spi_bfin5xx.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313
  1. /*
  2. * File: drivers/spi/bfin5xx_spi.c
  3. * Based on: N/A
  4. * Author: Luke Yang (Analog Devices Inc.)
  5. *
  6. * Created: March. 10th 2006
  7. * Description: SPI controller driver for Blackfin 5xx
  8. * Bugs: Enter bugs at http://blackfin.uclinux.org/
  9. *
  10. * Modified:
  11. * March 10, 2006 bfin5xx_spi.c Created. (Luke Yang)
  12. * August 7, 2006 added full duplex mode (Axel Weiss & Luke Yang)
  13. *
  14. * Copyright 2004-2006 Analog Devices Inc.
  15. *
  16. * This program is free software ; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License as published by
  18. * the Free Software Foundation ; either version 2, or (at your option)
  19. * any later version.
  20. *
  21. * This program is distributed in the hope that it will be useful,
  22. * but WITHOUT ANY WARRANTY ; without even the implied warranty of
  23. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  24. * GNU General Public License for more details.
  25. *
  26. * You should have received a copy of the GNU General Public License
  27. * along with this program ; see the file COPYING.
  28. * If not, write to the Free Software Foundation,
  29. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  30. */
  31. #include <linux/init.h>
  32. #include <linux/module.h>
  33. #include <linux/device.h>
  34. #include <linux/ioport.h>
  35. #include <linux/errno.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/platform_device.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/spi/spi.h>
  40. #include <linux/workqueue.h>
  41. #include <linux/errno.h>
  42. #include <linux/delay.h>
  43. #include <asm/io.h>
  44. #include <asm/irq.h>
  45. #include <asm/delay.h>
  46. #include <asm/dma.h>
  47. #include <asm/bfin5xx_spi.h>
  48. MODULE_AUTHOR("Luke Yang");
  49. MODULE_DESCRIPTION("Blackfin 5xx SPI Contoller");
  50. MODULE_LICENSE("GPL");
  51. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  52. #define DEFINE_SPI_REG(reg, off) \
  53. static inline u16 read_##reg(void) \
  54. { return *(volatile unsigned short*)(SPI0_REGBASE + off); } \
  55. static inline void write_##reg(u16 v) \
  56. {*(volatile unsigned short*)(SPI0_REGBASE + off) = v;\
  57. SSYNC();}
  58. DEFINE_SPI_REG(CTRL, 0x00)
  59. DEFINE_SPI_REG(FLAG, 0x04)
  60. DEFINE_SPI_REG(STAT, 0x08)
  61. DEFINE_SPI_REG(TDBR, 0x0C)
  62. DEFINE_SPI_REG(RDBR, 0x10)
  63. DEFINE_SPI_REG(BAUD, 0x14)
  64. DEFINE_SPI_REG(SHAW, 0x18)
  65. #define START_STATE ((void*)0)
  66. #define RUNNING_STATE ((void*)1)
  67. #define DONE_STATE ((void*)2)
  68. #define ERROR_STATE ((void*)-1)
  69. #define QUEUE_RUNNING 0
  70. #define QUEUE_STOPPED 1
  71. int dma_requested;
  72. struct driver_data {
  73. /* Driver model hookup */
  74. struct platform_device *pdev;
  75. /* SPI framework hookup */
  76. struct spi_master *master;
  77. /* BFIN hookup */
  78. struct bfin5xx_spi_master *master_info;
  79. /* Driver message queue */
  80. struct workqueue_struct *workqueue;
  81. struct work_struct pump_messages;
  82. spinlock_t lock;
  83. struct list_head queue;
  84. int busy;
  85. int run;
  86. /* Message Transfer pump */
  87. struct tasklet_struct pump_transfers;
  88. /* Current message transfer state info */
  89. struct spi_message *cur_msg;
  90. struct spi_transfer *cur_transfer;
  91. struct chip_data *cur_chip;
  92. size_t len_in_bytes;
  93. size_t len;
  94. void *tx;
  95. void *tx_end;
  96. void *rx;
  97. void *rx_end;
  98. int dma_mapped;
  99. dma_addr_t rx_dma;
  100. dma_addr_t tx_dma;
  101. size_t rx_map_len;
  102. size_t tx_map_len;
  103. u8 n_bytes;
  104. void (*write) (struct driver_data *);
  105. void (*read) (struct driver_data *);
  106. void (*duplex) (struct driver_data *);
  107. };
  108. struct chip_data {
  109. u16 ctl_reg;
  110. u16 baud;
  111. u16 flag;
  112. u8 chip_select_num;
  113. u8 n_bytes;
  114. u32 width; /* 0 or 1 */
  115. u8 enable_dma;
  116. u8 bits_per_word; /* 8 or 16 */
  117. u8 cs_change_per_word;
  118. u8 cs_chg_udelay;
  119. void (*write) (struct driver_data *);
  120. void (*read) (struct driver_data *);
  121. void (*duplex) (struct driver_data *);
  122. };
  123. void bfin_spi_enable(struct driver_data *drv_data)
  124. {
  125. u16 cr;
  126. cr = read_CTRL();
  127. write_CTRL(cr | BIT_CTL_ENABLE);
  128. SSYNC();
  129. }
  130. void bfin_spi_disable(struct driver_data *drv_data)
