intelfbhw.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, //I8xx
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } //I9xx
  58. };
  59. int
  60. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  61. {
  62. u32 tmp;
  63. if (!pdev || !dinfo)
  64. return 1;
  65. switch (pdev->device) {
  66. case PCI_DEVICE_ID_INTEL_830M:
  67. dinfo->name = "Intel(R) 830M";
  68. dinfo->chipset = INTEL_830M;
  69. dinfo->mobile = 1;
  70. dinfo->pll_index = PLLS_I8xx;
  71. return 0;
  72. case PCI_DEVICE_ID_INTEL_845G:
  73. dinfo->name = "Intel(R) 845G";
  74. dinfo->chipset = INTEL_845G;
  75. dinfo->mobile = 0;
  76. dinfo->pll_index = PLLS_I8xx;
  77. return 0;
  78. case PCI_DEVICE_ID_INTEL_85XGM:
  79. tmp = 0;
  80. dinfo->mobile = 1;
  81. dinfo->pll_index = PLLS_I8xx;
  82. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  83. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  84. INTEL_85X_VARIANT_MASK) {
  85. case INTEL_VAR_855GME:
  86. dinfo->name = "Intel(R) 855GME";
  87. dinfo->chipset = INTEL_855GME;
  88. return 0;
  89. case INTEL_VAR_855GM:
  90. dinfo->name = "Intel(R) 855GM";
  91. dinfo->chipset = INTEL_855GM;
  92. return 0;
  93. case INTEL_VAR_852GME:
  94. dinfo->name = "Intel(R) 852GME";
  95. dinfo->chipset = INTEL_852GME;
  96. return 0;
  97. case INTEL_VAR_852GM:
  98. dinfo->name = "Intel(R) 852GM";
  99. dinfo->chipset = INTEL_852GM;
  100. return 0;
  101. default:
  102. dinfo->name = "Intel(R) 852GM/855GM";
  103. dinfo->chipset = INTEL_85XGM;
  104. return 0;
  105. }
  106. break;
  107. case PCI_DEVICE_ID_INTEL_865G:
  108. dinfo->name = "Intel(R) 865G";
  109. dinfo->chipset = INTEL_865G;
  110. dinfo->mobile = 0;
  111. dinfo->pll_index = PLLS_I8xx;
  112. return 0;
  113. case PCI_DEVICE_ID_INTEL_915G:
  114. dinfo->name = "Intel(R) 915G";
  115. dinfo->chipset = INTEL_915G;
  116. dinfo->mobile = 0;
  117. dinfo->pll_index = PLLS_I9xx;
  118. return 0;
  119. case PCI_DEVICE_ID_INTEL_915GM:
  120. dinfo->name = "Intel(R) 915GM";
  121. dinfo->chipset = INTEL_915GM;
  122. dinfo->mobile = 1;
  123. dinfo->pll_index = PLLS_I9xx;
  124. return 0;
  125. case PCI_DEVICE_ID_INTEL_945G:
  126. dinfo->name = "Intel(R) 945G";
  127. dinfo->chipset = INTEL_945G;
  128. dinfo->mobile = 0;
  129. dinfo->pll_index = PLLS_I9xx;
  130. return 0;
  131. case PCI_DEVICE_ID_INTEL_945GM:
  132. dinfo->name = "Intel(R) 945GM";
  133. dinfo->chipset = INTEL_945GM;
  134. dinfo->mobile = 1;
  135. dinfo->pll_index = PLLS_I9xx;
  136. return 0;
  137. default:
  138. return 1;
  139. }
  140. }
  141. int
  142. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  143. int *stolen_size)
  144. {
  145. struct pci_dev *bridge_dev;
  146. u16 tmp;
  147. int stolen_overhead;
  148. if (!pdev || !aperture_size || !stolen_size)
  149. return 1;
  150. /* Find the bridge device. It is always 0:0.0 */
  151. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  152. ERR_MSG("cannot find bridge device\n");
  153. return 1;
  154. }
  155. /* Get the fb aperture size and "stolen" memory amount. */
  156. tmp = 0;
  157. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  158. pci_dev_put(bridge_dev);
  159. switch (pdev->device) {
  160. case PCI_DEVICE_ID_INTEL_915G:
  161. case PCI_DEVICE_ID_INTEL_915GM:
  162. case PCI_DEVICE_ID_INTEL_945G:
  163. case PCI_DEVICE_ID_INTEL_945GM:
  164. /* 915 and 945 chipsets support a 256MB aperture.
  165. Aperture size is determined by inspected the
  166. base address of the aperture. */
  167. if (pci_resource_start(pdev, 2) & 0x08000000)
  168. *aperture_size = MB(128);
  169. else
  170. *aperture_size = MB(256);
  171. break;
  172. default:
  173. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  174. *aperture_size = MB(64);
  175. else
  176. *aperture_size = MB(128);
  177. break;
  178. }
  179. /* Stolen memory size is reduced by the GTT and the popup.
  180. GTT is 1K per MB of aperture size, and popup is 4K. */
  181. stolen_overhead = (*aperture_size / MB(1)) + 4;
  182. switch(pdev->device) {
  183. case PCI_DEVICE_ID_INTEL_830M:
  184. case PCI_DEVICE_ID_INTEL_845G:
  185. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  186. case INTEL_830_GMCH_GMS_STOLEN_512:
  187. *stolen_size = KB(512) - KB(stolen_overhead);
  188. return 0;
  189. case INTEL_830_GMCH_GMS_STOLEN_1024:
  190. *stolen_size = MB(1) - KB(stolen_overhead);
  191. return 0;
  192. case INTEL_830_GMCH_GMS_STOLEN_8192:
  193. *stolen_size = MB(8) - KB(stolen_overhead);
  194. return 0;
  195. case INTEL_830_GMCH_GMS_LOCAL:
  196. ERR_MSG("only local memory found\n");
  197. return 1;
  198. case INTEL_830_GMCH_GMS_DISABLED:
  199. ERR_MSG("video memory is disabled\n");
  200. return 1;
  201. default:
  202. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  203. tmp & INTEL_830_GMCH_GMS_MASK);
  204. return 1;
  205. }
  206. break;
  207. default:
  208. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  209. case INTEL_855_GMCH_GMS_STOLEN_1M:
  210. *stolen_size = MB(1) - KB(stolen_overhead);
  211. return 0;
  212. case INTEL_855_GMCH_GMS_STOLEN_4M:
  213. *stolen_size = MB(4) - KB(stolen_overhead);
  214. return 0;
  215. case INTEL_855_GMCH_GMS_STOLEN_8M:
  216. *stolen_size = MB(8) - KB(stolen_overhead);
  217. return 0;
  218. case INTEL_855_GMCH_GMS_STOLEN_16M:
  219. *stolen_size = MB(16) - KB(stolen_overhead);
  220. return 0;
  221. case INTEL_855_GMCH_GMS_STOLEN_32M:
  222. *stolen_size = MB(32) - KB(stolen_overhead);
  223. return 0;
  224. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  225. *stolen_size = MB(48) - KB(stolen_overhead);
  226. return 0;
  227. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  228. *stolen_size = MB(64) - KB(stolen_overhead);
  229. return 0;
  230. case INTEL_855_GMCH_GMS_DISABLED:
  231. ERR_MSG("video memory is disabled\n");
  232. return 0;
  233. default:
  234. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  235. tmp & INTEL_855_GMCH_GMS_MASK);
  236. return 1;
  237. }
  238. }
  239. }
  240. int
  241. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  242. {
  243. int dvo = 0;
  244. if (INREG(LVDS) & PORT_ENABLE)
  245. dvo |= LVDS_PORT;
  246. if (INREG(DVOA) & PORT_ENABLE)
  247. dvo |= DVOA_PORT;
  248. if (INREG(DVOB) & PORT_ENABLE)
  249. dvo |= DVOB_PORT;
  250. if (INREG(DVOC) & PORT_ENABLE)
  251. dvo |= DVOC_PORT;
  252. return dvo;
  253. }
  254. const char *
  255. intelfbhw_dvo_to_string(int dvo)
  256. {
  257. if (dvo & DVOA_PORT)
  258. return "DVO port A";
  259. else if (dvo & DVOB_PORT)
  260. return "DVO port B";
  261. else if (dvo & DVOC_PORT)
  262. return "DVO port C";
  263. else if (dvo & LVDS_PORT)
  264. return "LVDS port";
  265. else
  266. return NULL;
  267. }
  268. int
  269. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  270. struct fb_var_screeninfo *var)
  271. {
  272. int bytes_per_pixel;
  273. int tmp;
  274. #if VERBOSE > 0
  275. DBG_MSG("intelfbhw_validate_mode\n");
  276. #endif
  277. bytes_per_pixel = var->bits_per_pixel / 8;
  278. if (bytes_per_pixel == 3)
  279. bytes_per_pixel = 4;
  280. /* Check if enough video memory. */
  281. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  282. if (tmp > dinfo->fb.size) {
  283. WRN_MSG("Not enough video ram for mode "
  284. "(%d KByte vs %d KByte).\n",
  285. BtoKB(tmp), BtoKB(dinfo->fb.size));
  286. return 1;
  287. }
  288. /* Check if x/y limits are OK. */
