time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/security.h>
  35. #include <linux/fs.h>
  36. #include <linux/module.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. /*
  40. * The timezone where the local system is located. Used as a default by some
  41. * programs who obtain this value by using gettimeofday.
  42. */
  43. struct timezone sys_tz;
  44. EXPORT_SYMBOL(sys_tz);
  45. #ifdef __ARCH_WANT_SYS_TIME
  46. /*
  47. * sys_time() can be implemented in user-level using
  48. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  49. * why not move it into the appropriate arch directory (for those
  50. * architectures that need it).
  51. */
  52. asmlinkage long sys_time(time_t __user * tloc)
  53. {
  54. time_t i;
  55. struct timeval tv;
  56. do_gettimeofday(&tv);
  57. i = tv.tv_sec;
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. i = -EFAULT;
  61. }
  62. return i;
  63. }
  64. /*
  65. * sys_stime() can be implemented in user-level using
  66. * sys_settimeofday(). Is this for backwards compatibility? If so,
  67. * why not move it into the appropriate arch directory (for those
  68. * architectures that need it).
  69. */
  70. asmlinkage long sys_stime(time_t __user *tptr)
  71. {
  72. struct timespec tv;
  73. int err;
  74. if (get_user(tv.tv_sec, tptr))
  75. return -EFAULT;
  76. tv.tv_nsec = 0;
  77. err = security_settime(&tv, NULL);
  78. if (err)
  79. return err;
  80. do_settimeofday(&tv);
  81. return 0;
  82. }
  83. #endif /* __ARCH_WANT_SYS_TIME */
  84. asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  85. {
  86. if (likely(tv != NULL)) {
  87. struct timeval ktv;
  88. do_gettimeofday(&ktv);
  89. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  90. return -EFAULT;
  91. }
  92. if (unlikely(tz != NULL)) {
  93. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  94. return -EFAULT;
  95. }
  96. return 0;
  97. }
  98. /*
  99. * Adjust the time obtained from the CMOS to be UTC time instead of
  100. * local time.
  101. *
  102. * This is ugly, but preferable to the alternatives. Otherwise we
  103. * would either need to write a program to do it in /etc/rc (and risk
  104. * confusion if the program gets run more than once; it would also be
  105. * hard to make the program warp the clock precisely n hours) or
  106. * compile in the timezone information into the kernel. Bad, bad....
  107. *
  108. * - TYT, 1992-01-01
  109. *
  110. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  111. * as real UNIX machines always do it. This avoids all headaches about
  112. * daylight saving times and warping kernel clocks.
  113. */
  114. static inline void warp_clock(void)
  115. {
  116. write_seqlock_irq(&xtime_lock);
  117. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  118. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  119. time_interpolator_reset();
  120. write_sequnlock_irq(&xtime_lock);
  121. clock_was_set();
  122. }
  123. /*
  124. * In case for some reason the CMOS clock has not already been running
  125. * in UTC, but in some local time: The first time we set the timezone,
  126. * we will warp the clock so that it is ticking UTC time instead of
  127. * local time. Presumably, if someone is setting the timezone then we
  128. * are running in an environment where the programs understand about
  129. * timezones. This should be done at boot time in the /etc/rc script,
  130. * as soon as possible, so that the clock can be set right. Otherwise,
  131. * various programs will get confused when the clock gets warped.
  132. */
  133. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  134. {
  135. static int firsttime = 1;
  136. int error = 0;
  137. if (tv && !timespec_valid(tv))
  138. return -EINVAL;
  139. error = security_settime(tv, tz);
  140. if (error)
  141. return error;
  142. if (tz) {
  143. /* SMP safe, global irq locking makes it work. */
  144. sys_tz = *tz;
  145. if (firsttime) {
  146. firsttime = 0;
  147. if (!tv)
  148. warp_clock();
  149. }
  150. }
  151. if (tv)
  152. {
  153. /* SMP safe, again the code in arch/foo/time.c should
  154. * globally block out interrupts when it runs.
