hugetlb.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/cpuset.h>
  16. #include <linux/mutex.h>
  17. #include <asm/page.h>
  18. #include <asm/pgtable.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  22. static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
  23. unsigned long max_huge_pages;
  24. static struct list_head hugepage_freelists[MAX_NUMNODES];
  25. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  26. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  27. /*
  28. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  29. */
  30. static DEFINE_SPINLOCK(hugetlb_lock);
  31. static void clear_huge_page(struct page *page, unsigned long addr)
  32. {
  33. int i;
  34. might_sleep();
  35. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
  36. cond_resched();
  37. clear_user_highpage(page + i, addr);
  38. }
  39. }
  40. static void copy_huge_page(struct page *dst, struct page *src,
  41. unsigned long addr, struct vm_area_struct *vma)
  42. {
  43. int i;
  44. might_sleep();
  45. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
  46. cond_resched();
  47. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  48. }
  49. }
  50. static void enqueue_huge_page(struct page *page)
  51. {
  52. int nid = page_to_nid(page);
  53. list_add(&page->lru, &hugepage_freelists[nid]);
  54. free_huge_pages++;
  55. free_huge_pages_node[nid]++;
  56. }
  57. static struct page *dequeue_huge_page(struct vm_area_struct *vma,
  58. unsigned long address)
  59. {
  60. int nid = numa_node_id();
  61. struct page *page = NULL;
  62. struct zonelist *zonelist = huge_zonelist(vma, address);
  63. struct zone **z;
  64. for (z = zonelist->zones; *z; z++) {
  65. nid = zone_to_nid(*z);
  66. if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
  67. !list_empty(&hugepage_freelists[nid]))
  68. break;
  69. }
  70. if (*z) {
  71. page = list_entry(hugepage_freelists[nid].next,
  72. struct page, lru);
  73. list_del(&page->lru);
  74. free_huge_pages--;
  75. free_huge_pages_node[nid]--;
  76. }
  77. return page;
  78. }
  79. static void free_huge_page(struct page *page)
  80. {
  81. BUG_ON(page_count(page));
  82. INIT_LIST_HEAD(&page->lru);
  83. spin_lock(&hugetlb_lock);
  84. enqueue_huge_page(page);
  85. spin_unlock(&hugetlb_lock);
  86. }
  87. static int alloc_fresh_huge_page(void)
  88. {
  89. static int nid = 0;
  90. struct page *page;
  91. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  92. HUGETLB_PAGE_ORDER);
  93. nid = next_node(nid, node_online_map);
  94. if (nid == MAX_NUMNODES)
  95. nid = first_node(node_online_map);
  96. if (page) {
  97. set_compound_page_dtor(page, free_huge_page);
  98. spin_lock(&hugetlb_lock);
  99. nr_huge_pages++;
  100. nr_huge_pages_node[page_to_nid(page)]++;
  101. spin_unlock(&hugetlb_lock);
  102. put_page(page); /* free it into the hugepage allocator */
  103. return 1;
  104. }
  105. return 0;
  106. }
  107. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  108. unsigned long addr)
  109. {
  110. struct page *page;
  111. spin_lock(&hugetlb_lock);
  112. if (vma->vm_flags & VM_MAYSHARE)
  113. resv_huge_pages--;
  114. else if (free_huge_pages <= resv_huge_pages)
  115. goto fail;
  116. page = dequeue_huge_page(vma, addr);
  117. if (!page)
  118. goto fail;
  119. spin_unlock(&hugetlb_lock);
  120. set_page_refcounted(page);
  121. return page;
  122. fail:
  123. if (vma->vm_flags & VM_MAYSHARE)
  124. resv_huge_pages++;
  125. spin_unlock(&hugetlb_lock);
  126. return NULL;
  127. }
  128. static int __init hugetlb_init(void)
  129. {
  130. unsigned long i;
  131. if (HPAGE_SHIFT == 0)
  132. return 0;
  133. for (i = 0; i < MAX_NUMNODES; ++i)
  134. INIT_LIST_HEAD(&hugepage_freelists[i]);
  135. for (i = 0; i < max_huge_pages; ++i) {