  289. if (var->xres - 1 > HACTIVE_MASK) {
  290. WRN_MSG("X resolution too large (%d vs %d).\n",
  291. var->xres, HACTIVE_MASK + 1);
  292. return 1;
  293. }
  294. if (var->yres - 1 > VACTIVE_MASK) {
  295. WRN_MSG("Y resolution too large (%d vs %d).\n",
  296. var->yres, VACTIVE_MASK + 1);
  297. return 1;
  298. }
  299. /* Check for interlaced/doublescan modes. */
  300. if (var->vmode & FB_VMODE_INTERLACED) {
  301. WRN_MSG("Mode is interlaced.\n");
  302. return 1;
  303. }
  304. if (var->vmode & FB_VMODE_DOUBLE) {
  305. WRN_MSG("Mode is double-scan.\n");
  306. return 1;
  307. }
  308. /* Check if clock is OK. */
  309. tmp = 1000000000 / var->pixclock;
  310. if (tmp < MIN_CLOCK) {
  311. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  312. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  313. return 1;
  314. }
  315. if (tmp > MAX_CLOCK) {
  316. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  317. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  318. return 1;
  319. }
  320. return 0;
  321. }
  322. int
  323. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  324. {
  325. struct intelfb_info *dinfo = GET_DINFO(info);
  326. u32 offset, xoffset, yoffset;
  327. #if VERBOSE > 0
  328. DBG_MSG("intelfbhw_pan_display\n");
  329. #endif
  330. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  331. yoffset = var->yoffset;
  332. if ((xoffset + var->xres > var->xres_virtual) ||
  333. (yoffset + var->yres > var->yres_virtual))
  334. return -EINVAL;
  335. offset = (yoffset * dinfo->pitch) +
  336. (xoffset * var->bits_per_pixel) / 8;
  337. offset += dinfo->fb.offset << 12;
  338. dinfo->vsync.pan_offset = offset;
  339. if ((var->activate & FB_ACTIVATE_VBL) && !intelfbhw_enable_irq(dinfo, 0)) {
  340. dinfo->vsync.pan_display = 1;
  341. } else {
  342. dinfo->vsync.pan_display = 0;
  343. OUTREG(DSPABASE, offset);
  344. }
  345. return 0;
  346. }
  347. /* Blank the screen. */
  348. void
  349. intelfbhw_do_blank(int blank, struct fb_info *info)
  350. {
  351. struct intelfb_info *dinfo = GET_DINFO(info);
  352. u32 tmp;
  353. #if VERBOSE > 0
  354. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  355. #endif
  356. /* Turn plane A on or off */
  357. tmp = INREG(DSPACNTR);
  358. if (blank)
  359. tmp &= ~DISPPLANE_PLANE_ENABLE;
  360. else
  361. tmp |= DISPPLANE_PLANE_ENABLE;
  362. OUTREG(DSPACNTR, tmp);
  363. /* Flush */
  364. tmp = INREG(DSPABASE);
  365. OUTREG(DSPABASE, tmp);
  366. /* Turn off/on the HW cursor */
  367. #if VERBOSE > 0
  368. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  369. #endif
  370. if (dinfo->cursor_on) {
  371. if (blank) {
  372. intelfbhw_cursor_hide(dinfo);
  373. } else {
  374. intelfbhw_cursor_show(dinfo);
  375. }
  376. dinfo->cursor_on = 1;
  377. }
  378. dinfo->cursor_blanked = blank;
  379. /* Set DPMS level */
  380. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  381. switch (blank) {
  382. case FB_BLANK_UNBLANK:
  383. case FB_BLANK_NORMAL:
  384. tmp |= ADPA_DPMS_D0;
  385. break;
  386. case FB_BLANK_VSYNC_SUSPEND:
  387. tmp |= ADPA_DPMS_D1;
  388. break;
  389. case FB_BLANK_HSYNC_SUSPEND:
  390. tmp |= ADPA_DPMS_D2;
  391. break;
  392. case FB_BLANK_POWERDOWN:
  393. tmp |= ADPA_DPMS_D3;
  394. break;
  395. }
  396. OUTREG(ADPA, tmp);
  397. return;
  398. }
  399. void
  400. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  401. unsigned red, unsigned green, unsigned blue,
  402. unsigned transp)
  403. {
  404. #if VERBOSE > 0
  405. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  406. regno, red, green, blue);
  407. #endif
  408. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  409. PALETTE_A : PALETTE_B;
  410. OUTREG(palette_reg + (regno << 2),
  411. (red << PALETTE_8_RED_SHIFT) |
  412. (green << PALETTE_8_GREEN_SHIFT) |
  413. (blue << PALETTE_8_BLUE_SHIFT));
  414. }
  415. int
  416. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  417. int flag)
  418. {
  419. int i;
  420. #if VERBOSE > 0
  421. DBG_MSG("intelfbhw_read_hw_state\n");
  422. #endif
  423. if (!hw || !dinfo)
  424. return -1;
  425. /* Read in as much of the HW state as possible. */
  426. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  427. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  428. hw->vga_pd = INREG(VGAPD);
  429. hw->dpll_a = INREG(DPLL_A);
  430. hw->dpll_b = INREG(DPLL_B);
  431. hw->fpa0 = INREG(FPA0);
  432. hw->fpa1 = INREG(FPA1);
  433. hw->fpb0 = INREG(FPB0);
  434. hw->fpb1 = INREG(FPB1);
  435. if (flag == 1)
  436. return flag;
  437. #if 0
  438. /* This seems to be a problem with the 852GM/855GM */
  439. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  440. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  441. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  442. }
  443. #endif
  444. if (flag == 2)
  445. return flag;
  446. hw->htotal_a = INREG(HTOTAL_A);
  447. hw->hblank_a = INREG(HBLANK_A);
  448. hw->hsync_a = INREG(HSYNC_A);
  449. hw->vtotal_a = INREG(VTOTAL_A);
  450. hw->vblank_a = INREG(VBLANK_A);
  451. hw->vsync_a = INREG(VSYNC_A);
  452. hw->src_size_a = INREG(SRC_SIZE_A);
  453. hw->bclrpat_a = INREG(BCLRPAT_A);
  454. hw->htotal_b = INREG(HTOTAL_B);
  455. hw->hblank_b = INREG(HBLANK_B);
  456. hw->hsync_b = INREG(HSYNC_B);
  457. hw->vtotal_b = INREG(VTOTAL_B);
  458. hw->vblank_b = INREG(VBLANK_B);
  459. hw->vsync_b = INREG(VSYNC_B);
  460. hw->src_size_b = INREG(SRC_SIZE_B);
  461. hw->bclrpat_b = INREG(BCLRPAT_B);
  462. if (flag == 3)
  463. return flag;
  464. hw->adpa = INREG(ADPA);
  465. hw->dvoa = INREG(DVOA);
  466. hw->dvob = INREG(DVOB);
  467. hw->dvoc = INREG(DVOC);
  468. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  469. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  470. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  471. hw->lvds = INREG(LVDS);
  472. if (flag == 4)
  473. return flag;
  474. hw->pipe_a_conf = INREG(PIPEACONF);
  475. hw->pipe_b_conf = INREG(PIPEBCONF);
  476. hw->disp_arb = INREG(DISPARB);
  477. if (flag == 5)
  478. return flag;
  479. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  480. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  481. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  482. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  483. if (flag == 6)
  484. return flag;
  485. for (i = 0; i < 4; i++) {
  486. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  487. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  488. }
  489. if (flag == 7)
  490. return flag;
  491. hw->cursor_size = INREG(CURSOR_SIZE);
  492. if (flag == 8)
  493. return flag;
  494. hw->disp_a_ctrl = INREG(DSPACNTR);
  495. hw->disp_b_ctrl = INREG(DSPBCNTR);
  496. hw->disp_a_base = INREG(DSPABASE);
  497. hw->disp_b_base = INREG(DSPBBASE);
  498. hw->disp_a_stride = INREG(DSPASTRIDE);
  499. hw->disp_b_stride = INREG(DSPBSTRIDE);
  500. if (flag == 9)
  501. return flag;
  502. hw->vgacntrl = INREG(VGACNTRL);
  503. if (flag == 10)
  504. return flag;
  505. hw->add_id = INREG(ADD_ID);
  506. if (flag == 11)
  507. return flag;
  508. for (i = 0; i < 7; i++) {
  509. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  510. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  511. if (i < 3)
  512. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  513. }
  514. for (i = 0; i < 8; i++)
  515. hw->fence[i] = INREG(FENCE + (i << 2));