  155. */
  156. return do_settimeofday(tv);
  157. }
  158. return 0;
  159. }
  160. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  161. struct timezone __user *tz)
  162. {
  163. struct timeval user_tv;
  164. struct timespec new_ts;
  165. struct timezone new_tz;
  166. if (tv) {
  167. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  168. return -EFAULT;
  169. new_ts.tv_sec = user_tv.tv_sec;
  170. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  171. }
  172. if (tz) {
  173. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  174. return -EFAULT;
  175. }
  176. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  177. }
  178. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  179. {
  180. struct timex txc; /* Local copy of parameter */
  181. int ret;
  182. /* Copy the user data space into the kernel copy
  183. * structure. But bear in mind that the structures
  184. * may change
  185. */
  186. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  187. return -EFAULT;
  188. ret = do_adjtimex(&txc);
  189. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  190. }
  191. inline struct timespec current_kernel_time(void)
  192. {
  193. struct timespec now;
  194. unsigned long seq;
  195. do {
  196. seq = read_seqbegin(&xtime_lock);
  197. now = xtime;
  198. } while (read_seqretry(&xtime_lock, seq));
  199. return now;
  200. }
  201. EXPORT_SYMBOL(current_kernel_time);
  202. /**
  203. * current_fs_time - Return FS time
  204. * @sb: Superblock.
  205. *
  206. * Return the current time truncated to the time granularity supported by
  207. * the fs.
  208. */
  209. struct timespec current_fs_time(struct super_block *sb)
  210. {
  211. struct timespec now = current_kernel_time();
  212. return timespec_trunc(now, sb->s_time_gran);
  213. }
  214. EXPORT_SYMBOL(current_fs_time);
  215. /*
  216. * Convert jiffies to milliseconds and back.
  217. *
  218. * Avoid unnecessary multiplications/divisions in the
  219. * two most common HZ cases:
  220. */
  221. unsigned int inline jiffies_to_msecs(const unsigned long j)
  222. {
  223. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  224. return (MSEC_PER_SEC / HZ) * j;
  225. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  226. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  227. #else
  228. return (j * MSEC_PER_SEC) / HZ;
  229. #endif
  230. }
  231. EXPORT_SYMBOL(jiffies_to_msecs);
  232. unsigned int inline jiffies_to_usecs(const unsigned long j)
  233. {
  234. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  235. return (USEC_PER_SEC / HZ) * j;
  236. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  237. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  238. #else
  239. return (j * USEC_PER_SEC) / HZ;
  240. #endif
  241. }
  242. EXPORT_SYMBOL(jiffies_to_usecs);
  243. /**
  244. * timespec_trunc - Truncate timespec to a granularity
  245. * @t: Timespec
  246. * @gran: Granularity in ns.
  247. *
  248. * Truncate a timespec to a granularity. gran must be smaller than a second.
  249. * Always rounds down.
  250. *
  251. * This function should be only used for timestamps returned by
  252. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  253. * it doesn't handle the better resolution of the later.
  254. */
  255. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  256. {
  257. /*
  258. * Division is pretty slow so avoid it for common cases.
  259. * Currently current_kernel_time() never returns better than
  260. * jiffies resolution. Exploit that.