  131. {
  132. u16 cr;
  133. cr = read_CTRL();
  134. write_CTRL(cr & (~BIT_CTL_ENABLE));
  135. SSYNC();
  136. }
  137. /* Caculate the SPI_BAUD register value based on input HZ */
  138. static u16 hz_to_spi_baud(u32 speed_hz)
  139. {
  140. u_long sclk = get_sclk();
  141. u16 spi_baud = (sclk / (2 * speed_hz));
  142. if ((sclk % (2 * speed_hz)) > 0)
  143. spi_baud++;
  144. pr_debug("sclk = %ld, speed_hz = %d, spi_baud = %d\n", sclk, speed_hz,
  145. spi_baud);
  146. return spi_baud;
  147. }
  148. static int flush(struct driver_data *drv_data)
  149. {
  150. unsigned long limit = loops_per_jiffy << 1;
  151. /* wait for stop and clear stat */
  152. while (!(read_STAT() & BIT_STAT_SPIF) && limit--)
  153. continue;
  154. write_STAT(BIT_STAT_CLR);
  155. return limit;
  156. }
  157. /* stop controller and re-config current chip*/
  158. static void restore_state(struct driver_data *drv_data)
  159. {
  160. struct chip_data *chip = drv_data->cur_chip;
  161. /* Clear status and disable clock */
  162. write_STAT(BIT_STAT_CLR);
  163. bfin_spi_disable(drv_data);
  164. pr_debug("restoring spi ctl state\n");
  165. #if defined(CONFIG_BF534) || defined(CONFIG_BF536) || defined(CONFIG_BF537)
  166. pr_debug("chip select number is %d\n", chip->chip_select_num);
  167. switch (chip->chip_select_num) {
  168. case 1:
  169. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3c00);
  170. SSYNC();
  171. break;
  172. case 2:
  173. case 3:
  174. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJSE_SPI);
  175. SSYNC();
  176. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800);
  177. SSYNC();
  178. break;
  179. case 4:
  180. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS4E_SPI);
  181. SSYNC();
  182. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3840);
  183. SSYNC();
  184. break;
  185. case 5:
  186. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS5E_SPI);
  187. SSYNC();
  188. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3820);
  189. SSYNC();
  190. break;
  191. case 6:
  192. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS6E_SPI);
  193. SSYNC();
  194. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3810);
  195. SSYNC();
  196. break;
  197. case 7:
  198. bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJCE_SPI);
  199. SSYNC();
  200. bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800);
  201. SSYNC();
  202. break;
  203. }
  204. #endif
  205. /* Load the registers */
  206. write_CTRL(chip->ctl_reg);
  207. write_BAUD(chip->baud);
  208. write_FLAG(chip->flag);
  209. }
  210. /* used to kick off transfer in rx mode */
  211. static unsigned short dummy_read(void)
  212. {
  213. unsigned short tmp;
  214. tmp = read_RDBR();
  215. return tmp;
  216. }
  217. static void null_writer(struct driver_data *drv_data)
  218. {
  219. u8 n_bytes = drv_data->n_bytes;
  220. while (drv_data->tx < drv_data->tx_end) {
  221. write_TDBR(0);
  222. while ((read_STAT() & BIT_STAT_TXS))
  223. continue;
  224. drv_data->tx += n_bytes;
  225. }
  226. }
  227. static void null_reader(struct driver_data *drv_data)
  228. {
  229. u8 n_bytes = drv_data->n_bytes;
  230. dummy_read();
  231. while (drv_data->rx < drv_data->rx_end) {
  232. while (!(read_STAT() & BIT_STAT_RXS))
  233. continue;
  234. dummy_read();
  235. drv_data->rx += n_bytes;
  236. }
  237. }
  238. static void u8_writer(struct driver_data *drv_data)
  239. {
  240. pr_debug("cr8-s is 0x%x\n", read_STAT());
  241. while (drv_data->tx < drv_data->tx_end) {
  242. write_TDBR(*(u8 *) (drv_data->tx));
  243. while (read_STAT() & BIT_STAT_TXS)
  244. continue;
  245. ++drv_data->tx;
  246. }
  247. /* poll for SPI completion before returning */
  248. while (!(read_STAT() & BIT_STAT_SPIF))
  249. continue;
  250. }
  251. static void u8_cs_chg_writer(struct driver_data *drv_data)
  252. {
  253. struct chip_data *chip = drv_data->cur_chip;
  254. while (drv_data->tx < drv_data->tx_end) {
  255. write_FLAG(chip->flag);
  256. SSYNC();
  257. write_TDBR(*(u8 *) (drv_data->tx));
  258. while (read_STAT() & BIT_STAT_TXS)
  259. continue;
  260. while (!(read_STAT() & BIT_STAT_SPIF))
  261. continue;
  262. write_FLAG(0xFF00 | chip->flag);
  263. SSYNC();
  264. if (chip->cs_chg_udelay)
  265. udelay(chip->cs_chg_udelay);
  266. ++drv_data->tx;
  267. }
  268. write_FLAG(0xFF00);
  269. SSYNC();
  270. }
