xfs_inode.c 138 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_acl.h"
  51. kmem_zone_t *xfs_ifork_zone;
  52. kmem_zone_t *xfs_inode_zone;
  53. kmem_zone_t *xfs_chashlist_zone;
  54. /*
  55. * Used in xfs_itruncate(). This is the maximum number of extents
  56. * freed from a file in a single transaction.
  57. */
  58. #define XFS_ITRUNC_MAX_EXTENTS 2
  59. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  60. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  61. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  62. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  63. #ifdef DEBUG
  64. /*
  65. * Make sure that the extents in the given memory buffer
  66. * are valid.
  67. */
  68. STATIC void
  69. xfs_validate_extents(
  70. xfs_ifork_t *ifp,
  71. int nrecs,
  72. int disk,
  73. xfs_exntfmt_t fmt)
  74. {
  75. xfs_bmbt_rec_t *ep;
  76. xfs_bmbt_irec_t irec;
  77. xfs_bmbt_rec_t rec;
  78. int i;
  79. for (i = 0; i < nrecs; i++) {
  80. ep = xfs_iext_get_ext(ifp, i);
  81. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  82. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  83. if (disk)
  84. xfs_bmbt_disk_get_all(&rec, &irec);
  85. else
  86. xfs_bmbt_get_all(&rec, &irec);
  87. if (fmt == XFS_EXTFMT_NOSTATE)
  88. ASSERT(irec.br_state == XFS_EXT_NORM);
  89. }
  90. }
  91. #else /* DEBUG */
  92. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  93. #endif /* DEBUG */
  94. /*
  95. * Check that none of the inode's in the buffer have a next
  96. * unlinked field of 0.
  97. */
  98. #if defined(DEBUG)
  99. void
  100. xfs_inobp_check(
  101. xfs_mount_t *mp,
  102. xfs_buf_t *bp)
  103. {
  104. int i;
  105. int j;
  106. xfs_dinode_t *dip;
  107. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  108. for (i = 0; i < j; i++) {
  109. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  110. i * mp->m_sb.sb_inodesize);
  111. if (!dip->di_next_unlinked) {
  112. xfs_fs_cmn_err(CE_ALERT, mp,
  113. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  114. bp);
  115. ASSERT(dip->di_next_unlinked);
  116. }
  117. }
  118. }
  119. #endif
  120. /*
  121. * This routine is called to map an inode number within a file
  122. * system to the buffer containing the on-disk version of the
  123. * inode. It returns a pointer to the buffer containing the
  124. * on-disk inode in the bpp parameter, and in the dip parameter
  125. * it returns a pointer to the on-disk inode within that buffer.
  126. *
  127. * If a non-zero error is returned, then the contents of bpp and
  128. * dipp are undefined.
  129. *
  130. * Use xfs_imap() to determine the size and location of the
  131. * buffer to read from disk.
  132. */
  133. STATIC int
  134. xfs_inotobp(
  135. xfs_mount_t *mp,
  136. xfs_trans_t *tp,
  137. xfs_ino_t ino,
  138. xfs_dinode_t **dipp,
  139. xfs_buf_t **bpp,
  140. int *offset)
  141. {
  142. int di_ok;
  143. xfs_imap_t imap;
  144. xfs_buf_t *bp;
  145. int error;
  146. xfs_dinode_t *dip;
  147. /*
  148. * Call the space management code to find the location of the
  149. * inode on disk.
  150. */
  151. imap.im_blkno = 0;
  152. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  153. if (error != 0) {
  154. cmn_err(CE_WARN,
  155. "xfs_inotobp: xfs_imap() returned an "
  156. "error %d on %s. Returning error.", error, mp->m_fsname);
  157. return error;
  158. }
  159. /*
  160. * If the inode number maps to a block outside the bounds of the
  161. * file system then return NULL rather than calling read_buf
  162. * and panicing when we get an error from the driver.
  163. */
  164. if ((imap.im_blkno + imap.im_len) >
  165. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  166. cmn_err(CE_WARN,
  167. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  168. "of the file system %s. Returning EINVAL.",
  169. (unsigned long long)imap.im_blkno,
  170. imap.im_len, mp->m_fsname);
  171. return XFS_ERROR(EINVAL);
  172. }
  173. /*
  174. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  175. * default to just a read_buf() call.
  176. */
  177. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  178. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  179. if (error) {
  180. cmn_err(CE_WARN,
  181. "xfs_inotobp: xfs_trans_read_buf() returned an "
  182. "error %d on %s. Returning error.", error, mp->m_fsname);
  183. return error;
  184. }
  185. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  186. di_ok =
  187. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  188. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  189. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  190. XFS_RANDOM_ITOBP_INOTOBP))) {
  191. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  192. xfs_trans_brelse(tp, bp);
  193. cmn_err(CE_WARN,
  194. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  195. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  196. return XFS_ERROR(EFSCORRUPTED);
  197. }
  198. xfs_inobp_check(mp, bp);
  199. /*
  200. * Set *dipp to point to the on-disk inode in the buffer.
  201. */
  202. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  203. *bpp = bp;
  204. *offset = imap.im_boffset;
  205. return 0;
  206. }
  207. /*
  208. * This routine is called to map an inode to the buffer containing
  209. * the on-disk version of the inode. It returns a pointer to the
  210. * buffer containing the on-disk inode in the bpp parameter, and in
  211. * the dip parameter it returns a pointer to the on-disk inode within
  212. * that buffer.
  213. *
  214. * If a non-zero error is returned, then the contents of bpp and
  215. * dipp are undefined.
  216. *
  217. * If the inode is new and has not yet been initialized, use xfs_imap()
  218. * to determine the size and location of the buffer to read from disk.
  219. * If the inode has already been mapped to its buffer and read in once,
  220. * then use the mapping information stored in the inode rather than
  221. * calling xfs_imap(). This allows us to avoid the overhead of looking
  222. * at the inode btree for small block file systems (see xfs_dilocate()).
  223. * We can tell whether the inode has been mapped in before by comparing
  224. * its disk block address to 0. Only uninitialized inodes will have
  225. * 0 for the disk block address.
  226. */
  227. int
  228. xfs_itobp(
  229. xfs_mount_t *mp,
  230. xfs_trans_t *tp,
  231. xfs_inode_t *ip,
  232. xfs_dinode_t **dipp,
  233. xfs_buf_t **bpp,
  234. xfs_daddr_t bno,
  235. uint imap_flags)
  236. {
  237. xfs_imap_t imap;
  238. xfs_buf_t *bp;
  239. int error;
  240. int i;
  241. int ni;
  242. if (ip->i_blkno == (xfs_daddr_t)0) {
  243. /*
  244. * Call the space management code to find the location of the
  245. * inode on disk.
  246. */
  247. imap.im_blkno = bno;
  248. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  249. XFS_IMAP_LOOKUP | imap_flags)))
  250. return error;
  251. /*
  252. * If the inode number maps to a block outside the bounds
  253. * of the file system then return NULL rather than calling
  254. * read_buf and panicing when we get an error from the
  255. * driver.
  256. */
  257. if ((imap.im_blkno + imap.im_len) >
  258. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  259. #ifdef DEBUG
  260. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  261. "(imap.im_blkno (0x%llx) "
  262. "+ imap.im_len (0x%llx)) > "
  263. " XFS_FSB_TO_BB(mp, "
  264. "mp->m_sb.sb_dblocks) (0x%llx)",
  265. (unsigned long long) imap.im_blkno,
  266. (unsigned long long) imap.im_len,
  267. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  268. #endif /* DEBUG */
  269. return XFS_ERROR(EINVAL);
  270. }
  271. /*
  272. * Fill in the fields in the inode that will be used to
  273. * map the inode to its buffer from now on.
  274. */
  275. ip->i_blkno = imap.im_blkno;
  276. ip->i_len = imap.im_len;
  277. ip->i_boffset = imap.im_boffset;
  278. } else {
  279. /*
  280. * We've already mapped the inode once, so just use the
  281. * mapping that we saved the first time.
  282. */
  283. imap.im_blkno = ip->i_blkno;
  284. imap.im_len = ip->i_len;
  285. imap.im_boffset = ip->i_boffset;
  286. }
  287. ASSERT(bno == 0 || bno == imap.im_blkno);
  288. /*
  289. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  290. * default to just a read_buf() call.
  291. */
  292. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  293. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  294. if (error) {
  295. #ifdef DEBUG
  296. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  297. "xfs_trans_read_buf() returned error %d, "
  298. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  299. error, (unsigned long long) imap.im_blkno,
  300. (unsigned long long) imap.im_len);
  301. #endif /* DEBUG */
  302. return error;
  303. }
  304. /*
  305. * Validate the magic number and version of every inode in the buffer
  306. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  307. * No validation is done here in userspace (xfs_repair).
  308. */
  309. #if !defined(__KERNEL__)
  310. ni = 0;
  311. #elif defined(DEBUG)
  312. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  313. #else /* usual case */
  314. ni = 1;
  315. #endif
  316. for (i = 0; i < ni; i++) {
  317. int di_ok;
  318. xfs_dinode_t *dip;
  319. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  320. (i << mp->m_sb.sb_inodelog));
  321. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  322. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  323. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  324. XFS_ERRTAG_ITOBP_INOTOBP,
  325. XFS_RANDOM_ITOBP_INOTOBP))) {
  326. if (imap_flags & XFS_IMAP_BULKSTAT) {
  327. xfs_trans_brelse(tp, bp);
  328. return XFS_ERROR(EINVAL);
  329. }
  330. #ifdef DEBUG
  331. cmn_err(CE_ALERT,
  332. "Device %s - bad inode magic/vsn "
  333. "daddr %lld #%d (magic=%x)",
  334. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  335. (unsigned long long)imap.im_blkno, i,
  336. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  337. #endif
  338. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  339. mp, dip);
  340. xfs_trans_brelse(tp, bp);
  341. return XFS_ERROR(EFSCORRUPTED);
  342. }
  343. }
  344. xfs_inobp_check(mp, bp);
  345. /*
  346. * Mark the buffer as an inode buffer now that it looks good
  347. */
  348. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  349. /*
  350. * Set *dipp to point to the on-disk inode in the buffer.
  351. */
  352. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  353. *bpp = bp;
  354. return 0;
  355. }
  356. /*
  357. * Move inode type and inode format specific information from the
  358. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  359. * this means set if_rdev to the proper value. For files, directories,
  360. * and symlinks this means to bring in the in-line data or extent
  361. * pointers. For a file in B-tree format, only the root is immediately
  362. * brought in-core. The rest will be in-lined in if_extents when it
  363. * is first referenced (see xfs_iread_extents()).
  364. */
  365. STATIC int
  366. xfs_iformat(
  367. xfs_inode_t *ip,
  368. xfs_dinode_t *dip)
  369. {
  370. xfs_attr_shortform_t *atp;
  371. int size;
  372. int error;
  373. xfs_fsize_t di_size;
  374. ip->i_df.if_ext_max =
  375. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  376. error = 0;
  377. if (unlikely(
  378. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  379. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  380. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  381. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  382. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  383. (unsigned long long)ip->i_ino,
  384. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  385. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  386. (unsigned long long)
  387. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  388. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  389. ip->i_mount, dip);
  390. return XFS_ERROR(EFSCORRUPTED);
  391. }
  392. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  393. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  394. "corrupt dinode %Lu, forkoff = 0x%x.",
  395. (unsigned long long)ip->i_ino,
  396. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  397. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  398. ip->i_mount, dip);
  399. return XFS_ERROR(EFSCORRUPTED);
  400. }
  401. switch (ip->i_d.di_mode & S_IFMT) {
  402. case S_IFIFO:
  403. case S_IFCHR:
  404. case S_IFBLK:
  405. case S_IFSOCK:
  406. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  407. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  408. ip->i_mount, dip);
  409. return XFS_ERROR(EFSCORRUPTED);
  410. }
  411. ip->i_d.di_size = 0;
  412. ip->i_size = 0;
  413. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  414. break;
  415. case S_IFREG:
  416. case S_IFLNK:
  417. case S_IFDIR:
  418. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  419. case XFS_DINODE_FMT_LOCAL:
  420. /*
  421. * no local regular files yet
  422. */
  423. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  424. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  425. "corrupt inode %Lu "
  426. "(local format for regular file).",
  427. (unsigned long long) ip->i_ino);
  428. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  429. XFS_ERRLEVEL_LOW,
  430. ip->i_mount, dip);
  431. return XFS_ERROR(EFSCORRUPTED);
  432. }
  433. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  434. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  435. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  436. "corrupt inode %Lu "
  437. "(bad size %Ld for local inode).",
  438. (unsigned long long) ip->i_ino,
  439. (long long) di_size);
  440. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  441. XFS_ERRLEVEL_LOW,
  442. ip->i_mount, dip);
  443. return XFS_ERROR(EFSCORRUPTED);
  444. }
  445. size = (int)di_size;
  446. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  447. break;
  448. case XFS_DINODE_FMT_EXTENTS:
  449. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  450. break;
  451. case XFS_DINODE_FMT_BTREE:
  452. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  453. break;
  454. default:
  455. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  456. ip->i_mount);
  457. return XFS_ERROR(EFSCORRUPTED);
  458. }
  459. break;
  460. default:
  461. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. if (error) {
  465. return error;
  466. }
  467. if (!XFS_DFORK_Q(dip))
  468. return 0;
  469. ASSERT(ip->i_afp == NULL);
  470. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  471. ip->i_afp->if_ext_max =
  472. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  473. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  474. case XFS_DINODE_FMT_LOCAL:
  475. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  476. size = be16_to_cpu(atp->hdr.totsize);
  477. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  478. break;
  479. case XFS_DINODE_FMT_EXTENTS:
  480. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. case XFS_DINODE_FMT_BTREE:
  483. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  484. break;
  485. default:
  486. error = XFS_ERROR(EFSCORRUPTED);
  487. break;
  488. }
  489. if (error) {
  490. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  491. ip->i_afp = NULL;
  492. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  493. }
  494. return error;
  495. }
  496. /*
  497. * The file is in-lined in the on-disk inode.
  498. * If it fits into if_inline_data, then copy
  499. * it there, otherwise allocate a buffer for it
  500. * and copy the data there. Either way, set
  501. * if_data to point at the data.
  502. * If we allocate a buffer for the data, make
  503. * sure that its size is a multiple of 4 and
  504. * record the real size in i_real_bytes.
  505. */
  506. STATIC int
  507. xfs_iformat_local(
  508. xfs_inode_t *ip,
  509. xfs_dinode_t *dip,
  510. int whichfork,
  511. int size)
  512. {
  513. xfs_ifork_t *ifp;
  514. int real_size;
  515. /*
  516. * If the size is unreasonable, then something
  517. * is wrong and we just bail out rather than crash in
  518. * kmem_alloc() or memcpy() below.
  519. */
  520. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  521. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  522. "corrupt inode %Lu "
  523. "(bad size %d for local fork, size = %d).",
  524. (unsigned long long) ip->i_ino, size,
  525. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  526. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  527. ip->i_mount, dip);
  528. return XFS_ERROR(EFSCORRUPTED);
  529. }
  530. ifp = XFS_IFORK_PTR(ip, whichfork);
  531. real_size = 0;
  532. if (size == 0)
  533. ifp->if_u1.if_data = NULL;
  534. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  535. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  536. else {
  537. real_size = roundup(size, 4);
  538. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  539. }
  540. ifp->if_bytes = size;
  541. ifp->if_real_bytes = real_size;
  542. if (size)
  543. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  544. ifp->if_flags &= ~XFS_IFEXTENTS;
  545. ifp->if_flags |= XFS_IFINLINE;
  546. return 0;
  547. }
  548. /*
  549. * The file consists of a set of extents all
  550. * of which fit into the on-disk inode.
  551. * If there are few enough extents to fit into
  552. * the if_inline_ext, then copy them there.
  553. * Otherwise allocate a buffer for them and copy
  554. * them into it. Either way, set if_extents
  555. * to point at the extents.
  556. */
  557. STATIC int
  558. xfs_iformat_extents(
  559. xfs_inode_t *ip,
  560. xfs_dinode_t *dip,
  561. int whichfork)
  562. {
  563. xfs_bmbt_rec_t *ep, *dp;
  564. xfs_ifork_t *ifp;
  565. int nex;
  566. int size;
  567. int i;
  568. ifp = XFS_IFORK_PTR(ip, whichfork);
  569. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  570. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  571. /*
  572. * If the number of extents is unreasonable, then something
  573. * is wrong and we just bail out rather than crash in
  574. * kmem_alloc() or memcpy() below.
  575. */
  576. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  577. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  578. "corrupt inode %Lu ((a)extents = %d).",
  579. (unsigned long long) ip->i_ino, nex);
  580. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  581. ip->i_mount, dip);
  582. return XFS_ERROR(EFSCORRUPTED);
  583. }
  584. ifp->if_real_bytes = 0;
  585. if (nex == 0)
  586. ifp->if_u1.if_extents = NULL;
  587. else if (nex <= XFS_INLINE_EXTS)
  588. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  589. else
  590. xfs_iext_add(ifp, 0, nex);
  591. ifp->if_bytes = size;
  592. if (size) {
  593. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  594. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  595. for (i = 0; i < nex; i++, dp++) {
  596. ep = xfs_iext_get_ext(ifp, i);
  597. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  598. ARCH_CONVERT);
  599. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  600. ARCH_CONVERT);
  601. }
  602. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  603. whichfork);
  604. if (whichfork != XFS_DATA_FORK ||
  605. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  606. if (unlikely(xfs_check_nostate_extents(
  607. ifp, 0, nex))) {
  608. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  609. XFS_ERRLEVEL_LOW,
  610. ip->i_mount);
  611. return XFS_ERROR(EFSCORRUPTED);
  612. }
  613. }
  614. ifp->if_flags |= XFS_IFEXTENTS;
  615. return 0;
  616. }
  617. /*
  618. * The file has too many extents to fit into
  619. * the inode, so they are in B-tree format.
  620. * Allocate a buffer for the root of the B-tree
  621. * and copy the root into it. The i_extents
  622. * field will remain NULL until all of the
  623. * extents are read in (when they are needed).
  624. */
  625. STATIC int
  626. xfs_iformat_btree(
  627. xfs_inode_t *ip,
  628. xfs_dinode_t *dip,
  629. int whichfork)
  630. {
  631. xfs_bmdr_block_t *dfp;
  632. xfs_ifork_t *ifp;
  633. /* REFERENCED */
  634. int nrecs;
  635. int size;
  636. ifp = XFS_IFORK_PTR(ip, whichfork);
  637. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  638. size = XFS_BMAP_BROOT_SPACE(dfp);
  639. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  640. /*
  641. * blow out if -- fork has less extents than can fit in
  642. * fork (fork shouldn't be a btree format), root btree
  643. * block has more records than can fit into the fork,
  644. * or the number of extents is greater than the number of
  645. * blocks.