  261. */
  262. if (gran <= jiffies_to_usecs(1) * 1000) {
  263. /* nothing */
  264. } else if (gran == 1000000000) {
  265. t.tv_nsec = 0;
  266. } else {
  267. t.tv_nsec -= t.tv_nsec % gran;
  268. }
  269. return t;
  270. }
  271. EXPORT_SYMBOL(timespec_trunc);
  272. #ifdef CONFIG_TIME_INTERPOLATION
  273. void getnstimeofday (struct timespec *tv)
  274. {
  275. unsigned long seq,sec,nsec;
  276. do {
  277. seq = read_seqbegin(&xtime_lock);
  278. sec = xtime.tv_sec;
  279. nsec = xtime.tv_nsec+time_interpolator_get_offset();
  280. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  281. while (unlikely(nsec >= NSEC_PER_SEC)) {
  282. nsec -= NSEC_PER_SEC;
  283. ++sec;
  284. }
  285. tv->tv_sec = sec;
  286. tv->tv_nsec = nsec;
  287. }
  288. EXPORT_SYMBOL_GPL(getnstimeofday);
  289. int do_settimeofday (struct timespec *tv)
  290. {
  291. time_t wtm_sec, sec = tv->tv_sec;
  292. long wtm_nsec, nsec = tv->tv_nsec;
  293. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  294. return -EINVAL;
  295. write_seqlock_irq(&xtime_lock);
  296. {
  297. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  298. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  299. set_normalized_timespec(&xtime, sec, nsec);
  300. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  301. time_adjust = 0; /* stop active adjtime() */
  302. time_status |= STA_UNSYNC;
  303. time_maxerror = NTP_PHASE_LIMIT;
  304. time_esterror = NTP_PHASE_LIMIT;
  305. time_interpolator_reset();
  306. }
  307. write_sequnlock_irq(&xtime_lock);
  308. clock_was_set();
  309. return 0;
  310. }
  311. EXPORT_SYMBOL(do_settimeofday);
  312. void do_gettimeofday (struct timeval *tv)
  313. {
  314. unsigned long seq, nsec, usec, sec, offset;
  315. do {
  316. seq = read_seqbegin(&xtime_lock);
  317. offset = time_interpolator_get_offset();
  318. sec = xtime.tv_sec;
  319. nsec = xtime.tv_nsec;
  320. } while (unlikely(read_seqretry(&xtime_lock, seq)));
  321. usec = (nsec + offset) / 1000;
  322. while (unlikely(usec >= USEC_PER_SEC)) {
  323. usec -= USEC_PER_SEC;
  324. ++sec;
  325. }
  326. tv->tv_sec = sec;
  327. tv->tv_usec = usec;
  328. }
  329. EXPORT_SYMBOL(do_gettimeofday);
  330. #else
  331. #ifndef CONFIG_GENERIC_TIME
  332. /*
  333. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  334. * and therefore only yields usec accuracy
  335. */
  336. void getnstimeofday(struct timespec *tv)
  337. {
  338. struct timeval x;
  339. do_gettimeofday(&x);
  340. tv->tv_sec = x.tv_sec;
  341. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  342. }
  343. EXPORT_SYMBOL_GPL(getnstimeofday);
  344. #endif
  345. #endif
  346. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  347. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  348. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  349. *
  350. * [For the Julian calendar (which was used in Russia before 1917,
  351. * Britain & colonies before 1752, anywhere else before 1582,
  352. * and is still in use by some communities) leave out the
  353. * -year/100+year/400 terms, and add 10.]
  354. *
  355. * This algorithm was first published by Gauss (I think).
  356. *
  357. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  358. * machines were long is 32-bit! (However, as time_t is signed, we
  359. * will already get problems at other places on 2038-01-19 03:14:08)
  360. */
  361. unsigned long
  362. mktime(const unsigned int year0, const unsigned int mon0,
  363. const unsigned int day, const unsigned int hour,
  364. const unsigned int min, const unsigned int sec)
  365. {
  366. unsigned int mon = mon0, year = year0;
  367. /* 1..12 -> 11,12,1..10 */
  368. if (0 >= (int) (mon -= 2)) {
  369. mon += 12; /* Puts Feb last since it has leap day */
  370. year -= 1;
  371. }
  372. return ((((unsigned long)
  373. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  374. year*365 - 719499
  375. )*24 + hour /* now have hours */
  376. )*60 + min /* now have minutes */
  377. )*60 + sec; /* finally seconds */
  378. }
  379. EXPORT_SYMBOL(mktime);
  380. /**
  381. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  382. *
  383. * @ts: pointer to timespec variable to be set
  384. * @sec: seconds to set
  385. * @nsec: nanoseconds to set
  386. *
  387. * Set seconds and nanoseconds field of a timespec variable and
  388. * normalize to the timespec storage format
  389. *
  390. * Note: The tv_nsec part is always in the range of
  391. * 0 <= tv_nsec < NSEC_PER_SEC
  392. * For negative values only the tv_sec field is negative !
  393. */
  394. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  395. {
  396. while (nsec >= NSEC_PER_SEC) {
  397. nsec -= NSEC_PER_SEC;
  398. ++sec;
  399. }
  400. while (nsec < 0) {
  401. nsec += NSEC_PER_SEC;
  402. --sec;
  403. }
  404. ts->tv_sec = sec;
  405. ts->tv_nsec = nsec;
  406. }
  407. /**
  408. * ns_to_timespec - Convert nanoseconds to timespec
  409. * @nsec: the nanoseconds value to be converted
  410. *
  411. * Returns the timespec representation of the nsec parameter.