  271. static void u8_reader(struct driver_data *drv_data)
  272. {
  273. pr_debug("cr-8 is 0x%x\n", read_STAT());
  274. /* clear TDBR buffer before read(else it will be shifted out) */
  275. write_TDBR(0xFFFF);
  276. dummy_read();
  277. while (drv_data->rx < drv_data->rx_end - 1) {
  278. while (!(read_STAT() & BIT_STAT_RXS))
  279. continue;
  280. *(u8 *) (drv_data->rx) = read_RDBR();
  281. ++drv_data->rx;
  282. }
  283. while (!(read_STAT() & BIT_STAT_RXS))
  284. continue;
  285. *(u8 *) (drv_data->rx) = read_SHAW();
  286. ++drv_data->rx;
  287. }
  288. static void u8_cs_chg_reader(struct driver_data *drv_data)
  289. {
  290. struct chip_data *chip = drv_data->cur_chip;
  291. while (drv_data->rx < drv_data->rx_end) {
  292. write_FLAG(chip->flag);
  293. SSYNC();
  294. read_RDBR(); /* kick off */
  295. while (!(read_STAT() & BIT_STAT_RXS))
  296. continue;
  297. while (!(read_STAT() & BIT_STAT_SPIF))
  298. continue;
  299. *(u8 *) (drv_data->rx) = read_SHAW();
  300. write_FLAG(0xFF00 | chip->flag);
  301. SSYNC();
  302. if (chip->cs_chg_udelay)
  303. udelay(chip->cs_chg_udelay);
  304. ++drv_data->rx;
  305. }
  306. write_FLAG(0xFF00);
  307. SSYNC();
  308. }
  309. static void u8_duplex(struct driver_data *drv_data)
  310. {
  311. /* in duplex mode, clk is triggered by writing of TDBR */
  312. while (drv_data->rx < drv_data->rx_end) {
  313. write_TDBR(*(u8 *) (drv_data->tx));
  314. while (!(read_STAT() & BIT_STAT_SPIF))
  315. continue;
  316. while (!(read_STAT() & BIT_STAT_RXS))
  317. continue;
  318. *(u8 *) (drv_data->rx) = read_RDBR();
  319. ++drv_data->rx;
  320. ++drv_data->tx;
  321. }
  322. }
  323. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  324. {
  325. struct chip_data *chip = drv_data->cur_chip;
  326. while (drv_data->rx < drv_data->rx_end) {
  327. write_FLAG(chip->flag);
  328. SSYNC();
  329. write_TDBR(*(u8 *) (drv_data->tx));
  330. while (!(read_STAT() & BIT_STAT_SPIF))
  331. continue;
  332. while (!(read_STAT() & BIT_STAT_RXS))
  333. continue;
  334. *(u8 *) (drv_data->rx) = read_RDBR();
  335. write_FLAG(0xFF00 | chip->flag);
  336. SSYNC();
  337. if (chip->cs_chg_udelay)
  338. udelay(chip->cs_chg_udelay);
  339. ++drv_data->rx;
  340. ++drv_data->tx;
  341. }
  342. write_FLAG(0xFF00);
  343. SSYNC();
  344. }
  345. static void u16_writer(struct driver_data *drv_data)
  346. {
  347. pr_debug("cr16 is 0x%x\n", read_STAT());
  348. while (drv_data->tx < drv_data->tx_end) {
  349. write_TDBR(*(u16 *) (drv_data->tx));
  350. while ((read_STAT() & BIT_STAT_TXS))
  351. continue;
  352. drv_data->tx += 2;
  353. }
  354. /* poll for SPI completion before returning */
  355. while (!(read_STAT() & BIT_STAT_SPIF))
  356. continue;
  357. }
  358. static void u16_cs_chg_writer(struct driver_data *drv_data)
  359. {
  360. struct chip_data *chip = drv_data->cur_chip;
  361. while (drv_data->tx < drv_data->tx_end) {
  362. write_FLAG(chip->flag);
  363. SSYNC();
  364. write_TDBR(*(u16 *) (drv_data->tx));
  365. while ((read_STAT() & BIT_STAT_TXS))
  366. continue;
  367. while (!(read_STAT() & BIT_STAT_SPIF))
  368. continue;
  369. write_FLAG(0xFF00 | chip->flag);
  370. SSYNC();
  371. if (chip->cs_chg_udelay)
  372. udelay(chip->cs_chg_udelay);
  373. drv_data->tx += 2;
  374. }
  375. write_FLAG(0xFF00);
  376. SSYNC();
  377. }
  378. static void u16_reader(struct driver_data *drv_data)
  379. {
  380. pr_debug("cr-16 is 0x%x\n", read_STAT());
  381. dummy_read();
  382. while (drv_data->rx < (drv_data->rx_end - 2)) {
  383. while (!(read_STAT() & BIT_STAT_RXS))
  384. continue;
  385. *(u16 *) (drv_data->rx) = read_RDBR();
  386. drv_data->rx += 2;
  387. }
  388. while (!(read_STAT() & BIT_STAT_RXS))
  389. continue;
  390. *(u16 *) (drv_data->rx) = read_SHAW();
  391. drv_data->rx += 2;
  392. }
  393. static void u16_cs_chg_reader(struct driver_data *drv_data)
  394. {
  395. struct chip_data *chip = drv_data->cur_chip;
  396. while (drv_data->rx < drv_data->rx_end) {
  397. write_FLAG(chip->flag);
  398. SSYNC();
  399. read_RDBR(); /* kick off */
  400. while (!(read_STAT() & BIT_STAT_RXS))
  401. continue;
  402. while (!(read_STAT() & BIT_STAT_SPIF))
  403. continue;
  404. *(u16 *) (drv_data->rx) = read_SHAW();
  405. write_FLAG(0xFF00 | chip->flag);
  406. SSYNC();
  407. if (chip->cs_chg_udelay)
  408. udelay(chip->cs_chg_udelay);
  409. drv_data->rx += 2;
  410. }
  411. write_FLAG(0xFF00);