  646. */
  647. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  648. || XFS_BMDR_SPACE_CALC(nrecs) >
  649. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  650. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  651. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  652. "corrupt inode %Lu (btree).",
  653. (unsigned long long) ip->i_ino);
  654. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  655. ip->i_mount);
  656. return XFS_ERROR(EFSCORRUPTED);
  657. }
  658. ifp->if_broot_bytes = size;
  659. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  660. ASSERT(ifp->if_broot != NULL);
  661. /*
  662. * Copy and convert from the on-disk structure
  663. * to the in-memory structure.
  664. */
  665. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  666. ifp->if_broot, size);
  667. ifp->if_flags &= ~XFS_IFEXTENTS;
  668. ifp->if_flags |= XFS_IFBROOT;
  669. return 0;
  670. }
  671. /*
  672. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  673. * and native format
  674. *
  675. * buf = on-disk representation
  676. * dip = native representation
  677. * dir = direction - +ve -> disk to native
  678. * -ve -> native to disk
  679. */
  680. void
  681. xfs_xlate_dinode_core(
  682. xfs_caddr_t buf,
  683. xfs_dinode_core_t *dip,
  684. int dir)
  685. {
  686. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  687. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  688. xfs_arch_t arch = ARCH_CONVERT;
  689. ASSERT(dir);
  690. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  691. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  692. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  693. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  694. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  695. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  696. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  697. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  698. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  699. if (dir > 0) {
  700. memcpy(mem_core->di_pad, buf_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. } else {
  703. memcpy(buf_core->di_pad, mem_core->di_pad,
  704. sizeof(buf_core->di_pad));
  705. }
  706. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  707. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  708. dir, arch);
  709. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  714. dir, arch);
  715. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  716. dir, arch);
  717. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  718. dir, arch);
  719. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  720. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  721. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  722. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  723. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  724. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  725. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  726. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  727. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  728. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  729. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  730. }
  731. STATIC uint
  732. _xfs_dic2xflags(
  733. __uint16_t di_flags)
  734. {
  735. uint flags = 0;
  736. if (di_flags & XFS_DIFLAG_ANY) {
  737. if (di_flags & XFS_DIFLAG_REALTIME)
  738. flags |= XFS_XFLAG_REALTIME;
  739. if (di_flags & XFS_DIFLAG_PREALLOC)
  740. flags |= XFS_XFLAG_PREALLOC;
  741. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  742. flags |= XFS_XFLAG_IMMUTABLE;
  743. if (di_flags & XFS_DIFLAG_APPEND)
  744. flags |= XFS_XFLAG_APPEND;
  745. if (di_flags & XFS_DIFLAG_SYNC)
  746. flags |= XFS_XFLAG_SYNC;
  747. if (di_flags & XFS_DIFLAG_NOATIME)
  748. flags |= XFS_XFLAG_NOATIME;
  749. if (di_flags & XFS_DIFLAG_NODUMP)
  750. flags |= XFS_XFLAG_NODUMP;
  751. if (di_flags & XFS_DIFLAG_RTINHERIT)
  752. flags |= XFS_XFLAG_RTINHERIT;
  753. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  754. flags |= XFS_XFLAG_PROJINHERIT;
  755. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  756. flags |= XFS_XFLAG_NOSYMLINKS;
  757. if (di_flags & XFS_DIFLAG_EXTSIZE)
  758. flags |= XFS_XFLAG_EXTSIZE;
  759. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  760. flags |= XFS_XFLAG_EXTSZINHERIT;
  761. if (di_flags & XFS_DIFLAG_NODEFRAG)
  762. flags |= XFS_XFLAG_NODEFRAG;
  763. }
  764. return flags;
  765. }
  766. uint
  767. xfs_ip2xflags(
  768. xfs_inode_t *ip)
  769. {
  770. xfs_dinode_core_t *dic = &ip->i_d;
  771. return _xfs_dic2xflags(dic->di_flags) |
  772. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  773. }
  774. uint
  775. xfs_dic2xflags(
  776. xfs_dinode_core_t *dic)
  777. {
  778. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  779. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  780. }
  781. /*
  782. * Given a mount structure and an inode number, return a pointer
  783. * to a newly allocated in-core inode corresponding to the given
  784. * inode number.
  785. *
  786. * Initialize the inode's attributes and extent pointers if it
  787. * already has them (it will not if the inode has no links).
  788. */
  789. int
  790. xfs_iread(
  791. xfs_mount_t *mp,
  792. xfs_trans_t *tp,
  793. xfs_ino_t ino,
  794. xfs_inode_t **ipp,
  795. xfs_daddr_t bno,
  796. uint imap_flags)
  797. {
  798. xfs_buf_t *bp;
  799. xfs_dinode_t *dip;
  800. xfs_inode_t *ip;
  801. int error;
  802. ASSERT(xfs_inode_zone != NULL);
  803. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  804. ip->i_ino = ino;
  805. ip->i_mount = mp;
  806. spin_lock_init(&ip->i_flags_lock);
  807. /*
  808. * Get pointer's to the on-disk inode and the buffer containing it.
  809. * If the inode number refers to a block outside the file system
  810. * then xfs_itobp() will return NULL. In this case we should
  811. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  812. * know that this is a new incore inode.
  813. */
  814. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  815. if (error) {
  816. kmem_zone_free(xfs_inode_zone, ip);
  817. return error;
  818. }
  819. /*
  820. * Initialize inode's trace buffers.
  821. * Do this before xfs_iformat in case it adds entries.
  822. */
  823. #ifdef XFS_BMAP_TRACE
  824. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  825. #endif
  826. #ifdef XFS_BMBT_TRACE
  827. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  828. #endif
  829. #ifdef XFS_RW_TRACE
  830. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  831. #endif
  832. #ifdef XFS_ILOCK_TRACE
  833. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  834. #endif
  835. #ifdef XFS_DIR2_TRACE
  836. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  837. #endif
  838. /*
  839. * If we got something that isn't an inode it means someone
  840. * (nfs or dmi) has a stale handle.
  841. */
  842. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  843. kmem_zone_free(xfs_inode_zone, ip);
  844. xfs_trans_brelse(tp, bp);
  845. #ifdef DEBUG
  846. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  847. "dip->di_core.di_magic (0x%x) != "
  848. "XFS_DINODE_MAGIC (0x%x)",
  849. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  850. XFS_DINODE_MAGIC);
  851. #endif /* DEBUG */
  852. return XFS_ERROR(EINVAL);
  853. }
  854. /*
  855. * If the on-disk inode is already linked to a directory
  856. * entry, copy all of the inode into the in-core inode.
  857. * xfs_iformat() handles copying in the inode format
  858. * specific information.
  859. * Otherwise, just get the truly permanent information.
  860. */
  861. if (dip->di_core.di_mode) {
  862. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  863. &(ip->i_d), 1);
  864. error = xfs_iformat(ip, dip);
  865. if (error) {
  866. kmem_zone_free(xfs_inode_zone, ip);
  867. xfs_trans_brelse(tp, bp);
  868. #ifdef DEBUG
  869. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  870. "xfs_iformat() returned error %d",
  871. error);
  872. #endif /* DEBUG */
  873. return error;
  874. }
  875. } else {
  876. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  877. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  878. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  879. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  880. /*
  881. * Make sure to pull in the mode here as well in
  882. * case the inode is released without being used.
  883. * This ensures that xfs_inactive() will see that
  884. * the inode is already free and not try to mess
  885. * with the uninitialized part of it.
  886. */
  887. ip->i_d.di_mode = 0;
  888. /*
  889. * Initialize the per-fork minima and maxima for a new
  890. * inode here. xfs_iformat will do it for old inodes.
  891. */
  892. ip->i_df.if_ext_max =
  893. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  894. }
  895. INIT_LIST_HEAD(&ip->i_reclaim);
  896. /*
  897. * The inode format changed when we moved the link count and
  898. * made it 32 bits long. If this is an old format inode,
  899. * convert it in memory to look like a new one. If it gets
  900. * flushed to disk we will convert back before flushing or
  901. * logging it. We zero out the new projid field and the old link
  902. * count field. We'll handle clearing the pad field (the remains
  903. * of the old uuid field) when we actually convert the inode to
  904. * the new format. We don't change the version number so that we
  905. * can distinguish this from a real new format inode.
  906. */
  907. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  908. ip->i_d.di_nlink = ip->i_d.di_onlink;
  909. ip->i_d.di_onlink = 0;
  910. ip->i_d.di_projid = 0;
  911. }
  912. ip->i_delayed_blks = 0;
  913. ip->i_size = ip->i_d.di_size;
  914. /*
  915. * Mark the buffer containing the inode as something to keep
  916. * around for a while. This helps to keep recently accessed
  917. * meta-data in-core longer.
  918. */
  919. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  920. /*
  921. * Use xfs_trans_brelse() to release the buffer containing the
  922. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  923. * in xfs_itobp() above. If tp is NULL, this is just a normal
  924. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  925. * will only release the buffer if it is not dirty within the
  926. * transaction. It will be OK to release the buffer in this case,
  927. * because inodes on disk are never destroyed and we will be
  928. * locking the new in-core inode before putting it in the hash
  929. * table where other processes can find it. Thus we don't have
  930. * to worry about the inode being changed just because we released
  931. * the buffer.
  932. */
  933. xfs_trans_brelse(tp, bp);
  934. *ipp = ip;
  935. return 0;
  936. }
  937. /*
  938. * Read in extents from a btree-format inode.
  939. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  940. */
  941. int
  942. xfs_iread_extents(
  943. xfs_trans_t *tp,
  944. xfs_inode_t *ip,
  945. int whichfork)
  946. {
  947. int error;
  948. xfs_ifork_t *ifp;
  949. xfs_extnum_t nextents;
  950. size_t size;
  951. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  952. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  953. ip->i_mount);
  954. return XFS_ERROR(EFSCORRUPTED);
  955. }
  956. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  957. size = nextents * sizeof(xfs_bmbt_rec_t);
  958. ifp = XFS_IFORK_PTR(ip, whichfork);
  959. /*
  960. * We know that the size is valid (it's checked in iformat_btree)
  961. */
  962. ifp->if_lastex = NULLEXTNUM;
  963. ifp->if_bytes = ifp->if_real_bytes = 0;
  964. ifp->if_flags |= XFS_IFEXTENTS;
  965. xfs_iext_add(ifp, 0, nextents);
  966. error = xfs_bmap_read_extents(tp, ip, whichfork);
  967. if (error) {
  968. xfs_iext_destroy(ifp);
  969. ifp->if_flags &= ~XFS_IFEXTENTS;
  970. return error;
  971. }
  972. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  973. return 0;
  974. }
  975. /*
  976. * Allocate an inode on disk and return a copy of its in-core version.
  977. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  978. * appropriately within the inode. The uid and gid for the inode are
  979. * set according to the contents of the given cred structure.
  980. *
  981. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  982. * has a free inode available, call xfs_iget()
  983. * to obtain the in-core version of the allocated inode. Finally,
  984. * fill in the inode and log its initial contents. In this case,
  985. * ialloc_context would be set to NULL and call_again set to false.
  986. *
  987. * If xfs_dialloc() does not have an available inode,
  988. * it will replenish its supply by doing an allocation. Since we can
  989. * only do one allocation within a transaction without deadlocks, we
  990. * must commit the current transaction before returning the inode itself.
  991. * In this case, therefore, we will set call_again to true and return.
  992. * The caller should then commit the current transaction, start a new
  993. * transaction, and call xfs_ialloc() again to actually get the inode.
  994. *
  995. * To ensure that some other process does not grab the inode that
  996. * was allocated during the first call to xfs_ialloc(), this routine
  997. * also returns the [locked] bp pointing to the head of the freelist
  998. * as ialloc_context. The caller should hold this buffer across
  999. * the commit and pass it back into this routine on the second call.
  1000. */
  1001. int
  1002. xfs_ialloc(
  1003. xfs_trans_t *tp,
  1004. xfs_inode_t *pip,
  1005. mode_t mode,
  1006. xfs_nlink_t nlink,
  1007. xfs_dev_t rdev,
  1008. cred_t *cr,
  1009. xfs_prid_t prid,
  1010. int okalloc,
  1011. xfs_buf_t **ialloc_context,
  1012. boolean_t *call_again,
  1013. xfs_inode_t **ipp)
  1014. {
  1015. xfs_ino_t ino;
  1016. xfs_inode_t *ip;
  1017. bhv_vnode_t *vp;
  1018. uint flags;
  1019. int error;
  1020. /*
  1021. * Call the space management code to pick
  1022. * the on-disk inode to be allocated.
  1023. */
  1024. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1025. ialloc_context, call_again, &ino);
  1026. if (error != 0) {
  1027. return error;
  1028. }
  1029. if (*call_again || ino == NULLFSINO) {
  1030. *ipp = NULL;
  1031. return 0;
  1032. }
  1033. ASSERT(*ialloc_context == NULL);
  1034. /*
  1035. * Get the in-core inode with the lock held exclusively.
  1036. * This is because we're setting fields here we need
  1037. * to prevent others from looking at until we're done.
  1038. */
  1039. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1040. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1041. if (error != 0) {
  1042. return error;
  1043. }
  1044. ASSERT(ip != NULL);
  1045. vp = XFS_ITOV(ip);
  1046. ip->i_d.di_mode = (__uint16_t)mode;
  1047. ip->i_d.di_onlink = 0;
  1048. ip->i_d.di_nlink = nlink;
  1049. ASSERT(ip->i_d.di_nlink == nlink);
  1050. ip->i_d.di_uid = current_fsuid(cr);
  1051. ip->i_d.di_gid = current_fsgid(cr);
  1052. ip->i_d.di_projid = prid;
  1053. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1054. /*
  1055. * If the superblock version is up to where we support new format
  1056. * inodes and this is currently an old format inode, then change
  1057. * the inode version number now. This way we only do the conversion
  1058. * here rather than here and in the flush/logging code.
  1059. */
  1060. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1061. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1062. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1063. /*
  1064. * We've already zeroed the old link count, the projid field,
  1065. * and the pad field.
  1066. */
  1067. }
  1068. /*
  1069. * Project ids won't be stored on disk if we are using a version 1 inode.
  1070. */
  1071. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1072. xfs_bump_ino_vers2(tp, ip);
  1073. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1074. ip->i_d.di_gid = pip->i_d.di_gid;
  1075. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1076. ip->i_d.di_mode |= S_ISGID;
  1077. }
  1078. }
  1079. /*
  1080. * If the group ID of the new file does not match the effective group
  1081. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1082. * (and only if the irix_sgid_inherit compatibility variable is set).
  1083. */
  1084. if ((irix_sgid_inherit) &&
  1085. (ip->i_d.di_mode & S_ISGID) &&
  1086. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1087. ip->i_d.di_mode &= ~S_ISGID;
  1088. }
  1089. ip->i_d.di_size = 0;
  1090. ip->i_size = 0;
  1091. ip->i_d.di_nextents = 0;
  1092. ASSERT(ip->i_d.di_nblocks == 0);
  1093. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1094. /*
  1095. * di_gen will have been taken care of in xfs_iread.
  1096. */
  1097. ip->i_d.di_extsize = 0;
  1098. ip->i_d.di_dmevmask = 0;
  1099. ip->i_d.di_dmstate = 0;
  1100. ip->i_d.di_flags = 0;
  1101. flags = XFS_ILOG_CORE;
  1102. switch (mode & S_IFMT) {
  1103. case S_IFIFO:
  1104. case S_IFCHR:
  1105. case S_IFBLK:
  1106. case S_IFSOCK:
  1107. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1108. ip->i_df.if_u2.if_rdev = rdev;
  1109. ip->i_df.if_flags = 0;
  1110. flags |= XFS_ILOG_DEV;
  1111. break;
  1112. case S_IFREG:
  1113. case S_IFDIR:
  1114. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1115. uint di_flags = 0;
  1116. if ((mode & S_IFMT) == S_IFDIR) {
  1117. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1118. di_flags |= XFS_DIFLAG_RTINHERIT;
  1119. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1120. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1121. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1122. }
  1123. } else if ((mode & S_IFMT) == S_IFREG) {
  1124. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1125. di_flags |= XFS_DIFLAG_REALTIME;
  1126. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1127. }
  1128. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1129. di_flags |= XFS_DIFLAG_EXTSIZE;
  1130. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1131. }
  1132. }
  1133. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1134. xfs_inherit_noatime)
  1135. di_flags |= XFS_DIFLAG_NOATIME;
  1136. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1137. xfs_inherit_nodump)
  1138. di_flags |= XFS_DIFLAG_NODUMP;
  1139. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1140. xfs_inherit_sync)
  1141. di_flags |= XFS_DIFLAG_SYNC;
  1142. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1143. xfs_inherit_nosymlinks)
  1144. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1145. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1146. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1147. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1148. xfs_inherit_nodefrag)
  1149. di_flags |= XFS_DIFLAG_NODEFRAG;
  1150. ip->i_d.di_flags |= di_flags;
  1151. }
  1152. /* FALLTHROUGH */
  1153. case S_IFLNK:
  1154. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1155. ip->i_df.if_flags = XFS_IFEXTENTS;
  1156. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1157. ip->i_df.if_u1.if_extents = NULL;
  1158. break;
  1159. default:
  1160. ASSERT(0);
  1161. }
  1162. /*
  1163. * Attribute fork settings for new inode.
  1164. */
  1165. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1166. ip->i_d.di_anextents = 0;
  1167. /*
  1168. * Log the new values stuffed into the inode.
  1169. */
  1170. xfs_trans_log_inode(tp, ip, flags);
  1171. /* now that we have an i_mode we can setup inode ops and unlock */
  1172. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1173. *ipp = ip;
  1174. return 0;
  1175. }
  1176. /*
  1177. * Check to make sure that there are no blocks allocated to the
  1178. * file beyond the size of the file. We don't check this for
  1179. * files with fixed size extents or real time extents, but we
  1180. * at least do it for regular files.
  1181. */
  1182. #ifdef DEBUG
  1183. void
  1184. xfs_isize_check(
  1185. xfs_mount_t *mp,
  1186. xfs_inode_t *ip,
  1187. xfs_fsize_t isize)
  1188. {
  1189. xfs_fileoff_t map_first;
  1190. int nimaps;
  1191. xfs_bmbt_irec_t imaps[2];
  1192. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1193. return;
  1194. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1195. return;
  1196. nimaps = 2;
  1197. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1198. /*
  1199. * The filesystem could be shutting down, so bmapi may return
  1200. * an error.