  516. hw->instpm = INREG(INSTPM);
  517. hw->mem_mode = INREG(MEM_MODE);
  518. hw->fw_blc_0 = INREG(FW_BLC_0);
  519. hw->fw_blc_1 = INREG(FW_BLC_1);
  520. hw->hwstam = INREG16(HWSTAM);
  521. hw->ier = INREG16(IER);
  522. hw->iir = INREG16(IIR);
  523. hw->imr = INREG16(IMR);
  524. return 0;
  525. }
  526. static int calc_vclock3(int index, int m, int n, int p)
  527. {
  528. if (p == 0 || n == 0)
  529. return 0;
  530. return plls[index].ref_clk * m / n / p;
  531. }
  532. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  533. {
  534. struct pll_min_max *pll = &plls[index];
  535. u32 m, vco, p;
  536. m = (5 * (m1 + 2)) + (m2 + 2);
  537. n += 2;
  538. vco = pll->ref_clk * m / n;
  539. if (index == PLLS_I8xx) {
  540. p = ((p1 + 2) * (1 << (p2 + 1)));
  541. } else {
  542. p = ((p1) * (p2 ? 5 : 10));
  543. }
  544. return vco / p;
  545. }
  546. #if REGDUMP
  547. static void
  548. intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
  549. {
  550. int p1, p2;
  551. if (IS_I9XX(dinfo)) {
  552. if (dpll & DPLL_P1_FORCE_DIV2)
  553. p1 = 1;
  554. else
  555. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  556. p1 = ffs(p1);
  557. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  558. } else {
  559. if (dpll & DPLL_P1_FORCE_DIV2)
  560. p1 = 0;
  561. else
  562. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  563. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  564. }
  565. *o_p1 = p1;
  566. *o_p2 = p2;
  567. }
  568. #endif
  569. void
  570. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  571. {
  572. #if REGDUMP
  573. int i, m1, m2, n, p1, p2;
  574. int index = dinfo->pll_index;
  575. DBG_MSG("intelfbhw_print_hw_state\n");
  576. if (!hw)
  577. return;
  578. /* Read in as much of the HW state as possible. */
  579. printk("hw state dump start\n");
  580. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  581. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  582. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  583. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  584. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  585. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  586. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  587. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  588. m1, m2, n, p1, p2);
  589. printk(" VGA0: clock is %d\n",
  590. calc_vclock(index, m1, m2, n, p1, p2, 0));
  591. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  592. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  593. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  594. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  595. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  596. m1, m2, n, p1, p2);
  597. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  598. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  599. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  600. printk(" FPA0: 0x%08x\n", hw->fpa0);
  601. printk(" FPA1: 0x%08x\n", hw->fpa1);
  602. printk(" FPB0: 0x%08x\n", hw->fpb0);
  603. printk(" FPB1: 0x%08x\n", hw->fpb1);
  604. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  605. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  606. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  607. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  608. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  609. m1, m2, n, p1, p2);
  610. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  611. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  612. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  613. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  614. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  615. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  616. m1, m2, n, p1, p2);
  617. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  618. #if 0
  619. printk(" PALETTE_A:\n");
  620. for (i = 0; i < PALETTE_8_ENTRIES)
  621. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  622. printk(" PALETTE_B:\n");
  623. for (i = 0; i < PALETTE_8_ENTRIES)
  624. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  625. #endif
  626. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  627. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  628. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  629. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  630. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  631. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  632. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  633. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  634. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  635. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  636. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  637. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  638. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  639. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  640. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  641. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  642. printk(" ADPA: 0x%08x\n", hw->adpa);
  643. printk(" DVOA: 0x%08x\n", hw->dvoa);
  644. printk(" DVOB: 0x%08x\n", hw->dvob);
  645. printk(" DVOC: 0x%08x\n", hw->dvoc);
  646. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  647. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  648. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  649. printk(" LVDS: 0x%08x\n", hw->lvds);
  650. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  651. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  652. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  653. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  654. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  655. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  656. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  657. printk(" CURSOR_A_PALETTE: ");
  658. for (i = 0; i < 4; i++) {
  659. printk("0x%08x", hw->cursor_a_palette[i]);
  660. if (i < 3)
  661. printk(", ");
  662. }
  663. printk("\n");
  664. printk(" CURSOR_B_PALETTE: ");
  665. for (i = 0; i < 4; i++) {
  666. printk("0x%08x", hw->cursor_b_palette[i]);
  667. if (i < 3)
  668. printk(", ");
  669. }
  670. printk("\n");
  671. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  672. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  673. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  674. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  675. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  676. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  677. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  678. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  679. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  680. for (i = 0; i < 7; i++) {
  681. printk(" SWF0%d 0x%08x\n", i,
  682. hw->swf0x[i]);
  683. }
  684. for (i = 0; i < 7; i++) {
  685. printk(" SWF1%d 0x%08x\n", i,
  686. hw->swf1x[i]);
  687. }
  688. for (i = 0; i < 3; i++) {
  689. printk(" SWF3%d 0x%08x\n", i,
  690. hw->swf3x[i]);
  691. }
  692. for (i = 0; i < 8; i++)
  693. printk(" FENCE%d 0x%08x\n", i,
  694. hw->fence[i]);
  695. printk(" INSTPM 0x%08x\n", hw->instpm);
  696. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  697. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  698. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  699. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  700. printk(" IER 0x%04x\n", hw->ier);