  412. SSYNC();
  413. }
  414. static void u16_duplex(struct driver_data *drv_data)
  415. {
  416. /* in duplex mode, clk is triggered by writing of TDBR */
  417. while (drv_data->tx < drv_data->tx_end) {
  418. write_TDBR(*(u16 *) (drv_data->tx));
  419. while (!(read_STAT() & BIT_STAT_SPIF))
  420. continue;
  421. while (!(read_STAT() & BIT_STAT_RXS))
  422. continue;
  423. *(u16 *) (drv_data->rx) = read_RDBR();
  424. drv_data->rx += 2;
  425. drv_data->tx += 2;
  426. }
  427. }
  428. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  429. {
  430. struct chip_data *chip = drv_data->cur_chip;
  431. while (drv_data->tx < drv_data->tx_end) {
  432. write_FLAG(chip->flag);
  433. SSYNC();
  434. write_TDBR(*(u16 *) (drv_data->tx));
  435. while (!(read_STAT() & BIT_STAT_SPIF))
  436. continue;
  437. while (!(read_STAT() & BIT_STAT_RXS))
  438. continue;
  439. *(u16 *) (drv_data->rx) = read_RDBR();
  440. write_FLAG(0xFF00 | chip->flag);
  441. SSYNC();
  442. if (chip->cs_chg_udelay)
  443. udelay(chip->cs_chg_udelay);
  444. drv_data->rx += 2;
  445. drv_data->tx += 2;
  446. }
  447. write_FLAG(0xFF00);
  448. SSYNC();
  449. }
  450. /* test if ther is more transfer to be done */
  451. static void *next_transfer(struct driver_data *drv_data)
  452. {
  453. struct spi_message *msg = drv_data->cur_msg;
  454. struct spi_transfer *trans = drv_data->cur_transfer;
  455. /* Move to next transfer */
  456. if (trans->transfer_list.next != &msg->transfers) {
  457. drv_data->cur_transfer =
  458. list_entry(trans->transfer_list.next,
  459. struct spi_transfer, transfer_list);
  460. return RUNNING_STATE;
  461. } else
  462. return DONE_STATE;
  463. }
  464. /*
  465. * caller already set message->status;
  466. * dma and pio irqs are blocked give finished message back
  467. */
  468. static void giveback(struct driver_data *drv_data)
  469. {
  470. struct spi_transfer *last_transfer;
  471. unsigned long flags;
  472. struct spi_message *msg;
  473. spin_lock_irqsave(&drv_data->lock, flags);
  474. msg = drv_data->cur_msg;
  475. drv_data->cur_msg = NULL;
  476. drv_data->cur_transfer = NULL;
  477. drv_data->cur_chip = NULL;
  478. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  479. spin_unlock_irqrestore(&drv_data->lock, flags);
  480. last_transfer = list_entry(msg->transfers.prev,
  481. struct spi_transfer, transfer_list);
  482. msg->state = NULL;
  483. /* disable chip select signal. And not stop spi in autobuffer mode */
  484. if (drv_data->tx_dma != 0xFFFF) {
  485. write_FLAG(0xFF00);
  486. bfin_spi_disable(drv_data);
  487. }
  488. if (msg->complete)
  489. msg->complete(msg->context);
  490. }
  491. static irqreturn_t dma_irq_handler(int irq, void *dev_id, struct pt_regs *regs)
  492. {
  493. struct driver_data *drv_data = (struct driver_data *)dev_id;
  494. struct spi_message *msg = drv_data->cur_msg;
  495. pr_debug("in dma_irq_handler\n");
  496. clear_dma_irqstat(CH_SPI);
  497. /*
  498. * wait for the last transaction shifted out. yes, these two
  499. * while loops are supposed to be the same (see the HRM).
  500. */
  501. if (drv_data->tx != NULL) {
  502. while (bfin_read_SPI_STAT() & TXS)
  503. continue;
  504. while (bfin_read_SPI_STAT() & TXS)
  505. continue;
  506. }
  507. while (!(bfin_read_SPI_STAT() & SPIF))
  508. continue;
  509. bfin_spi_disable(drv_data);
  510. msg->actual_length += drv_data->len_in_bytes;
  511. /* Move to next transfer */
  512. msg->state = next_transfer(drv_data);
  513. /* Schedule transfer tasklet */
  514. tasklet_schedule(&drv_data->pump_transfers);
  515. /* free the irq handler before next transfer */
  516. pr_debug("disable dma channel irq%d\n", CH_SPI);
  517. dma_disable_irq(CH_SPI);
  518. return IRQ_HANDLED;
  519. }
  520. static void pump_transfers(unsigned long data)
  521. {
  522. struct driver_data *drv_data = (struct driver_data *)data;
  523. struct spi_message *message = NULL;
  524. struct spi_transfer *transfer = NULL;
  525. struct spi_transfer *previous = NULL;
  526. struct chip_data *chip = NULL;
  527. u16 cr, width, dma_width, dma_config;
  528. u32 tranf_success = 1;
  529. /* Get current state information */
  530. message = drv_data->cur_msg;
  531. transfer = drv_data->cur_transfer;
  532. chip = drv_data->cur_chip;
  533. /*
  534. * if msg is error or done, report it back using complete() callback
  535. */
  536. /* Handle for abort */