  136. if (!alloc_fresh_huge_page())
  137. break;
  138. }
  139. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  140. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  141. return 0;
  142. }
  143. module_init(hugetlb_init);
  144. static int __init hugetlb_setup(char *s)
  145. {
  146. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  147. max_huge_pages = 0;
  148. return 1;
  149. }
  150. __setup("hugepages=", hugetlb_setup);
  151. static unsigned int cpuset_mems_nr(unsigned int *array)
  152. {
  153. int node;
  154. unsigned int nr = 0;
  155. for_each_node_mask(node, cpuset_current_mems_allowed)
  156. nr += array[node];
  157. return nr;
  158. }
  159. #ifdef CONFIG_SYSCTL
  160. static void update_and_free_page(struct page *page)
  161. {
  162. int i;
  163. nr_huge_pages--;
  164. nr_huge_pages_node[page_to_nid(page)]--;
  165. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  166. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  167. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  168. 1 << PG_private | 1<< PG_writeback);
  169. }
  170. page[1].lru.next = NULL;
  171. set_page_refcounted(page);
  172. __free_pages(page, HUGETLB_PAGE_ORDER);
  173. }
  174. #ifdef CONFIG_HIGHMEM
  175. static void try_to_free_low(unsigned long count)
  176. {
  177. int i;
  178. for (i = 0; i < MAX_NUMNODES; ++i) {
  179. struct page *page, *next;
  180. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  181. if (PageHighMem(page))
  182. continue;
  183. list_del(&page->lru);
  184. update_and_free_page(page);
  185. free_huge_pages--;
  186. free_huge_pages_node[page_to_nid(page)]--;
  187. if (count >= nr_huge_pages)
  188. return;
  189. }
  190. }
  191. }
  192. #else
  193. static inline void try_to_free_low(unsigned long count)
  194. {
  195. }
  196. #endif
  197. static unsigned long set_max_huge_pages(unsigned long count)
  198. {
  199. while (count > nr_huge_pages) {
  200. if (!alloc_fresh_huge_page())
  201. return nr_huge_pages;
  202. }
  203. if (count >= nr_huge_pages)
  204. return nr_huge_pages;
  205. spin_lock(&hugetlb_lock);
  206. count = max(count, resv_huge_pages);
  207. try_to_free_low(count);
  208. while (count < nr_huge_pages) {
  209. struct page *page = dequeue_huge_page(NULL, 0);
  210. if (!page)
  211. break;
  212. update_and_free_page(page);
  213. }
  214. spin_unlock(&hugetlb_lock);
  215. return nr_huge_pages;
  216. }
  217. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  218. struct file *file, void __user *buffer,
  219. size_t *length, loff_t *ppos)
  220. {
  221. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  222. max_huge_pages = set_max_huge_pages(max_huge_pages);
  223. return 0;
  224. }
  225. #endif /* CONFIG_SYSCTL */
  226. int hugetlb_report_meminfo(char *buf)
  227. {
  228. return sprintf(buf,
  229. "HugePages_Total: %5lu\n"
  230. "HugePages_Free: %5lu\n"
  231. "HugePages_Rsvd: %5lu\n"
  232. "Hugepagesize: %5lu kB\n",
  233. nr_huge_pages,
  234. free_huge_pages,
  235. resv_huge_pages,
  236. HPAGE_SIZE/1024);
  237. }
  238. int hugetlb_report_node_meminfo(int nid, char *buf)
  239. {
  240. return sprintf(buf,
  241. "Node %d HugePages_Total: %5u\n"
  242. "Node %d HugePages_Free: %5u\n",
  243. nid, nr_huge_pages_node[nid],
  244. nid, free_huge_pages_node[nid]);
  245. }
  246. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  247. unsigned long hugetlb_total_pages(void)
  248. {
  249. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  250. }
  251. /*
  252. * We cannot handle pagefaults against hugetlb pages at all. They cause
  253. * handle_mm_fault() to try to instantiate regular-sized pages in the
  254. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  255. * this far.