  1201. */
  1202. if (xfs_bmapi(NULL, ip, map_first,
  1203. (XFS_B_TO_FSB(mp,
  1204. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1205. map_first),
  1206. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1207. NULL, NULL))
  1208. return;
  1209. ASSERT(nimaps == 1);
  1210. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1211. }
  1212. #endif /* DEBUG */
  1213. /*
  1214. * Calculate the last possible buffered byte in a file. This must
  1215. * include data that was buffered beyond the EOF by the write code.
  1216. * This also needs to deal with overflowing the xfs_fsize_t type
  1217. * which can happen for sizes near the limit.
  1218. *
  1219. * We also need to take into account any blocks beyond the EOF. It
  1220. * may be the case that they were buffered by a write which failed.
  1221. * In that case the pages will still be in memory, but the inode size
  1222. * will never have been updated.
  1223. */
  1224. xfs_fsize_t
  1225. xfs_file_last_byte(
  1226. xfs_inode_t *ip)
  1227. {
  1228. xfs_mount_t *mp;
  1229. xfs_fsize_t last_byte;
  1230. xfs_fileoff_t last_block;
  1231. xfs_fileoff_t size_last_block;
  1232. int error;
  1233. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1234. mp = ip->i_mount;
  1235. /*
  1236. * Only check for blocks beyond the EOF if the extents have
  1237. * been read in. This eliminates the need for the inode lock,
  1238. * and it also saves us from looking when it really isn't
  1239. * necessary.
  1240. */
  1241. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1242. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1243. XFS_DATA_FORK);
  1244. if (error) {
  1245. last_block = 0;
  1246. }
  1247. } else {
  1248. last_block = 0;
  1249. }
  1250. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1251. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1252. last_byte = XFS_FSB_TO_B(mp, last_block);
  1253. if (last_byte < 0) {
  1254. return XFS_MAXIOFFSET(mp);
  1255. }
  1256. last_byte += (1 << mp->m_writeio_log);
  1257. if (last_byte < 0) {
  1258. return XFS_MAXIOFFSET(mp);
  1259. }
  1260. return last_byte;
  1261. }
  1262. #if defined(XFS_RW_TRACE)
  1263. STATIC void
  1264. xfs_itrunc_trace(
  1265. int tag,
  1266. xfs_inode_t *ip,
  1267. int flag,
  1268. xfs_fsize_t new_size,
  1269. xfs_off_t toss_start,
  1270. xfs_off_t toss_finish)
  1271. {
  1272. if (ip->i_rwtrace == NULL) {
  1273. return;
  1274. }
  1275. ktrace_enter(ip->i_rwtrace,
  1276. (void*)((long)tag),
  1277. (void*)ip,
  1278. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1279. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1280. (void*)((long)flag),
  1281. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1282. (void*)(unsigned long)(new_size & 0xffffffff),
  1283. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1284. (void*)(unsigned long)(toss_start & 0xffffffff),
  1285. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1286. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1287. (void*)(unsigned long)current_cpu(),
  1288. (void*)(unsigned long)current_pid(),
  1289. (void*)NULL,
  1290. (void*)NULL,
  1291. (void*)NULL);
  1292. }
  1293. #else
  1294. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1295. #endif
  1296. /*
  1297. * Start the truncation of the file to new_size. The new size
  1298. * must be smaller than the current size. This routine will
  1299. * clear the buffer and page caches of file data in the removed
  1300. * range, and xfs_itruncate_finish() will remove the underlying
  1301. * disk blocks.
  1302. *
  1303. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1304. * must NOT have the inode lock held at all. This is because we're
  1305. * calling into the buffer/page cache code and we can't hold the
  1306. * inode lock when we do so.
  1307. *
  1308. * We need to wait for any direct I/Os in flight to complete before we
  1309. * proceed with the truncate. This is needed to prevent the extents
  1310. * being read or written by the direct I/Os from being removed while the
  1311. * I/O is in flight as there is no other method of synchronising
  1312. * direct I/O with the truncate operation. Also, because we hold
  1313. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1314. * started until the truncate completes and drops the lock. Essentially,
  1315. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1316. * between direct I/Os and the truncate operation.
  1317. *
  1318. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1319. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1320. * in the case that the caller is locking things out of order and
  1321. * may not be able to call xfs_itruncate_finish() with the inode lock
  1322. * held without dropping the I/O lock. If the caller must drop the
  1323. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1324. * must be called again with all the same restrictions as the initial
  1325. * call.
  1326. */
  1327. int
  1328. xfs_itruncate_start(
  1329. xfs_inode_t *ip,
  1330. uint flags,
  1331. xfs_fsize_t new_size)
  1332. {
  1333. xfs_fsize_t last_byte;
  1334. xfs_off_t toss_start;
  1335. xfs_mount_t *mp;
  1336. bhv_vnode_t *vp;
  1337. int error = 0;
  1338. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1339. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1340. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1341. (flags == XFS_ITRUNC_MAYBE));
  1342. mp = ip->i_mount;
  1343. vp = XFS_ITOV(ip);
  1344. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1345. /*
  1346. * Call toss_pages or flushinval_pages to get rid of pages
  1347. * overlapping the region being removed. We have to use
  1348. * the less efficient flushinval_pages in the case that the
  1349. * caller may not be able to finish the truncate without
  1350. * dropping the inode's I/O lock. Make sure
  1351. * to catch any pages brought in by buffers overlapping
  1352. * the EOF by searching out beyond the isize by our
  1353. * block size. We round new_size up to a block boundary
  1354. * so that we don't toss things on the same block as
  1355. * new_size but before it.
  1356. *
  1357. * Before calling toss_page or flushinval_pages, make sure to
  1358. * call remapf() over the same region if the file is mapped.
  1359. * This frees up mapped file references to the pages in the
  1360. * given range and for the flushinval_pages case it ensures
  1361. * that we get the latest mapped changes flushed out.
  1362. */
  1363. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1364. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1365. if (toss_start < 0) {
  1366. /*
  1367. * The place to start tossing is beyond our maximum
  1368. * file size, so there is no way that the data extended
  1369. * out there.
  1370. */
  1371. return 0;
  1372. }
  1373. last_byte = xfs_file_last_byte(ip);
  1374. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1375. last_byte);
  1376. if (last_byte > toss_start) {
  1377. if (flags & XFS_ITRUNC_DEFINITE) {
  1378. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1379. } else {
  1380. error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1381. }
  1382. }
  1383. #ifdef DEBUG
  1384. if (new_size == 0) {
  1385. ASSERT(VN_CACHED(vp) == 0);
  1386. }
  1387. #endif
  1388. return error;
  1389. }
  1390. /*
  1391. * Shrink the file to the given new_size. The new
  1392. * size must be smaller than the current size.
  1393. * This will free up the underlying blocks
  1394. * in the removed range after a call to xfs_itruncate_start()
  1395. * or xfs_atruncate_start().
  1396. *
  1397. * The transaction passed to this routine must have made
  1398. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1399. * This routine may commit the given transaction and
  1400. * start new ones, so make sure everything involved in
  1401. * the transaction is tidy before calling here.
  1402. * Some transaction will be returned to the caller to be
  1403. * committed. The incoming transaction must already include
  1404. * the inode, and both inode locks must be held exclusively.
  1405. * The inode must also be "held" within the transaction. On
  1406. * return the inode will be "held" within the returned transaction.
  1407. * This routine does NOT require any disk space to be reserved
  1408. * for it within the transaction.
  1409. *
  1410. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1411. * and it indicates the fork which is to be truncated. For the
  1412. * attribute fork we only support truncation to size 0.
  1413. *
  1414. * We use the sync parameter to indicate whether or not the first
  1415. * transaction we perform might have to be synchronous. For the attr fork,
  1416. * it needs to be so if the unlink of the inode is not yet known to be
  1417. * permanent in the log. This keeps us from freeing and reusing the
  1418. * blocks of the attribute fork before the unlink of the inode becomes
  1419. * permanent.
  1420. *
  1421. * For the data fork, we normally have to run synchronously if we're
  1422. * being called out of the inactive path or we're being called
  1423. * out of the create path where we're truncating an existing file.
  1424. * Either way, the truncate needs to be sync so blocks don't reappear
  1425. * in the file with altered data in case of a crash. wsync filesystems
  1426. * can run the first case async because anything that shrinks the inode
  1427. * has to run sync so by the time we're called here from inactive, the
  1428. * inode size is permanently set to 0.
  1429. *
  1430. * Calls from the truncate path always need to be sync unless we're
  1431. * in a wsync filesystem and the file has already been unlinked.
  1432. *
  1433. * The caller is responsible for correctly setting the sync parameter.
  1434. * It gets too hard for us to guess here which path we're being called
  1435. * out of just based on inode state.
  1436. */
  1437. int
  1438. xfs_itruncate_finish(
  1439. xfs_trans_t **tp,
  1440. xfs_inode_t *ip,
  1441. xfs_fsize_t new_size,
  1442. int fork,
  1443. int sync)
  1444. {
  1445. xfs_fsblock_t first_block;
  1446. xfs_fileoff_t first_unmap_block;
  1447. xfs_fileoff_t last_block;
  1448. xfs_filblks_t unmap_len=0;
  1449. xfs_mount_t *mp;
  1450. xfs_trans_t *ntp;
  1451. int done;
  1452. int committed;
  1453. xfs_bmap_free_t free_list;
  1454. int error;
  1455. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1456. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1457. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1458. ASSERT(*tp != NULL);
  1459. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1460. ASSERT(ip->i_transp == *tp);
  1461. ASSERT(ip->i_itemp != NULL);
  1462. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1463. ntp = *tp;
  1464. mp = (ntp)->t_mountp;
  1465. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1466. /*
  1467. * We only support truncating the entire attribute fork.
  1468. */
  1469. if (fork == XFS_ATTR_FORK) {
  1470. new_size = 0LL;
  1471. }
  1472. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1473. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1474. /*
  1475. * The first thing we do is set the size to new_size permanently
  1476. * on disk. This way we don't have to worry about anyone ever
  1477. * being able to look at the data being freed even in the face
  1478. * of a crash. What we're getting around here is the case where
  1479. * we free a block, it is allocated to another file, it is written
  1480. * to, and then we crash. If the new data gets written to the
  1481. * file but the log buffers containing the free and reallocation
  1482. * don't, then we'd end up with garbage in the blocks being freed.
  1483. * As long as we make the new_size permanent before actually
  1484. * freeing any blocks it doesn't matter if they get writtten to.
  1485. *
  1486. * The callers must signal into us whether or not the size
  1487. * setting here must be synchronous. There are a few cases
  1488. * where it doesn't have to be synchronous. Those cases
  1489. * occur if the file is unlinked and we know the unlink is
  1490. * permanent or if the blocks being truncated are guaranteed
  1491. * to be beyond the inode eof (regardless of the link count)
  1492. * and the eof value is permanent. Both of these cases occur
  1493. * only on wsync-mounted filesystems. In those cases, we're
  1494. * guaranteed that no user will ever see the data in the blocks
  1495. * that are being truncated so the truncate can run async.
  1496. * In the free beyond eof case, the file may wind up with
  1497. * more blocks allocated to it than it needs if we crash
  1498. * and that won't get fixed until the next time the file
  1499. * is re-opened and closed but that's ok as that shouldn't
  1500. * be too many blocks.
  1501. *
  1502. * However, we can't just make all wsync xactions run async
  1503. * because there's one call out of the create path that needs
  1504. * to run sync where it's truncating an existing file to size
  1505. * 0 whose size is > 0.
  1506. *
  1507. * It's probably possible to come up with a test in this
  1508. * routine that would correctly distinguish all the above
  1509. * cases from the values of the function parameters and the
  1510. * inode state but for sanity's sake, I've decided to let the
  1511. * layers above just tell us. It's simpler to correctly figure
  1512. * out in the layer above exactly under what conditions we
  1513. * can run async and I think it's easier for others read and
  1514. * follow the logic in case something has to be changed.
  1515. * cscope is your friend -- rcc.
  1516. *
  1517. * The attribute fork is much simpler.
  1518. *
  1519. * For the attribute fork we allow the caller to tell us whether
  1520. * the unlink of the inode that led to this call is yet permanent
  1521. * in the on disk log. If it is not and we will be freeing extents
  1522. * in this inode then we make the first transaction synchronous
  1523. * to make sure that the unlink is permanent by the time we free
  1524. * the blocks.
  1525. */
  1526. if (fork == XFS_DATA_FORK) {
  1527. if (ip->i_d.di_nextents > 0) {
  1528. /*
  1529. * If we are not changing the file size then do
  1530. * not update the on-disk file size - we may be
  1531. * called from xfs_inactive_free_eofblocks(). If we
  1532. * update the on-disk file size and then the system
  1533. * crashes before the contents of the file are
  1534. * flushed to disk then the files may be full of
  1535. * holes (ie NULL files bug).
  1536. */
  1537. if (ip->i_size != new_size) {
  1538. ip->i_d.di_size = new_size;
  1539. ip->i_size = new_size;
  1540. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1541. }
  1542. }
  1543. } else if (sync) {
  1544. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1545. if (ip->i_d.di_anextents > 0)
  1546. xfs_trans_set_sync(ntp);
  1547. }
  1548. ASSERT(fork == XFS_DATA_FORK ||
  1549. (fork == XFS_ATTR_FORK &&
  1550. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1551. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1552. /*
  1553. * Since it is possible for space to become allocated beyond
  1554. * the end of the file (in a crash where the space is allocated
  1555. * but the inode size is not yet updated), simply remove any
  1556. * blocks which show up between the new EOF and the maximum
  1557. * possible file size. If the first block to be removed is
  1558. * beyond the maximum file size (ie it is the same as last_block),
  1559. * then there is nothing to do.
  1560. */
  1561. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1562. ASSERT(first_unmap_block <= last_block);
  1563. done = 0;
  1564. if (last_block == first_unmap_block) {
  1565. done = 1;
  1566. } else {
  1567. unmap_len = last_block - first_unmap_block + 1;
  1568. }
  1569. while (!done) {
  1570. /*
  1571. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1572. * will tell us whether it freed the entire range or
  1573. * not. If this is a synchronous mount (wsync),
  1574. * then we can tell bunmapi to keep all the
  1575. * transactions asynchronous since the unlink
  1576. * transaction that made this inode inactive has
  1577. * already hit the disk. There's no danger of
  1578. * the freed blocks being reused, there being a
  1579. * crash, and the reused blocks suddenly reappearing
  1580. * in this file with garbage in them once recovery
  1581. * runs.
  1582. */
  1583. XFS_BMAP_INIT(&free_list, &first_block);
  1584. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1585. first_unmap_block, unmap_len,
  1586. XFS_BMAPI_AFLAG(fork) |
  1587. (sync ? 0 : XFS_BMAPI_ASYNC),
  1588. XFS_ITRUNC_MAX_EXTENTS,
  1589. &first_block, &free_list,
  1590. NULL, &done);
  1591. if (error) {
  1592. /*
  1593. * If the bunmapi call encounters an error,
  1594. * return to the caller where the transaction
  1595. * can be properly aborted. We just need to
  1596. * make sure we're not holding any resources
  1597. * that we were not when we came in.
  1598. */
  1599. xfs_bmap_cancel(&free_list);
  1600. return error;
  1601. }
  1602. /*
  1603. * Duplicate the transaction that has the permanent
  1604. * reservation and commit the old transaction.
  1605. */
  1606. error = xfs_bmap_finish(tp, &free_list, &committed);
  1607. ntp = *tp;
  1608. if (error) {
  1609. /*
  1610. * If the bmap finish call encounters an error,
  1611. * return to the caller where the transaction
  1612. * can be properly aborted. We just need to
  1613. * make sure we're not holding any resources
  1614. * that we were not when we came in.
  1615. *
  1616. * Aborting from this point might lose some
  1617. * blocks in the file system, but oh well.
  1618. */
  1619. xfs_bmap_cancel(&free_list);
  1620. if (committed) {
  1621. /*
  1622. * If the passed in transaction committed
  1623. * in xfs_bmap_finish(), then we want to
  1624. * add the inode to this one before returning.
  1625. * This keeps things simple for the higher
  1626. * level code, because it always knows that
  1627. * the inode is locked and held in the
  1628. * transaction that returns to it whether
  1629. * errors occur or not. We don't mark the
  1630. * inode dirty so that this transaction can
  1631. * be easily aborted if possible.
  1632. */
  1633. xfs_trans_ijoin(ntp, ip,
  1634. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1635. xfs_trans_ihold(ntp, ip);
  1636. }
  1637. return error;
  1638. }
  1639. if (committed) {
  1640. /*
  1641. * The first xact was committed,
  1642. * so add the inode to the new one.
  1643. * Mark it dirty so it will be logged
  1644. * and moved forward in the log as
  1645. * part of every commit.
  1646. */
  1647. xfs_trans_ijoin(ntp, ip,
  1648. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1649. xfs_trans_ihold(ntp, ip);
  1650. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1651. }
  1652. ntp = xfs_trans_dup(ntp);
  1653. (void) xfs_trans_commit(*tp, 0);
  1654. *tp = ntp;
  1655. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1656. XFS_TRANS_PERM_LOG_RES,
  1657. XFS_ITRUNCATE_LOG_COUNT);
  1658. /*
  1659. * Add the inode being truncated to the next chained
  1660. * transaction.
  1661. */
  1662. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1663. xfs_trans_ihold(ntp, ip);
  1664. if (error)
  1665. return (error);
  1666. }
  1667. /*
  1668. * Only update the size in the case of the data fork, but
  1669. * always re-log the inode so that our permanent transaction
  1670. * can keep on rolling it forward in the log.
  1671. */
  1672. if (fork == XFS_DATA_FORK) {
  1673. xfs_isize_check(mp, ip, new_size);
  1674. /*
  1675. * If we are not changing the file size then do
  1676. * not update the on-disk file size - we may be
  1677. * called from xfs_inactive_free_eofblocks(). If we
  1678. * update the on-disk file size and then the system
  1679. * crashes before the contents of the file are
  1680. * flushed to disk then the files may be full of
  1681. * holes (ie NULL files bug).
  1682. */
  1683. if (ip->i_size != new_size) {
  1684. ip->i_d.di_size = new_size;
  1685. ip->i_size = new_size;
  1686. }
  1687. }
  1688. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1689. ASSERT((new_size != 0) ||
  1690. (fork == XFS_ATTR_FORK) ||
  1691. (ip->i_delayed_blks == 0));
  1692. ASSERT((new_size != 0) ||
  1693. (fork == XFS_ATTR_FORK) ||
  1694. (ip->i_d.di_nextents == 0));
  1695. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1696. return 0;
  1697. }
  1698. /*
  1699. * xfs_igrow_start
  1700. *
  1701. * Do the first part of growing a file: zero any data in the last
  1702. * block that is beyond the old EOF. We need to do this before
  1703. * the inode is joined to the transaction to modify the i_size.
