spi.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/autoconf.h>
  21. #include <linux/kernel.h>
  22. #include <linux/device.h>
  23. #include <linux/init.h>
  24. #include <linux/cache.h>
  25. #include <linux/spi/spi.h>
  26. /* SPI bustype and spi_master class are registered after board init code
  27. * provides the SPI device tables, ensuring that both are present by the
  28. * time controller driver registration causes spi_devices to "enumerate".
  29. */
  30. static void spidev_release(struct device *dev)
  31. {
  32. struct spi_device *spi = to_spi_device(dev);
  33. /* spi masters may cleanup for released devices */
  34. if (spi->master->cleanup)
  35. spi->master->cleanup(spi);
  36. spi_master_put(spi->master);
  37. kfree(dev);
  38. }
  39. static ssize_t
  40. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  41. {
  42. const struct spi_device *spi = to_spi_device(dev);
  43. return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
  44. }
  45. static struct device_attribute spi_dev_attrs[] = {
  46. __ATTR_RO(modalias),
  47. __ATTR_NULL,
  48. };
  49. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  50. * and the sysfs version makes coldplug work too.
  51. */
  52. static int spi_match_device(struct device *dev, struct device_driver *drv)
  53. {
  54. const struct spi_device *spi = to_spi_device(dev);
  55. return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
  56. }
  57. static int spi_uevent(struct device *dev, char **envp, int num_envp,
  58. char *buffer, int buffer_size)
  59. {
  60. const struct spi_device *spi = to_spi_device(dev);
  61. envp[0] = buffer;
  62. snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
  63. envp[1] = NULL;
  64. return 0;
  65. }
  66. #ifdef CONFIG_PM
  67. /*
  68. * NOTE: the suspend() method for an spi_master controller driver
  69. * should verify that all its child devices are marked as suspended;
  70. * suspend requests delivered through sysfs power/state files don't
  71. * enforce such constraints.
  72. */
  73. static int spi_suspend(struct device *dev, pm_message_t message)
  74. {
  75. int value;
  76. struct spi_driver *drv = to_spi_driver(dev->driver);
  77. if (!drv || !drv->suspend)
  78. return 0;
  79. /* suspend will stop irqs and dma; no more i/o */
  80. value = drv->suspend(to_spi_device(dev), message);
  81. if (value == 0)
  82. dev->power.power_state = message;
  83. return value;
  84. }
  85. static int spi_resume(struct device *dev)
  86. {
  87. int value;
  88. struct spi_driver *drv = to_spi_driver(dev->driver);
  89. if (!drv || !drv->resume)
  90. return 0;
  91. /* resume may restart the i/o queue */
  92. value = drv->resume(to_spi_device(dev));
  93. if (value == 0)
  94. dev->power.power_state = PMSG_ON;
  95. return value;
  96. }
  97. #else
  98. #define spi_suspend NULL
  99. #define spi_resume NULL
  100. #endif
  101. struct bus_type spi_bus_type = {
  102. .name = "spi",
  103. .dev_attrs = spi_dev_attrs,
  104. .match = spi_match_device,
  105. .uevent = spi_uevent,
  106. .suspend = spi_suspend,
  107. .resume = spi_resume,
  108. };
  109. EXPORT_SYMBOL_GPL(spi_bus_type);
  110. static int spi_drv_probe(struct device *dev)
  111. {
  112. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  113. return sdrv->probe(to_spi_device(dev));
  114. }
  115. static int spi_drv_remove(struct device *dev)
  116. {
  117. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  118. return sdrv->remove(to_spi_device(dev));
  119. }
  120. static void spi_drv_shutdown(struct device *dev)
  121. {
  122. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  123. sdrv->shutdown(to_spi_device(dev));
  124. }
  125. /**
  126. * spi_register_driver - register a SPI driver
  127. * @sdrv: the driver to register
  128. * Context: can sleep
  129. */
  130. int spi_register_driver(struct spi_driver *sdrv)
  131. {
  132. sdrv->driver.bus = &spi_bus_type;
  133. if (sdrv->probe)
  134. sdrv->driver.probe = spi_drv_probe;
  135. if (sdrv->remove)
  136. sdrv->driver.remove = spi_drv_remove;
  137. if (sdrv->shutdown)
  138. sdrv->driver.shutdown = spi_drv_shutdown;
  139. return driver_register(&sdrv->driver);
  140. }
  141. EXPORT_SYMBOL_GPL(spi_register_driver);
  142. /*-------------------------------------------------------------------------*/
  143. /* SPI devices should normally not be created by SPI device drivers; that
  144. * would make them board-specific. Similarly with SPI master drivers.