  412. */
  413. struct timespec ns_to_timespec(const s64 nsec)
  414. {
  415. struct timespec ts;
  416. if (!nsec)
  417. return (struct timespec) {0, 0};
  418. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  419. if (unlikely(nsec < 0))
  420. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  421. return ts;
  422. }
  423. EXPORT_SYMBOL(ns_to_timespec);
  424. /**
  425. * ns_to_timeval - Convert nanoseconds to timeval
  426. * @nsec: the nanoseconds value to be converted
  427. *
  428. * Returns the timeval representation of the nsec parameter.
  429. */
  430. struct timeval ns_to_timeval(const s64 nsec)
  431. {
  432. struct timespec ts = ns_to_timespec(nsec);
  433. struct timeval tv;
  434. tv.tv_sec = ts.tv_sec;
  435. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  436. return tv;
  437. }
  438. EXPORT_SYMBOL(ns_to_timeval);
  439. /*
  440. * When we convert to jiffies then we interpret incoming values
  441. * the following way:
  442. *
  443. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  444. *
  445. * - 'too large' values [that would result in larger than
  446. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  447. *
  448. * - all other values are converted to jiffies by either multiplying
  449. * the input value by a factor or dividing it with a factor
  450. *
  451. * We must also be careful about 32-bit overflows.
  452. */
  453. unsigned long msecs_to_jiffies(const unsigned int m)
  454. {
  455. /*
  456. * Negative value, means infinite timeout:
  457. */
  458. if ((int)m < 0)
  459. return MAX_JIFFY_OFFSET;
  460. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  461. /*
  462. * HZ is equal to or smaller than 1000, and 1000 is a nice
  463. * round multiple of HZ, divide with the factor between them,
  464. * but round upwards:
  465. */
  466. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  467. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  468. /*
  469. * HZ is larger than 1000, and HZ is a nice round multiple of
  470. * 1000 - simply multiply with the factor between them.
  471. *
  472. * But first make sure the multiplication result cannot
  473. * overflow:
  474. */
  475. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  476. return MAX_JIFFY_OFFSET;
  477. return m * (HZ / MSEC_PER_SEC);
  478. #else
  479. /*
  480. * Generic case - multiply, round and divide. But first
  481. * check that if we are doing a net multiplication, that
  482. * we wouldnt overflow:
  483. */
  484. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  485. return MAX_JIFFY_OFFSET;
  486. return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
  487. #endif
  488. }
  489. EXPORT_SYMBOL(msecs_to_jiffies);
  490. unsigned long usecs_to_jiffies(const unsigned int u)
  491. {
  492. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  493. return MAX_JIFFY_OFFSET;
  494. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  495. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  496. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  497. return u * (HZ / USEC_PER_SEC);
  498. #else
  499. return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
  500. #endif
  501. }
  502. EXPORT_SYMBOL(usecs_to_jiffies);
  503. /*
  504. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  505. * that a remainder subtract here would not do the right thing as the
  506. * resolution values don't fall on second boundries. I.e. the line:
  507. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  508. *
  509. * Rather, we just shift the bits off the right.
  510. *
  511. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  512. * value to a scaled second value.
  513. */
  514. unsigned long
  515. timespec_to_jiffies(const struct timespec *value)
  516. {
  517. unsigned long sec = value->tv_sec;
  518. long nsec = value->tv_nsec + TICK_NSEC - 1;
  519. if (sec >= MAX_SEC_IN_JIFFIES){
  520. sec = MAX_SEC_IN_JIFFIES;
  521. nsec = 0;
  522. }
  523. return (((u64)sec * SEC_CONVERSION) +
  524. (((u64)nsec * NSEC_CONVERSION) >>
  525. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  526. }
  527. EXPORT_SYMBOL(timespec_to_jiffies);
  528. void
  529. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  530. {
  531. /*
  532. * Convert jiffies to nanoseconds and separate with
  533. * one divide.