  256. */
  257. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  258. unsigned long address, int *unused)
  259. {
  260. BUG();
  261. return NULL;
  262. }
  263. struct vm_operations_struct hugetlb_vm_ops = {
  264. .nopage = hugetlb_nopage,
  265. };
  266. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  267. int writable)
  268. {
  269. pte_t entry;
  270. if (writable) {
  271. entry =
  272. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  273. } else {
  274. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  275. }
  276. entry = pte_mkyoung(entry);
  277. entry = pte_mkhuge(entry);
  278. return entry;
  279. }
  280. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  281. unsigned long address, pte_t *ptep)
  282. {
  283. pte_t entry;
  284. entry = pte_mkwrite(pte_mkdirty(*ptep));
  285. ptep_set_access_flags(vma, address, ptep, entry, 1);
  286. update_mmu_cache(vma, address, entry);
  287. lazy_mmu_prot_update(entry);
  288. }
  289. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  290. struct vm_area_struct *vma)
  291. {
  292. pte_t *src_pte, *dst_pte, entry;
  293. struct page *ptepage;
  294. unsigned long addr;
  295. int cow;
  296. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  297. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  298. src_pte = huge_pte_offset(src, addr);
  299. if (!src_pte)
  300. continue;
  301. dst_pte = huge_pte_alloc(dst, addr);
  302. if (!dst_pte)
  303. goto nomem;
  304. spin_lock(&dst->page_table_lock);
  305. spin_lock(&src->page_table_lock);
  306. if (!pte_none(*src_pte)) {
  307. if (cow)
  308. ptep_set_wrprotect(src, addr, src_pte);
  309. entry = *src_pte;
  310. ptepage = pte_page(entry);
  311. get_page(ptepage);
  312. set_huge_pte_at(dst, addr, dst_pte, entry);
  313. }
  314. spin_unlock(&src->page_table_lock);
  315. spin_unlock(&dst->page_table_lock);
  316. }
  317. return 0;
  318. nomem:
  319. return -ENOMEM;
  320. }
  321. void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  322. unsigned long end)
  323. {
  324. struct mm_struct *mm = vma->vm_mm;
  325. unsigned long address;
  326. pte_t *ptep;
  327. pte_t pte;
  328. struct page *page;
  329. struct page *tmp;
  330. /*
  331. * A page gathering list, protected by per file i_mmap_lock. The
  332. * lock is used to avoid list corruption from multiple unmapping
  333. * of the same page since we are using page->lru.
  334. */
  335. LIST_HEAD(page_list);
  336. WARN_ON(!is_vm_hugetlb_page(vma));
  337. BUG_ON(start & ~HPAGE_MASK);
  338. BUG_ON(end & ~HPAGE_MASK);
  339. spin_lock(&mm->page_table_lock);
  340. for (address = start; address < end; address += HPAGE_SIZE) {
  341. ptep = huge_pte_offset(mm, address);
  342. if (!ptep)
  343. continue;
  344. if (huge_pmd_unshare(mm, &address, ptep))
  345. continue;
  346. pte = huge_ptep_get_and_clear(mm, address, ptep);
  347. if (pte_none(pte))
  348. continue;
  349. page = pte_page(pte);
  350. if (pte_dirty(pte))
  351. set_page_dirty(page);
  352. list_add(&page->lru, &page_list);
  353. }
  354. spin_unlock(&mm->page_table_lock);
  355. flush_tlb_range(vma, start, end);
  356. list_for_each_entry_safe(page, tmp, &page_list, lru) {
  357. list_del(&page->lru);
  358. put_page(page);
  359. }
  360. }
  361. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  362. unsigned long end)
  363. {
  364. /*
  365. * It is undesirable to test vma->vm_file as it should be non-null
  366. * for valid hugetlb area. However, vm_file will be NULL in the error
  367. * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
  368. * do_mmap_pgoff() nullifies vma->vm_file before calling this function
  369. * to clean up. Since no pte has actually been setup, it is safe to
  370. * do nothing in this case.