  145. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  146. * with other readonly (flashable) information about mainboard devices.
  147. */
  148. struct boardinfo {
  149. struct list_head list;
  150. unsigned n_board_info;
  151. struct spi_board_info board_info[0];
  152. };
  153. static LIST_HEAD(board_list);
  154. static DECLARE_MUTEX(board_lock);
  155. /**
  156. * spi_new_device - instantiate one new SPI device
  157. * @master: Controller to which device is connected
  158. * @chip: Describes the SPI device
  159. * Context: can sleep
  160. *
  161. * On typical mainboards, this is purely internal; and it's not needed
  162. * after board init creates the hard-wired devices. Some development
  163. * platforms may not be able to use spi_register_board_info though, and
  164. * this is exported so that for example a USB or parport based adapter
  165. * driver could add devices (which it would learn about out-of-band).
  166. */
  167. struct spi_device *spi_new_device(struct spi_master *master,
  168. struct spi_board_info *chip)
  169. {
  170. struct spi_device *proxy;
  171. struct device *dev = master->cdev.dev;
  172. int status;
  173. /* NOTE: caller did any chip->bus_num checks necessary */
  174. if (!spi_master_get(master))
  175. return NULL;
  176. proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
  177. if (!proxy) {
  178. dev_err(dev, "can't alloc dev for cs%d\n",
  179. chip->chip_select);
  180. goto fail;
  181. }
  182. proxy->master = master;
  183. proxy->chip_select = chip->chip_select;
  184. proxy->max_speed_hz = chip->max_speed_hz;
  185. proxy->mode = chip->mode;
  186. proxy->irq = chip->irq;
  187. proxy->modalias = chip->modalias;
  188. snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
  189. "%s.%u", master->cdev.class_id,
  190. chip->chip_select);
  191. proxy->dev.parent = dev;
  192. proxy->dev.bus = &spi_bus_type;
  193. proxy->dev.platform_data = (void *) chip->platform_data;
  194. proxy->controller_data = chip->controller_data;
  195. proxy->controller_state = NULL;
  196. proxy->dev.release = spidev_release;
  197. /* drivers may modify this default i/o setup */
  198. status = master->setup(proxy);
  199. if (status < 0) {
  200. dev_dbg(dev, "can't %s %s, status %d\n",
  201. "setup", proxy->dev.bus_id, status);
  202. goto fail;
  203. }
  204. /* driver core catches callers that misbehave by defining
  205. * devices that already exist.
  206. */
  207. status = device_register(&proxy->dev);
  208. if (status < 0) {
  209. dev_dbg(dev, "can't %s %s, status %d\n",
  210. "add", proxy->dev.bus_id, status);
  211. goto fail;
  212. }
  213. dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
  214. return proxy;
  215. fail:
  216. spi_master_put(master);
  217. kfree(proxy);
  218. return NULL;
  219. }
  220. EXPORT_SYMBOL_GPL(spi_new_device);
  221. /**
  222. * spi_register_board_info - register SPI devices for a given board
  223. * @info: array of chip descriptors
  224. * @n: how many descriptors are provided
  225. * Context: can sleep
  226. *
  227. * Board-specific early init code calls this (probably during arch_initcall)
  228. * with segments of the SPI device table. Any device nodes are created later,
  229. * after the relevant parent SPI controller (bus_num) is defined. We keep
  230. * this table of devices forever, so that reloading a controller driver will
  231. * not make Linux forget about these hard-wired devices.
  232. *
  233. * Other code can also call this, e.g. a particular add-on board might provide
  234. * SPI devices through its expansion connector, so code initializing that board
  235. * would naturally declare its SPI devices.
  236. *
  237. * The board info passed can safely be __initdata ... but be careful of
  238. * any embedded pointers (platform_data, etc), they're copied as-is.