  701. printk(" IIR 0x%04x\n", hw->iir);
  702. printk(" IMR 0x%04x\n", hw->imr);
  703. printk("hw state dump end\n");
  704. #endif
  705. }
  706. /* Split the M parameter into M1 and M2. */
  707. static int
  708. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  709. {
  710. int m1, m2;
  711. int testm;
  712. struct pll_min_max *pll = &plls[index];
  713. /* no point optimising too much - brute force m */
  714. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  715. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  716. testm = (5 * (m1 + 2)) + (m2 + 2);
  717. if (testm == m) {
  718. *retm1 = (unsigned int)m1;
  719. *retm2 = (unsigned int)m2;
  720. return 0;
  721. }
  722. }
  723. }
  724. return 1;
  725. }
  726. /* Split the P parameter into P1 and P2. */
  727. static int
  728. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  729. {
  730. int p1, p2;
  731. struct pll_min_max *pll = &plls[index];
  732. if (index == PLLS_I9xx) {
  733. p2 = (p % 10) ? 1 : 0;
  734. p1 = p / (p2 ? 5 : 10);
  735. *retp1 = (unsigned int)p1;
  736. *retp2 = (unsigned int)p2;
  737. return 0;
  738. }
  739. if (p % 4 == 0)
  740. p2 = 1;
  741. else
  742. p2 = 0;
  743. p1 = (p / (1 << (p2 + 1))) - 2;
  744. if (p % 4 == 0 && p1 < pll->min_p1) {
  745. p2 = 0;
  746. p1 = (p / (1 << (p2 + 1))) - 2;
  747. }
  748. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  749. (p1 + 2) * (1 << (p2 + 1)) != p) {
  750. return 1;
  751. } else {
  752. *retp1 = (unsigned int)p1;
  753. *retp2 = (unsigned int)p2;
  754. return 0;
  755. }
  756. }
  757. static int
  758. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  759. u32 *retp2, u32 *retclock)
  760. {
  761. u32 m1, m2, n, p1, p2, n1, testm;
  762. u32 f_vco, p, p_best = 0, m, f_out = 0;
  763. u32 err_max, err_target, err_best = 10000000;
  764. u32 n_best = 0, m_best = 0, f_best, f_err;
  765. u32 p_min, p_max, p_inc, div_max;
  766. struct pll_min_max *pll = &plls[index];
  767. /* Accept 0.5% difference, but aim for 0.1% */
  768. err_max = 5 * clock / 1000;
  769. err_target = clock / 1000;
  770. DBG_MSG("Clock is %d\n", clock);
  771. div_max = pll->max_vco / clock;
  772. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  773. p_min = p_inc;
  774. p_max = ROUND_DOWN_TO(div_max, p_inc);
  775. if (p_min < pll->min_p)
  776. p_min = pll->min_p;
  777. if (p_max > pll->max_p)
  778. p_max = pll->max_p;
  779. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  780. p = p_min;
  781. do {
  782. if (splitp(index, p, &p1, &p2)) {
  783. WRN_MSG("cannot split p = %d\n", p);
  784. p += p_inc;
  785. continue;
  786. }
  787. n = pll->min_n;
  788. f_vco = clock * p;
  789. do {
  790. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  791. if (m < pll->min_m)
  792. m = pll->min_m + 1;
  793. if (m > pll->max_m)
  794. m = pll->max_m - 1;
  795. for (testm = m - 1; testm <= m; testm++) {
  796. f_out = calc_vclock3(index, m, n, p);
  797. if (splitm(index, testm, &m1, &m2)) {
  798. WRN_MSG("cannot split m = %d\n", m);
  799. n++;
  800. continue;
  801. }
  802. if (clock > f_out)
  803. f_err = clock - f_out;
  804. else/* slightly bias the error for bigger clocks */
  805. f_err = f_out - clock + 1;
  806. if (f_err < err_best) {
  807. m_best = testm;
  808. n_best = n;
  809. p_best = p;
  810. f_best = f_out;
  811. err_best = f_err;
  812. }
  813. }
  814. n++;
  815. } while ((n <= pll->max_n) && (f_out >= clock));
  816. p += p_inc;
  817. } while ((p <= p_max));
  818. if (!m_best) {
  819. WRN_MSG("cannot find parameters for clock %d\n", clock);
  820. return 1;
  821. }
  822. m = m_best;
  823. n = n_best;
  824. p = p_best;
  825. splitm(index, m, &m1, &m2);
  826. splitp(index, p, &p1, &p2);
  827. n1 = n - 2;
  828. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  829. "f: %d (%d), VCO: %d\n",
  830. m, m1, m2, n, n1, p, p1, p2,
  831. calc_vclock3(index, m, n, p),
  832. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  833. calc_vclock3(index, m, n, p) * p);
  834. *retm1 = m1;
  835. *retm2 = m2;
  836. *retn = n1;
  837. *retp1 = p1;
  838. *retp2 = p2;
  839. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  840. return 0;
  841. }
  842. static __inline__ int
  843. check_overflow(u32 value, u32 limit, const char *description)
  844. {
  845. if (value > limit) {
  846. WRN_MSG("%s value %d exceeds limit %d\n",
  847. description, value, limit);
  848. return 1;
  849. }
  850. return 0;
  851. }
  852. /* It is assumed that hw is filled in with the initial state information. */
  853. int
  854. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  855. struct fb_var_screeninfo *var)
  856. {
  857. int pipe = PIPE_A;
  858. u32 *dpll, *fp0, *fp1;
  859. u32 m1, m2, n, p1, p2, clock_target, clock;
  860. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  861. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  862. u32 vsync_pol, hsync_pol;
  863. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  864. u32 stride_alignment;
  865. DBG_MSG("intelfbhw_mode_to_hw\n");
  866. /* Disable VGA */
  867. hw->vgacntrl |= VGA_DISABLE;
  868. /* Check whether pipe A or pipe B is enabled. */
  869. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  870. pipe = PIPE_A;
  871. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  872. pipe = PIPE_B;
  873. /* Set which pipe's registers will be set. */
  874. if (pipe == PIPE_B) {
  875. dpll = &hw->dpll_b;
  876. fp0 = &hw->fpb0;
  877. fp1 = &hw->fpb1;
  878. hs = &hw->hsync_b;
  879. hb = &hw->hblank_b;
  880. ht = &hw->htotal_b;
  881. vs = &hw->vsync_b;
  882. vb = &hw->vblank_b;
  883. vt = &hw->vtotal_b;
  884. ss = &hw->src_size_b;
  885. pipe_conf = &hw->pipe_b_conf;
  886. } else {
  887. dpll = &hw->dpll_a;
  888. fp0 = &hw->fpa0;
  889. fp1 = &hw->fpa1;
  890. hs = &hw->hsync_a;
  891. hb = &hw->hblank_a;
  892. ht = &hw->htotal_a;
  893. vs = &hw->vsync_a;
  894. vb = &hw->vblank_a;
  895. vt = &hw->vtotal_a;
  896. ss = &hw->src_size_a;
  897. pipe_conf = &hw->pipe_a_conf;
  898. }
  899. /* Use ADPA register for sync control. */
  900. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  901. /* sync polarity */
  902. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  903. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  904. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  905. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  906. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  907. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  908. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  909. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  910. /* Connect correct pipe to the analog port DAC */
  911. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  912. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  913. /* Set DPMS state to D0 (on) */
  914. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  915. hw->adpa |= ADPA_DPMS_D0;
  916. hw->adpa |= ADPA_DAC_ENABLE;
  917. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  918. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  919. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  920. /* Desired clock in kHz */
  921. clock_target = 1000000000 / var->pixclock;
  922. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  923. &n, &p1, &p2, &clock)) {