  1704. * That way we can drop the inode lock and call into the buffer
  1705. * cache to get the buffer mapping the EOF.
  1706. */
  1707. int
  1708. xfs_igrow_start(
  1709. xfs_inode_t *ip,
  1710. xfs_fsize_t new_size,
  1711. cred_t *credp)
  1712. {
  1713. int error;
  1714. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1715. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1716. ASSERT(new_size > ip->i_size);
  1717. /*
  1718. * Zero any pages that may have been created by
  1719. * xfs_write_file() beyond the end of the file
  1720. * and any blocks between the old and new file sizes.
  1721. */
  1722. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1723. ip->i_size);
  1724. return error;
  1725. }
  1726. /*
  1727. * xfs_igrow_finish
  1728. *
  1729. * This routine is called to extend the size of a file.
  1730. * The inode must have both the iolock and the ilock locked
  1731. * for update and it must be a part of the current transaction.
  1732. * The xfs_igrow_start() function must have been called previously.
  1733. * If the change_flag is not zero, the inode change timestamp will
  1734. * be updated.
  1735. */
  1736. void
  1737. xfs_igrow_finish(
  1738. xfs_trans_t *tp,
  1739. xfs_inode_t *ip,
  1740. xfs_fsize_t new_size,
  1741. int change_flag)
  1742. {
  1743. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1744. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1745. ASSERT(ip->i_transp == tp);
  1746. ASSERT(new_size > ip->i_size);
  1747. /*
  1748. * Update the file size. Update the inode change timestamp
  1749. * if change_flag set.
  1750. */
  1751. ip->i_d.di_size = new_size;
  1752. ip->i_size = new_size;
  1753. if (change_flag)
  1754. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1755. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1756. }
  1757. /*
  1758. * This is called when the inode's link count goes to 0.
  1759. * We place the on-disk inode on a list in the AGI. It
  1760. * will be pulled from this list when the inode is freed.
  1761. */
  1762. int
  1763. xfs_iunlink(
  1764. xfs_trans_t *tp,
  1765. xfs_inode_t *ip)
  1766. {
  1767. xfs_mount_t *mp;
  1768. xfs_agi_t *agi;
  1769. xfs_dinode_t *dip;
  1770. xfs_buf_t *agibp;
  1771. xfs_buf_t *ibp;
  1772. xfs_agnumber_t agno;
  1773. xfs_daddr_t agdaddr;
  1774. xfs_agino_t agino;
  1775. short bucket_index;
  1776. int offset;
  1777. int error;
  1778. int agi_ok;
  1779. ASSERT(ip->i_d.di_nlink == 0);
  1780. ASSERT(ip->i_d.di_mode != 0);
  1781. ASSERT(ip->i_transp == tp);
  1782. mp = tp->t_mountp;
  1783. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1784. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1785. /*
  1786. * Get the agi buffer first. It ensures lock ordering
  1787. * on the list.
  1788. */
  1789. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1790. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1791. if (error) {
  1792. return error;
  1793. }
  1794. /*
  1795. * Validate the magic number of the agi block.
  1796. */
  1797. agi = XFS_BUF_TO_AGI(agibp);
  1798. agi_ok =
  1799. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1800. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1801. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1802. XFS_RANDOM_IUNLINK))) {
  1803. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1804. xfs_trans_brelse(tp, agibp);
  1805. return XFS_ERROR(EFSCORRUPTED);
  1806. }
  1807. /*
  1808. * Get the index into the agi hash table for the
  1809. * list this inode will go on.
  1810. */
  1811. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1812. ASSERT(agino != 0);
  1813. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1814. ASSERT(agi->agi_unlinked[bucket_index]);
  1815. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1816. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1817. /*
  1818. * There is already another inode in the bucket we need
  1819. * to add ourselves to. Add us at the front of the list.
  1820. * Here we put the head pointer into our next pointer,
  1821. * and then we fall through to point the head at us.
  1822. */
  1823. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1824. if (error) {
  1825. return error;
  1826. }
  1827. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1828. ASSERT(dip->di_next_unlinked);
  1829. /* both on-disk, don't endian flip twice */
  1830. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1831. offset = ip->i_boffset +
  1832. offsetof(xfs_dinode_t, di_next_unlinked);
  1833. xfs_trans_inode_buf(tp, ibp);
  1834. xfs_trans_log_buf(tp, ibp, offset,
  1835. (offset + sizeof(xfs_agino_t) - 1));
  1836. xfs_inobp_check(mp, ibp);
  1837. }
  1838. /*
  1839. * Point the bucket head pointer at the inode being inserted.
  1840. */
  1841. ASSERT(agino != 0);
  1842. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1843. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1844. (sizeof(xfs_agino_t) * bucket_index);
  1845. xfs_trans_log_buf(tp, agibp, offset,
  1846. (offset + sizeof(xfs_agino_t) - 1));
  1847. return 0;
  1848. }
  1849. /*
  1850. * Pull the on-disk inode from the AGI unlinked list.
  1851. */
  1852. STATIC int
  1853. xfs_iunlink_remove(
  1854. xfs_trans_t *tp,
  1855. xfs_inode_t *ip)
  1856. {
  1857. xfs_ino_t next_ino;
  1858. xfs_mount_t *mp;
  1859. xfs_agi_t *agi;
  1860. xfs_dinode_t *dip;
  1861. xfs_buf_t *agibp;
  1862. xfs_buf_t *ibp;
  1863. xfs_agnumber_t agno;
  1864. xfs_daddr_t agdaddr;
  1865. xfs_agino_t agino;
  1866. xfs_agino_t next_agino;
  1867. xfs_buf_t *last_ibp;
  1868. xfs_dinode_t *last_dip = NULL;
  1869. short bucket_index;
  1870. int offset, last_offset = 0;
  1871. int error;
  1872. int agi_ok;
  1873. /*
  1874. * First pull the on-disk inode from the AGI unlinked list.
  1875. */
  1876. mp = tp->t_mountp;
  1877. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1878. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1879. /*
  1880. * Get the agi buffer first. It ensures lock ordering
  1881. * on the list.
  1882. */
  1883. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1884. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1885. if (error) {
  1886. cmn_err(CE_WARN,
  1887. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1888. error, mp->m_fsname);
  1889. return error;
  1890. }
  1891. /*
  1892. * Validate the magic number of the agi block.
  1893. */
  1894. agi = XFS_BUF_TO_AGI(agibp);
  1895. agi_ok =
  1896. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1897. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1898. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1899. XFS_RANDOM_IUNLINK_REMOVE))) {
  1900. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1901. mp, agi);
  1902. xfs_trans_brelse(tp, agibp);
  1903. cmn_err(CE_WARN,
  1904. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1905. mp->m_fsname);
  1906. return XFS_ERROR(EFSCORRUPTED);
  1907. }
  1908. /*
  1909. * Get the index into the agi hash table for the
  1910. * list this inode will go on.
  1911. */
  1912. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1913. ASSERT(agino != 0);
  1914. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1915. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1916. ASSERT(agi->agi_unlinked[bucket_index]);
  1917. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1918. /*
  1919. * We're at the head of the list. Get the inode's
  1920. * on-disk buffer to see if there is anyone after us
  1921. * on the list. Only modify our next pointer if it
  1922. * is not already NULLAGINO. This saves us the overhead
  1923. * of dealing with the buffer when there is no need to
  1924. * change it.
  1925. */
  1926. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1927. if (error) {
  1928. cmn_err(CE_WARN,
  1929. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1930. error, mp->m_fsname);
  1931. return error;
  1932. }
  1933. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1934. ASSERT(next_agino != 0);
  1935. if (next_agino != NULLAGINO) {
  1936. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1937. offset = ip->i_boffset +
  1938. offsetof(xfs_dinode_t, di_next_unlinked);
  1939. xfs_trans_inode_buf(tp, ibp);
  1940. xfs_trans_log_buf(tp, ibp, offset,
  1941. (offset + sizeof(xfs_agino_t) - 1));
  1942. xfs_inobp_check(mp, ibp);
  1943. } else {
  1944. xfs_trans_brelse(tp, ibp);
  1945. }
  1946. /*
  1947. * Point the bucket head pointer at the next inode.
  1948. */
  1949. ASSERT(next_agino != 0);
  1950. ASSERT(next_agino != agino);
  1951. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1952. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1953. (sizeof(xfs_agino_t) * bucket_index);
  1954. xfs_trans_log_buf(tp, agibp, offset,
  1955. (offset + sizeof(xfs_agino_t) - 1));
  1956. } else {
  1957. /*
  1958. * We need to search the list for the inode being freed.
  1959. */
  1960. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1961. last_ibp = NULL;
  1962. while (next_agino != agino) {
  1963. /*
  1964. * If the last inode wasn't the one pointing to
  1965. * us, then release its buffer since we're not
  1966. * going to do anything with it.
  1967. */
  1968. if (last_ibp != NULL) {
  1969. xfs_trans_brelse(tp, last_ibp);
  1970. }
  1971. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1972. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1973. &last_ibp, &last_offset);
  1974. if (error) {
  1975. cmn_err(CE_WARN,
  1976. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1977. error, mp->m_fsname);
  1978. return error;
  1979. }
  1980. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1981. ASSERT(next_agino != NULLAGINO);
  1982. ASSERT(next_agino != 0);
  1983. }
  1984. /*
  1985. * Now last_ibp points to the buffer previous to us on
  1986. * the unlinked list. Pull us from the list.
  1987. */
  1988. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1989. if (error) {
  1990. cmn_err(CE_WARN,
  1991. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1992. error, mp->m_fsname);
  1993. return error;
  1994. }
  1995. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1996. ASSERT(next_agino != 0);
  1997. ASSERT(next_agino != agino);
  1998. if (next_agino != NULLAGINO) {
  1999. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  2000. offset = ip->i_boffset +
  2001. offsetof(xfs_dinode_t, di_next_unlinked);
  2002. xfs_trans_inode_buf(tp, ibp);
  2003. xfs_trans_log_buf(tp, ibp, offset,
  2004. (offset + sizeof(xfs_agino_t) - 1));
  2005. xfs_inobp_check(mp, ibp);
  2006. } else {
  2007. xfs_trans_brelse(tp, ibp);
  2008. }
  2009. /*
  2010. * Point the previous inode on the list to the next inode.
  2011. */
  2012. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  2013. ASSERT(next_agino != 0);
  2014. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  2015. xfs_trans_inode_buf(tp, last_ibp);
  2016. xfs_trans_log_buf(tp, last_ibp, offset,
  2017. (offset + sizeof(xfs_agino_t) - 1));
  2018. xfs_inobp_check(mp, last_ibp);
  2019. }
  2020. return 0;
  2021. }
  2022. STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
  2023. {
  2024. return (((ip->i_itemp == NULL) ||
  2025. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2026. (ip->i_update_core == 0));
  2027. }
  2028. STATIC void
  2029. xfs_ifree_cluster(
  2030. xfs_inode_t *free_ip,
  2031. xfs_trans_t *tp,
  2032. xfs_ino_t inum)
  2033. {
  2034. xfs_mount_t *mp = free_ip->i_mount;
  2035. int blks_per_cluster;
  2036. int nbufs;
  2037. int ninodes;
  2038. int i, j, found, pre_flushed;
  2039. xfs_daddr_t blkno;
  2040. xfs_buf_t *bp;
  2041. xfs_ihash_t *ih;
  2042. xfs_inode_t *ip, **ip_found;
  2043. xfs_inode_log_item_t *iip;
  2044. xfs_log_item_t *lip;
  2045. SPLDECL(s);
  2046. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2047. blks_per_cluster = 1;
  2048. ninodes = mp->m_sb.sb_inopblock;
  2049. nbufs = XFS_IALLOC_BLOCKS(mp);
  2050. } else {
  2051. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2052. mp->m_sb.sb_blocksize;
  2053. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2054. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2055. }
  2056. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2057. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2058. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2059. XFS_INO_TO_AGBNO(mp, inum));
  2060. /*
  2061. * Look for each inode in memory and attempt to lock it,
  2062. * we can be racing with flush and tail pushing here.
  2063. * any inode we get the locks on, add to an array of
  2064. * inode items to process later.
  2065. *
  2066. * The get the buffer lock, we could beat a flush
  2067. * or tail pushing thread to the lock here, in which
  2068. * case they will go looking for the inode buffer
  2069. * and fail, we need some other form of interlock
  2070. * here.
  2071. */
  2072. found = 0;
  2073. for (i = 0; i < ninodes; i++) {
  2074. ih = XFS_IHASH(mp, inum + i);
  2075. read_lock(&ih->ih_lock);
  2076. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2077. if (ip->i_ino == inum + i)
  2078. break;
  2079. }
  2080. /* Inode not in memory or we found it already,
  2081. * nothing to do
  2082. */
  2083. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2084. read_unlock(&ih->ih_lock);
  2085. continue;
  2086. }
  2087. if (xfs_inode_clean(ip)) {
  2088. read_unlock(&ih->ih_lock);
  2089. continue;
  2090. }
  2091. /* If we can get the locks then add it to the
  2092. * list, otherwise by the time we get the bp lock
  2093. * below it will already be attached to the
  2094. * inode buffer.
  2095. */
  2096. /* This inode will already be locked - by us, lets
  2097. * keep it that way.
  2098. */
  2099. if (ip == free_ip) {
  2100. if (xfs_iflock_nowait(ip)) {
  2101. xfs_iflags_set(ip, XFS_ISTALE);
  2102. if (xfs_inode_clean(ip)) {
  2103. xfs_ifunlock(ip);
  2104. } else {
  2105. ip_found[found++] = ip;
  2106. }
  2107. }
  2108. read_unlock(&ih->ih_lock);
  2109. continue;
  2110. }
  2111. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2112. if (xfs_iflock_nowait(ip)) {
  2113. xfs_iflags_set(ip, XFS_ISTALE);
  2114. if (xfs_inode_clean(ip)) {
  2115. xfs_ifunlock(ip);
  2116. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2117. } else {
  2118. ip_found[found++] = ip;
  2119. }
  2120. } else {
  2121. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2122. }
  2123. }
  2124. read_unlock(&ih->ih_lock);
  2125. }
  2126. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2127. mp->m_bsize * blks_per_cluster,
  2128. XFS_BUF_LOCK);
  2129. pre_flushed = 0;
  2130. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2131. while (lip) {
  2132. if (lip->li_type == XFS_LI_INODE) {
  2133. iip = (xfs_inode_log_item_t *)lip;
  2134. ASSERT(iip->ili_logged == 1);
  2135. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2136. AIL_LOCK(mp,s);
  2137. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2138. AIL_UNLOCK(mp, s);
  2139. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2140. pre_flushed++;
  2141. }
  2142. lip = lip->li_bio_list;
  2143. }
  2144. for (i = 0; i < found; i++) {
  2145. ip = ip_found[i];
  2146. iip = ip->i_itemp;
  2147. if (!iip) {
  2148. ip->i_update_core = 0;
  2149. xfs_ifunlock(ip);
  2150. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2151. continue;
  2152. }
  2153. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2154. iip->ili_format.ilf_fields = 0;
  2155. iip->ili_logged = 1;
  2156. AIL_LOCK(mp,s);
  2157. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2158. AIL_UNLOCK(mp, s);
  2159. xfs_buf_attach_iodone(bp,
  2160. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2161. xfs_istale_done, (xfs_log_item_t *)iip);
  2162. if (ip != free_ip) {
  2163. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2164. }
  2165. }
  2166. if (found || pre_flushed)
  2167. xfs_trans_stale_inode_buf(tp, bp);
  2168. xfs_trans_binval(tp, bp);
  2169. }
  2170. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2171. }
  2172. /*
  2173. * This is called to return an inode to the inode free list.
  2174. * The inode should already be truncated to 0 length and have
  2175. * no pages associated with it. This routine also assumes that
  2176. * the inode is already a part of the transaction.
  2177. *
  2178. * The on-disk copy of the inode will have been added to the list
  2179. * of unlinked inodes in the AGI. We need to remove the inode from
  2180. * that list atomically with respect to freeing it here.
  2181. */
  2182. int
  2183. xfs_ifree(
  2184. xfs_trans_t *tp,
  2185. xfs_inode_t *ip,
  2186. xfs_bmap_free_t *flist)
  2187. {
  2188. int error;
  2189. int delete;
  2190. xfs_ino_t first_ino;
  2191. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2192. ASSERT(ip->i_transp == tp);
  2193. ASSERT(ip->i_d.di_nlink == 0);
  2194. ASSERT(ip->i_d.di_nextents == 0);
  2195. ASSERT(ip->i_d.di_anextents == 0);
  2196. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  2197. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2198. ASSERT(ip->i_d.di_nblocks == 0);
  2199. /*
  2200. * Pull the on-disk inode from the AGI unlinked list.
  2201. */
  2202. error = xfs_iunlink_remove(tp, ip);
  2203. if (error != 0) {
  2204. return error;
  2205. }
  2206. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2207. if (error != 0) {
  2208. return error;
  2209. }
  2210. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2211. ip->i_d.di_flags = 0;
  2212. ip->i_d.di_dmevmask = 0;
  2213. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2214. ip->i_df.if_ext_max =
  2215. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2216. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2217. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2218. /*
  2219. * Bump the generation count so no one will be confused
  2220. * by reincarnations of this inode.
  2221. */
  2222. ip->i_d.di_gen++;
  2223. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2224. if (delete) {
  2225. xfs_ifree_cluster(ip, tp, first_ino);
  2226. }
  2227. return 0;
  2228. }
  2229. /*
  2230. * Reallocate the space for if_broot based on the number of records
  2231. * being added or deleted as indicated in rec_diff. Move the records
  2232. * and pointers in if_broot to fit the new size. When shrinking this
  2233. * will eliminate holes between the records and pointers created by
  2234. * the caller. When growing this will create holes to be filled in
  2235. * by the caller.
  2236. *
  2237. * The caller must not request to add more records than would fit in
  2238. * the on-disk inode root. If the if_broot is currently NULL, then
  2239. * if we adding records one will be allocated. The caller must also
  2240. * not request that the number of records go below zero, although
  2241. * it can go to zero.
  2242. *
  2243. * ip -- the inode whose if_broot area is changing
  2244. * ext_diff -- the change in the number of records, positive or negative,
  2245. * requested for the if_broot array.
  2246. */
  2247. void
  2248. xfs_iroot_realloc(
  2249. xfs_inode_t *ip,
  2250. int rec_diff,
  2251. int whichfork)
  2252. {
  2253. int cur_max;
  2254. xfs_ifork_t *ifp;
  2255. xfs_bmbt_block_t *new_broot;
  2256. int new_max;
  2257. size_t new_size;
  2258. char *np;
  2259. char *op;
  2260. /*
  2261. * Handle the degenerate case quietly.
