mmu-hash64.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x6
  26. #define STAB0_OFFSET (STAB0_PAGE << 12)
  27. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. /* Bits in the SLB ESID word */
  37. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  38. /* Bits in the SLB VSID word */
  39. #define SLB_VSID_SHIFT 12
  40. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  41. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  42. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  43. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  44. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  45. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  46. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  47. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  48. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  49. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  50. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  51. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  52. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  53. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  54. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  55. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  56. #define SLBIE_C (0x08000000)
  57. /*
  58. * Hash table
  59. */
  60. #define HPTES_PER_GROUP 8
  61. #define HPTE_V_SSIZE_SHIFT 62
  62. #define HPTE_V_AVPN_SHIFT 7
  63. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  64. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  65. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN))
  66. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  67. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  68. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  69. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  70. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  71. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  72. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  73. #define HPTE_R_RPN_SHIFT 12
  74. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  75. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  76. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  77. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  78. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  79. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  80. /* Values for PP (assumes Ks=0, Kp=1) */
  81. /* pp0 will always be 0 for linux */
  82. #define PP_RWXX 0 /* Supervisor read/write, User none */
  83. #define PP_RWRX 1 /* Supervisor read/write, User read */
  84. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  85. #define PP_RXRX 3 /* Supervisor read, User read */
  86. #ifndef __ASSEMBLY__
  87. typedef struct {
  88. unsigned long v;
  89. unsigned long r;
  90. } hpte_t;
  91. extern hpte_t *htab_address;
  92. extern unsigned long htab_size_bytes;
  93. extern unsigned long htab_hash_mask;
  94. /*
  95. * Page size definition
  96. *
  97. * shift : is the "PAGE_SHIFT" value for that page size
  98. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  99. * directly to a slbmte "vsid" value
  100. * penc : is the HPTE encoding mask for the "LP" field:
  101. *
  102. */
  103. struct mmu_psize_def
  104. {
  105. unsigned int shift; /* number of bits */
  106. unsigned int penc; /* HPTE encoding */
  107. unsigned int tlbiel; /* tlbiel supported for that page size */
  108. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  109. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  110. };
  111. #endif /* __ASSEMBLY__ */
  112. /*
  113. * The kernel use the constants below to index in the page sizes array.
  114. * The use of fixed constants for this purpose is better for performances
  115. * of the low level hash refill handlers.
  116. *
  117. * A non supported page size has a "shift" field set to 0
  118. *
  119. * Any new page size being implemented can get a new entry in here. Whether
  120. * the kernel will use it or not is a different matter though. The actual page
  121. * size used by hugetlbfs is not defined here and may be made variable
  122. */
  123. #define MMU_PAGE_4K 0 /* 4K */
  124. #define MMU_PAGE_64K 1 /* 64K */
  125. #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
  126. #define MMU_PAGE_1M 3 /* 1M */
  127. #define MMU_PAGE_16M 4 /* 16M */
  128. #define MMU_PAGE_16G 5 /* 16G */
  129. #define MMU_PAGE_COUNT 6
  130. /*
  131. * Segment sizes.
  132. * These are the values used by hardware in the B field of
  133. * SLB entries and the first dword of MMU hashtable entries.
  134. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  135. */
  136. #define MMU_SEGSIZE_256M 0
  137. #define MMU_SEGSIZE_1T 1
  138. #ifndef __ASSEMBLY__
  139. /*
  140. * The current system page sizes
  141. */
  142. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  143. extern int mmu_linear_psize;
  144. extern int mmu_virtual_psize;
  145. extern int mmu_vmalloc_psize;
  146. extern int mmu_io_psize;
  147. /*
  148. * If the processor supports 64k normal pages but not 64k cache
  149. * inhibited pages, we have to be prepared to switch processes
  150. * to use 4k pages when they create cache-inhibited mappings.
  151. * If this is the case, mmu_ci_restrictions will be set to 1.
  152. */
  153. extern int mmu_ci_restrictions;
  154. #ifdef CONFIG_HUGETLB_PAGE
  155. /*
  156. * The page size index of the huge pages for use by hugetlbfs
  157. */
  158. extern int mmu_huge_psize;
  159. #endif /* CONFIG_HUGETLB_PAGE */
  160. /*
  161. * This function sets the AVPN and L fields of the HPTE appropriately
  162. * for the page size
  163. */
  164. static inline unsigned long hpte_encode_v(unsigned long va, int psize)
  165. {
  166. unsigned long v =
  167. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  168. v <<= HPTE_V_AVPN_SHIFT;
  169. if (psize != MMU_PAGE_4K)
  170. v |= HPTE_V_LARGE;
  171. return v;
  172. }
  173. /*
  174. * This function sets the ARPN, and LP fields of the HPTE appropriately
  175. * for the page size. We assume the pa is already "clean" that is properly
  176. * aligned for the requested page size
  177. */
  178. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  179. {
  180. unsigned long r;
  181. /* A 4K page needs no special encoding */
  182. if (psize == MMU_PAGE_4K)
  183. return pa & HPTE_R_RPN;
  184. else {
  185. unsigned int penc = mmu_psize_defs[psize].penc;
  186. unsigned int shift = mmu_psize_defs[psize].shift;
  187. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  188. }
  189. return r;
  190. }
  191. /*
  192. * This hashes a virtual address for a 256Mb segment only for now
  193. */
  194. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
  195. {
  196. return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
  197. }
  198. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  199. unsigned long vsid, pte_t *ptep, unsigned long trap,
  200. unsigned int local);
  201. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  202. unsigned long vsid, pte_t *ptep, unsigned long trap,
  203. unsigned int local);
  204. struct mm_struct;
  205. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  206. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  207. unsigned long ea, unsigned long vsid, int local,
  208. unsigned long trap);
  209. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  210. unsigned long pstart, unsigned long mode,
  211. int psize);
  212. extern void htab_initialize(void);
  213. extern void htab_initialize_secondary(void);
  214. extern void hpte_init_native(void);
  215. extern void hpte_init_lpar(void);
  216. extern void hpte_init_iSeries(void);
  217. extern void hpte_init_beat(void);
  218. extern void stabs_alloc(void);
  219. extern void slb_initialize(void);
  220. extern void slb_flush_and_rebolt(void);
  221. extern void stab_initialize(unsigned long stab);
  222. #endif /* __ASSEMBLY__ */
  223. /*
  224. * VSID allocation
  225. *
  226. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  227. * is equal to the ESID, for user addresses it is:
  228. * (context << 15) | (esid & 0x7fff)
  229. *
  230. * The two forms are distinguishable because the top bit is 0 for user
  231. * addresses, whereas the top two bits are 1 for kernel addresses.