  924. WRN_MSG("calc_pll_params failed\n");
  925. return 1;
  926. }
  927. /* Check for overflow. */
  928. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  929. return 1;
  930. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  931. return 1;
  932. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  933. return 1;
  934. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  935. return 1;
  936. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  937. return 1;
  938. *dpll &= ~DPLL_P1_FORCE_DIV2;
  939. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  940. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  941. if (IS_I9XX(dinfo)) {
  942. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  943. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  944. } else {
  945. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  946. }
  947. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  948. (m1 << FP_M1_DIVISOR_SHIFT) |
  949. (m2 << FP_M2_DIVISOR_SHIFT);
  950. *fp1 = *fp0;
  951. hw->dvob &= ~PORT_ENABLE;
  952. hw->dvoc &= ~PORT_ENABLE;
  953. /* Use display plane A. */
  954. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  955. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  956. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  957. switch (intelfb_var_to_depth(var)) {
  958. case 8:
  959. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  960. break;
  961. case 15:
  962. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  963. break;
  964. case 16:
  965. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  966. break;
  967. case 24:
  968. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  969. break;
  970. }
  971. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  972. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  973. /* Set CRTC registers. */
  974. hactive = var->xres;
  975. hsync_start = hactive + var->right_margin;
  976. hsync_end = hsync_start + var->hsync_len;
  977. htotal = hsync_end + var->left_margin;
  978. hblank_start = hactive;
  979. hblank_end = htotal;
  980. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  981. hactive, hsync_start, hsync_end, htotal, hblank_start,
  982. hblank_end);
  983. vactive = var->yres;
  984. vsync_start = vactive + var->lower_margin;
  985. vsync_end = vsync_start + var->vsync_len;
  986. vtotal = vsync_end + var->upper_margin;
  987. vblank_start = vactive;
  988. vblank_end = vtotal;
  989. vblank_end = vsync_end + 1;
  990. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  991. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  992. vblank_end);
  993. /* Adjust for register values, and check for overflow. */
  994. hactive--;
  995. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  996. return 1;
  997. hsync_start--;
  998. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  999. return 1;
  1000. hsync_end--;
  1001. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1002. return 1;
  1003. htotal--;
  1004. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1005. return 1;
  1006. hblank_start--;
  1007. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1008. return 1;
  1009. hblank_end--;
  1010. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1011. return 1;
  1012. vactive--;
  1013. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1014. return 1;
  1015. vsync_start--;
  1016. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1017. return 1;
  1018. vsync_end--;
  1019. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1020. return 1;
  1021. vtotal--;
  1022. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1023. return 1;
  1024. vblank_start--;
  1025. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1026. return 1;
  1027. vblank_end--;
  1028. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1029. return 1;
  1030. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1031. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1032. (hblank_end << HSYNCEND_SHIFT);
  1033. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1034. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1035. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1036. (vblank_end << VSYNCEND_SHIFT);
  1037. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1038. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1039. (vactive << SRC_SIZE_VERT_SHIFT);
  1040. hw->disp_a_stride = dinfo->pitch;
  1041. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1042. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1043. var->xoffset * var->bits_per_pixel / 8;
  1044. hw->disp_a_base += dinfo->fb.offset << 12;
  1045. /* Check stride alignment. */
  1046. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1047. STRIDE_ALIGNMENT;
  1048. if (hw->disp_a_stride % stride_alignment != 0) {
  1049. WRN_MSG("display stride %d has bad alignment %d\n",
  1050. hw->disp_a_stride, stride_alignment);
  1051. return 1;
  1052. }
  1053. /* Set the palette to 8-bit mode. */
  1054. *pipe_conf &= ~PIPECONF_GAMMA;
  1055. return 0;
  1056. }
  1057. /* Program a (non-VGA) video mode. */
  1058. int
  1059. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1060. const struct intelfb_hwstate *hw, int blank)
  1061. {
  1062. int pipe = PIPE_A;
  1063. u32 tmp;
  1064. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1065. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1066. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1067. u32 hsync_reg, htotal_reg, hblank_reg;
  1068. u32 vsync_reg, vtotal_reg, vblank_reg;
  1069. u32 src_size_reg;
  1070. u32 count, tmp_val[3];
  1071. /* Assume single pipe, display plane A, analog CRT. */
  1072. #if VERBOSE > 0
  1073. DBG_MSG("intelfbhw_program_mode\n");
  1074. #endif
  1075. /* Disable VGA */
  1076. tmp = INREG(VGACNTRL);
  1077. tmp |= VGA_DISABLE;
  1078. OUTREG(VGACNTRL, tmp);
  1079. /* Check whether pipe A or pipe B is enabled. */
  1080. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1081. pipe = PIPE_A;
  1082. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1083. pipe = PIPE_B;
  1084. dinfo->pipe = pipe;
  1085. if (pipe == PIPE_B) {
  1086. dpll = &hw->dpll_b;
  1087. fp0 = &hw->fpb0;
  1088. fp1 = &hw->fpb1;
  1089. pipe_conf = &hw->pipe_b_conf;
  1090. hs = &hw->hsync_b;
  1091. hb = &hw->hblank_b;
  1092. ht = &hw->htotal_b;
  1093. vs = &hw->vsync_b;
  1094. vb = &hw->vblank_b;
  1095. vt = &hw->vtotal_b;
  1096. ss = &hw->src_size_b;
  1097. dpll_reg = DPLL_B;
  1098. fp0_reg = FPB0;
  1099. fp1_reg = FPB1;
  1100. pipe_conf_reg = PIPEBCONF;
  1101. hsync_reg = HSYNC_B;
  1102. htotal_reg = HTOTAL_B;
  1103. hblank_reg = HBLANK_B;
  1104. vsync_reg = VSYNC_B;
  1105. vtotal_reg = VTOTAL_B;
  1106. vblank_reg = VBLANK_B;
  1107. src_size_reg = SRC_SIZE_B;
  1108. } else {
  1109. dpll = &hw->dpll_a;
  1110. fp0 = &hw->fpa0;
  1111. fp1 = &hw->fpa1;
  1112. pipe_conf = &hw->pipe_a_conf;
  1113. hs = &hw->hsync_a;
  1114. hb = &hw->hblank_a;
  1115. ht = &hw->htotal_a;
  1116. vs = &hw->vsync_a;
  1117. vb = &hw->vblank_a;
  1118. vt = &hw->vtotal_a;
  1119. ss = &hw->src_size_a;
  1120. dpll_reg = DPLL_A;
  1121. fp0_reg = FPA0;
  1122. fp1_reg = FPA1;
  1123. pipe_conf_reg = PIPEACONF;
  1124. hsync_reg = HSYNC_A;
  1125. htotal_reg = HTOTAL_A;
  1126. hblank_reg = HBLANK_A;
  1127. vsync_reg = VSYNC_A;
  1128. vtotal_reg = VTOTAL_A;
  1129. vblank_reg = VBLANK_A;
