pgalloc.h 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /*
  2. * include/asm-s390/pgalloc.h
  3. *
  4. * S390 version
  5. * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Hartmut Penner (hp@de.ibm.com)
  7. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  8. *
  9. * Derived from "include/asm-i386/pgalloc.h"
  10. * Copyright (C) 1994 Linus Torvalds
  11. */
  12. #ifndef _S390_PGALLOC_H
  13. #define _S390_PGALLOC_H
  14. #include <linux/threads.h>
  15. #include <linux/gfp.h>
  16. #include <linux/mm.h>
  17. #define check_pgt_cache() do {} while (0)
  18. extern void diag10(unsigned long addr);
  19. /*
  20. * Page allocation orders.
  21. */
  22. #ifndef __s390x__
  23. # define PTE_ALLOC_ORDER 0
  24. # define PMD_ALLOC_ORDER 0
  25. # define PGD_ALLOC_ORDER 1
  26. #else /* __s390x__ */
  27. # define PTE_ALLOC_ORDER 0
  28. # define PMD_ALLOC_ORDER 2
  29. # define PGD_ALLOC_ORDER 2
  30. #endif /* __s390x__ */
  31. /*
  32. * Allocate and free page tables. The xxx_kernel() versions are
  33. * used to allocate a kernel page table - this turns on ASN bits
  34. * if any.
  35. */
  36. static inline pgd_t *pgd_alloc(struct mm_struct *mm)
  37. {
  38. pgd_t *pgd = (pgd_t *) __get_free_pages(GFP_KERNEL, PGD_ALLOC_ORDER);
  39. int i;
  40. if (!pgd)
  41. return NULL;
  42. if (s390_noexec) {
  43. pgd_t *shadow_pgd = (pgd_t *)
  44. __get_free_pages(GFP_KERNEL, PGD_ALLOC_ORDER);
  45. struct page *page = virt_to_page(pgd);
  46. if (!shadow_pgd) {
  47. free_pages((unsigned long) pgd, PGD_ALLOC_ORDER);
  48. return NULL;
  49. }
  50. page->lru.next = (void *) shadow_pgd;
  51. }
  52. for (i = 0; i < PTRS_PER_PGD; i++)
  53. #ifndef __s390x__
  54. pmd_clear(pmd_offset(pgd + i, i*PGDIR_SIZE));
  55. #else
  56. pgd_clear(pgd + i);
  57. #endif
  58. return pgd;
  59. }
  60. static inline void pgd_free(pgd_t *pgd)
  61. {
  62. pgd_t *shadow_pgd = get_shadow_pgd(pgd);
  63. if (shadow_pgd)
  64. free_pages((unsigned long) shadow_pgd, PGD_ALLOC_ORDER);
  65. free_pages((unsigned long) pgd, PGD_ALLOC_ORDER);
  66. }
  67. #ifndef __s390x__
  68. /*
  69. * page middle directory allocation/free routines.
  70. * We use pmd cache only on s390x, so these are dummy routines. This
  71. * code never triggers because the pgd will always be present.
  72. */
  73. #define pmd_alloc_one(mm,address) ({ BUG(); ((pmd_t *)2); })
  74. #define pmd_free(x) do { } while (0)
  75. #define __pmd_free_tlb(tlb,x) do { } while (0)
  76. #define pgd_populate(mm, pmd, pte) BUG()
  77. #define pgd_populate_kernel(mm, pmd, pte) BUG()
  78. #else /* __s390x__ */
  79. static inline pmd_t * pmd_alloc_one(struct mm_struct *mm, unsigned long vmaddr)
  80. {
  81. pmd_t *pmd = (pmd_t *) __get_free_pages(GFP_KERNEL, PMD_ALLOC_ORDER);
  82. int i;
  83. if (!pmd)
  84. return NULL;
  85. if (s390_noexec) {
  86. pmd_t *shadow_pmd = (pmd_t *)
  87. __get_free_pages(GFP_KERNEL, PMD_ALLOC_ORDER);
  88. struct page *page = virt_to_page(pmd);
  89. if (!shadow_pmd) {
  90. free_pages((unsigned long) pmd, PMD_ALLOC_ORDER);
  91. return NULL;
  92. }
  93. page->lru.next = (void *) shadow_pmd;
  94. }
  95. for (i=0; i < PTRS_PER_PMD; i++)
  96. pmd_clear(pmd + i);
  97. return pmd;
  98. }
  99. static inline void pmd_free (pmd_t *pmd)
  100. {
  101. pmd_t *shadow_pmd = get_shadow_pmd(pmd);
  102. if (shadow_pmd)
  103. free_pages((unsigned long) shadow_pmd, PMD_ALLOC_ORDER);