  537. if (message->state == ERROR_STATE) {
  538. message->status = -EIO;
  539. giveback(drv_data);
  540. return;
  541. }
  542. /* Handle end of message */
  543. if (message->state == DONE_STATE) {
  544. message->status = 0;
  545. giveback(drv_data);
  546. return;
  547. }
  548. /* Delay if requested at end of transfer */
  549. if (message->state == RUNNING_STATE) {
  550. previous = list_entry(transfer->transfer_list.prev,
  551. struct spi_transfer, transfer_list);
  552. if (previous->delay_usecs)
  553. udelay(previous->delay_usecs);
  554. }
  555. /* Setup the transfer state based on the type of transfer */
  556. if (flush(drv_data) == 0) {
  557. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  558. message->status = -EIO;
  559. giveback(drv_data);
  560. return;
  561. }
  562. if (transfer->tx_buf != NULL) {
  563. drv_data->tx = (void *)transfer->tx_buf;
  564. drv_data->tx_end = drv_data->tx + transfer->len;
  565. pr_debug("tx_buf is %p, tx_end is %p\n", transfer->tx_buf,
  566. drv_data->tx_end);
  567. } else {
  568. drv_data->tx = NULL;
  569. }
  570. if (transfer->rx_buf != NULL) {
  571. drv_data->rx = transfer->rx_buf;
  572. drv_data->rx_end = drv_data->rx + transfer->len;
  573. pr_debug("rx_buf is %p, rx_end is %p\n", transfer->rx_buf,
  574. drv_data->rx_end);
  575. } else {
  576. drv_data->rx = NULL;
  577. }
  578. drv_data->rx_dma = transfer->rx_dma;
  579. drv_data->tx_dma = transfer->tx_dma;
  580. drv_data->len_in_bytes = transfer->len;
  581. width = chip->width;
  582. if (width == CFG_SPI_WORDSIZE16) {
  583. drv_data->len = (transfer->len) >> 1;
  584. } else {
  585. drv_data->len = transfer->len;
  586. }
  587. drv_data->write = drv_data->tx ? chip->write : null_writer;
  588. drv_data->read = drv_data->rx ? chip->read : null_reader;
  589. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  590. pr_debug
  591. ("transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  592. drv_data->write, chip->write, null_writer);
  593. /* speed and width has been set on per message */
  594. message->state = RUNNING_STATE;
  595. dma_config = 0;
  596. /* restore spi status for each spi transfer */
  597. if (transfer->speed_hz) {
  598. write_BAUD(hz_to_spi_baud(transfer->speed_hz));
  599. } else {
  600. write_BAUD(chip->baud);
  601. }
  602. write_FLAG(chip->flag);
  603. pr_debug("now pumping a transfer: width is %d, len is %d\n", width,
  604. transfer->len);
  605. /*
  606. * Try to map dma buffer and do a dma transfer if
  607. * successful use different way to r/w according to
  608. * drv_data->cur_chip->enable_dma
  609. */
  610. if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
  611. write_STAT(BIT_STAT_CLR);
  612. disable_dma(CH_SPI);
  613. clear_dma_irqstat(CH_SPI);
  614. bfin_spi_disable(drv_data);
  615. /* config dma channel */
  616. pr_debug("doing dma transfer\n");
  617. if (width == CFG_SPI_WORDSIZE16) {
  618. set_dma_x_count(CH_SPI, drv_data->len);
  619. set_dma_x_modify(CH_SPI, 2);
  620. dma_width = WDSIZE_16;
  621. } else {
  622. set_dma_x_count(CH_SPI, drv_data->len);
  623. set_dma_x_modify(CH_SPI, 1);
  624. dma_width = WDSIZE_8;
  625. }
  626. /* set transfer width,direction. And enable spi */
  627. cr = (read_CTRL() & (~BIT_CTL_TIMOD));
  628. /* dirty hack for autobuffer DMA mode */
  629. if (drv_data->tx_dma == 0xFFFF) {
  630. pr_debug("doing autobuffer DMA out.\n");
  631. /* no irq in autobuffer mode */
  632. dma_config =
  633. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  634. set_dma_config(CH_SPI, dma_config);
  635. set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx);
  636. enable_dma(CH_SPI);
  637. write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
  638. (CFG_SPI_ENABLE << 14));
  639. /* just return here, there can only be one transfer in this mode */
  640. message->status = 0;
  641. giveback(drv_data);
  642. return;
  643. }
  644. /* In dma mode, rx or tx must be NULL in one transfer */
  645. if (drv_data->rx != NULL) {
  646. /* set transfer mode, and enable SPI */
  647. pr_debug("doing DMA in.\n");
  648. /* disable SPI before write to TDBR */
  649. write_CTRL(cr & ~BIT_CTL_ENABLE);
  650. /* clear tx reg soformer data is not shifted out */
  651. write_TDBR(0xFF);
  652. set_dma_x_count(CH_SPI, drv_data->len);
  653. /* start dma */
  654. dma_enable_irq(CH_SPI);
  655. dma_config = (WNR | RESTART | dma_width | DI_EN);