  239. */
  240. int __init
  241. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  242. {
  243. struct boardinfo *bi;
  244. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  245. if (!bi)
  246. return -ENOMEM;
  247. bi->n_board_info = n;
  248. memcpy(bi->board_info, info, n * sizeof *info);
  249. down(&board_lock);
  250. list_add_tail(&bi->list, &board_list);
  251. up(&board_lock);
  252. return 0;
  253. }
  254. /* FIXME someone should add support for a __setup("spi", ...) that
  255. * creates board info from kernel command lines
  256. */
  257. static void __init_or_module
  258. scan_boardinfo(struct spi_master *master)
  259. {
  260. struct boardinfo *bi;
  261. struct device *dev = master->cdev.dev;
  262. down(&board_lock);
  263. list_for_each_entry(bi, &board_list, list) {
  264. struct spi_board_info *chip = bi->board_info;
  265. unsigned n;
  266. for (n = bi->n_board_info; n > 0; n--, chip++) {
  267. if (chip->bus_num != master->bus_num)
  268. continue;
  269. /* some controllers only have one chip, so they
  270. * might not use chipselects. otherwise, the
  271. * chipselects are numbered 0..max.
  272. */
  273. if (chip->chip_select >= master->num_chipselect
  274. && master->num_chipselect) {
  275. dev_dbg(dev, "cs%d > max %d\n",
  276. chip->chip_select,
  277. master->num_chipselect);
  278. continue;
  279. }
  280. (void) spi_new_device(master, chip);
  281. }
  282. }
  283. up(&board_lock);
  284. }
  285. /*-------------------------------------------------------------------------*/
  286. static void spi_master_release(struct class_device *cdev)
  287. {
  288. struct spi_master *master;
  289. master = container_of(cdev, struct spi_master, cdev);
  290. kfree(master);
  291. }
  292. static struct class spi_master_class = {
  293. .name = "spi_master",
  294. .owner = THIS_MODULE,
  295. .release = spi_master_release,
  296. };
  297. /**
  298. * spi_alloc_master - allocate SPI master controller
  299. * @dev: the controller, possibly using the platform_bus
  300. * @size: how much zeroed driver-private data to allocate; the pointer to this
  301. * memory is in the class_data field of the returned class_device,
  302. * accessible with spi_master_get_devdata().
  303. * Context: can sleep
  304. *
  305. * This call is used only by SPI master controller drivers, which are the
  306. * only ones directly touching chip registers. It's how they allocate
  307. * an spi_master structure, prior to calling spi_register_master().
  308. *
  309. * This must be called from context that can sleep. It returns the SPI
  310. * master structure on success, else NULL.
  311. *
  312. * The caller is responsible for assigning the bus number and initializing
  313. * the master's methods before calling spi_register_master(); and (after errors
  314. * adding the device) calling spi_master_put() to prevent a memory leak.
  315. */
  316. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  317. {
  318. struct spi_master *master;
  319. if (!dev)
  320. return NULL;
  321. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  322. if (!master)
  323. return NULL;
  324. class_device_initialize(&master->cdev);
  325. master->cdev.class = &spi_master_class;
  326. master->cdev.dev = get_device(dev);
  327. spi_master_set_devdata(master, &master[1]);
  328. return master;
  329. }
  330. EXPORT_SYMBOL_GPL(spi_alloc_master);
  331. /**
  332. * spi_register_master - register SPI master controller
  333. * @master: initialized master, originally from spi_alloc_master()
  334. * Context: can sleep
  335. *
  336. * SPI master controllers connect to their drivers using some non-SPI bus,
  337. * such as the platform bus. The final stage of probe() in that code
  338. * includes calling spi_register_master() to hook up to this SPI bus glue.
  339. *
  340. * SPI controllers use board specific (often SOC specific) bus numbers,
  341. * and board-specific addressing for SPI devices combines those numbers
  342. * with chip select numbers. Since SPI does not directly support dynamic
  343. * device identification, boards need configuration tables telling which
  344. * chip is at which address.
  345. *
  346. * This must be called from context that can sleep. It returns zero on
  347. * success, else a negative error code (dropping the master's refcount).