  1130. src_size_reg = SRC_SIZE_A;
  1131. }
  1132. /* turn off pipe */
  1133. tmp = INREG(pipe_conf_reg);
  1134. tmp &= ~PIPECONF_ENABLE;
  1135. OUTREG(pipe_conf_reg, tmp);
  1136. count = 0;
  1137. do {
  1138. tmp_val[count%3] = INREG(0x70000);
  1139. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1140. break;
  1141. count++;
  1142. udelay(1);
  1143. if (count % 200 == 0) {
  1144. tmp = INREG(pipe_conf_reg);
  1145. tmp &= ~PIPECONF_ENABLE;
  1146. OUTREG(pipe_conf_reg, tmp);
  1147. }
  1148. } while(count < 2000);
  1149. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1150. /* Disable planes A and B. */
  1151. tmp = INREG(DSPACNTR);
  1152. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1153. OUTREG(DSPACNTR, tmp);
  1154. tmp = INREG(DSPBCNTR);
  1155. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1156. OUTREG(DSPBCNTR, tmp);
  1157. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1158. mdelay(20);
  1159. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1160. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1161. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1162. /* Disable Sync */
  1163. tmp = INREG(ADPA);
  1164. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1165. tmp |= ADPA_DPMS_D3;
  1166. OUTREG(ADPA, tmp);
  1167. /* do some funky magic - xyzzy */
  1168. OUTREG(0x61204, 0xabcd0000);
  1169. /* turn off PLL */
  1170. tmp = INREG(dpll_reg);
  1171. dpll_reg &= ~DPLL_VCO_ENABLE;
  1172. OUTREG(dpll_reg, tmp);
  1173. /* Set PLL parameters */
  1174. OUTREG(fp0_reg, *fp0);
  1175. OUTREG(fp1_reg, *fp1);
  1176. /* Enable PLL */
  1177. OUTREG(dpll_reg, *dpll);
  1178. /* Set DVOs B/C */
  1179. OUTREG(DVOB, hw->dvob);
  1180. OUTREG(DVOC, hw->dvoc);
  1181. /* undo funky magic */
  1182. OUTREG(0x61204, 0x00000000);
  1183. /* Set ADPA */
  1184. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1185. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1186. /* Set pipe parameters */
  1187. OUTREG(hsync_reg, *hs);
  1188. OUTREG(hblank_reg, *hb);
  1189. OUTREG(htotal_reg, *ht);
  1190. OUTREG(vsync_reg, *vs);
  1191. OUTREG(vblank_reg, *vb);
  1192. OUTREG(vtotal_reg, *vt);
  1193. OUTREG(src_size_reg, *ss);
  1194. /* Enable pipe */
  1195. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1196. /* Enable sync */
  1197. tmp = INREG(ADPA);
  1198. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1199. tmp |= ADPA_DPMS_D0;
  1200. OUTREG(ADPA, tmp);
  1201. /* setup display plane */
  1202. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1203. /*
  1204. * i830M errata: the display plane must be enabled
  1205. * to allow writes to the other bits in the plane
  1206. * control register.
  1207. */
  1208. tmp = INREG(DSPACNTR);
  1209. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1210. tmp |= DISPPLANE_PLANE_ENABLE;
  1211. OUTREG(DSPACNTR, tmp);
  1212. OUTREG(DSPACNTR,
  1213. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1214. mdelay(1);
  1215. }
  1216. }
  1217. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1218. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1219. OUTREG(DSPABASE, hw->disp_a_base);
  1220. /* Enable plane */
  1221. if (!blank) {
  1222. tmp = INREG(DSPACNTR);
  1223. tmp |= DISPPLANE_PLANE_ENABLE;
  1224. OUTREG(DSPACNTR, tmp);
  1225. OUTREG(DSPABASE, hw->disp_a_base);
  1226. }
  1227. return 0;
  1228. }
  1229. /* forward declarations */
  1230. static void refresh_ring(struct intelfb_info *dinfo);
  1231. static void reset_state(struct intelfb_info *dinfo);
  1232. static void do_flush(struct intelfb_info *dinfo);
  1233. static u32 get_ring_space(struct intelfb_info *dinfo)
  1234. {
  1235. u32 ring_space;
  1236. if (dinfo->ring_tail >= dinfo->ring_head)
  1237. ring_space = dinfo->ring.size -
  1238. (dinfo->ring_tail - dinfo->ring_head);
  1239. else
  1240. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1241. if (ring_space > RING_MIN_FREE)
  1242. ring_space -= RING_MIN_FREE;
  1243. else
  1244. ring_space = 0;
  1245. return ring_space;
  1246. }
  1247. static int
  1248. wait_ring(struct intelfb_info *dinfo, int n)
  1249. {
  1250. int i = 0;
  1251. unsigned long end;
  1252. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1253. #if VERBOSE > 0
  1254. DBG_MSG("wait_ring: %d\n", n);
  1255. #endif
  1256. end = jiffies + (HZ * 3);
  1257. while (dinfo->ring_space < n) {
  1258. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1259. dinfo->ring_space = get_ring_space(dinfo);
  1260. if (dinfo->ring_head != last_head) {
  1261. end = jiffies + (HZ * 3);
  1262. last_head = dinfo->ring_head;
  1263. }
  1264. i++;
  1265. if (time_before(end, jiffies)) {
  1266. if (!i) {
  1267. /* Try again */
  1268. reset_state(dinfo);
  1269. refresh_ring(dinfo);
  1270. do_flush(dinfo);
  1271. end = jiffies + (HZ * 3);
  1272. i = 1;
  1273. } else {
  1274. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1275. dinfo->ring_space, n);
  1276. WRN_MSG("lockup - turning off hardware "
  1277. "acceleration\n");
  1278. dinfo->ring_lockup = 1;
  1279. break;
  1280. }
  1281. }
  1282. udelay(1);
  1283. }
  1284. return i;
  1285. }
  1286. static void
  1287. do_flush(struct intelfb_info *dinfo) {
  1288. START_RING(2);
  1289. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1290. OUT_RING(MI_NOOP);
  1291. ADVANCE_RING();
  1292. }
  1293. void
  1294. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1295. {
  1296. #if VERBOSE > 0
  1297. DBG_MSG("intelfbhw_do_sync\n");
  1298. #endif
  1299. if (!dinfo->accel)
  1300. return;
  1301. /*
  1302. * Send a flush, then wait until the ring is empty. This is what
  1303. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1304. * than the recommended method (both have problems).
  1305. */
  1306. do_flush(dinfo);
  1307. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1308. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1309. }
  1310. static void
  1311. refresh_ring(struct intelfb_info *dinfo)
  1312. {
  1313. #if VERBOSE > 0
  1314. DBG_MSG("refresh_ring\n");
  1315. #endif
  1316. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1317. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1318. dinfo->ring_space = get_ring_space(dinfo);
  1319. }
  1320. static void
  1321. reset_state(struct intelfb_info *dinfo)
  1322. {
  1323. int i;
  1324. u32 tmp;
  1325. #if VERBOSE > 0
  1326. DBG_MSG("reset_state\n");
  1327. #endif
  1328. for (i = 0; i < FENCE_NUM; i++)
  1329. OUTREG(FENCE + (i << 2), 0);
  1330. /* Flush the ring buffer if it's enabled. */
  1331. tmp = INREG(PRI_RING_LENGTH);
  1332. if (tmp & RING_ENABLE) {
  1333. #if VERBOSE > 0
  1334. DBG_MSG("reset_state: ring was enabled\n");
  1335. #endif
  1336. refresh_ring(dinfo);
  1337. intelfbhw_do_sync(dinfo);
  1338. DO_RING_IDLE();
  1339. }
  1340. OUTREG(PRI_RING_LENGTH, 0);
  1341. OUTREG(PRI_RING_HEAD, 0);
  1342. OUTREG(PRI_RING_TAIL, 0);
  1343. OUTREG(PRI_RING_START, 0);
  1344. }
  1345. /* Stop the 2D engine, and turn off the ring buffer. */
  1346. void
  1347. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1348. {
  1349. #if VERBOSE > 0
  1350. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1351. dinfo->ring_active);
  1352. #endif
  1353. if (!dinfo->accel)
  1354. return;
  1355. dinfo->ring_active = 0;
  1356. reset_state(dinfo);
  1357. }
  1358. /*
  1359. * Enable the ring buffer, and initialise the 2D engine.