  656. set_dma_config(CH_SPI, dma_config);
  657. set_dma_start_addr(CH_SPI, (unsigned long)drv_data->rx);
  658. enable_dma(CH_SPI);
  659. cr |=
  660. CFG_SPI_DMAREAD | (width << 8) | (CFG_SPI_ENABLE <<
  661. 14);
  662. /* set transfer mode, and enable SPI */
  663. write_CTRL(cr);
  664. } else if (drv_data->tx != NULL) {
  665. pr_debug("doing DMA out.\n");
  666. /* start dma */
  667. dma_enable_irq(CH_SPI);
  668. dma_config = (RESTART | dma_width | DI_EN);
  669. set_dma_config(CH_SPI, dma_config);
  670. set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx);
  671. enable_dma(CH_SPI);
  672. write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
  673. (CFG_SPI_ENABLE << 14));
  674. }
  675. } else {
  676. /* IO mode write then read */
  677. pr_debug("doing IO transfer\n");
  678. write_STAT(BIT_STAT_CLR);
  679. if (drv_data->tx != NULL && drv_data->rx != NULL) {
  680. /* full duplex mode */
  681. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  682. (drv_data->rx_end - drv_data->rx));
  683. cr = (read_CTRL() & (~BIT_CTL_TIMOD)); /* clear the TIMOD bits */
  684. cr |=
  685. CFG_SPI_WRITE | (width << 8) | (CFG_SPI_ENABLE <<
  686. 14);
  687. pr_debug("IO duplex: cr is 0x%x\n", cr);
  688. write_CTRL(cr);
  689. SSYNC();
  690. drv_data->duplex(drv_data);
  691. if (drv_data->tx != drv_data->tx_end)
  692. tranf_success = 0;
  693. } else if (drv_data->tx != NULL) {
  694. /* write only half duplex */
  695. cr = (read_CTRL() & (~BIT_CTL_TIMOD)); /* clear the TIMOD bits */
  696. cr |=
  697. CFG_SPI_WRITE | (width << 8) | (CFG_SPI_ENABLE <<
  698. 14);
  699. pr_debug("IO write: cr is 0x%x\n", cr);
  700. write_CTRL(cr);
  701. SSYNC();
  702. drv_data->write(drv_data);
  703. if (drv_data->tx != drv_data->tx_end)
  704. tranf_success = 0;
  705. } else if (drv_data->rx != NULL) {
  706. /* read only half duplex */
  707. cr = (read_CTRL() & (~BIT_CTL_TIMOD)); /* cleare the TIMOD bits */
  708. cr |=
  709. CFG_SPI_READ | (width << 8) | (CFG_SPI_ENABLE <<
  710. 14);
  711. pr_debug("IO read: cr is 0x%x\n", cr);
  712. write_CTRL(cr);
  713. SSYNC();
  714. drv_data->read(drv_data);
  715. if (drv_data->rx != drv_data->rx_end)
  716. tranf_success = 0;
  717. }
  718. if (!tranf_success) {
  719. pr_debug("IO write error!\n");
  720. message->state = ERROR_STATE;
  721. } else {
  722. /* Update total byte transfered */
  723. message->actual_length += drv_data->len;
  724. /* Move to next transfer of this msg */
  725. message->state = next_transfer(drv_data);
  726. }
  727. /* Schedule next transfer tasklet */
  728. tasklet_schedule(&drv_data->pump_transfers);
  729. }
  730. }
  731. /* pop a msg from queue and kick off real transfer */
  732. static void pump_messages(struct work_struct *work)
  733. {
  734. struct driver_data *drv_data = container_of(work, struct driver_data, pump_messages);
  735. unsigned long flags;
  736. /* Lock queue and check for queue work */
  737. spin_lock_irqsave(&drv_data->lock, flags);
  738. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  739. /* pumper kicked off but no work to do */
  740. drv_data->busy = 0;
  741. spin_unlock_irqrestore(&drv_data->lock, flags);
  742. return;
  743. }
  744. /* Make sure we are not already running a message */
  745. if (drv_data->cur_msg) {
  746. spin_unlock_irqrestore(&drv_data->lock, flags);
  747. return;
  748. }
  749. /* Extract head of queue */
  750. drv_data->cur_msg = list_entry(drv_data->queue.next,
  751. struct spi_message, queue);
  752. list_del_init(&drv_data->cur_msg->queue);
  753. /* Initial message state */
  754. drv_data->cur_msg->state = START_STATE;
  755. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  756. struct spi_transfer, transfer_list);
  757. /* Setup the SSP using the per chip configuration */
  758. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  759. restore_state(drv_data);
  760. pr_debug
  761. ("got a message to pump, state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  762. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  763. drv_data->cur_chip->ctl_reg);
  764. pr_debug("the first transfer len is %d\n", drv_data->cur_transfer->len);
  765. /* Mark as busy and launch transfers */
  766. tasklet_schedule(&drv_data->pump_transfers);
  767. drv_data->busy = 1;
  768. spin_unlock_irqrestore(&drv_data->lock, flags);
  769. }
  770. /*
  771. * got a msg to transfer, queue it in drv_data->queue.