  2262. */
  2263. if (rec_diff == 0) {
  2264. return;
  2265. }
  2266. ifp = XFS_IFORK_PTR(ip, whichfork);
  2267. if (rec_diff > 0) {
  2268. /*
  2269. * If there wasn't any memory allocated before, just
  2270. * allocate it now and get out.
  2271. */
  2272. if (ifp->if_broot_bytes == 0) {
  2273. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2274. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2275. KM_SLEEP);
  2276. ifp->if_broot_bytes = (int)new_size;
  2277. return;
  2278. }
  2279. /*
  2280. * If there is already an existing if_broot, then we need
  2281. * to realloc() it and shift the pointers to their new
  2282. * location. The records don't change location because
  2283. * they are kept butted up against the btree block header.
  2284. */
  2285. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2286. new_max = cur_max + rec_diff;
  2287. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2288. ifp->if_broot = (xfs_bmbt_block_t *)
  2289. kmem_realloc(ifp->if_broot,
  2290. new_size,
  2291. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2292. KM_SLEEP);
  2293. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2294. ifp->if_broot_bytes);
  2295. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2296. (int)new_size);
  2297. ifp->if_broot_bytes = (int)new_size;
  2298. ASSERT(ifp->if_broot_bytes <=
  2299. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2300. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2301. return;
  2302. }
  2303. /*
  2304. * rec_diff is less than 0. In this case, we are shrinking the
  2305. * if_broot buffer. It must already exist. If we go to zero
  2306. * records, just get rid of the root and clear the status bit.
  2307. */
  2308. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2309. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2310. new_max = cur_max + rec_diff;
  2311. ASSERT(new_max >= 0);
  2312. if (new_max > 0)
  2313. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2314. else
  2315. new_size = 0;
  2316. if (new_size > 0) {
  2317. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2318. /*
  2319. * First copy over the btree block header.
  2320. */
  2321. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2322. } else {
  2323. new_broot = NULL;
  2324. ifp->if_flags &= ~XFS_IFBROOT;
  2325. }
  2326. /*
  2327. * Only copy the records and pointers if there are any.
  2328. */
  2329. if (new_max > 0) {
  2330. /*
  2331. * First copy the records.
  2332. */
  2333. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2334. ifp->if_broot_bytes);
  2335. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2336. (int)new_size);
  2337. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2338. /*
  2339. * Then copy the pointers.
  2340. */
  2341. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2342. ifp->if_broot_bytes);
  2343. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2344. (int)new_size);
  2345. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2346. }
  2347. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2348. ifp->if_broot = new_broot;
  2349. ifp->if_broot_bytes = (int)new_size;
  2350. ASSERT(ifp->if_broot_bytes <=
  2351. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2352. return;
  2353. }
  2354. /*
  2355. * This is called when the amount of space needed for if_data
  2356. * is increased or decreased. The change in size is indicated by
  2357. * the number of bytes that need to be added or deleted in the
  2358. * byte_diff parameter.
  2359. *
  2360. * If the amount of space needed has decreased below the size of the
  2361. * inline buffer, then switch to using the inline buffer. Otherwise,
  2362. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2363. * to what is needed.
  2364. *
  2365. * ip -- the inode whose if_data area is changing
  2366. * byte_diff -- the change in the number of bytes, positive or negative,
  2367. * requested for the if_data array.
  2368. */
  2369. void
  2370. xfs_idata_realloc(
  2371. xfs_inode_t *ip,
  2372. int byte_diff,
  2373. int whichfork)
  2374. {
  2375. xfs_ifork_t *ifp;
  2376. int new_size;
  2377. int real_size;
  2378. if (byte_diff == 0) {
  2379. return;
  2380. }
  2381. ifp = XFS_IFORK_PTR(ip, whichfork);
  2382. new_size = (int)ifp->if_bytes + byte_diff;
  2383. ASSERT(new_size >= 0);
  2384. if (new_size == 0) {
  2385. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2386. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2387. }
  2388. ifp->if_u1.if_data = NULL;
  2389. real_size = 0;
  2390. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2391. /*
  2392. * If the valid extents/data can fit in if_inline_ext/data,
  2393. * copy them from the malloc'd vector and free it.
  2394. */
  2395. if (ifp->if_u1.if_data == NULL) {
  2396. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2397. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2398. ASSERT(ifp->if_real_bytes != 0);
  2399. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2400. new_size);
  2401. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2402. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2403. }
  2404. real_size = 0;
  2405. } else {
  2406. /*
  2407. * Stuck with malloc/realloc.
  2408. * For inline data, the underlying buffer must be
  2409. * a multiple of 4 bytes in size so that it can be
  2410. * logged and stay on word boundaries. We enforce
  2411. * that here.
  2412. */
  2413. real_size = roundup(new_size, 4);
  2414. if (ifp->if_u1.if_data == NULL) {
  2415. ASSERT(ifp->if_real_bytes == 0);
  2416. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2417. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2418. /*
  2419. * Only do the realloc if the underlying size
  2420. * is really changing.
  2421. */
  2422. if (ifp->if_real_bytes != real_size) {
  2423. ifp->if_u1.if_data =
  2424. kmem_realloc(ifp->if_u1.if_data,
  2425. real_size,
  2426. ifp->if_real_bytes,
  2427. KM_SLEEP);
  2428. }
  2429. } else {
  2430. ASSERT(ifp->if_real_bytes == 0);
  2431. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2432. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2433. ifp->if_bytes);
  2434. }
  2435. }
  2436. ifp->if_real_bytes = real_size;
  2437. ifp->if_bytes = new_size;
  2438. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2439. }
  2440. /*
  2441. * Map inode to disk block and offset.
  2442. *
  2443. * mp -- the mount point structure for the current file system
  2444. * tp -- the current transaction
  2445. * ino -- the inode number of the inode to be located
  2446. * imap -- this structure is filled in with the information necessary
  2447. * to retrieve the given inode from disk
  2448. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2449. * lookups in the inode btree were OK or not
  2450. */
  2451. int
  2452. xfs_imap(
  2453. xfs_mount_t *mp,
  2454. xfs_trans_t *tp,
  2455. xfs_ino_t ino,
  2456. xfs_imap_t *imap,
  2457. uint flags)
  2458. {
  2459. xfs_fsblock_t fsbno;
  2460. int len;
  2461. int off;
  2462. int error;
  2463. fsbno = imap->im_blkno ?
  2464. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2465. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2466. if (error != 0) {
  2467. return error;
  2468. }
  2469. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2470. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2471. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2472. imap->im_ioffset = (ushort)off;
  2473. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2474. return 0;
  2475. }
  2476. void
  2477. xfs_idestroy_fork(
  2478. xfs_inode_t *ip,
  2479. int whichfork)
  2480. {
  2481. xfs_ifork_t *ifp;
  2482. ifp = XFS_IFORK_PTR(ip, whichfork);
  2483. if (ifp->if_broot != NULL) {
  2484. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2485. ifp->if_broot = NULL;
  2486. }
  2487. /*
  2488. * If the format is local, then we can't have an extents
  2489. * array so just look for an inline data array. If we're
  2490. * not local then we may or may not have an extents list,
  2491. * so check and free it up if we do.
  2492. */
  2493. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2494. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2495. (ifp->if_u1.if_data != NULL)) {
  2496. ASSERT(ifp->if_real_bytes != 0);
  2497. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2498. ifp->if_u1.if_data = NULL;
  2499. ifp->if_real_bytes = 0;
  2500. }
  2501. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2502. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2503. ((ifp->if_u1.if_extents != NULL) &&
  2504. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2505. ASSERT(ifp->if_real_bytes != 0);
  2506. xfs_iext_destroy(ifp);
  2507. }
  2508. ASSERT(ifp->if_u1.if_extents == NULL ||
  2509. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2510. ASSERT(ifp->if_real_bytes == 0);
  2511. if (whichfork == XFS_ATTR_FORK) {
  2512. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2513. ip->i_afp = NULL;
  2514. }
  2515. }
  2516. /*
  2517. * This is called free all the memory associated with an inode.
  2518. * It must free the inode itself and any buffers allocated for
  2519. * if_extents/if_data and if_broot. It must also free the lock
  2520. * associated with the inode.
  2521. */
  2522. void
  2523. xfs_idestroy(
  2524. xfs_inode_t *ip)
  2525. {
  2526. switch (ip->i_d.di_mode & S_IFMT) {
  2527. case S_IFREG:
  2528. case S_IFDIR:
  2529. case S_IFLNK:
  2530. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2531. break;
  2532. }
  2533. if (ip->i_afp)
  2534. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2535. mrfree(&ip->i_lock);
  2536. mrfree(&ip->i_iolock);
  2537. freesema(&ip->i_flock);
  2538. #ifdef XFS_BMAP_TRACE
  2539. ktrace_free(ip->i_xtrace);
  2540. #endif
  2541. #ifdef XFS_BMBT_TRACE
  2542. ktrace_free(ip->i_btrace);
  2543. #endif
  2544. #ifdef XFS_RW_TRACE
  2545. ktrace_free(ip->i_rwtrace);
  2546. #endif
  2547. #ifdef XFS_ILOCK_TRACE
  2548. ktrace_free(ip->i_lock_trace);
  2549. #endif
  2550. #ifdef XFS_DIR2_TRACE
  2551. ktrace_free(ip->i_dir_trace);
  2552. #endif
  2553. if (ip->i_itemp) {
  2554. /*
  2555. * Only if we are shutting down the fs will we see an
  2556. * inode still in the AIL. If it is there, we should remove
  2557. * it to prevent a use-after-free from occurring.
  2558. */
  2559. xfs_mount_t *mp = ip->i_mount;
  2560. xfs_log_item_t *lip = &ip->i_itemp->ili_item;
  2561. int s;
  2562. ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
  2563. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2564. if (lip->li_flags & XFS_LI_IN_AIL) {
  2565. AIL_LOCK(mp, s);
  2566. if (lip->li_flags & XFS_LI_IN_AIL)
  2567. xfs_trans_delete_ail(mp, lip, s);
  2568. else
  2569. AIL_UNLOCK(mp, s);
  2570. }
  2571. xfs_inode_item_destroy(ip);
  2572. }
  2573. kmem_zone_free(xfs_inode_zone, ip);
  2574. }
  2575. /*
  2576. * Increment the pin count of the given buffer.
  2577. * This value is protected by ipinlock spinlock in the mount structure.
  2578. */
  2579. void
  2580. xfs_ipin(
  2581. xfs_inode_t *ip)
  2582. {
  2583. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2584. atomic_inc(&ip->i_pincount);
  2585. }
  2586. /*
  2587. * Decrement the pin count of the given inode, and wake up
  2588. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2589. * inode must have been previously pinned with a call to xfs_ipin().
  2590. */
  2591. void
  2592. xfs_iunpin(
  2593. xfs_inode_t *ip)
  2594. {
  2595. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2596. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2597. /*
  2598. * If the inode is currently being reclaimed, the link between
  2599. * the bhv_vnode and the xfs_inode will be broken after the
  2600. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2601. * set, then we can move forward and mark the linux inode dirty
  2602. * knowing that it is still valid as it won't freed until after
  2603. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2604. * i_flags_lock is used to synchronise the setting of the
  2605. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2606. * can execute atomically w.r.t to reclaim by holding this lock
  2607. * here.
  2608. *
  2609. * However, we still need to issue the unpin wakeup call as the
  2610. * inode reclaim may be blocked waiting for the inode to become
  2611. * unpinned.
  2612. */
  2613. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2614. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2615. struct inode *inode = NULL;
  2616. BUG_ON(vp == NULL);
  2617. inode = vn_to_inode(vp);
  2618. BUG_ON(inode->i_state & I_CLEAR);
  2619. /* make sync come back and flush this inode */
  2620. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2621. mark_inode_dirty_sync(inode);
  2622. }
  2623. spin_unlock(&ip->i_flags_lock);
  2624. wake_up(&ip->i_ipin_wait);
  2625. }
  2626. }
  2627. /*
  2628. * This is called to wait for the given inode to be unpinned.
  2629. * It will sleep until this happens. The caller must have the
  2630. * inode locked in at least shared mode so that the buffer cannot
  2631. * be subsequently pinned once someone is waiting for it to be
  2632. * unpinned.
  2633. */
  2634. STATIC void
  2635. xfs_iunpin_wait(
  2636. xfs_inode_t *ip)
  2637. {
  2638. xfs_inode_log_item_t *iip;
  2639. xfs_lsn_t lsn;
  2640. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2641. if (atomic_read(&ip->i_pincount) == 0) {
  2642. return;
  2643. }
  2644. iip = ip->i_itemp;
  2645. if (iip && iip->ili_last_lsn) {
  2646. lsn = iip->ili_last_lsn;
  2647. } else {
  2648. lsn = (xfs_lsn_t)0;
  2649. }
  2650. /*
  2651. * Give the log a push so we don't wait here too long.
  2652. */
  2653. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2654. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2655. }
  2656. /*
  2657. * xfs_iextents_copy()
  2658. *
  2659. * This is called to copy the REAL extents (as opposed to the delayed
  2660. * allocation extents) from the inode into the given buffer. It
  2661. * returns the number of bytes copied into the buffer.
  2662. *
  2663. * If there are no delayed allocation extents, then we can just
  2664. * memcpy() the extents into the buffer. Otherwise, we need to
  2665. * examine each extent in turn and skip those which are delayed.
  2666. */
  2667. int
  2668. xfs_iextents_copy(
  2669. xfs_inode_t *ip,
  2670. xfs_bmbt_rec_t *buffer,
  2671. int whichfork)
  2672. {
  2673. int copied;
  2674. xfs_bmbt_rec_t *dest_ep;
  2675. xfs_bmbt_rec_t *ep;
  2676. #ifdef XFS_BMAP_TRACE
  2677. static char fname[] = "xfs_iextents_copy";
  2678. #endif
  2679. int i;
  2680. xfs_ifork_t *ifp;
  2681. int nrecs;
  2682. xfs_fsblock_t start_block;
  2683. ifp = XFS_IFORK_PTR(ip, whichfork);
  2684. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2685. ASSERT(ifp->if_bytes > 0);
  2686. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2687. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2688. ASSERT(nrecs > 0);
  2689. /*
  2690. * There are some delayed allocation extents in the
  2691. * inode, so copy the extents one at a time and skip
  2692. * the delayed ones. There must be at least one
  2693. * non-delayed extent.
  2694. */
  2695. dest_ep = buffer;
  2696. copied = 0;
  2697. for (i = 0; i < nrecs; i++) {
  2698. ep = xfs_iext_get_ext(ifp, i);
  2699. start_block = xfs_bmbt_get_startblock(ep);
  2700. if (ISNULLSTARTBLOCK(start_block)) {
  2701. /*
  2702. * It's a delayed allocation extent, so skip it.
  2703. */
  2704. continue;
  2705. }
  2706. /* Translate to on disk format */
  2707. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2708. (__uint64_t*)&dest_ep->l0);
  2709. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2710. (__uint64_t*)&dest_ep->l1);
  2711. dest_ep++;
  2712. copied++;
  2713. }
  2714. ASSERT(copied != 0);
  2715. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2716. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2717. }
  2718. /*
  2719. * Each of the following cases stores data into the same region
  2720. * of the on-disk inode, so only one of them can be valid at
  2721. * any given time. While it is possible to have conflicting formats
  2722. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2723. * in EXTENTS format, this can only happen when the fork has
  2724. * changed formats after being modified but before being flushed.
  2725. * In these cases, the format always takes precedence, because the
  2726. * format indicates the current state of the fork.
  2727. */
  2728. /*ARGSUSED*/
  2729. STATIC int
  2730. xfs_iflush_fork(
  2731. xfs_inode_t *ip,
  2732. xfs_dinode_t *dip,
  2733. xfs_inode_log_item_t *iip,
  2734. int whichfork,
  2735. xfs_buf_t *bp)
  2736. {
  2737. char *cp;
  2738. xfs_ifork_t *ifp;
  2739. xfs_mount_t *mp;
  2740. #ifdef XFS_TRANS_DEBUG
  2741. int first;
  2742. #endif
  2743. static const short brootflag[2] =
  2744. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2745. static const short dataflag[2] =
  2746. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2747. static const short extflag[2] =
  2748. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2749. if (iip == NULL)
  2750. return 0;
  2751. ifp = XFS_IFORK_PTR(ip, whichfork);
  2752. /*
  2753. * This can happen if we gave up in iformat in an error path,
  2754. * for the attribute fork.
  2755. */
  2756. if (ifp == NULL) {
  2757. ASSERT(whichfork == XFS_ATTR_FORK);
  2758. return 0;
  2759. }
  2760. cp = XFS_DFORK_PTR(dip, whichfork);
  2761. mp = ip->i_mount;
  2762. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2763. case XFS_DINODE_FMT_LOCAL:
  2764. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2765. (ifp->if_bytes > 0)) {
  2766. ASSERT(ifp->if_u1.if_data != NULL);
  2767. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2768. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2769. }
  2770. break;
  2771. case XFS_DINODE_FMT_EXTENTS:
  2772. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2773. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2774. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2775. (ifp->if_bytes == 0));
  2776. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2777. (ifp->if_bytes > 0));
  2778. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2779. (ifp->if_bytes > 0)) {
  2780. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2781. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2782. whichfork);
  2783. }
  2784. break;
  2785. case XFS_DINODE_FMT_BTREE:
  2786. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2787. (ifp->if_broot_bytes > 0)) {
  2788. ASSERT(ifp->if_broot != NULL);
  2789. ASSERT(ifp->if_broot_bytes <=
  2790. (XFS_IFORK_SIZE(ip, whichfork) +
  2791. XFS_BROOT_SIZE_ADJ));
  2792. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2793. (xfs_bmdr_block_t *)cp,
  2794. XFS_DFORK_SIZE(dip, mp, whichfork));
  2795. }
  2796. break;
  2797. case XFS_DINODE_FMT_DEV:
  2798. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2799. ASSERT(whichfork == XFS_DATA_FORK);
  2800. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2801. }
  2802. break;
  2803. case XFS_DINODE_FMT_UUID:
  2804. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2805. ASSERT(whichfork == XFS_DATA_FORK);
  2806. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2807. sizeof(uuid_t));
  2808. }
  2809. break;
  2810. default:
  2811. ASSERT(0);
  2812. break;
  2813. }
  2814. return 0;
  2815. }
  2816. /*
  2817. * xfs_iflush() will write a modified inode's changes out to the
  2818. * inode's on disk home. The caller must have the inode lock held
  2819. * in at least shared mode and the inode flush semaphore must be
  2820. * held as well. The inode lock will still be held upon return from
  2821. * the call and the caller is free to unlock it.