  104. free_pages((unsigned long) pmd, PMD_ALLOC_ORDER);
  105. }
  106. #define __pmd_free_tlb(tlb,pmd) \
  107. do { \
  108. tlb_flush_mmu(tlb, 0, 0); \
  109. pmd_free(pmd); \
  110. } while (0)
  111. static inline void
  112. pgd_populate_kernel(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmd)
  113. {
  114. pgd_val(*pgd) = _PGD_ENTRY | __pa(pmd);
  115. }
  116. static inline void pgd_populate(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmd)
  117. {
  118. pgd_t *shadow_pgd = get_shadow_pgd(pgd);
  119. pmd_t *shadow_pmd = get_shadow_pmd(pmd);
  120. if (shadow_pgd && shadow_pmd)
  121. pgd_populate_kernel(mm, shadow_pgd, shadow_pmd);
  122. pgd_populate_kernel(mm, pgd, pmd);
  123. }
  124. #endif /* __s390x__ */
  125. static inline void
  126. pmd_populate_kernel(struct mm_struct *mm, pmd_t *pmd, pte_t *pte)
  127. {
  128. #ifndef __s390x__
  129. pmd_val(pmd[0]) = _PAGE_TABLE + __pa(pte);
  130. pmd_val(pmd[1]) = _PAGE_TABLE + __pa(pte+256);
  131. pmd_val(pmd[2]) = _PAGE_TABLE + __pa(pte+512);
  132. pmd_val(pmd[3]) = _PAGE_TABLE + __pa(pte+768);
  133. #else /* __s390x__ */
  134. pmd_val(*pmd) = _PMD_ENTRY + __pa(pte);
  135. pmd_val1(*pmd) = _PMD_ENTRY + __pa(pte+256);
  136. #endif /* __s390x__ */
  137. }
  138. static inline void
  139. pmd_populate(struct mm_struct *mm, pmd_t *pmd, struct page *page)
  140. {
  141. pte_t *pte = (pte_t *)page_to_phys(page);
  142. pmd_t *shadow_pmd = get_shadow_pmd(pmd);
  143. pte_t *shadow_pte = get_shadow_pte(pte);
  144. pmd_populate_kernel(mm, pmd, pte);
  145. if (shadow_pmd && shadow_pte)
  146. pmd_populate_kernel(mm, shadow_pmd, shadow_pte);
  147. }
  148. /*
  149. * page table entry allocation/free routines.
  150. */
  151. static inline pte_t *
  152. pte_alloc_one_kernel(struct mm_struct *mm, unsigned long vmaddr)
  153. {
  154. pte_t *pte = (pte_t *) __get_free_page(GFP_KERNEL|__GFP_REPEAT);
  155. int i;
  156. if (!pte)
  157. return NULL;
  158. if (s390_noexec) {
  159. pte_t *shadow_pte = (pte_t *)
  160. __get_free_page(GFP_KERNEL|__GFP_REPEAT);
  161. struct page *page = virt_to_page(pte);
  162. if (!shadow_pte) {
  163. free_page((unsigned long) pte);
  164. return NULL;
  165. }
  166. page->lru.next = (void *) shadow_pte;
  167. }
  168. for (i=0; i < PTRS_PER_PTE; i++) {
  169. pte_clear(mm, vmaddr, pte + i);
  170. vmaddr += PAGE_SIZE;
  171. }
  172. return pte;
  173. }
  174. static inline struct page *
  175. pte_alloc_one(struct mm_struct *mm, unsigned long vmaddr)
  176. {
  177. pte_t *pte = pte_alloc_one_kernel(mm, vmaddr);
  178. if (pte)
  179. return virt_to_page(pte);
  180. return NULL;
  181. }
  182. static inline void pte_free_kernel(pte_t *pte)
  183. {
  184. pte_t *shadow_pte = get_shadow_pte(pte);
  185. if (shadow_pte)
  186. free_page((unsigned long) shadow_pte);
  187. free_page((unsigned long) pte);
  188. }
  189. static inline void pte_free(struct page *pte)
  190. {
  191. struct page *shadow_page = get_shadow_page(pte);
  192. if (shadow_page)
  193. __free_page(shadow_page);
  194. __free_page(pte);
  195. }
  196. #define __pte_free_tlb(tlb, pte) \
  197. ({ \
  198. struct mmu_gather *__tlb = (tlb); \
  199. struct page *__pte = (pte); \
  200. struct page *shadow_page = get_shadow_page(__pte); \
  201. if (shadow_page) \
  202. tlb_remove_page(__tlb, shadow_page); \
  203. tlb_remove_page(__tlb, __pte); \
  204. })
  205. #endif /* _S390_PGALLOC_H */