  772. * And kick off message pumper
  773. */
  774. static int transfer(struct spi_device *spi, struct spi_message *msg)
  775. {
  776. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  777. unsigned long flags;
  778. spin_lock_irqsave(&drv_data->lock, flags);
  779. if (drv_data->run == QUEUE_STOPPED) {
  780. spin_unlock_irqrestore(&drv_data->lock, flags);
  781. return -ESHUTDOWN;
  782. }
  783. msg->actual_length = 0;
  784. msg->status = -EINPROGRESS;
  785. msg->state = START_STATE;
  786. pr_debug("adding an msg in transfer() \n");
  787. list_add_tail(&msg->queue, &drv_data->queue);
  788. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  789. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  790. spin_unlock_irqrestore(&drv_data->lock, flags);
  791. return 0;
  792. }
  793. /* first setup for new devices */
  794. static int setup(struct spi_device *spi)
  795. {
  796. struct bfin5xx_spi_chip *chip_info = NULL;
  797. struct chip_data *chip;
  798. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  799. u8 spi_flg;
  800. /* Abort device setup if requested features are not supported */
  801. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  802. dev_err(&spi->dev, "requested mode not fully supported\n");
  803. return -EINVAL;
  804. }
  805. /* Zero (the default) here means 8 bits */
  806. if (!spi->bits_per_word)
  807. spi->bits_per_word = 8;
  808. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  809. return -EINVAL;
  810. /* Only alloc (or use chip_info) on first setup */
  811. chip = spi_get_ctldata(spi);
  812. if (chip == NULL) {
  813. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  814. if (!chip)
  815. return -ENOMEM;
  816. chip->enable_dma = 0;
  817. chip_info = spi->controller_data;
  818. }
  819. /* chip_info isn't always needed */
  820. if (chip_info) {
  821. chip->enable_dma = chip_info->enable_dma != 0
  822. && drv_data->master_info->enable_dma;
  823. chip->ctl_reg = chip_info->ctl_reg;
  824. chip->bits_per_word = chip_info->bits_per_word;
  825. chip->cs_change_per_word = chip_info->cs_change_per_word;
  826. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  827. }
  828. /* translate common spi framework into our register */
  829. if (spi->mode & SPI_CPOL)
  830. chip->ctl_reg |= CPOL;
  831. if (spi->mode & SPI_CPHA)
  832. chip->ctl_reg |= CPHA;
  833. if (spi->mode & SPI_LSB_FIRST)
  834. chip->ctl_reg |= LSBF;
  835. /* we dont support running in slave mode (yet?) */
  836. chip->ctl_reg |= MSTR;
  837. /*
  838. * if any one SPI chip is registered and wants DMA, request the
  839. * DMA channel for it
  840. */
  841. if (chip->enable_dma && !dma_requested) {
  842. /* register dma irq handler */
  843. if (request_dma(CH_SPI, "BF53x_SPI_DMA") < 0) {
  844. pr_debug
  845. ("Unable to request BlackFin SPI DMA channel\n");
  846. return -ENODEV;
  847. }
  848. if (set_dma_callback(CH_SPI, (void *)dma_irq_handler, drv_data)
  849. < 0) {
  850. pr_debug("Unable to set dma callback\n");
  851. return -EPERM;
  852. }
  853. dma_disable_irq(CH_SPI);
  854. dma_requested = 1;
  855. }
  856. /*
  857. * Notice: for blackfin, the speed_hz is the value of register
  858. * SPI_BAUD, not the real baudrate
  859. */
  860. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  861. spi_flg = ~(1 << (spi->chip_select));
  862. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  863. chip->chip_select_num = spi->chip_select;
  864. switch (chip->bits_per_word) {
  865. case 8:
  866. chip->n_bytes = 1;
  867. chip->width = CFG_SPI_WORDSIZE8;
  868. chip->read = chip->cs_change_per_word ?
  869. u8_cs_chg_reader : u8_reader;
  870. chip->write = chip->cs_change_per_word ?
  871. u8_cs_chg_writer : u8_writer;
  872. chip->duplex = chip->cs_change_per_word ?
  873. u8_cs_chg_duplex : u8_duplex;
  874. break;
  875. case 16:
  876. chip->n_bytes = 2;
  877. chip->width = CFG_SPI_WORDSIZE16;
  878. chip->read = chip->cs_change_per_word ?
  879. u16_cs_chg_reader : u16_reader;
  880. chip->write = chip->cs_change_per_word ?
  881. u16_cs_chg_writer : u16_writer;
  882. chip->duplex = chip->cs_change_per_word ?
  883. u16_cs_chg_duplex : u16_duplex;
  884. break;
  885. default:
  886. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  887. chip->bits_per_word);
  888. kfree(chip);
  889. return -ENODEV;
  890. }
  891. pr_debug("setup spi chip %s, width is %d, dma is %d,",
  892. spi->modalias, chip->width, chip->enable_dma);
  893. pr_debug("ctl_reg is 0x%x, flag_reg is 0x%x\n",
  894. chip->ctl_reg, chip->flag);
  895. spi_set_ctldata(spi, chip);
  896. return 0;
  897. }
  898. /*
  899. * callback for spi framework.
  900. * clean driver specific data
  901. */
  902. static void cleanup(const struct spi_device *spi)
  903. {
  904. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  905. kfree(chip);
  906. }
  907. static inline int init_queue(struct driver_data *drv_data)
  908. {
  909. INIT_LIST_HEAD(&drv_data->queue);
  910. spin_lock_init(&drv_data->lock);
  911. drv_data->run = QUEUE_STOPPED;
  912. drv_data->busy = 0;
  913. /* init transfer tasklet */
  914. tasklet_init(&drv_data->pump_transfers,
  915. pump_transfers, (unsigned long)drv_data);
  916. /* init messages workqueue */
  917. INIT_WORK(&drv_data->pump_messages, pump_messages);
  918. drv_data->workqueue =
  919. create_singlethread_workqueue(drv_data->master->cdev.dev->bus_id);
  920. if (drv_data->workqueue == NULL)
  921. return -EBUSY;
  922. return 0;
  923. }
  924. static inline int start_queue(struct driver_data *drv_data)
  925. {
  926. unsigned long flags;
  927. spin_lock_irqsave(&drv_data->lock, flags);
  928. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  929. spin_unlock_irqrestore(&drv_data->lock, flags);
  930. return -EBUSY;
  931. }
  932. drv_data->run = QUEUE_RUNNING;
  933. drv_data->cur_msg = NULL;
  934. drv_data->cur_transfer = NULL;
  935. drv_data->cur_chip = NULL;
  936. spin_unlock_irqrestore(&drv_data->lock, flags);
  937. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  938. return 0;
  939. }
  940. static inline int stop_queue(struct driver_data *drv_data)
  941. {
  942. unsigned long flags;
  943. unsigned limit = 500;
  944. int status = 0;
  945. spin_lock_irqsave(&drv_data->lock, flags);
  946. /*
  947. * This is a bit lame, but is optimized for the common execution path.