  2822. * The inode flush lock will be unlocked when the inode reaches the disk.
  2823. * The flags indicate how the inode's buffer should be written out.
  2824. */
  2825. int
  2826. xfs_iflush(
  2827. xfs_inode_t *ip,
  2828. uint flags)
  2829. {
  2830. xfs_inode_log_item_t *iip;
  2831. xfs_buf_t *bp;
  2832. xfs_dinode_t *dip;
  2833. xfs_mount_t *mp;
  2834. int error;
  2835. /* REFERENCED */
  2836. xfs_chash_t *ch;
  2837. xfs_inode_t *iq;
  2838. int clcount; /* count of inodes clustered */
  2839. int bufwasdelwri;
  2840. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2841. SPLDECL(s);
  2842. XFS_STATS_INC(xs_iflush_count);
  2843. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2844. ASSERT(issemalocked(&(ip->i_flock)));
  2845. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2846. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2847. iip = ip->i_itemp;
  2848. mp = ip->i_mount;
  2849. /*
  2850. * If the inode isn't dirty, then just release the inode
  2851. * flush lock and do nothing.
  2852. */
  2853. if ((ip->i_update_core == 0) &&
  2854. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2855. ASSERT((iip != NULL) ?
  2856. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2857. xfs_ifunlock(ip);
  2858. return 0;
  2859. }
  2860. /*
  2861. * We can't flush the inode until it is unpinned, so
  2862. * wait for it. We know noone new can pin it, because
  2863. * we are holding the inode lock shared and you need
  2864. * to hold it exclusively to pin the inode.
  2865. */
  2866. xfs_iunpin_wait(ip);
  2867. /*
  2868. * This may have been unpinned because the filesystem is shutting
  2869. * down forcibly. If that's the case we must not write this inode
  2870. * to disk, because the log record didn't make it to disk!
  2871. */
  2872. if (XFS_FORCED_SHUTDOWN(mp)) {
  2873. ip->i_update_core = 0;
  2874. if (iip)
  2875. iip->ili_format.ilf_fields = 0;
  2876. xfs_ifunlock(ip);
  2877. return XFS_ERROR(EIO);
  2878. }
  2879. /*
  2880. * Get the buffer containing the on-disk inode.
  2881. */
  2882. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2883. if (error) {
  2884. xfs_ifunlock(ip);
  2885. return error;
  2886. }
  2887. /*
  2888. * Decide how buffer will be flushed out. This is done before
  2889. * the call to xfs_iflush_int because this field is zeroed by it.
  2890. */
  2891. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2892. /*
  2893. * Flush out the inode buffer according to the directions
  2894. * of the caller. In the cases where the caller has given
  2895. * us a choice choose the non-delwri case. This is because
  2896. * the inode is in the AIL and we need to get it out soon.
  2897. */
  2898. switch (flags) {
  2899. case XFS_IFLUSH_SYNC:
  2900. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2901. flags = 0;
  2902. break;
  2903. case XFS_IFLUSH_ASYNC:
  2904. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2905. flags = INT_ASYNC;
  2906. break;
  2907. case XFS_IFLUSH_DELWRI:
  2908. flags = INT_DELWRI;
  2909. break;
  2910. default:
  2911. ASSERT(0);
  2912. flags = 0;
  2913. break;
  2914. }
  2915. } else {
  2916. switch (flags) {
  2917. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2918. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2919. case XFS_IFLUSH_DELWRI:
  2920. flags = INT_DELWRI;
  2921. break;
  2922. case XFS_IFLUSH_ASYNC:
  2923. flags = INT_ASYNC;
  2924. break;
  2925. case XFS_IFLUSH_SYNC:
  2926. flags = 0;
  2927. break;
  2928. default:
  2929. ASSERT(0);
  2930. flags = 0;
  2931. break;
  2932. }
  2933. }
  2934. /*
  2935. * First flush out the inode that xfs_iflush was called with.
  2936. */
  2937. error = xfs_iflush_int(ip, bp);
  2938. if (error) {
  2939. goto corrupt_out;
  2940. }
  2941. /*
  2942. * inode clustering:
  2943. * see if other inodes can be gathered into this write
  2944. */
  2945. ip->i_chash->chl_buf = bp;
  2946. ch = XFS_CHASH(mp, ip->i_blkno);
  2947. s = mutex_spinlock(&ch->ch_lock);
  2948. clcount = 0;
  2949. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2950. /*
  2951. * Do an un-protected check to see if the inode is dirty and
  2952. * is a candidate for flushing. These checks will be repeated
  2953. * later after the appropriate locks are acquired.
  2954. */
  2955. iip = iq->i_itemp;
  2956. if ((iq->i_update_core == 0) &&
  2957. ((iip == NULL) ||
  2958. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2959. xfs_ipincount(iq) == 0) {
  2960. continue;
  2961. }
  2962. /*
  2963. * Try to get locks. If any are unavailable,
  2964. * then this inode cannot be flushed and is skipped.
  2965. */
  2966. /* get inode locks (just i_lock) */
  2967. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2968. /* get inode flush lock */
  2969. if (xfs_iflock_nowait(iq)) {
  2970. /* check if pinned */
  2971. if (xfs_ipincount(iq) == 0) {
  2972. /* arriving here means that
  2973. * this inode can be flushed.
  2974. * first re-check that it's
  2975. * dirty
  2976. */
  2977. iip = iq->i_itemp;
  2978. if ((iq->i_update_core != 0)||
  2979. ((iip != NULL) &&
  2980. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2981. clcount++;
  2982. error = xfs_iflush_int(iq, bp);
  2983. if (error) {
  2984. xfs_iunlock(iq,
  2985. XFS_ILOCK_SHARED);
  2986. goto cluster_corrupt_out;
  2987. }
  2988. } else {
  2989. xfs_ifunlock(iq);
  2990. }
  2991. } else {
  2992. xfs_ifunlock(iq);
  2993. }
  2994. }
  2995. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2996. }
  2997. }
  2998. mutex_spinunlock(&ch->ch_lock, s);
  2999. if (clcount) {
  3000. XFS_STATS_INC(xs_icluster_flushcnt);
  3001. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  3002. }
  3003. /*
  3004. * If the buffer is pinned then push on the log so we won't
  3005. * get stuck waiting in the write for too long.
  3006. */
  3007. if (XFS_BUF_ISPINNED(bp)){
  3008. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  3009. }
  3010. if (flags & INT_DELWRI) {
  3011. xfs_bdwrite(mp, bp);
  3012. } else if (flags & INT_ASYNC) {
  3013. xfs_bawrite(mp, bp);
  3014. } else {
  3015. error = xfs_bwrite(mp, bp);
  3016. }
  3017. return error;
  3018. corrupt_out:
  3019. xfs_buf_relse(bp);
  3020. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3021. xfs_iflush_abort(ip);
  3022. /*
  3023. * Unlocks the flush lock
  3024. */
  3025. return XFS_ERROR(EFSCORRUPTED);
  3026. cluster_corrupt_out:
  3027. /* Corruption detected in the clustering loop. Invalidate the
  3028. * inode buffer and shut down the filesystem.
  3029. */
  3030. mutex_spinunlock(&ch->ch_lock, s);
  3031. /*
  3032. * Clean up the buffer. If it was B_DELWRI, just release it --
  3033. * brelse can handle it with no problems. If not, shut down the
  3034. * filesystem before releasing the buffer.
  3035. */
  3036. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3037. xfs_buf_relse(bp);
  3038. }
  3039. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3040. if(!bufwasdelwri) {
  3041. /*
  3042. * Just like incore_relse: if we have b_iodone functions,
  3043. * mark the buffer as an error and call them. Otherwise
  3044. * mark it as stale and brelse.
  3045. */
  3046. if (XFS_BUF_IODONE_FUNC(bp)) {
  3047. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3048. XFS_BUF_UNDONE(bp);
  3049. XFS_BUF_STALE(bp);
  3050. XFS_BUF_SHUT(bp);
  3051. XFS_BUF_ERROR(bp,EIO);
  3052. xfs_biodone(bp);
  3053. } else {
  3054. XFS_BUF_STALE(bp);
  3055. xfs_buf_relse(bp);
  3056. }
  3057. }
  3058. xfs_iflush_abort(iq);
  3059. /*
  3060. * Unlocks the flush lock
  3061. */
  3062. return XFS_ERROR(EFSCORRUPTED);
  3063. }
  3064. STATIC int
  3065. xfs_iflush_int(
  3066. xfs_inode_t *ip,
  3067. xfs_buf_t *bp)
  3068. {
  3069. xfs_inode_log_item_t *iip;
  3070. xfs_dinode_t *dip;
  3071. xfs_mount_t *mp;
  3072. #ifdef XFS_TRANS_DEBUG
  3073. int first;
  3074. #endif
  3075. SPLDECL(s);
  3076. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3077. ASSERT(issemalocked(&(ip->i_flock)));
  3078. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3079. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3080. iip = ip->i_itemp;
  3081. mp = ip->i_mount;
  3082. /*
  3083. * If the inode isn't dirty, then just release the inode
  3084. * flush lock and do nothing.
  3085. */
  3086. if ((ip->i_update_core == 0) &&
  3087. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3088. xfs_ifunlock(ip);
  3089. return 0;
  3090. }
  3091. /* set *dip = inode's place in the buffer */
  3092. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3093. /*
  3094. * Clear i_update_core before copying out the data.
  3095. * This is for coordination with our timestamp updates
  3096. * that don't hold the inode lock. They will always
  3097. * update the timestamps BEFORE setting i_update_core,
  3098. * so if we clear i_update_core after they set it we
  3099. * are guaranteed to see their updates to the timestamps.
  3100. * I believe that this depends on strongly ordered memory
  3101. * semantics, but we have that. We use the SYNCHRONIZE
  3102. * macro to make sure that the compiler does not reorder
  3103. * the i_update_core access below the data copy below.
  3104. */
  3105. ip->i_update_core = 0;
  3106. SYNCHRONIZE();
  3107. /*
  3108. * Make sure to get the latest atime from the Linux inode.
  3109. */
  3110. xfs_synchronize_atime(ip);
  3111. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3112. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3113. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3114. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3115. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3116. goto corrupt_out;
  3117. }
  3118. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3119. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3120. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3121. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3122. ip->i_ino, ip, ip->i_d.di_magic);
  3123. goto corrupt_out;
  3124. }
  3125. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3126. if (XFS_TEST_ERROR(
  3127. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3128. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3129. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3130. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3131. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3132. ip->i_ino, ip);
  3133. goto corrupt_out;
  3134. }
  3135. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3136. if (XFS_TEST_ERROR(
  3137. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3138. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3139. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3140. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3141. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3142. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3143. ip->i_ino, ip);
  3144. goto corrupt_out;
  3145. }
  3146. }
  3147. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3148. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3149. XFS_RANDOM_IFLUSH_5)) {
  3150. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3151. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3152. ip->i_ino,
  3153. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3154. ip->i_d.di_nblocks,
  3155. ip);
  3156. goto corrupt_out;
  3157. }
  3158. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3159. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3160. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3161. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3162. ip->i_ino, ip->i_d.di_forkoff, ip);
  3163. goto corrupt_out;
  3164. }
  3165. /*
  3166. * bump the flush iteration count, used to detect flushes which
  3167. * postdate a log record during recovery.
  3168. */
  3169. ip->i_d.di_flushiter++;
  3170. /*
  3171. * Copy the dirty parts of the inode into the on-disk
  3172. * inode. We always copy out the core of the inode,
  3173. * because if the inode is dirty at all the core must
  3174. * be.
  3175. */
  3176. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3177. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3178. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3179. ip->i_d.di_flushiter = 0;
  3180. /*
  3181. * If this is really an old format inode and the superblock version
  3182. * has not been updated to support only new format inodes, then
  3183. * convert back to the old inode format. If the superblock version
  3184. * has been updated, then make the conversion permanent.
  3185. */
  3186. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3187. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3188. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3189. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3190. /*
  3191. * Convert it back.
  3192. */
  3193. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3194. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3195. } else {
  3196. /*
  3197. * The superblock version has already been bumped,
  3198. * so just make the conversion to the new inode
  3199. * format permanent.
  3200. */
  3201. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3202. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3203. ip->i_d.di_onlink = 0;
  3204. dip->di_core.di_onlink = 0;
  3205. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3206. memset(&(dip->di_core.di_pad[0]), 0,
  3207. sizeof(dip->di_core.di_pad));
  3208. ASSERT(ip->i_d.di_projid == 0);
  3209. }
  3210. }
  3211. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3212. goto corrupt_out;
  3213. }
  3214. if (XFS_IFORK_Q(ip)) {
  3215. /*
  3216. * The only error from xfs_iflush_fork is on the data fork.
  3217. */
  3218. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3219. }
  3220. xfs_inobp_check(mp, bp);
  3221. /*
  3222. * We've recorded everything logged in the inode, so we'd
  3223. * like to clear the ilf_fields bits so we don't log and
  3224. * flush things unnecessarily. However, we can't stop
  3225. * logging all this information until the data we've copied
  3226. * into the disk buffer is written to disk. If we did we might
  3227. * overwrite the copy of the inode in the log with all the
  3228. * data after re-logging only part of it, and in the face of
  3229. * a crash we wouldn't have all the data we need to recover.
  3230. *
  3231. * What we do is move the bits to the ili_last_fields field.
  3232. * When logging the inode, these bits are moved back to the
  3233. * ilf_fields field. In the xfs_iflush_done() routine we
  3234. * clear ili_last_fields, since we know that the information
  3235. * those bits represent is permanently on disk. As long as
  3236. * the flush completes before the inode is logged again, then
  3237. * both ilf_fields and ili_last_fields will be cleared.
  3238. *
  3239. * We can play with the ilf_fields bits here, because the inode
  3240. * lock must be held exclusively in order to set bits there
  3241. * and the flush lock protects the ili_last_fields bits.
  3242. * Set ili_logged so the flush done
  3243. * routine can tell whether or not to look in the AIL.
  3244. * Also, store the current LSN of the inode so that we can tell
  3245. * whether the item has moved in the AIL from xfs_iflush_done().
  3246. * In order to read the lsn we need the AIL lock, because
  3247. * it is a 64 bit value that cannot be read atomically.
  3248. */
  3249. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3250. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3251. iip->ili_format.ilf_fields = 0;
  3252. iip->ili_logged = 1;
  3253. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3254. AIL_LOCK(mp,s);
  3255. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3256. AIL_UNLOCK(mp, s);
  3257. /*
  3258. * Attach the function xfs_iflush_done to the inode's
  3259. * buffer. This will remove the inode from the AIL
  3260. * and unlock the inode's flush lock when the inode is
  3261. * completely written to disk.
  3262. */
  3263. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3264. xfs_iflush_done, (xfs_log_item_t *)iip);
  3265. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3266. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3267. } else {
  3268. /*
  3269. * We're flushing an inode which is not in the AIL and has
  3270. * not been logged but has i_update_core set. For this
  3271. * case we can use a B_DELWRI flush and immediately drop
  3272. * the inode flush lock because we can avoid the whole
  3273. * AIL state thing. It's OK to drop the flush lock now,
  3274. * because we've already locked the buffer and to do anything
  3275. * you really need both.
  3276. */
  3277. if (iip != NULL) {
  3278. ASSERT(iip->ili_logged == 0);
  3279. ASSERT(iip->ili_last_fields == 0);
  3280. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3281. }
  3282. xfs_ifunlock(ip);
  3283. }
  3284. return 0;
  3285. corrupt_out:
  3286. return XFS_ERROR(EFSCORRUPTED);
  3287. }
  3288. /*
  3289. * Flush all inactive inodes in mp.
  3290. */
  3291. void
  3292. xfs_iflush_all(
  3293. xfs_mount_t *mp)
  3294. {
  3295. xfs_inode_t *ip;
  3296. bhv_vnode_t *vp;
  3297. again:
  3298. XFS_MOUNT_ILOCK(mp);
  3299. ip = mp->m_inodes;
  3300. if (ip == NULL)
  3301. goto out;
  3302. do {
  3303. /* Make sure we skip markers inserted by sync */
  3304. if (ip->i_mount == NULL) {
  3305. ip = ip->i_mnext;
  3306. continue;
  3307. }
  3308. vp = XFS_ITOV_NULL(ip);
  3309. if (!vp) {
  3310. XFS_MOUNT_IUNLOCK(mp);
  3311. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3312. goto again;
  3313. }
  3314. ASSERT(vn_count(vp) == 0);
  3315. ip = ip->i_mnext;
  3316. } while (ip != mp->m_inodes);
  3317. out:
  3318. XFS_MOUNT_IUNLOCK(mp);
  3319. }
  3320. /*
  3321. * xfs_iaccess: check accessibility of inode for mode.
  3322. */
  3323. int
  3324. xfs_iaccess(
  3325. xfs_inode_t *ip,
  3326. mode_t mode,
  3327. cred_t *cr)
  3328. {
  3329. int error;
  3330. mode_t orgmode = mode;
  3331. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3332. if (mode & S_IWUSR) {
  3333. umode_t imode = inode->i_mode;
  3334. if (IS_RDONLY(inode) &&
  3335. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3336. return XFS_ERROR(EROFS);
  3337. if (IS_IMMUTABLE(inode))
  3338. return XFS_ERROR(EACCES);
  3339. }
  3340. /*
  3341. * If there's an Access Control List it's used instead of
  3342. * the mode bits.
  3343. */
  3344. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3345. return error ? XFS_ERROR(error) : 0;
  3346. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3347. mode >>= 3;
  3348. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3349. mode >>= 3;
  3350. }
  3351. /*
  3352. * If the DACs are ok we don't need any capability check.
  3353. */
  3354. if ((ip->i_d.di_mode & mode) == mode)
  3355. return 0;
  3356. /*
  3357. * Read/write DACs are always overridable.
  3358. * Executable DACs are overridable if at least one exec bit is set.