  348. * After a successful return, the caller is responsible for calling
  349. * spi_unregister_master().
  350. */
  351. int spi_register_master(struct spi_master *master)
  352. {
  353. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<16) - 1);
  354. struct device *dev = master->cdev.dev;
  355. int status = -ENODEV;
  356. int dynamic = 0;
  357. if (!dev)
  358. return -ENODEV;
  359. /* convention: dynamically assigned bus IDs count down from the max */
  360. if (master->bus_num < 0) {
  361. master->bus_num = atomic_dec_return(&dyn_bus_id);
  362. dynamic = 1;
  363. }
  364. /* register the device, then userspace will see it.
  365. * registration fails if the bus ID is in use.
  366. */
  367. snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
  368. "spi%u", master->bus_num);
  369. status = class_device_add(&master->cdev);
  370. if (status < 0)
  371. goto done;
  372. dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
  373. dynamic ? " (dynamic)" : "");
  374. /* populate children from any spi device tables */
  375. scan_boardinfo(master);
  376. status = 0;
  377. done:
  378. return status;
  379. }
  380. EXPORT_SYMBOL_GPL(spi_register_master);
  381. static int __unregister(struct device *dev, void *unused)
  382. {
  383. /* note: before about 2.6.14-rc1 this would corrupt memory: */
  384. spi_unregister_device(to_spi_device(dev));
  385. return 0;
  386. }
  387. /**
  388. * spi_unregister_master - unregister SPI master controller
  389. * @master: the master being unregistered
  390. * Context: can sleep
  391. *
  392. * This call is used only by SPI master controller drivers, which are the
  393. * only ones directly touching chip registers.
  394. *
  395. * This must be called from context that can sleep.
  396. */
  397. void spi_unregister_master(struct spi_master *master)
  398. {
  399. int dummy;
  400. dummy = device_for_each_child(master->cdev.dev, NULL, __unregister);
  401. class_device_unregister(&master->cdev);
  402. }
  403. EXPORT_SYMBOL_GPL(spi_unregister_master);
  404. /**
  405. * spi_busnum_to_master - look up master associated with bus_num
  406. * @bus_num: the master's bus number
  407. * Context: can sleep
  408. *
  409. * This call may be used with devices that are registered after
  410. * arch init time. It returns a refcounted pointer to the relevant
  411. * spi_master (which the caller must release), or NULL if there is
  412. * no such master registered.
  413. */
  414. struct spi_master *spi_busnum_to_master(u16 bus_num)
  415. {
  416. struct class_device *cdev;
  417. struct spi_master *master = NULL;
  418. struct spi_master *m;
  419. down(&spi_master_class.sem);
  420. list_for_each_entry(cdev, &spi_master_class.children, node) {
  421. m = container_of(cdev, struct spi_master, cdev);
  422. if (m->bus_num == bus_num) {
  423. master = spi_master_get(m);
  424. break;
  425. }
  426. }
  427. up(&spi_master_class.sem);
  428. return master;
  429. }
  430. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  431. /*-------------------------------------------------------------------------*/
  432. static void spi_complete(void *arg)
  433. {
  434. complete(arg);
  435. }
  436. /**
  437. * spi_sync - blocking/synchronous SPI data transfers
  438. * @spi: device with which data will be exchanged
  439. * @message: describes the data transfers
  440. * Context: can sleep
  441. *
  442. * This call may only be used from a context that may sleep. The sleep
  443. * is non-interruptible, and has no timeout. Low-overhead controller
  444. * drivers may DMA directly into and out of the message buffers.
  445. *
  446. * Note that the SPI device's chip select is active during the message,
  447. * and then is normally disabled between messages. Drivers for some
  448. * frequently-used devices may want to minimize costs of selecting a chip,
  449. * by leaving it selected in anticipation that the next message will go
  450. * to the same chip. (That may increase power usage.)
  451. *
  452. * Also, the caller is guaranteeing that the memory associated with the
  453. * message will not be freed before this call returns.
  454. *
  455. * The return value is a negative error code if the message could not be
  456. * submitted, else zero. When the value is zero, then message->status is
  457. * also defined; it's the completion code for the transfer, either zero
  458. * or a negative error code from the controller driver.
  459. */
  460. int spi_sync(struct spi_device *spi, struct spi_message *message)
  461. {
  462. DECLARE_COMPLETION_ONSTACK(done);
  463. int status;
  464. message->complete = spi_complete;
  465. message->context = &done;
  466. status = spi_async(spi, message);
  467. if (status == 0)
  468. wait_for_completion(&done);
  469. message->context = NULL;
  470. return status;
  471. }
  472. EXPORT_SYMBOL_GPL(spi_sync);
  473. /* portable code must never pass more than 32 bytes */
  474. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  475. static u8 *buf;
  476. /**
  477. * spi_write_then_read - SPI synchronous write followed by read
  478. * @spi: device with which data will be exchanged
  479. * @txbuf: data to be written (need not be dma-safe)
  480. * @n_tx: size of txbuf, in bytes
  481. * @rxbuf: buffer into which data will be read
  482. * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
  483. * Context: can sleep
  484. *
  485. * This performs a half duplex MicroWire style transaction with the
  486. * device, sending txbuf and then reading rxbuf. The return value
  487. * is zero for success, else a negative errno status code.
  488. * This call may only be used from a context that may sleep.
  489. *
  490. * Parameters to this routine are always copied using a small buffer;
  491. * portable code should never use this for more than 32 bytes.
  492. * Performance-sensitive or bulk transfer code should instead use
  493. * spi_{async,sync}() calls with dma-safe buffers.
  494. */
  495. int spi_write_then_read(struct spi_device *spi,
  496. const u8 *txbuf, unsigned n_tx,
  497. u8 *rxbuf, unsigned n_rx)
  498. {
  499. static DECLARE_MUTEX(lock);
  500. int status;
  501. struct spi_message message;
  502. struct spi_transfer x[2];
  503. u8 *local_buf;
  504. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  505. * (as a pure convenience thing), but we can keep heap costs
  506. * out of the hot path ...
  507. */
  508. if ((n_tx + n_rx) > SPI_BUFSIZ)
  509. return -EINVAL;
  510. spi_message_init(&message);
  511. memset(x, 0, sizeof x);
  512. if (n_tx) {
  513. x[0].len = n_tx;
  514. spi_message_add_tail(&x[0], &message);
  515. }
  516. if (n_rx) {
  517. x[1].len = n_rx;
  518. spi_message_add_tail(&x[1], &message);
  519. }
  520. /* ... unless someone else is using the pre-allocated buffer */
  521. if (down_trylock(&lock)) {
  522. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  523. if (!local_buf)
  524. return -ENOMEM;
  525. } else
  526. local_buf = buf;
  527. memcpy(local_buf, txbuf, n_tx);
  528. x[0].tx_buf = local_buf;
  529. x[1].rx_buf = local_buf + n_tx;
  530. /* do the i/o */
  531. status = spi_sync(spi, &message);
  532. if (status == 0) {
  533. memcpy(rxbuf, x[1].rx_buf, n_rx);
  534. status = message.status;
  535. }
  536. if (x[0].tx_buf == buf)
  537. up(&lock);
  538. else
  539. kfree(local_buf);
  540. return status;
  541. }
  542. EXPORT_SYMBOL_GPL(spi_write_then_read);
  543. /*-------------------------------------------------------------------------*/
  544. static int __init spi_init(void)
  545. {
  546. int status;
  547. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  548. if (!buf) {
  549. status = -ENOMEM;
  550. goto err0;
  551. }
  552. status = bus_register(&spi_bus_type);
  553. if (status < 0)
  554. goto err1;
  555. status = class_register(&spi_master_class);
  556. if (status < 0)
  557. goto err2;
  558. return 0;
  559. err2:
  560. bus_unregister(&spi_bus_type);
  561. err1:
  562. kfree(buf);
  563. buf = NULL;
  564. err0:
  565. return status;
  566. }
  567. /* board_info is normally registered in arch_initcall(),
  568. * but even essential drivers wait till later
  569. *
  570. * REVISIT only boardinfo really needs static linking. the rest (device and
  571. * driver registration) _could_ be dynamically linked (modular) ... costs
  572. * include needing to have boardinfo data structures be much more public.
  573. */
  574. subsys_initcall(spi_init);