  948. * A wait_queue on the drv_data->busy could be used, but then the common
  949. * execution path (pump_messages) would be required to call wake_up or
  950. * friends on every SPI message. Do this instead
  951. */
  952. drv_data->run = QUEUE_STOPPED;
  953. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  954. spin_unlock_irqrestore(&drv_data->lock, flags);
  955. msleep(10);
  956. spin_lock_irqsave(&drv_data->lock, flags);
  957. }
  958. if (!list_empty(&drv_data->queue) || drv_data->busy)
  959. status = -EBUSY;
  960. spin_unlock_irqrestore(&drv_data->lock, flags);
  961. return status;
  962. }
  963. static inline int destroy_queue(struct driver_data *drv_data)
  964. {
  965. int status;
  966. status = stop_queue(drv_data);
  967. if (status != 0)
  968. return status;
  969. destroy_workqueue(drv_data->workqueue);
  970. return 0;
  971. }
  972. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  973. {
  974. struct device *dev = &pdev->dev;
  975. struct bfin5xx_spi_master *platform_info;
  976. struct spi_master *master;
  977. struct driver_data *drv_data = 0;
  978. int status = 0;
  979. platform_info = dev->platform_data;
  980. /* Allocate master with space for drv_data */
  981. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  982. if (!master) {
  983. dev_err(&pdev->dev, "can not alloc spi_master\n");
  984. return -ENOMEM;
  985. }
  986. drv_data = spi_master_get_devdata(master);
  987. drv_data->master = master;
  988. drv_data->master_info = platform_info;
  989. drv_data->pdev = pdev;
  990. master->bus_num = pdev->id;
  991. master->num_chipselect = platform_info->num_chipselect;
  992. master->cleanup = cleanup;
  993. master->setup = setup;
  994. master->transfer = transfer;
  995. /* Initial and start queue */
  996. status = init_queue(drv_data);
  997. if (status != 0) {
  998. dev_err(&pdev->dev, "problem initializing queue\n");
  999. goto out_error_queue_alloc;
  1000. }
  1001. status = start_queue(drv_data);
  1002. if (status != 0) {
  1003. dev_err(&pdev->dev, "problem starting queue\n");
  1004. goto out_error_queue_alloc;
  1005. }
  1006. /* Register with the SPI framework */
  1007. platform_set_drvdata(pdev, drv_data);
  1008. status = spi_register_master(master);
  1009. if (status != 0) {
  1010. dev_err(&pdev->dev, "problem registering spi master\n");
  1011. goto out_error_queue_alloc;
  1012. }
  1013. pr_debug("controller probe successfully\n");
  1014. return status;
  1015. out_error_queue_alloc:
  1016. destroy_queue(drv_data);
  1017. spi_master_put(master);
  1018. return status;
  1019. }
  1020. /* stop hardware and remove the driver */
  1021. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1022. {
  1023. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1024. int status = 0;
  1025. if (!drv_data)
  1026. return 0;
  1027. /* Remove the queue */
  1028. status = destroy_queue(drv_data);
  1029. if (status != 0)
  1030. return status;
  1031. /* Disable the SSP at the peripheral and SOC level */
  1032. bfin_spi_disable(drv_data);
  1033. /* Release DMA */
  1034. if (drv_data->master_info->enable_dma) {
  1035. if (dma_channel_active(CH_SPI))
  1036. free_dma(CH_SPI);
  1037. }
  1038. /* Disconnect from the SPI framework */
  1039. spi_unregister_master(drv_data->master);
  1040. /* Prevent double remove */
  1041. platform_set_drvdata(pdev, NULL);
  1042. return 0;
  1043. }
  1044. #ifdef CONFIG_PM
  1045. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1046. {
  1047. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1048. int status = 0;
  1049. status = stop_queue(drv_data);
  1050. if (status != 0)
  1051. return status;
  1052. /* stop hardware */
  1053. bfin_spi_disable(drv_data);
  1054. return 0;
  1055. }
  1056. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1057. {
  1058. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1059. int status = 0;
  1060. /* Enable the SPI interface */
  1061. bfin_spi_enable(drv_data);
  1062. /* Start the queue running */
  1063. status = start_queue(drv_data);
  1064. if (status != 0) {
  1065. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1066. return status;
  1067. }
  1068. return 0;
  1069. }
  1070. #else
  1071. #define bfin5xx_spi_suspend NULL
  1072. #define bfin5xx_spi_resume NULL
  1073. #endif /* CONFIG_PM */
  1074. static struct platform_driver bfin5xx_spi_driver = {
  1075. .driver = {
  1076. .name = "bfin-spi-master",
  1077. .bus = &platform_bus_type,
  1078. .owner = THIS_MODULE,
  1079. },
  1080. .probe = bfin5xx_spi_probe,
  1081. .remove = __devexit_p(bfin5xx_spi_remove),
  1082. .suspend = bfin5xx_spi_suspend,
  1083. .resume = bfin5xx_spi_resume,
  1084. };
  1085. static int __init bfin5xx_spi_init(void)
  1086. {
  1087. return platform_driver_register(&bfin5xx_spi_driver);
  1088. }
  1089. module_init(bfin5xx_spi_init);
  1090. static void __exit bfin5xx_spi_exit(void)
  1091. {
  1092. platform_driver_unregister(&bfin5xx_spi_driver);
  1093. }
  1094. module_exit(bfin5xx_spi_exit);