  371. */
  372. if (vma->vm_file) {
  373. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  374. __unmap_hugepage_range(vma, start, end);
  375. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  376. }
  377. }
  378. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  379. unsigned long address, pte_t *ptep, pte_t pte)
  380. {
  381. struct page *old_page, *new_page;
  382. int avoidcopy;
  383. old_page = pte_page(pte);
  384. /* If no-one else is actually using this page, avoid the copy
  385. * and just make the page writable */
  386. avoidcopy = (page_count(old_page) == 1);
  387. if (avoidcopy) {
  388. set_huge_ptep_writable(vma, address, ptep);
  389. return VM_FAULT_MINOR;
  390. }
  391. page_cache_get(old_page);
  392. new_page = alloc_huge_page(vma, address);
  393. if (!new_page) {
  394. page_cache_release(old_page);
  395. return VM_FAULT_OOM;
  396. }
  397. spin_unlock(&mm->page_table_lock);
  398. copy_huge_page(new_page, old_page, address, vma);
  399. spin_lock(&mm->page_table_lock);
  400. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  401. if (likely(pte_same(*ptep, pte))) {
  402. /* Break COW */
  403. set_huge_pte_at(mm, address, ptep,
  404. make_huge_pte(vma, new_page, 1));
  405. /* Make the old page be freed below */
  406. new_page = old_page;
  407. }
  408. page_cache_release(new_page);
  409. page_cache_release(old_page);
  410. return VM_FAULT_MINOR;
  411. }
  412. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  413. unsigned long address, pte_t *ptep, int write_access)
  414. {
  415. int ret = VM_FAULT_SIGBUS;
  416. unsigned long idx;
  417. unsigned long size;
  418. struct page *page;
  419. struct address_space *mapping;
  420. pte_t new_pte;
  421. mapping = vma->vm_file->f_mapping;
  422. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  423. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  424. /*
  425. * Use page lock to guard against racing truncation
  426. * before we get page_table_lock.
  427. */
  428. retry:
  429. page = find_lock_page(mapping, idx);
  430. if (!page) {
  431. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  432. if (idx >= size)
  433. goto out;
  434. if (hugetlb_get_quota(mapping))
  435. goto out;
  436. page = alloc_huge_page(vma, address);
  437. if (!page) {
  438. hugetlb_put_quota(mapping);
  439. ret = VM_FAULT_OOM;
  440. goto out;
  441. }
  442. clear_huge_page(page, address);
  443. if (vma->vm_flags & VM_SHARED) {
  444. int err;
  445. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  446. if (err) {
  447. put_page(page);
  448. hugetlb_put_quota(mapping);
  449. if (err == -EEXIST)
  450. goto retry;
  451. goto out;
  452. }
  453. } else
  454. lock_page(page);
  455. }
  456. spin_lock(&mm->page_table_lock);
  457. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  458. if (idx >= size)
  459. goto backout;
  460. ret = VM_FAULT_MINOR;
  461. if (!pte_none(*ptep))
  462. goto backout;
  463. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  464. && (vma->vm_flags & VM_SHARED)));
  465. set_huge_pte_at(mm, address, ptep, new_pte);
  466. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  467. /* Optimization, do the COW without a second fault */
  468. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  469. }
  470. spin_unlock(&mm->page_table_lock);
  471. unlock_page(page);
  472. out:
  473. return ret;
  474. backout:
  475. spin_unlock(&mm->page_table_lock);
  476. hugetlb_put_quota(mapping);
  477. unlock_page(page);
  478. put_page(page);
  479. goto out;
  480. }
  481. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  482. unsigned long address, int write_access)
  483. {
  484. pte_t *ptep;
  485. pte_t entry;
  486. int ret;
  487. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  488. ptep = huge_pte_alloc(mm, address);
  489. if (!ptep)
  490. return VM_FAULT_OOM;
  491. /*
  492. * Serialize hugepage allocation and instantiation, so that we don't
  493. * get spurious allocation failures if two CPUs race to instantiate
  494. * the same page in the page cache.
  495. */
  496. mutex_lock(&hugetlb_instantiation_mutex);
  497. entry = *ptep;
  498. if (pte_none(entry)) {
  499. ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
  500. mutex_unlock(&hugetlb_instantiation_mutex);
  501. return ret;
  502. }
  503. ret = VM_FAULT_MINOR;
  504. spin_lock(&mm->page_table_lock);
  505. /* Check for a racing update before calling hugetlb_cow */
  506. if (likely(pte_same(entry, *ptep)))
  507. if (write_access && !pte_write(entry))
  508. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  509. spin_unlock(&mm->page_table_lock);
  510. mutex_unlock(&hugetlb_instantiation_mutex);
  511. return ret;
  512. }
  513. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  514. struct page **pages, struct vm_area_struct **vmas,
  515. unsigned long *position, int *length, int i)
  516. {
  517. unsigned long pfn_offset;
  518. unsigned long vaddr = *position;
  519. int remainder = *length;
  520. spin_lock(&mm->page_table_lock);
  521. while (vaddr < vma->vm_end && remainder) {
  522. pte_t *pte;
  523. struct page *page;
  524. /*
  525. * Some archs (sparc64, sh*) have multiple pte_ts to
  526. * each hugepage. We have to make * sure we get the
  527. * first, for the page indexing below to work.