  1360. * It is assumed that the graphics engine has been stopped by previously
  1361. * calling intelfb_2d_stop().
  1362. */
  1363. void
  1364. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1365. {
  1366. #if VERBOSE > 0
  1367. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1368. dinfo->accel, dinfo->ring_active);
  1369. #endif
  1370. if (!dinfo->accel)
  1371. return;
  1372. /* Initialise the primary ring buffer. */
  1373. OUTREG(PRI_RING_LENGTH, 0);
  1374. OUTREG(PRI_RING_TAIL, 0);
  1375. OUTREG(PRI_RING_HEAD, 0);
  1376. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1377. OUTREG(PRI_RING_LENGTH,
  1378. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1379. RING_NO_REPORT | RING_ENABLE);
  1380. refresh_ring(dinfo);
  1381. dinfo->ring_active = 1;
  1382. }
  1383. /* 2D fillrect (solid fill or invert) */
  1384. void
  1385. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1386. u32 color, u32 pitch, u32 bpp, u32 rop)
  1387. {
  1388. u32 br00, br09, br13, br14, br16;
  1389. #if VERBOSE > 0
  1390. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1391. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1392. #endif
  1393. br00 = COLOR_BLT_CMD;
  1394. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1395. br13 = (rop << ROP_SHIFT) | pitch;
  1396. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1397. br16 = color;
  1398. switch (bpp) {
  1399. case 8:
  1400. br13 |= COLOR_DEPTH_8;
  1401. break;
  1402. case 16:
  1403. br13 |= COLOR_DEPTH_16;
  1404. break;
  1405. case 32:
  1406. br13 |= COLOR_DEPTH_32;
  1407. br00 |= WRITE_ALPHA | WRITE_RGB;
  1408. break;
  1409. }
  1410. START_RING(6);
  1411. OUT_RING(br00);
  1412. OUT_RING(br13);
  1413. OUT_RING(br14);
  1414. OUT_RING(br09);
  1415. OUT_RING(br16);
  1416. OUT_RING(MI_NOOP);
  1417. ADVANCE_RING();
  1418. #if VERBOSE > 0
  1419. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1420. dinfo->ring_tail, dinfo->ring_space);
  1421. #endif
  1422. }
  1423. void
  1424. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1425. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1426. {
  1427. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1428. #if VERBOSE > 0
  1429. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1430. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1431. #endif
  1432. br00 = XY_SRC_COPY_BLT_CMD;
  1433. br09 = dinfo->fb_start;
  1434. br11 = (pitch << PITCH_SHIFT);
  1435. br12 = dinfo->fb_start;
  1436. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1437. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1438. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1439. ((dsty + h) << HEIGHT_SHIFT);
  1440. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1441. switch (bpp) {
  1442. case 8:
  1443. br13 |= COLOR_DEPTH_8;
  1444. break;
  1445. case 16:
  1446. br13 |= COLOR_DEPTH_16;
  1447. break;
  1448. case 32:
  1449. br13 |= COLOR_DEPTH_32;
  1450. br00 |= WRITE_ALPHA | WRITE_RGB;
  1451. break;
  1452. }
  1453. START_RING(8);
  1454. OUT_RING(br00);
  1455. OUT_RING(br13);
  1456. OUT_RING(br22);
  1457. OUT_RING(br23);
  1458. OUT_RING(br09);
  1459. OUT_RING(br26);
  1460. OUT_RING(br11);
  1461. OUT_RING(br12);
  1462. ADVANCE_RING();
  1463. }
  1464. int
  1465. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1466. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1467. {
  1468. int nbytes, ndwords, pad, tmp;
  1469. u32 br00, br09, br13, br18, br19, br22, br23;
  1470. int dat, ix, iy, iw;
  1471. int i, j;
  1472. #if VERBOSE > 0
  1473. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1474. #endif
  1475. /* size in bytes of a padded scanline */
  1476. nbytes = ROUND_UP_TO(w, 16) / 8;
  1477. /* Total bytes of padded scanline data to write out. */
  1478. nbytes = nbytes * h;
  1479. /*
  1480. * Check if the glyph data exceeds the immediate mode limit.
  1481. * It would take a large font (1K pixels) to hit this limit.
  1482. */
  1483. if (nbytes > MAX_MONO_IMM_SIZE)
  1484. return 0;
  1485. /* Src data is packaged a dword (32-bit) at a time. */
  1486. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1487. /*
  1488. * Ring has to be padded to a quad word. But because the command starts
  1489. with 7 bytes, pad only if there is an even number of ndwords
  1490. */
  1491. pad = !(ndwords % 2);
  1492. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1493. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1494. br09 = dinfo->fb_start;
  1495. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1496. br18 = bg;
  1497. br19 = fg;
  1498. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1499. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1500. switch (bpp) {
  1501. case 8:
  1502. br13 |= COLOR_DEPTH_8;
  1503. break;
  1504. case 16:
  1505. br13 |= COLOR_DEPTH_16;
  1506. break;
  1507. case 32:
  1508. br13 |= COLOR_DEPTH_32;
  1509. br00 |= WRITE_ALPHA | WRITE_RGB;
  1510. break;
  1511. }
  1512. START_RING(8 + ndwords);
  1513. OUT_RING(br00);
  1514. OUT_RING(br13);
  1515. OUT_RING(br22);
  1516. OUT_RING(br23);
  1517. OUT_RING(br09);
  1518. OUT_RING(br18);
  1519. OUT_RING(br19);
  1520. ix = iy = 0;
  1521. iw = ROUND_UP_TO(w, 8) / 8;
  1522. while (ndwords--) {
  1523. dat = 0;
  1524. for (j = 0; j < 2; ++j) {
  1525. for (i = 0; i < 2; ++i) {
  1526. if (ix != iw || i == 0)
  1527. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1528. }
  1529. if (ix == iw && iy != (h-1)) {
  1530. ix = 0;
  1531. ++iy;
  1532. }
  1533. }
  1534. OUT_RING(dat);
  1535. }
  1536. if (pad)
  1537. OUT_RING(MI_NOOP);
  1538. ADVANCE_RING();
  1539. return 1;
  1540. }
  1541. /* HW cursor functions. */
  1542. void
  1543. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1544. {
  1545. u32 tmp;
  1546. #if VERBOSE > 0
  1547. DBG_MSG("intelfbhw_cursor_init\n");
  1548. #endif
  1549. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1550. if (!dinfo->cursor.physical)
  1551. return;
  1552. tmp = INREG(CURSOR_A_CONTROL);
  1553. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1554. CURSOR_MEM_TYPE_LOCAL |
  1555. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1556. tmp |= CURSOR_MODE_DISABLE;
  1557. OUTREG(CURSOR_A_CONTROL, tmp);
  1558. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1559. } else {
  1560. tmp = INREG(CURSOR_CONTROL);
  1561. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1562. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1563. tmp = CURSOR_FORMAT_3C;
  1564. OUTREG(CURSOR_CONTROL, tmp);
  1565. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1566. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1567. (64 << CURSOR_SIZE_V_SHIFT);
  1568. OUTREG(CURSOR_SIZE, tmp);
  1569. }
  1570. }
