmd_alloc_one(mm, address);
  2386. if (!new)
  2387. return -ENOMEM;
  2388. spin_lock(&mm->page_table_lock);
  2389. #ifndef __ARCH_HAS_4LEVEL_HACK
  2390. if (pud_present(*pud)) /* Another has populated it */
  2391. pmd_free(new);
  2392. else
  2393. pud_populate(mm, pud, new);
  2394. #else
  2395. if (pgd_present(*pud)) /* Another has populated it */
  2396. pmd_free(new);
  2397. else
  2398. pgd_populate(mm, pud, new);
  2399. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2400. spin_unlock(&mm->page_table_lock);
  2401. return 0;
  2402. }
  2403. #endif /* __PAGETABLE_PMD_FOLDED */
  2404. int make_pages_present(unsigned long addr, unsigned long end)
  2405. {
  2406. int ret, len, write;
  2407. struct vm_area_struct * vma;
  2408. vma = find_vma(current->mm, addr);
  2409. if (!vma)
  2410. return -1;
  2411. write = (vma->vm_flags & VM_WRITE) != 0;
  2412. BUG_ON(addr >= end);
  2413. BUG_ON(end > vma->vm_end);
  2414. len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
  2415. ret = get_user_pages(current, current->mm, addr,
  2416. len, write, 0, NULL, NULL);
  2417. if (ret < 0)
  2418. return ret;
  2419. return ret == len ? 0 : -1;
  2420. }
  2421. /*
  2422. * Map a vmalloc()-space virtual address to the physical page.
  2423. */
  2424. struct page * vmalloc_to_page(void * vmalloc_addr)
  2425. {
  2426. unsigned long addr = (unsigned long) vmalloc_addr;
  2427. struct page *page = NULL;
  2428. pgd_t *pgd = pgd_offset_k(addr);
  2429. pud_t *pud;
  2430. pmd_t *pmd;
  2431. pte_t *ptep, pte;
  2432. if (!pgd_none(*pgd)) {
  2433. pud = pud_offset(pgd, addr);
  2434. if (!pud_none(*pud)) {
  2435. pmd = pmd_offset(pud, addr);
  2436. if (!pmd_none(*pmd)) {
  2437. ptep = pte_offset_map(pmd, addr);
  2438. pte = *ptep;
  2439. if (pte_present(pte))
  2440. page = pte_page(pte);
  2441. pte_unmap(ptep);
  2442. }
  2443. }
  2444. }
  2445. return page;
  2446. }
  2447. EXPORT_SYMBOL(vmalloc_to_page);
  2448. /*
  2449. * Map a vmalloc()-space virtual address to the physical page frame number.
  2450. */
  2451. unsigned long vmalloc_to_pfn(void * vmalloc_addr)
  2452. {
  2453. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  2454. }
  2455. EXPORT_SYMBOL(vmalloc_to_pfn);
  2456. #if !defined(__HAVE_ARCH_GATE_AREA)
  2457. #if defined(AT_SYSINFO_EHDR)
  2458. static struct vm_area_struct gate_vma;
  2459. static int __init gate_vma_init(void)
  2460. {
  2461. gate_vma.vm_mm = NULL;
  2462. gate_vma.vm_start = FIXADDR_USER_START;
  2463. gate_vma.vm_end = FIXADDR_USER_END;
  2464. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2465. gate_vma.vm_page_prot = __P101;
  2466. /*
  2467. * Make sure the vDSO gets into every core dump.
  2468. * Dumping its contents makes post-mortem fully interpretable later
  2469. * without matching up the same kernel and hardware config to see
  2470. * what PC values meant.
  2471. */
  2472. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2473. return 0;
  2474. }
  2475. __initcall(gate_vma_init);
  2476. #endif
  2477. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2478. {
  2479. #ifdef AT_SYSINFO_EHDR
  2480. return &gate_vma;
  2481. #else
  2482. return NULL;
  2483. #endif
  2484. }
  2485. int in_gate_area_no_task(unsigned long addr)
  2486. {
  2487. #ifdef AT_SYSINFO_EHDR
  2488. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2489. return 1;
  2490. #endif
  2491. return 0;
  2492. }
  2493. #endif /* __HAVE_ARCH_GATE_AREA */
  2494. /*
  2495. * Access another process' address space.
  2496. * Source/target buffer must be kernel space,
  2497. * Do not walk the page table directly, use get_user_pages
  2498. */
  2499. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2500. {
  2501. struct mm_struct *mm;
  2502. struct vm_area_struct *vma;
  2503. struct page *page;
  2504. void *old_buf = buf;
  2505. mm = get_task_mm(tsk);
  2506. if (!mm)
  2507. return 0;
  2508. down_read(&mm->mmap_sem);
  2509. /* ignore errors, just check how much was sucessfully transfered */
  2510. while (len) {
  2511. int bytes, ret, offset;
  2512. void *maddr;
  2513. ret = get_user_pages(tsk, mm, addr, 1,
  2514. write, 1, &page, &vma);
  2515. if (ret <= 0)
  2516. break;
  2517. bytes = len;
  2518. offset = addr & (PAGE_SIZE-1);
  2519. if (bytes > PAGE_SIZE-offset)
  2520. bytes = PAGE_SIZE-offset;
  2521. maddr = kmap(page);
  2522. if (write) {
  2523. copy_to_user_page(vma, page, addr,
  2524. maddr + offset, buf, bytes);
  2525. set_page_dirty_lock(page);
  2526. } else {
  2527. copy_from_user_page(vma, page, addr,
  2528. buf, maddr + offset, bytes);
  2529. }
  2530. kunmap(page);
  2531. page_cache_release(page);
  2532. len -= bytes;
  2533. buf += bytes;
  2534. addr += bytes;
  2535. }
  2536. up_read(&mm->mmap_sem);
  2537. mmput(mm);
  2538. return buf - old_buf;
  2539. }