  3359. */
  3360. if (!(orgmode & S_IXUSR) ||
  3361. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3362. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3363. return 0;
  3364. if ((orgmode == S_IRUSR) ||
  3365. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3366. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3367. return 0;
  3368. #ifdef NOISE
  3369. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3370. #endif /* NOISE */
  3371. return XFS_ERROR(EACCES);
  3372. }
  3373. return XFS_ERROR(EACCES);
  3374. }
  3375. /*
  3376. * xfs_iroundup: round up argument to next power of two
  3377. */
  3378. uint
  3379. xfs_iroundup(
  3380. uint v)
  3381. {
  3382. int i;
  3383. uint m;
  3384. if ((v & (v - 1)) == 0)
  3385. return v;
  3386. ASSERT((v & 0x80000000) == 0);
  3387. if ((v & (v + 1)) == 0)
  3388. return v + 1;
  3389. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3390. if (v & m)
  3391. continue;
  3392. v |= m;
  3393. if ((v & (v + 1)) == 0)
  3394. return v + 1;
  3395. }
  3396. ASSERT(0);
  3397. return( 0 );
  3398. }
  3399. #ifdef XFS_ILOCK_TRACE
  3400. ktrace_t *xfs_ilock_trace_buf;
  3401. void
  3402. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3403. {
  3404. ktrace_enter(ip->i_lock_trace,
  3405. (void *)ip,
  3406. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3407. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3408. (void *)ra, /* caller of ilock */
  3409. (void *)(unsigned long)current_cpu(),
  3410. (void *)(unsigned long)current_pid(),
  3411. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3412. }
  3413. #endif
  3414. /*
  3415. * Return a pointer to the extent record at file index idx.
  3416. */
  3417. xfs_bmbt_rec_t *
  3418. xfs_iext_get_ext(
  3419. xfs_ifork_t *ifp, /* inode fork pointer */
  3420. xfs_extnum_t idx) /* index of target extent */
  3421. {
  3422. ASSERT(idx >= 0);
  3423. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3424. return ifp->if_u1.if_ext_irec->er_extbuf;
  3425. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3426. xfs_ext_irec_t *erp; /* irec pointer */
  3427. int erp_idx = 0; /* irec index */
  3428. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3429. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3430. return &erp->er_extbuf[page_idx];
  3431. } else if (ifp->if_bytes) {
  3432. return &ifp->if_u1.if_extents[idx];
  3433. } else {
  3434. return NULL;
  3435. }
  3436. }
  3437. /*
  3438. * Insert new item(s) into the extent records for incore inode
  3439. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3440. */
  3441. void
  3442. xfs_iext_insert(
  3443. xfs_ifork_t *ifp, /* inode fork pointer */
  3444. xfs_extnum_t idx, /* starting index of new items */
  3445. xfs_extnum_t count, /* number of inserted items */
  3446. xfs_bmbt_irec_t *new) /* items to insert */
  3447. {
  3448. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3449. xfs_extnum_t i; /* extent record index */
  3450. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3451. xfs_iext_add(ifp, idx, count);
  3452. for (i = idx; i < idx + count; i++, new++) {
  3453. ep = xfs_iext_get_ext(ifp, i);
  3454. xfs_bmbt_set_all(ep, new);
  3455. }
  3456. }
  3457. /*
  3458. * This is called when the amount of space required for incore file
  3459. * extents needs to be increased. The ext_diff parameter stores the
  3460. * number of new extents being added and the idx parameter contains
  3461. * the extent index where the new extents will be added. If the new
  3462. * extents are being appended, then we just need to (re)allocate and
  3463. * initialize the space. Otherwise, if the new extents are being
  3464. * inserted into the middle of the existing entries, a bit more work
  3465. * is required to make room for the new extents to be inserted. The
  3466. * caller is responsible for filling in the new extent entries upon
  3467. * return.
  3468. */
  3469. void
  3470. xfs_iext_add(
  3471. xfs_ifork_t *ifp, /* inode fork pointer */
  3472. xfs_extnum_t idx, /* index to begin adding exts */
  3473. int ext_diff) /* number of extents to add */
  3474. {
  3475. int byte_diff; /* new bytes being added */
  3476. int new_size; /* size of extents after adding */
  3477. xfs_extnum_t nextents; /* number of extents in file */
  3478. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3479. ASSERT((idx >= 0) && (idx <= nextents));
  3480. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3481. new_size = ifp->if_bytes + byte_diff;
  3482. /*
  3483. * If the new number of extents (nextents + ext_diff)
  3484. * fits inside the inode, then continue to use the inline
  3485. * extent buffer.
  3486. */
  3487. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3488. if (idx < nextents) {
  3489. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3490. &ifp->if_u2.if_inline_ext[idx],
  3491. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3492. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3493. }
  3494. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3495. ifp->if_real_bytes = 0;
  3496. ifp->if_lastex = nextents + ext_diff;
  3497. }
  3498. /*
  3499. * Otherwise use a linear (direct) extent list.
  3500. * If the extents are currently inside the inode,
  3501. * xfs_iext_realloc_direct will switch us from
  3502. * inline to direct extent allocation mode.
  3503. */
  3504. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3505. xfs_iext_realloc_direct(ifp, new_size);
  3506. if (idx < nextents) {
  3507. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3508. &ifp->if_u1.if_extents[idx],
  3509. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3510. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3511. }
  3512. }
  3513. /* Indirection array */
  3514. else {
  3515. xfs_ext_irec_t *erp;
  3516. int erp_idx = 0;
  3517. int page_idx = idx;
  3518. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3519. if (ifp->if_flags & XFS_IFEXTIREC) {
  3520. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3521. } else {
  3522. xfs_iext_irec_init(ifp);
  3523. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3524. erp = ifp->if_u1.if_ext_irec;
  3525. }
  3526. /* Extents fit in target extent page */
  3527. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3528. if (page_idx < erp->er_extcount) {
  3529. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3530. &erp->er_extbuf[page_idx],
  3531. (erp->er_extcount - page_idx) *
  3532. sizeof(xfs_bmbt_rec_t));
  3533. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3534. }
  3535. erp->er_extcount += ext_diff;
  3536. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3537. }
  3538. /* Insert a new extent page */
  3539. else if (erp) {
  3540. xfs_iext_add_indirect_multi(ifp,
  3541. erp_idx, page_idx, ext_diff);
  3542. }
  3543. /*
  3544. * If extent(s) are being appended to the last page in
  3545. * the indirection array and the new extent(s) don't fit
  3546. * in the page, then erp is NULL and erp_idx is set to
  3547. * the next index needed in the indirection array.
  3548. */
  3549. else {
  3550. int count = ext_diff;
  3551. while (count) {
  3552. erp = xfs_iext_irec_new(ifp, erp_idx);
  3553. erp->er_extcount = count;
  3554. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3555. if (count) {
  3556. erp_idx++;
  3557. }
  3558. }
  3559. }
  3560. }
  3561. ifp->if_bytes = new_size;
  3562. }
  3563. /*
  3564. * This is called when incore extents are being added to the indirection
  3565. * array and the new extents do not fit in the target extent list. The
  3566. * erp_idx parameter contains the irec index for the target extent list
  3567. * in the indirection array, and the idx parameter contains the extent
  3568. * index within the list. The number of extents being added is stored
  3569. * in the count parameter.
  3570. *
  3571. * |-------| |-------|
  3572. * | | | | idx - number of extents before idx
  3573. * | idx | | count |
  3574. * | | | | count - number of extents being inserted at idx
  3575. * |-------| |-------|
  3576. * | count | | nex2 | nex2 - number of extents after idx + count
  3577. * |-------| |-------|
  3578. */
  3579. void
  3580. xfs_iext_add_indirect_multi(
  3581. xfs_ifork_t *ifp, /* inode fork pointer */
  3582. int erp_idx, /* target extent irec index */
  3583. xfs_extnum_t idx, /* index within target list */
  3584. int count) /* new extents being added */
  3585. {
  3586. int byte_diff; /* new bytes being added */
  3587. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3588. xfs_extnum_t ext_diff; /* number of extents to add */
  3589. xfs_extnum_t ext_cnt; /* new extents still needed */
  3590. xfs_extnum_t nex2; /* extents after idx + count */
  3591. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3592. int nlists; /* number of irec's (lists) */
  3593. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3594. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3595. nex2 = erp->er_extcount - idx;
  3596. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3597. /*
  3598. * Save second part of target extent list
  3599. * (all extents past */
  3600. if (nex2) {
  3601. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3602. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3603. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3604. erp->er_extcount -= nex2;
  3605. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3606. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3607. }
  3608. /*
  3609. * Add the new extents to the end of the target
  3610. * list, then allocate new irec record(s) and
  3611. * extent buffer(s) as needed to store the rest
  3612. * of the new extents.
  3613. */
  3614. ext_cnt = count;
  3615. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3616. if (ext_diff) {
  3617. erp->er_extcount += ext_diff;
  3618. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3619. ext_cnt -= ext_diff;
  3620. }
  3621. while (ext_cnt) {
  3622. erp_idx++;
  3623. erp = xfs_iext_irec_new(ifp, erp_idx);
  3624. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3625. erp->er_extcount = ext_diff;
  3626. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3627. ext_cnt -= ext_diff;
  3628. }
  3629. /* Add nex2 extents back to indirection array */
  3630. if (nex2) {
  3631. xfs_extnum_t ext_avail;
  3632. int i;
  3633. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3634. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3635. i = 0;
  3636. /*
  3637. * If nex2 extents fit in the current page, append
  3638. * nex2_ep after the new extents.
  3639. */
  3640. if (nex2 <= ext_avail) {
  3641. i = erp->er_extcount;
  3642. }
  3643. /*
  3644. * Otherwise, check if space is available in the
  3645. * next page.
  3646. */
  3647. else if ((erp_idx < nlists - 1) &&
  3648. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3649. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3650. erp_idx++;
  3651. erp++;
  3652. /* Create a hole for nex2 extents */
  3653. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3654. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3655. }
  3656. /*
  3657. * Final choice, create a new extent page for
  3658. * nex2 extents.
  3659. */
  3660. else {
  3661. erp_idx++;
  3662. erp = xfs_iext_irec_new(ifp, erp_idx);
  3663. }
  3664. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3665. kmem_free(nex2_ep, byte_diff);
  3666. erp->er_extcount += nex2;
  3667. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3668. }
  3669. }
  3670. /*
  3671. * This is called when the amount of space required for incore file
  3672. * extents needs to be decreased. The ext_diff parameter stores the
  3673. * number of extents to be removed and the idx parameter contains
  3674. * the extent index where the extents will be removed from.
  3675. *
  3676. * If the amount of space needed has decreased below the linear
  3677. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3678. * extent array. Otherwise, use kmem_realloc() to adjust the
  3679. * size to what is needed.
  3680. */
  3681. void
  3682. xfs_iext_remove(
  3683. xfs_ifork_t *ifp, /* inode fork pointer */
  3684. xfs_extnum_t idx, /* index to begin removing exts */
  3685. int ext_diff) /* number of extents to remove */
  3686. {
  3687. xfs_extnum_t nextents; /* number of extents in file */
  3688. int new_size; /* size of extents after removal */
  3689. ASSERT(ext_diff > 0);
  3690. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3691. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3692. if (new_size == 0) {
  3693. xfs_iext_destroy(ifp);
  3694. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3695. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3696. } else if (ifp->if_real_bytes) {
  3697. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3698. } else {
  3699. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3700. }
  3701. ifp->if_bytes = new_size;
  3702. }
  3703. /*
  3704. * This removes ext_diff extents from the inline buffer, beginning
  3705. * at extent index idx.
  3706. */
  3707. void
  3708. xfs_iext_remove_inline(
  3709. xfs_ifork_t *ifp, /* inode fork pointer */
  3710. xfs_extnum_t idx, /* index to begin removing exts */
  3711. int ext_diff) /* number of extents to remove */
  3712. {
  3713. int nextents; /* number of extents in file */
  3714. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3715. ASSERT(idx < XFS_INLINE_EXTS);
  3716. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3717. ASSERT(((nextents - ext_diff) > 0) &&
  3718. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3719. if (idx + ext_diff < nextents) {
  3720. memmove(&ifp->if_u2.if_inline_ext[idx],
  3721. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3722. (nextents - (idx + ext_diff)) *
  3723. sizeof(xfs_bmbt_rec_t));
  3724. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3725. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3726. } else {
  3727. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3728. ext_diff * sizeof(xfs_bmbt_rec_t));
  3729. }
  3730. }
  3731. /*
  3732. * This removes ext_diff extents from a linear (direct) extent list,
  3733. * beginning at extent index idx. If the extents are being removed
  3734. * from the end of the list (ie. truncate) then we just need to re-
  3735. * allocate the list to remove the extra space. Otherwise, if the
  3736. * extents are being removed from the middle of the existing extent
  3737. * entries, then we first need to move the extent records beginning
  3738. * at idx + ext_diff up in the list to overwrite the records being
  3739. * removed, then remove the extra space via kmem_realloc.
  3740. */
  3741. void
  3742. xfs_iext_remove_direct(
  3743. xfs_ifork_t *ifp, /* inode fork pointer */
  3744. xfs_extnum_t idx, /* index to begin removing exts */
  3745. int ext_diff) /* number of extents to remove */
  3746. {
  3747. xfs_extnum_t nextents; /* number of extents in file */
  3748. int new_size; /* size of extents after removal */
  3749. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3750. new_size = ifp->if_bytes -
  3751. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3752. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3753. if (new_size == 0) {
  3754. xfs_iext_destroy(ifp);
  3755. return;
  3756. }
  3757. /* Move extents up in the list (if needed) */
  3758. if (idx + ext_diff < nextents) {
  3759. memmove(&ifp->if_u1.if_extents[idx],
  3760. &ifp->if_u1.if_extents[idx + ext_diff],
  3761. (nextents - (idx + ext_diff)) *
  3762. sizeof(xfs_bmbt_rec_t));
  3763. }
  3764. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3765. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3766. /*
  3767. * Reallocate the direct extent list. If the extents
  3768. * will fit inside the inode then xfs_iext_realloc_direct
  3769. * will switch from direct to inline extent allocation
  3770. * mode for us.
  3771. */
  3772. xfs_iext_realloc_direct(ifp, new_size);
  3773. ifp->if_bytes = new_size;
  3774. }
  3775. /*
  3776. * This is called when incore extents are being removed from the
  3777. * indirection array and the extents being removed span multiple extent
  3778. * buffers. The idx parameter contains the file extent index where we
  3779. * want to begin removing extents, and the count parameter contains
  3780. * how many extents need to be removed.
  3781. *
  3782. * |-------| |-------|
  3783. * | nex1 | | | nex1 - number of extents before idx
  3784. * |-------| | count |
  3785. * | | | | count - number of extents being removed at idx
  3786. * | count | |-------|
  3787. * | | | nex2 | nex2 - number of extents after idx + count
  3788. * |-------| |-------|
  3789. */
  3790. void
  3791. xfs_iext_remove_indirect(
  3792. xfs_ifork_t *ifp, /* inode fork pointer */
  3793. xfs_extnum_t idx, /* index to begin removing extents */
  3794. int count) /* number of extents to remove */
  3795. {
  3796. xfs_ext_irec_t *erp; /* indirection array pointer */
  3797. int erp_idx = 0; /* indirection array index */
  3798. xfs_extnum_t ext_cnt; /* extents left to remove */
  3799. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3800. xfs_extnum_t nex1; /* number of extents before idx */
  3801. xfs_extnum_t nex2; /* extents after idx + count */
  3802. int nlists; /* entries in indirection array */
  3803. int page_idx = idx; /* index in target extent list */
  3804. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3805. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3806. ASSERT(erp != NULL);
  3807. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3808. nex1 = page_idx;
  3809. ext_cnt = count;
  3810. while (ext_cnt) {
  3811. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3812. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3813. /*
  3814. * Check for deletion of entire list;
  3815. * xfs_iext_irec_remove() updates extent offsets.
  3816. */
  3817. if (ext_diff == erp->er_extcount) {
  3818. xfs_iext_irec_remove(ifp, erp_idx);
  3819. ext_cnt -= ext_diff;
  3820. nex1 = 0;
  3821. if (ext_cnt) {
  3822. ASSERT(erp_idx < ifp->if_real_bytes /
  3823. XFS_IEXT_BUFSZ);
  3824. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3825. nex1 = 0;
  3826. continue;
  3827. } else {
  3828. break;
  3829. }
  3830. }
  3831. /* Move extents up (if needed) */
  3832. if (nex2) {
  3833. memmove(&erp->er_extbuf[nex1],
  3834. &erp->er_extbuf[nex1 + ext_diff],
  3835. nex2 * sizeof(xfs_bmbt_rec_t));
  3836. }
  3837. /* Zero out rest of page */
  3838. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3839. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3840. /* Update remaining counters */
  3841. erp->er_extcount -= ext_diff;
  3842. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3843. ext_cnt -= ext_diff;
  3844. nex1 = 0;
  3845. erp_idx++;
  3846. erp++;
  3847. }
  3848. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3849. xfs_iext_irec_compact(ifp);
  3850. }
  3851. /*
  3852. * Create, destroy, or resize a linear (direct) block of extents.
  3853. */
  3854. void
  3855. xfs_iext_realloc_direct(
  3856. xfs_ifork_t *ifp, /* inode fork pointer */
  3857. int new_size) /* new size of extents */
  3858. {
  3859. int rnew_size; /* real new size of extents */
  3860. rnew_size = new_size;
  3861. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3862. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3863. (new_size != ifp->if_real_bytes)));
  3864. /* Free extent records */
  3865. if (new_size == 0) {
  3866. xfs_iext_destroy(ifp);
  3867. }
  3868. /* Resize direct extent list and zero any new bytes */
  3869. else if (ifp->if_real_bytes) {
  3870. /* Check if extents will fit inside the inode */
  3871. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3872. xfs_iext_direct_to_inline(ifp, new_size /
  3873. (uint)sizeof(xfs_bmbt_rec_t));
  3874. ifp->if_bytes = new_size;
  3875. return;
  3876. }
  3877. if ((new_size & (new_size - 1)) != 0) {
  3878. rnew_size = xfs_iroundup(new_size);
  3879. }
  3880. if (rnew_size != ifp->if_real_bytes) {
  3881. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3882. kmem_realloc(ifp->if_u1.if_extents,
  3883. rnew_size,
  3884. ifp->if_real_bytes,
  3885. KM_SLEEP);
  3886. }
  3887. if (rnew_size > ifp->if_real_bytes) {
  3888. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3889. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3890. rnew_size - ifp->if_real_bytes);
  3891. }
  3892. }
  3893. /*
  3894. * Switch from the inline extent buffer to a direct
  3895. * extent list. Be sure to include the inline extent
  3896. * bytes in new_size.
  3897. */
  3898. else {
  3899. new_size += ifp->if_bytes;
  3900. if ((new_size & (new_size - 1)) != 0) {
  3901. rnew_size = xfs_iroundup(new_size);
  3902. }
  3903. xfs_iext_inline_to_direct(ifp, rnew_size);
  3904. }
  3905. ifp->if_real_bytes = rnew_size;
  3906. ifp->if_bytes = new_size;
  3907. }
  3908. /*
  3909. * Switch from linear (direct) extent records to inline buffer.