  1571. void
  1572. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1573. {
  1574. u32 tmp;
  1575. #if VERBOSE > 0
  1576. DBG_MSG("intelfbhw_cursor_hide\n");
  1577. #endif
  1578. dinfo->cursor_on = 0;
  1579. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1580. if (!dinfo->cursor.physical)
  1581. return;
  1582. tmp = INREG(CURSOR_A_CONTROL);
  1583. tmp &= ~CURSOR_MODE_MASK;
  1584. tmp |= CURSOR_MODE_DISABLE;
  1585. OUTREG(CURSOR_A_CONTROL, tmp);
  1586. /* Flush changes */
  1587. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1588. } else {
  1589. tmp = INREG(CURSOR_CONTROL);
  1590. tmp &= ~CURSOR_ENABLE;
  1591. OUTREG(CURSOR_CONTROL, tmp);
  1592. }
  1593. }
  1594. void
  1595. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1596. {
  1597. u32 tmp;
  1598. #if VERBOSE > 0
  1599. DBG_MSG("intelfbhw_cursor_show\n");
  1600. #endif
  1601. dinfo->cursor_on = 1;
  1602. if (dinfo->cursor_blanked)
  1603. return;
  1604. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1605. if (!dinfo->cursor.physical)
  1606. return;
  1607. tmp = INREG(CURSOR_A_CONTROL);
  1608. tmp &= ~CURSOR_MODE_MASK;
  1609. tmp |= CURSOR_MODE_64_4C_AX;
  1610. OUTREG(CURSOR_A_CONTROL, tmp);
  1611. /* Flush changes */
  1612. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1613. } else {
  1614. tmp = INREG(CURSOR_CONTROL);
  1615. tmp |= CURSOR_ENABLE;
  1616. OUTREG(CURSOR_CONTROL, tmp);
  1617. }
  1618. }
  1619. void
  1620. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1621. {
  1622. u32 tmp;
  1623. #if VERBOSE > 0
  1624. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1625. #endif
  1626. /*
  1627. * Sets the position. The coordinates are assumed to already
  1628. * have any offset adjusted. Assume that the cursor is never
  1629. * completely off-screen, and that x, y are always >= 0.
  1630. */
  1631. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1632. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1633. OUTREG(CURSOR_A_POSITION, tmp);
  1634. if (IS_I9XX(dinfo)) {
  1635. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1636. }
  1637. }
  1638. void
  1639. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1640. {
  1641. #if VERBOSE > 0
  1642. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1643. #endif
  1644. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1645. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1646. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1647. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1648. }
  1649. void
  1650. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1651. u8 *data)
  1652. {
  1653. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1654. int i, j, w = width / 8;
  1655. int mod = width % 8, t_mask, d_mask;
  1656. #if VERBOSE > 0
  1657. DBG_MSG("intelfbhw_cursor_load\n");
  1658. #endif
  1659. if (!dinfo->cursor.virtual)
  1660. return;
  1661. t_mask = 0xff >> mod;
  1662. d_mask = ~(0xff >> mod);
  1663. for (i = height; i--; ) {
  1664. for (j = 0; j < w; j++) {
  1665. writeb(0x00, addr + j);
  1666. writeb(*(data++), addr + j+8);
  1667. }
  1668. if (mod) {
  1669. writeb(t_mask, addr + j);
  1670. writeb(*(data++) & d_mask, addr + j+8);
  1671. }
  1672. addr += 16;
  1673. }
  1674. }
  1675. void
  1676. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1677. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1678. int i, j;
  1679. #if VERBOSE > 0
  1680. DBG_MSG("intelfbhw_cursor_reset\n");
  1681. #endif
  1682. if (!dinfo->cursor.virtual)
  1683. return;
  1684. for (i = 64; i--; ) {
  1685. for (j = 0; j < 8; j++) {
  1686. writeb(0xff, addr + j+0);
  1687. writeb(0x00, addr + j+8);
  1688. }
  1689. addr += 16;
  1690. }
  1691. }
  1692. static irqreturn_t
  1693. intelfbhw_irq(int irq, void *dev_id) {
  1694. int handled = 0;
  1695. u16 tmp;
  1696. struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
  1697. spin_lock(&dinfo->int_lock);
  1698. tmp = INREG16(IIR);
  1699. tmp &= VSYNC_PIPE_A_INTERRUPT;
  1700. if (tmp == 0) {
  1701. spin_unlock(&dinfo->int_lock);
  1702. return IRQ_RETVAL(handled);
  1703. }
  1704. OUTREG16(IIR, tmp);
  1705. if (tmp & VSYNC_PIPE_A_INTERRUPT) {
  1706. dinfo->vsync.count++;
  1707. if (dinfo->vsync.pan_display) {
  1708. dinfo->vsync.pan_display = 0;
  1709. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1710. }
  1711. wake_up_interruptible(&dinfo->vsync.wait);
  1712. handled = 1;
  1713. }
  1714. spin_unlock(&dinfo->int_lock);
  1715. return IRQ_RETVAL(handled);
  1716. }
  1717. int
  1718. intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
  1719. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1720. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1721. "intelfb", dinfo)) {
  1722. clear_bit(0, &dinfo->irq_flags);
  1723. return -EINVAL;
  1724. }
  1725. spin_lock_irq(&dinfo->int_lock);
  1726. OUTREG16(HWSTAM, 0xfffe);
  1727. OUTREG16(IMR, 0x0);
  1728. OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
  1729. spin_unlock_irq(&dinfo->int_lock);
  1730. } else if (reenable) {
  1731. u16 ier;
  1732. spin_lock_irq(&dinfo->int_lock);
  1733. ier = INREG16(IER);
  1734. if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
  1735. DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
  1736. OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
  1737. }
  1738. spin_unlock_irq(&dinfo->int_lock);
  1739. }
  1740. return 0;
  1741. }
  1742. void
  1743. intelfbhw_disable_irq(struct intelfb_info *dinfo) {
  1744. u16 tmp;
  1745. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1746. if (dinfo->vsync.pan_display) {
  1747. dinfo->vsync.pan_display = 0;
  1748. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1749. }
  1750. spin_lock_irq(&dinfo->int_lock);
  1751. OUTREG16(HWSTAM, 0xffff);
  1752. OUTREG16(IMR, 0xffff);
  1753. OUTREG16(IER, 0x0);
  1754. tmp = INREG16(IIR);
  1755. OUTREG16(IIR, tmp);
  1756. spin_unlock_irq(&dinfo->int_lock);
  1757. free_irq(dinfo->pdev->irq, dinfo);
  1758. }
  1759. }
  1760. int
  1761. intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) {
  1762. struct intelfb_vsync *vsync;
  1763. unsigned int count;
  1764. int ret;
  1765. switch (pipe) {
  1766. case 0:
  1767. vsync = &dinfo->vsync;
  1768. break;
  1769. default:
  1770. return -ENODEV;
  1771. }
  1772. ret = intelfbhw_enable_irq(dinfo, 0);
  1773. if (ret) {
  1774. return ret;
  1775. }
  1776. count = vsync->count;
  1777. ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10);
  1778. if (ret < 0) {
  1779. return ret;
  1780. }
  1781. if (ret == 0) {
  1782. intelfbhw_enable_irq(dinfo, 1);
  1783. DBG_MSG("wait_for_vsync timed out!\n");
  1784. return -ETIMEDOUT;
  1785. }
  1786. return 0;
  1787. }