  528. */
  529. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  530. if (!pte || pte_none(*pte)) {
  531. int ret;
  532. spin_unlock(&mm->page_table_lock);
  533. ret = hugetlb_fault(mm, vma, vaddr, 0);
  534. spin_lock(&mm->page_table_lock);
  535. if (ret == VM_FAULT_MINOR)
  536. continue;
  537. remainder = 0;
  538. if (!i)
  539. i = -EFAULT;
  540. break;
  541. }
  542. pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
  543. page = pte_page(*pte);
  544. same_page:
  545. if (pages) {
  546. get_page(page);
  547. pages[i] = page + pfn_offset;
  548. }
  549. if (vmas)
  550. vmas[i] = vma;
  551. vaddr += PAGE_SIZE;
  552. ++pfn_offset;
  553. --remainder;
  554. ++i;
  555. if (vaddr < vma->vm_end && remainder &&
  556. pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
  557. /*
  558. * We use pfn_offset to avoid touching the pageframes
  559. * of this compound page.
  560. */
  561. goto same_page;
  562. }
  563. }
  564. spin_unlock(&mm->page_table_lock);
  565. *length = remainder;
  566. *position = vaddr;
  567. return i;
  568. }
  569. void hugetlb_change_protection(struct vm_area_struct *vma,
  570. unsigned long address, unsigned long end, pgprot_t newprot)
  571. {
  572. struct mm_struct *mm = vma->vm_mm;
  573. unsigned long start = address;
  574. pte_t *ptep;
  575. pte_t pte;
  576. BUG_ON(address >= end);
  577. flush_cache_range(vma, address, end);
  578. spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
  579. spin_lock(&mm->page_table_lock);
  580. for (; address < end; address += HPAGE_SIZE) {
  581. ptep = huge_pte_offset(mm, address);
  582. if (!ptep)
  583. continue;
  584. if (huge_pmd_unshare(mm, &address, ptep))
  585. continue;
  586. if (!pte_none(*ptep)) {
  587. pte = huge_ptep_get_and_clear(mm, address, ptep);
  588. pte = pte_mkhuge(pte_modify(pte, newprot));
  589. set_huge_pte_at(mm, address, ptep, pte);
  590. lazy_mmu_prot_update(pte);
  591. }
  592. }
  593. spin_unlock(&mm->page_table_lock);
  594. spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
  595. flush_tlb_range(vma, start, end);
  596. }
  597. struct file_region {
  598. struct list_head link;
  599. long from;
  600. long to;
  601. };
  602. static long region_add(struct list_head *head, long f, long t)
  603. {
  604. struct file_region *rg, *nrg, *trg;
  605. /* Locate the region we are either in or before. */
  606. list_for_each_entry(rg, head, link)
  607. if (f <= rg->to)
  608. break;
  609. /* Round our left edge to the current segment if it encloses us. */
  610. if (f > rg->from)
  611. f = rg->from;
  612. /* Check for and consume any regions we now overlap with. */
  613. nrg = rg;
  614. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  615. if (&rg->link == head)
  616. break;
  617. if (rg->from > t)
  618. break;
  619. /* If this area reaches higher then extend our area to
  620. * include it completely. If this is not the first area
  621. * which we intend to reuse, free it. */
  622. if (rg->to > t)
  623. t = rg->to;
  624. if (rg != nrg) {
  625. list_del(&rg->link);
  626. kfree(rg);
  627. }
  628. }
  629. nrg->from = f;
  630. nrg->to = t;
  631. return 0;
  632. }
  633. static long region_chg(struct list_head *head, long f, long t)
  634. {
  635. struct file_region *rg, *nrg;
  636. long chg = 0;
  637. /* Locate the region we are before or in. */
  638. list_for_each_entry(rg, head, link)
  639. if (f <= rg->to)
  640. break;
  641. /* If we are below the current region then a new region is required.