  3910. */
  3911. void
  3912. xfs_iext_direct_to_inline(
  3913. xfs_ifork_t *ifp, /* inode fork pointer */
  3914. xfs_extnum_t nextents) /* number of extents in file */
  3915. {
  3916. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3917. ASSERT(nextents <= XFS_INLINE_EXTS);
  3918. /*
  3919. * The inline buffer was zeroed when we switched
  3920. * from inline to direct extent allocation mode,
  3921. * so we don't need to clear it here.
  3922. */
  3923. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3924. nextents * sizeof(xfs_bmbt_rec_t));
  3925. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3926. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3927. ifp->if_real_bytes = 0;
  3928. }
  3929. /*
  3930. * Switch from inline buffer to linear (direct) extent records.
  3931. * new_size should already be rounded up to the next power of 2
  3932. * by the caller (when appropriate), so use new_size as it is.
  3933. * However, since new_size may be rounded up, we can't update
  3934. * if_bytes here. It is the caller's responsibility to update
  3935. * if_bytes upon return.
  3936. */
  3937. void
  3938. xfs_iext_inline_to_direct(
  3939. xfs_ifork_t *ifp, /* inode fork pointer */
  3940. int new_size) /* number of extents in file */
  3941. {
  3942. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3943. kmem_alloc(new_size, KM_SLEEP);
  3944. memset(ifp->if_u1.if_extents, 0, new_size);
  3945. if (ifp->if_bytes) {
  3946. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3947. ifp->if_bytes);
  3948. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3949. sizeof(xfs_bmbt_rec_t));
  3950. }
  3951. ifp->if_real_bytes = new_size;
  3952. }
  3953. /*
  3954. * Resize an extent indirection array to new_size bytes.
  3955. */
  3956. void
  3957. xfs_iext_realloc_indirect(
  3958. xfs_ifork_t *ifp, /* inode fork pointer */
  3959. int new_size) /* new indirection array size */
  3960. {
  3961. int nlists; /* number of irec's (ex lists) */
  3962. int size; /* current indirection array size */
  3963. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3964. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3965. size = nlists * sizeof(xfs_ext_irec_t);
  3966. ASSERT(ifp->if_real_bytes);
  3967. ASSERT((new_size >= 0) && (new_size != size));
  3968. if (new_size == 0) {
  3969. xfs_iext_destroy(ifp);
  3970. } else {
  3971. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3972. kmem_realloc(ifp->if_u1.if_ext_irec,
  3973. new_size, size, KM_SLEEP);
  3974. }
  3975. }
  3976. /*
  3977. * Switch from indirection array to linear (direct) extent allocations.
  3978. */
  3979. void
  3980. xfs_iext_indirect_to_direct(
  3981. xfs_ifork_t *ifp) /* inode fork pointer */
  3982. {
  3983. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3984. xfs_extnum_t nextents; /* number of extents in file */
  3985. int size; /* size of file extents */
  3986. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3987. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3988. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3989. size = nextents * sizeof(xfs_bmbt_rec_t);
  3990. xfs_iext_irec_compact_full(ifp);
  3991. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3992. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3993. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3994. ifp->if_flags &= ~XFS_IFEXTIREC;
  3995. ifp->if_u1.if_extents = ep;
  3996. ifp->if_bytes = size;
  3997. if (nextents < XFS_LINEAR_EXTS) {
  3998. xfs_iext_realloc_direct(ifp, size);
  3999. }
  4000. }
  4001. /*
  4002. * Free incore file extents.
  4003. */
  4004. void
  4005. xfs_iext_destroy(
  4006. xfs_ifork_t *ifp) /* inode fork pointer */
  4007. {
  4008. if (ifp->if_flags & XFS_IFEXTIREC) {
  4009. int erp_idx;
  4010. int nlists;
  4011. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4012. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  4013. xfs_iext_irec_remove(ifp, erp_idx);
  4014. }
  4015. ifp->if_flags &= ~XFS_IFEXTIREC;
  4016. } else if (ifp->if_real_bytes) {
  4017. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  4018. } else if (ifp->if_bytes) {
  4019. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  4020. sizeof(xfs_bmbt_rec_t));
  4021. }
  4022. ifp->if_u1.if_extents = NULL;
  4023. ifp->if_real_bytes = 0;
  4024. ifp->if_bytes = 0;
  4025. }
  4026. /*
  4027. * Return a pointer to the extent record for file system block bno.
  4028. */
  4029. xfs_bmbt_rec_t * /* pointer to found extent record */
  4030. xfs_iext_bno_to_ext(
  4031. xfs_ifork_t *ifp, /* inode fork pointer */
  4032. xfs_fileoff_t bno, /* block number to search for */
  4033. xfs_extnum_t *idxp) /* index of target extent */
  4034. {
  4035. xfs_bmbt_rec_t *base; /* pointer to first extent */
  4036. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4037. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  4038. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4039. int high; /* upper boundary in search */
  4040. xfs_extnum_t idx = 0; /* index of target extent */
  4041. int low; /* lower boundary in search */
  4042. xfs_extnum_t nextents; /* number of file extents */
  4043. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4044. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4045. if (nextents == 0) {
  4046. *idxp = 0;
  4047. return NULL;
  4048. }
  4049. low = 0;
  4050. if (ifp->if_flags & XFS_IFEXTIREC) {
  4051. /* Find target extent list */
  4052. int erp_idx = 0;
  4053. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4054. base = erp->er_extbuf;
  4055. high = erp->er_extcount - 1;
  4056. } else {
  4057. base = ifp->if_u1.if_extents;
  4058. high = nextents - 1;
  4059. }
  4060. /* Binary search extent records */
  4061. while (low <= high) {
  4062. idx = (low + high) >> 1;
  4063. ep = base + idx;
  4064. startoff = xfs_bmbt_get_startoff(ep);
  4065. blockcount = xfs_bmbt_get_blockcount(ep);
  4066. if (bno < startoff) {
  4067. high = idx - 1;
  4068. } else if (bno >= startoff + blockcount) {
  4069. low = idx + 1;
  4070. } else {
  4071. /* Convert back to file-based extent index */
  4072. if (ifp->if_flags & XFS_IFEXTIREC) {
  4073. idx += erp->er_extoff;
  4074. }
  4075. *idxp = idx;
  4076. return ep;
  4077. }
  4078. }
  4079. /* Convert back to file-based extent index */
  4080. if (ifp->if_flags & XFS_IFEXTIREC) {
  4081. idx += erp->er_extoff;
  4082. }
  4083. if (bno >= startoff + blockcount) {
  4084. if (++idx == nextents) {
  4085. ep = NULL;
  4086. } else {
  4087. ep = xfs_iext_get_ext(ifp, idx);
  4088. }
  4089. }
  4090. *idxp = idx;
  4091. return ep;
  4092. }
  4093. /*
  4094. * Return a pointer to the indirection array entry containing the
  4095. * extent record for filesystem block bno. Store the index of the
  4096. * target irec in *erp_idxp.
  4097. */
  4098. xfs_ext_irec_t * /* pointer to found extent record */
  4099. xfs_iext_bno_to_irec(
  4100. xfs_ifork_t *ifp, /* inode fork pointer */
  4101. xfs_fileoff_t bno, /* block number to search for */
  4102. int *erp_idxp) /* irec index of target ext list */
  4103. {
  4104. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4105. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4106. int erp_idx; /* indirection array index */
  4107. int nlists; /* number of extent irec's (lists) */
  4108. int high; /* binary search upper limit */
  4109. int low; /* binary search lower limit */
  4110. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4111. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4112. erp_idx = 0;
  4113. low = 0;
  4114. high = nlists - 1;
  4115. while (low <= high) {
  4116. erp_idx = (low + high) >> 1;
  4117. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4118. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4119. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4120. high = erp_idx - 1;
  4121. } else if (erp_next && bno >=
  4122. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4123. low = erp_idx + 1;
  4124. } else {
  4125. break;
  4126. }
  4127. }
  4128. *erp_idxp = erp_idx;
  4129. return erp;
  4130. }
  4131. /*
  4132. * Return a pointer to the indirection array entry containing the
  4133. * extent record at file extent index *idxp. Store the index of the
  4134. * target irec in *erp_idxp and store the page index of the target
  4135. * extent record in *idxp.
  4136. */
  4137. xfs_ext_irec_t *
  4138. xfs_iext_idx_to_irec(
  4139. xfs_ifork_t *ifp, /* inode fork pointer */
  4140. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4141. int *erp_idxp, /* pointer to target irec */
  4142. int realloc) /* new bytes were just added */
  4143. {
  4144. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4145. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4146. int erp_idx; /* indirection array index */
  4147. int nlists; /* number of irec's (ex lists) */
  4148. int high; /* binary search upper limit */
  4149. int low; /* binary search lower limit */
  4150. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4151. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4152. ASSERT(page_idx >= 0 && page_idx <=
  4153. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4154. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4155. erp_idx = 0;
  4156. low = 0;
  4157. high = nlists - 1;
  4158. /* Binary search extent irec's */
  4159. while (low <= high) {
  4160. erp_idx = (low + high) >> 1;
  4161. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4162. prev = erp_idx > 0 ? erp - 1 : NULL;
  4163. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4164. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4165. high = erp_idx - 1;
  4166. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4167. (page_idx == erp->er_extoff + erp->er_extcount &&
  4168. !realloc)) {
  4169. low = erp_idx + 1;
  4170. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4171. erp->er_extcount == XFS_LINEAR_EXTS) {
  4172. ASSERT(realloc);
  4173. page_idx = 0;
  4174. erp_idx++;
  4175. erp = erp_idx < nlists ? erp + 1 : NULL;
  4176. break;
  4177. } else {
  4178. page_idx -= erp->er_extoff;
  4179. break;
  4180. }
  4181. }
  4182. *idxp = page_idx;
  4183. *erp_idxp = erp_idx;
  4184. return(erp);
  4185. }
  4186. /*
  4187. * Allocate and initialize an indirection array once the space needed
  4188. * for incore extents increases above XFS_IEXT_BUFSZ.
  4189. */
  4190. void
  4191. xfs_iext_irec_init(
  4192. xfs_ifork_t *ifp) /* inode fork pointer */
  4193. {
  4194. xfs_ext_irec_t *erp; /* indirection array pointer */
  4195. xfs_extnum_t nextents; /* number of extents in file */
  4196. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4197. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4198. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4199. erp = (xfs_ext_irec_t *)
  4200. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4201. if (nextents == 0) {
  4202. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4203. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4204. } else if (!ifp->if_real_bytes) {
  4205. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4206. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4207. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4208. }
  4209. erp->er_extbuf = ifp->if_u1.if_extents;
  4210. erp->er_extcount = nextents;
  4211. erp->er_extoff = 0;
  4212. ifp->if_flags |= XFS_IFEXTIREC;
  4213. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4214. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4215. ifp->if_u1.if_ext_irec = erp;
  4216. return;
  4217. }
  4218. /*
  4219. * Allocate and initialize a new entry in the indirection array.
  4220. */
  4221. xfs_ext_irec_t *
  4222. xfs_iext_irec_new(
  4223. xfs_ifork_t *ifp, /* inode fork pointer */
  4224. int erp_idx) /* index for new irec */
  4225. {
  4226. xfs_ext_irec_t *erp; /* indirection array pointer */
  4227. int i; /* loop counter */
  4228. int nlists; /* number of irec's (ex lists) */
  4229. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4230. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4231. /* Resize indirection array */
  4232. xfs_iext_realloc_indirect(ifp, ++nlists *
  4233. sizeof(xfs_ext_irec_t));
  4234. /*
  4235. * Move records down in the array so the
  4236. * new page can use erp_idx.
  4237. */
  4238. erp = ifp->if_u1.if_ext_irec;
  4239. for (i = nlists - 1; i > erp_idx; i--) {
  4240. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4241. }
  4242. ASSERT(i == erp_idx);
  4243. /* Initialize new extent record */
  4244. erp = ifp->if_u1.if_ext_irec;
  4245. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4246. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4247. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4248. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4249. erp[erp_idx].er_extcount = 0;
  4250. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4251. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4252. return (&erp[erp_idx]);
  4253. }
  4254. /*
  4255. * Remove a record from the indirection array.
  4256. */
  4257. void
  4258. xfs_iext_irec_remove(
  4259. xfs_ifork_t *ifp, /* inode fork pointer */
  4260. int erp_idx) /* irec index to remove */
  4261. {
  4262. xfs_ext_irec_t *erp; /* indirection array pointer */
  4263. int i; /* loop counter */
  4264. int nlists; /* number of irec's (ex lists) */
  4265. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4266. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4267. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4268. if (erp->er_extbuf) {
  4269. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4270. -erp->er_extcount);
  4271. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4272. }
  4273. /* Compact extent records */
  4274. erp = ifp->if_u1.if_ext_irec;
  4275. for (i = erp_idx; i < nlists - 1; i++) {
  4276. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4277. }
  4278. /*
  4279. * Manually free the last extent record from the indirection
  4280. * array. A call to xfs_iext_realloc_indirect() with a size
  4281. * of zero would result in a call to xfs_iext_destroy() which
  4282. * would in turn call this function again, creating a nasty
  4283. * infinite loop.
  4284. */
  4285. if (--nlists) {
  4286. xfs_iext_realloc_indirect(ifp,
  4287. nlists * sizeof(xfs_ext_irec_t));
  4288. } else {
  4289. kmem_free(ifp->if_u1.if_ext_irec,
  4290. sizeof(xfs_ext_irec_t));
  4291. }
  4292. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4293. }
  4294. /*
  4295. * This is called to clean up large amounts of unused memory allocated
  4296. * by the indirection array. Before compacting anything though, verify
  4297. * that the indirection array is still needed and switch back to the
  4298. * linear extent list (or even the inline buffer) if possible. The
  4299. * compaction policy is as follows:
  4300. *
  4301. * Full Compaction: Extents fit into a single page (or inline buffer)
  4302. * Full Compaction: Extents occupy less than 10% of allocated space
  4303. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4304. * No Compaction: Extents occupy at least 50% of allocated space
  4305. */
  4306. void
  4307. xfs_iext_irec_compact(
  4308. xfs_ifork_t *ifp) /* inode fork pointer */
  4309. {
  4310. xfs_extnum_t nextents; /* number of extents in file */
  4311. int nlists; /* number of irec's (ex lists) */
  4312. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4313. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4314. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4315. if (nextents == 0) {
  4316. xfs_iext_destroy(ifp);
  4317. } else if (nextents <= XFS_INLINE_EXTS) {
  4318. xfs_iext_indirect_to_direct(ifp);
  4319. xfs_iext_direct_to_inline(ifp, nextents);
  4320. } else if (nextents <= XFS_LINEAR_EXTS) {
  4321. xfs_iext_indirect_to_direct(ifp);
  4322. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4323. xfs_iext_irec_compact_full(ifp);
  4324. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4325. xfs_iext_irec_compact_pages(ifp);
  4326. }
  4327. }
  4328. /*
  4329. * Combine extents from neighboring extent pages.
  4330. */
  4331. void
  4332. xfs_iext_irec_compact_pages(
  4333. xfs_ifork_t *ifp) /* inode fork pointer */
  4334. {
  4335. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4336. int erp_idx = 0; /* indirection array index */
  4337. int nlists; /* number of irec's (ex lists) */
  4338. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4339. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4340. while (erp_idx < nlists - 1) {
  4341. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4342. erp_next = erp + 1;
  4343. if (erp_next->er_extcount <=
  4344. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4345. memmove(&erp->er_extbuf[erp->er_extcount],
  4346. erp_next->er_extbuf, erp_next->er_extcount *
  4347. sizeof(xfs_bmbt_rec_t));
  4348. erp->er_extcount += erp_next->er_extcount;
  4349. /*
  4350. * Free page before removing extent record
  4351. * so er_extoffs don't get modified in
  4352. * xfs_iext_irec_remove.
  4353. */
  4354. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4355. erp_next->er_extbuf = NULL;
  4356. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4357. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4358. } else {
  4359. erp_idx++;
  4360. }
  4361. }
  4362. }
  4363. /*
  4364. * Fully compact the extent records managed by the indirection array.
  4365. */
  4366. void
  4367. xfs_iext_irec_compact_full(
  4368. xfs_ifork_t *ifp) /* inode fork pointer */
  4369. {
  4370. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4371. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4372. int erp_idx = 0; /* extent irec index */
  4373. int ext_avail; /* empty entries in ex list */
  4374. int ext_diff; /* number of exts to add */
  4375. int nlists; /* number of irec's (ex lists) */
  4376. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4377. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4378. erp = ifp->if_u1.if_ext_irec;
  4379. ep = &erp->er_extbuf[erp->er_extcount];
  4380. erp_next = erp + 1;
  4381. ep_next = erp_next->er_extbuf;
  4382. while (erp_idx < nlists - 1) {
  4383. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4384. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4385. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4386. erp->er_extcount += ext_diff;
  4387. erp_next->er_extcount -= ext_diff;
  4388. /* Remove next page */
  4389. if (erp_next->er_extcount == 0) {
  4390. /*
  4391. * Free page before removing extent record
  4392. * so er_extoffs don't get modified in
  4393. * xfs_iext_irec_remove.
  4394. */
  4395. kmem_free(erp_next->er_extbuf,
  4396. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4397. erp_next->er_extbuf = NULL;
  4398. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4399. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4400. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4401. /* Update next page */
  4402. } else {
  4403. /* Move rest of page up to become next new page */
  4404. memmove(erp_next->er_extbuf, ep_next,
  4405. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4406. ep_next = erp_next->er_extbuf;
  4407. memset(&ep_next[erp_next->er_extcount], 0,
  4408. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4409. sizeof(xfs_bmbt_rec_t));
  4410. }
  4411. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4412. erp_idx++;
  4413. if (erp_idx < nlists)
  4414. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4415. else
  4416. break;
  4417. }
  4418. ep = &erp->er_extbuf[erp->er_extcount];
  4419. erp_next = erp + 1;
  4420. ep_next = erp_next->er_extbuf;
  4421. }
  4422. }
  4423. /*
  4424. * This is called to update the er_extoff field in the indirection
  4425. * array when extents have been added or removed from one of the
  4426. * extent lists. erp_idx contains the irec index to begin updating
  4427. * at and ext_diff contains the number of extents that were added
  4428. * or removed.
  4429. */
  4430. void
  4431. xfs_iext_irec_update_extoffs(
  4432. xfs_ifork_t *ifp, /* inode fork pointer */
  4433. int erp_idx, /* irec index to update */
  4434. int ext_diff) /* number of new extents */
  4435. {
  4436. int i; /* loop counter */
  4437. int nlists; /* number of irec's (ex lists */
  4438. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4439. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4440. for (i = erp_idx; i < nlists; i++) {
  4441. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4442. }
  4443. }