  534. */
  535. u64 nsec = (u64)jiffies * TICK_NSEC;
  536. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  537. }
  538. EXPORT_SYMBOL(jiffies_to_timespec);
  539. /* Same for "timeval"
  540. *
  541. * Well, almost. The problem here is that the real system resolution is
  542. * in nanoseconds and the value being converted is in micro seconds.
  543. * Also for some machines (those that use HZ = 1024, in-particular),
  544. * there is a LARGE error in the tick size in microseconds.
  545. * The solution we use is to do the rounding AFTER we convert the
  546. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  547. * Instruction wise, this should cost only an additional add with carry
  548. * instruction above the way it was done above.
  549. */
  550. unsigned long
  551. timeval_to_jiffies(const struct timeval *value)
  552. {
  553. unsigned long sec = value->tv_sec;
  554. long usec = value->tv_usec;
  555. if (sec >= MAX_SEC_IN_JIFFIES){
  556. sec = MAX_SEC_IN_JIFFIES;
  557. usec = 0;
  558. }
  559. return (((u64)sec * SEC_CONVERSION) +
  560. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  561. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  562. }
  563. EXPORT_SYMBOL(timeval_to_jiffies);
  564. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  565. {
  566. /*
  567. * Convert jiffies to nanoseconds and separate with
  568. * one divide.
  569. */
  570. u64 nsec = (u64)jiffies * TICK_NSEC;
  571. long tv_usec;
  572. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  573. tv_usec /= NSEC_PER_USEC;
  574. value->tv_usec = tv_usec;
  575. }
  576. EXPORT_SYMBOL(jiffies_to_timeval);
  577. /*
  578. * Convert jiffies/jiffies_64 to clock_t and back.
  579. */
  580. clock_t jiffies_to_clock_t(long x)
  581. {
  582. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  583. return x / (HZ / USER_HZ);
  584. #else
  585. u64 tmp = (u64)x * TICK_NSEC;
  586. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  587. return (long)tmp;
  588. #endif
  589. }
  590. EXPORT_SYMBOL(jiffies_to_clock_t);
  591. unsigned long clock_t_to_jiffies(unsigned long x)
  592. {
  593. #if (HZ % USER_HZ)==0
  594. if (x >= ~0UL / (HZ / USER_HZ))
  595. return ~0UL;
  596. return x * (HZ / USER_HZ);
  597. #else
  598. u64 jif;
  599. /* Don't worry about loss of precision here .. */
  600. if (x >= ~0UL / HZ * USER_HZ)
  601. return ~0UL;
  602. /* .. but do try to contain it here */
  603. jif = x * (u64) HZ;
  604. do_div(jif, USER_HZ);
  605. return jif;
  606. #endif
  607. }
  608. EXPORT_SYMBOL(clock_t_to_jiffies);
  609. u64 jiffies_64_to_clock_t(u64 x)
  610. {
  611. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  612. do_div(x, HZ / USER_HZ);
  613. #else
  614. /*
  615. * There are better ways that don't overflow early,
  616. * but even this doesn't overflow in hundreds of years
  617. * in 64 bits, so..
  618. */
  619. x *= TICK_NSEC;
  620. do_div(x, (NSEC_PER_SEC / USER_HZ));
  621. #endif
  622. return x;
  623. }
  624. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  625. u64 nsec_to_clock_t(u64 x)
  626. {
  627. #if (NSEC_PER_SEC % USER_HZ) == 0
  628. do_div(x, (NSEC_PER_SEC / USER_HZ));
  629. #elif (USER_HZ % 512) == 0
  630. x *= USER_HZ/512;
  631. do_div(x, (NSEC_PER_SEC / 512));
  632. #else
  633. /*
  634. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  635. * overflow after 64.99 years.
  636. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  637. */
  638. x *= 9;
  639. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  640. USER_HZ));
  641. #endif
  642. return x;
  643. }
  644. #if (BITS_PER_LONG < 64)
  645. u64 get_jiffies_64(void)
  646. {
  647. unsigned long seq;
  648. u64 ret;
  649. do {
  650. seq = read_seqbegin(&xtime_lock);
  651. ret = jiffies_64;
  652. } while (read_seqretry(&xtime_lock, seq));
  653. return ret;
  654. }
  655. EXPORT_SYMBOL(get_jiffies_64);
  656. #endif
  657. EXPORT_SYMBOL(jiffies);