  642. * Subtle, allocate a new region at the position but make it zero
  643. * size such that we can guarentee to record the reservation. */
  644. if (&rg->link == head || t < rg->from) {
  645. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  646. if (nrg == 0)
  647. return -ENOMEM;
  648. nrg->from = f;
  649. nrg->to = f;
  650. INIT_LIST_HEAD(&nrg->link);
  651. list_add(&nrg->link, rg->link.prev);
  652. return t - f;
  653. }
  654. /* Round our left edge to the current segment if it encloses us. */
  655. if (f > rg->from)
  656. f = rg->from;
  657. chg = t - f;
  658. /* Check for and consume any regions we now overlap with. */
  659. list_for_each_entry(rg, rg->link.prev, link) {
  660. if (&rg->link == head)
  661. break;
  662. if (rg->from > t)
  663. return chg;
  664. /* We overlap with this area, if it extends futher than
  665. * us then we must extend ourselves. Account for its
  666. * existing reservation. */
  667. if (rg->to > t) {
  668. chg += rg->to - t;
  669. t = rg->to;
  670. }
  671. chg -= rg->to - rg->from;
  672. }
  673. return chg;
  674. }
  675. static long region_truncate(struct list_head *head, long end)
  676. {
  677. struct file_region *rg, *trg;
  678. long chg = 0;
  679. /* Locate the region we are either in or before. */
  680. list_for_each_entry(rg, head, link)
  681. if (end <= rg->to)
  682. break;
  683. if (&rg->link == head)
  684. return 0;
  685. /* If we are in the middle of a region then adjust it. */
  686. if (end > rg->from) {
  687. chg = rg->to - end;
  688. rg->to = end;
  689. rg = list_entry(rg->link.next, typeof(*rg), link);
  690. }
  691. /* Drop any remaining regions. */
  692. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  693. if (&rg->link == head)
  694. break;
  695. chg += rg->to - rg->from;
  696. list_del(&rg->link);
  697. kfree(rg);
  698. }
  699. return chg;
  700. }
  701. static int hugetlb_acct_memory(long delta)
  702. {
  703. int ret = -ENOMEM;
  704. spin_lock(&hugetlb_lock);
  705. if ((delta + resv_huge_pages) <= free_huge_pages) {
  706. resv_huge_pages += delta;
  707. ret = 0;
  708. }
  709. spin_unlock(&hugetlb_lock);
  710. return ret;
  711. }
  712. int hugetlb_reserve_pages(struct inode *inode, long from, long to)
  713. {
  714. long ret, chg;
  715. chg = region_chg(&inode->i_mapping->private_list, from, to);
  716. if (chg < 0)
  717. return chg;
  718. /*
  719. * When cpuset is configured, it breaks the strict hugetlb page
  720. * reservation as the accounting is done on a global variable. Such
  721. * reservation is completely rubbish in the presence of cpuset because
  722. * the reservation is not checked against page availability for the
  723. * current cpuset. Application can still potentially OOM'ed by kernel
  724. * with lack of free htlb page in cpuset that the task is in.
  725. * Attempt to enforce strict accounting with cpuset is almost
  726. * impossible (or too ugly) because cpuset is too fluid that
  727. * task or memory node can be dynamically moved between cpusets.
  728. *
  729. * The change of semantics for shared hugetlb mapping with cpuset is
  730. * undesirable. However, in order to preserve some of the semantics,
  731. * we fall back to check against current free page availability as
  732. * a best attempt and hopefully to minimize the impact of changing
  733. * semantics that cpuset has.
  734. */
  735. if (chg > cpuset_mems_nr(free_huge_pages_node))
  736. return -ENOMEM;
  737. ret = hugetlb_acct_memory(chg);
  738. if (ret < 0)
  739. return ret;
  740. region_add(&inode->i_mapping->private_list, from, to);
  741. return 0;
  742. }
  743. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  744. {
  745. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  746. hugetlb_acct_memory(freed - chg);
  747. }