  232. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  233. * now.
  234. *
  235. * The proto-VSIDs are then scrambled into real VSIDs with the
  236. * multiplicative hash:
  237. *
  238. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  239. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  240. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  241. *
  242. * This scramble is only well defined for proto-VSIDs below
  243. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  244. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  245. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  246. * Because the modulus is 2^n-1 we can compute it efficiently without
  247. * a divide or extra multiply (see below).
  248. *
  249. * This scheme has several advantages over older methods:
  250. *
  251. * - We have VSIDs allocated for every kernel address
  252. * (i.e. everything above 0xC000000000000000), except the very top
  253. * segment, which simplifies several things.
  254. *
  255. * - We allow for 15 significant bits of ESID and 20 bits of
  256. * context for user addresses. i.e. 8T (43 bits) of address space for
  257. * up to 1M contexts (although the page table structure and context
  258. * allocation will need changes to take advantage of this).
  259. *
  260. * - The scramble function gives robust scattering in the hash
  261. * table (at least based on some initial results). The previous
  262. * method was more susceptible to pathological cases giving excessive
  263. * hash collisions.
  264. */
  265. /*
  266. * WARNING - If you change these you must make sure the asm
  267. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  268. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  269. *
  270. * You'll also need to change the precomputed VSID values in head.S
  271. * which are used by the iSeries firmware.
  272. */
  273. #define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */
  274. #define VSID_BITS 36
  275. #define VSID_MODULUS ((1UL<<VSID_BITS)-1)
  276. #define CONTEXT_BITS 19
  277. #define USER_ESID_BITS 16
  278. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  279. /*
  280. * This macro generates asm code to compute the VSID scramble
  281. * function. Used in slb_allocate() and do_stab_bolted. The function
  282. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  283. *
  284. * rt = register continaing the proto-VSID and into which the
  285. * VSID will be stored
  286. * rx = scratch register (clobbered)
  287. *
  288. * - rt and rx must be different registers
  289. * - The answer will end up in the low 36 bits of rt. The higher
  290. * bits may contain other garbage, so you may need to mask the
  291. * result.
  292. */
  293. #define ASM_VSID_SCRAMBLE(rt, rx) \
  294. lis rx,VSID_MULTIPLIER@h; \
  295. ori rx,rx,VSID_MULTIPLIER@l; \
  296. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  297. \
  298. srdi rx,rt,VSID_BITS; \
  299. clrldi rt,rt,(64-VSID_BITS); \
  300. add rt,rt,rx; /* add high and low bits */ \
  301. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  302. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  303. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  304. * the bit clear, r3 already has the answer we want, if it \
  305. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  306. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  307. addi rx,rt,1; \
  308. srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \
  309. add rt,rt,rx
  310. #ifndef __ASSEMBLY__
  311. typedef unsigned long mm_context_id_t;
  312. typedef struct {
  313. mm_context_id_t id;
  314. u16 user_psize; /* page size index */
  315. #ifdef CONFIG_PPC_MM_SLICES
  316. u64 low_slices_psize; /* SLB page size encodings */
  317. u64 high_slices_psize; /* 4 bits per slice for now */
  318. #else
  319. u16 sllp; /* SLB page size encoding */
  320. #endif
  321. unsigned long vdso_base;
  322. } mm_context_t;
  323. static inline unsigned long vsid_scramble(unsigned long protovsid)
  324. {
  325. #if 0
  326. /* The code below is equivalent to this function for arguments
  327. * < 2^VSID_BITS, which is all this should ever be called
  328. * with. However gcc is not clever enough to compute the
  329. * modulus (2^n-1) without a second multiply. */
  330. return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS);
  331. #else /* 1 */
  332. unsigned long x;
  333. x = protovsid * VSID_MULTIPLIER;
  334. x = (x >> VSID_BITS) + (x & VSID_MODULUS);
  335. return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
  336. #endif /* 1 */
  337. }
  338. /* This is only valid for addresses >= KERNELBASE */
  339. static inline unsigned long get_kernel_vsid(unsigned long ea)
  340. {
  341. return vsid_scramble(ea >> SID_SHIFT);
  342. }
  343. /* This is only valid for user addresses (which are below 2^41) */
  344. static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
  345. {
  346. return vsid_scramble((context << USER_ESID_BITS)
  347. | (ea >> SID_SHIFT));
  348. }
  349. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
  350. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  351. /* Physical address used by some IO functions */
  352. typedef unsigned long phys_addr_t;
  353. #endif /* __ASSEMBLY__ */
  354. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */