aic94xx_scb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. /*
  2. * Aic94xx SAS/SATA driver SCB management.
  3. *
  4. * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
  5. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
  6. *
  7. * This file is licensed under GPLv2.
  8. *
  9. * This file is part of the aic94xx driver.
  10. *
  11. * The aic94xx driver is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; version 2 of the
  14. * License.
  15. *
  16. * The aic94xx driver is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with the aic94xx driver; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  24. *
  25. */
  26. #include <scsi/scsi_host.h>
  27. #include "aic94xx.h"
  28. #include "aic94xx_reg.h"
  29. #include "aic94xx_hwi.h"
  30. #include "aic94xx_seq.h"
  31. #include "aic94xx_dump.h"
  32. /* ---------- EMPTY SCB ---------- */
  33. #define DL_PHY_MASK 7
  34. #define BYTES_DMAED 0
  35. #define PRIMITIVE_RECVD 0x08
  36. #define PHY_EVENT 0x10
  37. #define LINK_RESET_ERROR 0x18
  38. #define TIMER_EVENT 0x20
  39. #define REQ_TASK_ABORT 0xF0
  40. #define REQ_DEVICE_RESET 0xF1
  41. #define SIGNAL_NCQ_ERROR 0xF2
  42. #define CLEAR_NCQ_ERROR 0xF3
  43. #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
  44. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  45. | CURRENT_OOB_ERROR)
  46. static inline void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
  47. {
  48. struct sas_phy *sas_phy = phy->sas_phy.phy;
  49. switch (oob_mode & 7) {
  50. case PHY_SPEED_60:
  51. /* FIXME: sas transport class doesn't have this */
  52. phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
  53. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
  54. break;
  55. case PHY_SPEED_30:
  56. phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
  57. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
  58. break;
  59. case PHY_SPEED_15:
  60. phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
  61. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
  62. break;
  63. }
  64. sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
  65. sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
  66. sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  67. sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
  68. sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
  69. if (oob_mode & SAS_MODE)
  70. phy->sas_phy.oob_mode = SAS_OOB_MODE;
  71. else if (oob_mode & SATA_MODE)
  72. phy->sas_phy.oob_mode = SATA_OOB_MODE;
  73. }
  74. static inline void asd_phy_event_tasklet(struct asd_ascb *ascb,
  75. struct done_list_struct *dl)
  76. {
  77. struct asd_ha_struct *asd_ha = ascb->ha;
  78. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  79. int phy_id = dl->status_block[0] & DL_PHY_MASK;
  80. struct asd_phy *phy = &asd_ha->phys[phy_id];
  81. u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
  82. u8 oob_mode = dl->status_block[2];
  83. switch (oob_status) {
  84. case CURRENT_LOSS_OF_SIGNAL:
  85. /* directly attached device was removed */
  86. ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
  87. asd_turn_led(asd_ha, phy_id, 0);
  88. sas_phy_disconnected(&phy->sas_phy);
  89. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
  90. break;
  91. case CURRENT_OOB_DONE:
  92. /* hot plugged device */
  93. asd_turn_led(asd_ha, phy_id, 1);
  94. get_lrate_mode(phy, oob_mode);
  95. ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
  96. phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
  97. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
  98. break;
  99. case CURRENT_SPINUP_HOLD:
  100. /* hot plug SATA, no COMWAKE sent */
  101. asd_turn_led(asd_ha, phy_id, 1);
  102. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
  103. break;
  104. case CURRENT_GTO_TIMEOUT:
  105. case CURRENT_OOB_ERROR:
  106. ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
  107. dl->status_block[1]);
  108. asd_turn_led(asd_ha, phy_id, 0);
  109. sas_phy_disconnected(&phy->sas_phy);
  110. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
  111. break;
  112. }
  113. }
  114. /* If phys are enabled sparsely, this will do the right thing. */
  115. static inline unsigned ord_phy(struct asd_ha_struct *asd_ha,
  116. struct asd_phy *phy)
  117. {
  118. u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
  119. int i, k = 0;
  120. for_each_phy(enabled_mask, enabled_mask, i) {
  121. if (&asd_ha->phys[i] == phy)
  122. return k;
  123. k++;
  124. }
  125. return 0;
  126. }
  127. /**
  128. * asd_get_attached_sas_addr -- extract/generate attached SAS address
  129. * phy: pointer to asd_phy
  130. * sas_addr: pointer to buffer where the SAS address is to be written
  131. *
  132. * This function extracts the SAS address from an IDENTIFY frame
  133. * received. If OOB is SATA, then a SAS address is generated from the
  134. * HA tables.
  135. *
  136. * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
  137. * buffer.
  138. */
  139. static inline void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
  140. {
  141. if (phy->sas_phy.frame_rcvd[0] == 0x34
  142. && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
  143. struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
  144. /* FIS device-to-host */
  145. u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
  146. addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
  147. *(__be64 *)sas_addr = cpu_to_be64(addr);
  148. } else {
  149. struct sas_identify_frame *idframe =
  150. (void *) phy->sas_phy.frame_rcvd;
  151. memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
  152. }
  153. }
  154. static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  155. {
  156. int i;
  157. struct asd_port *free_port = NULL;
  158. struct asd_port *port;
  159. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  160. unsigned long flags;
  161. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  162. if (!phy->asd_port) {
  163. for (i = 0; i < ASD_MAX_PHYS; i++) {
  164. port = &asd_ha->asd_ports[i];
  165. /* Check for wide port */
  166. if (port->num_phys > 0 &&
  167. memcmp(port->sas_addr, sas_phy->sas_addr,
  168. SAS_ADDR_SIZE) == 0 &&
  169. memcmp(port->attached_sas_addr,
  170. sas_phy->attached_sas_addr,
  171. SAS_ADDR_SIZE) == 0) {
  172. break;
  173. }
  174. /* Find a free port */
  175. if (port->num_phys == 0 && free_port == NULL) {
  176. free_port = port;
  177. }
  178. }
  179. /* Use a free port if this doesn't form a wide port */
  180. if (i >= ASD_MAX_PHYS) {
  181. port = free_port;
  182. BUG_ON(!port);
  183. memcpy(port->sas_addr, sas_phy->sas_addr,
  184. SAS_ADDR_SIZE);
  185. memcpy(port->attached_sas_addr,
  186. sas_phy->attached_sas_addr,
  187. SAS_ADDR_SIZE);
  188. }
  189. port->num_phys++;
  190. port->phy_mask |= (1U << sas_phy->id);
  191. phy->asd_port = port;
  192. }
  193. ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
  194. __FUNCTION__, phy->asd_port->phy_mask, sas_phy->id);
  195. asd_update_port_links(asd_ha, phy);
  196. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  197. }
  198. static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  199. {
  200. struct asd_port *port = phy->asd_port;
  201. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  202. unsigned long flags;
  203. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  204. if (port) {
  205. port->num_phys--;
  206. port->phy_mask &= ~(1U << sas_phy->id);
  207. phy->asd_port = NULL;
  208. }
  209. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  210. }
  211. static inline void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
  212. struct done_list_struct *dl,
  213. int edb_id, int phy_id)
  214. {
  215. unsigned long flags;
  216. int edb_el = edb_id + ascb->edb_index;
  217. struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
  218. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  219. struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
  220. u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
  221. size = min(size, (u16) sizeof(phy->frame_rcvd));
  222. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  223. memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
  224. phy->sas_phy.frame_rcvd_size = size;
  225. asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  226. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  227. asd_dump_frame_rcvd(phy, dl);
  228. asd_form_port(ascb->ha, phy);
  229. sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
  230. }
  231. static inline void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
  232. struct done_list_struct *dl,
  233. int phy_id)
  234. {
  235. struct asd_ha_struct *asd_ha = ascb->ha;
  236. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  237. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  238. struct asd_phy *phy = &asd_ha->phys[phy_id];
  239. u8 lr_error = dl->status_block[1];
  240. u8 retries_left = dl->status_block[2];
  241. switch (lr_error) {
  242. case 0:
  243. ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
  244. break;
  245. case 1:
  246. ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
  247. break;
  248. case 2:
  249. ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
  250. break;
  251. case 3:
  252. ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
  253. break;
  254. default:
  255. ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
  256. phy_id, lr_error);
  257. break;
  258. }
  259. asd_turn_led(asd_ha, phy_id, 0);
  260. sas_phy_disconnected(sas_phy);
  261. asd_deform_port(asd_ha, phy);
  262. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  263. if (retries_left == 0) {
  264. int num = 1;
  265. struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
  266. GFP_ATOMIC);
  267. if (!cp) {
  268. asd_printk("%s: out of memory\n", __FUNCTION__);
  269. goto out;
  270. }
  271. ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
  272. phy_id);
  273. asd_build_control_phy(cp, phy_id, ENABLE_PHY);
  274. if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
  275. asd_ascb_free(cp);
  276. }
  277. out:
  278. ;
  279. }
  280. static inline void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
  281. struct done_list_struct *dl,
  282. int phy_id)
  283. {
  284. unsigned long flags;
  285. struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
  286. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  287. struct asd_ha_struct *asd_ha = ascb->ha;
  288. struct asd_phy *phy = &asd_ha->phys[phy_id];
  289. u8 reg = dl->status_block[1];
  290. u32 cont = dl->status_block[2] << ((reg & 3)*8);
  291. reg &= ~3;
  292. switch (reg) {
  293. case LmPRMSTAT0BYTE0:
  294. switch (cont) {
  295. case LmBROADCH:
  296. case LmBROADRVCH0:
  297. case LmBROADRVCH1:
  298. case LmBROADSES:
  299. ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
  300. phy_id, cont);
  301. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  302. sas_phy->sas_prim = ffs(cont);
  303. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  304. sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
  305. break;
  306. case LmUNKNOWNP:
  307. ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
  308. break;
  309. default:
  310. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  311. phy_id, reg, cont);
  312. break;
  313. }
  314. break;
  315. case LmPRMSTAT1BYTE0:
  316. switch (cont) {
  317. case LmHARDRST:
  318. ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
  319. phy_id);
  320. /* The sequencer disables all phys on that port.
  321. * We have to re-enable the phys ourselves. */
  322. asd_deform_port(asd_ha, phy);
  323. sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
  324. break;
  325. default:
  326. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  327. phy_id, reg, cont);
  328. break;
  329. }
  330. break;
  331. default:
  332. ASD_DPRINTK("unknown primitive register:0x%x\n",
  333. dl->status_block[1]);
  334. break;
  335. }
  336. }
  337. /**
  338. * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
  339. * @ascb: pointer to Empty SCB
  340. * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
  341. *
  342. * After an EDB has been invalidated, if all EDBs in this ESCB have been
  343. * invalidated, the ESCB is posted back to the sequencer.
  344. * Context is tasklet/IRQ.
  345. */
  346. void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
  347. {
  348. struct asd_seq_data *seq = &ascb->ha->seq;
  349. struct empty_scb *escb = &ascb->scb->escb;
  350. struct sg_el *eb = &escb->eb[edb_id];
  351. struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
  352. memset(edb->vaddr, 0, ASD_EDB_SIZE);
  353. eb->flags |= ELEMENT_NOT_VALID;
  354. escb->num_valid--;
  355. if (escb->num_valid == 0) {
  356. int i;
  357. /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
  358. "dma_handle: 0x%08llx, next: 0x%08llx, "
  359. "index:%d, opcode:0x%02x\n",
  360. ascb->dma_scb.vaddr,
  361. (u64)ascb->dma_scb.dma_handle,
  362. le64_to_cpu(ascb->scb->header.next_scb),
  363. le16_to_cpu(ascb->scb->header.index),
  364. ascb->scb->header.opcode);
  365. */
  366. escb->num_valid = ASD_EDBS_PER_SCB;
  367. for (i = 0; i < ASD_EDBS_PER_SCB; i++)
  368. escb->eb[i].flags = 0;
  369. if (!list_empty(&ascb->list))
  370. list_del_init(&ascb->list);
  371. i = asd_post_escb_list(ascb->ha, ascb, 1);
  372. if (i)
  373. asd_printk("couldn't post escb, err:%d\n", i);
  374. }
  375. }
  376. static void escb_tasklet_complete(struct asd_ascb *ascb,
  377. struct done_list_struct *dl)
  378. {
  379. struct asd_ha_struct *asd_ha = ascb->ha;
  380. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  381. int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
  382. u8 sb_opcode = dl->status_block[0];
  383. int phy_id = sb_opcode & DL_PHY_MASK;
  384. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  385. struct asd_phy *phy = &asd_ha->phys[phy_id];
  386. if (edb > 6 || edb < 0) {
  387. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  388. edb, dl->opcode);
  389. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  390. sb_opcode, phy_id);
  391. ASD_DPRINTK("escb: vaddr: 0x%p, "
  392. "dma_handle: 0x%llx, next: 0x%llx, "
  393. "index:%d, opcode:0x%02x\n",
  394. ascb->dma_scb.vaddr,
  395. (unsigned long long)ascb->dma_scb.dma_handle,
  396. (unsigned long long)
  397. le64_to_cpu(ascb->scb->header.next_scb),
  398. le16_to_cpu(ascb->scb->header.index),
  399. ascb->scb->header.opcode);
  400. }
  401. /* Catch these before we mask off the sb_opcode bits */
  402. switch (sb_opcode) {
  403. case REQ_TASK_ABORT: {
  404. struct asd_ascb *a, *b;
  405. u16 tc_abort;
  406. struct domain_device *failed_dev = NULL;
  407. ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
  408. __FUNCTION__, dl->status_block[3]);
  409. /*
  410. * Find the task that caused the abort and abort it first.
  411. * The sequencer won't put anything on the done list until
  412. * that happens.
  413. */
  414. tc_abort = *((u16*)(&dl->status_block[1]));
  415. tc_abort = le16_to_cpu(tc_abort);
  416. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
  417. struct sas_task *task = ascb->uldd_task;
  418. if (task && a->tc_index == tc_abort) {
  419. failed_dev = task->dev;
  420. sas_task_abort(task);
  421. break;
  422. }
  423. }
  424. if (!failed_dev) {
  425. ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
  426. __FUNCTION__, tc_abort);
  427. goto out;
  428. }
  429. /*
  430. * Now abort everything else for that device (hba?) so
  431. * that the EH will wake up and do something.
  432. */
  433. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
  434. struct sas_task *task = ascb->uldd_task;
  435. if (task &&
  436. task->dev == failed_dev &&
  437. a->tc_index != tc_abort)
  438. sas_task_abort(task);
  439. }
  440. goto out;
  441. }
  442. case REQ_DEVICE_RESET: {
  443. struct asd_ascb *a;
  444. u16 conn_handle;
  445. unsigned long flags;
  446. struct sas_task *last_dev_task = NULL;
  447. conn_handle = *((u16*)(&dl->status_block[1]));
  448. conn_handle = le16_to_cpu(conn_handle);
  449. ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __FUNCTION__,
  450. dl->status_block[3]);
  451. /* Find the last pending task for the device... */
  452. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  453. u16 x;
  454. struct domain_device *dev;
  455. struct sas_task *task = a->uldd_task;
  456. if (!task)
  457. continue;
  458. dev = task->dev;
  459. x = (unsigned long)dev->lldd_dev;
  460. if (x == conn_handle)
  461. last_dev_task = task;
  462. }
  463. if (!last_dev_task) {
  464. ASD_DPRINTK("%s: Device reset for idle device %d?\n",
  465. __FUNCTION__, conn_handle);
  466. goto out;
  467. }
  468. /* ...and set the reset flag */
  469. spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
  470. last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
  471. spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
  472. /* Kill all pending tasks for the device */
  473. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  474. u16 x;
  475. struct domain_device *dev;
  476. struct sas_task *task = a->uldd_task;
  477. if (!task)
  478. continue;
  479. dev = task->dev;
  480. x = (unsigned long)dev->lldd_dev;
  481. if (x == conn_handle)
  482. sas_task_abort(task);
  483. }
  484. goto out;
  485. }
  486. case SIGNAL_NCQ_ERROR:
  487. ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __FUNCTION__);
  488. goto out;
  489. case CLEAR_NCQ_ERROR:
  490. ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __FUNCTION__);
  491. goto out;
  492. }
  493. sb_opcode &= ~DL_PHY_MASK;
  494. switch (sb_opcode) {
  495. case BYTES_DMAED:
  496. ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __FUNCTION__, phy_id);
  497. asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
  498. break;
  499. case PRIMITIVE_RECVD:
  500. ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __FUNCTION__,
  501. phy_id);
  502. asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
  503. break;
  504. case PHY_EVENT:
  505. ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __FUNCTION__, phy_id);
  506. asd_phy_event_tasklet(ascb, dl);
  507. break;
  508. case LINK_RESET_ERROR:
  509. ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __FUNCTION__,
  510. phy_id);
  511. asd_link_reset_err_tasklet(ascb, dl, phy_id);
  512. break;
  513. case TIMER_EVENT:
  514. ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
  515. __FUNCTION__, phy_id);
  516. asd_turn_led(asd_ha, phy_id, 0);
  517. /* the device is gone */
  518. sas_phy_disconnected(sas_phy);
  519. asd_deform_port(asd_ha, phy);
  520. sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
  521. break;
  522. default:
  523. ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __FUNCTION__,
  524. phy_id, sb_opcode);
  525. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  526. edb, dl->opcode);
  527. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  528. sb_opcode, phy_id);
  529. ASD_DPRINTK("escb: vaddr: 0x%p, "
  530. "dma_handle: 0x%llx, next: 0x%llx, "
  531. "index:%d, opcode:0x%02x\n",
  532. ascb->dma_scb.vaddr,
  533. (unsigned long long)ascb->dma_scb.dma_handle,
  534. (unsigned long long)
  535. le64_to_cpu(ascb->scb->header.next_scb),
  536. le16_to_cpu(ascb->scb->header.index),
  537. ascb->scb->header.opcode);
  538. break;
  539. }
  540. out:
  541. asd_invalidate_edb(ascb, edb);
  542. }
  543. int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
  544. {
  545. struct asd_seq_data *seq = &asd_ha->seq;
  546. int i;
  547. for (i = 0; i < seq->num_escbs; i++)
  548. seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
  549. ASD_DPRINTK("posting %d escbs\n", i);
  550. return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
  551. }
  552. /* ---------- CONTROL PHY ---------- */
  553. #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
  554. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  555. | CURRENT_OOB_ERROR)
  556. /**
  557. * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
  558. * @ascb: pointer to an ascb
  559. * @dl: pointer to the done list entry
  560. *
  561. * This function completes a CONTROL PHY scb and frees the ascb.
  562. * A note on LEDs:
  563. * - an LED blinks if there is IO though it,
  564. * - if a device is connected to the LED, it is lit,
  565. * - if no device is connected to the LED, is is dimmed (off).
  566. */
  567. static void control_phy_tasklet_complete(struct asd_ascb *ascb,
  568. struct done_list_struct *dl)
  569. {
  570. struct asd_ha_struct *asd_ha = ascb->ha;
  571. struct scb *scb = ascb->scb;
  572. struct control_phy *control_phy = &scb->control_phy;
  573. u8 phy_id = control_phy->phy_id;
  574. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  575. u8 status = dl->status_block[0];
  576. u8 oob_status = dl->status_block[1];
  577. u8 oob_mode = dl->status_block[2];
  578. /* u8 oob_signals= dl->status_block[3]; */
  579. if (status != 0) {
  580. ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
  581. __FUNCTION__, phy_id, status);
  582. goto out;
  583. }
  584. switch (control_phy->sub_func) {
  585. case DISABLE_PHY:
  586. asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
  587. asd_turn_led(asd_ha, phy_id, 0);
  588. asd_control_led(asd_ha, phy_id, 0);
  589. ASD_DPRINTK("%s: disable phy%d\n", __FUNCTION__, phy_id);
  590. break;
  591. case ENABLE_PHY:
  592. asd_control_led(asd_ha, phy_id, 1);
  593. if (oob_status & CURRENT_OOB_DONE) {
  594. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  595. get_lrate_mode(phy, oob_mode);
  596. asd_turn_led(asd_ha, phy_id, 1);
  597. ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
  598. __FUNCTION__, phy_id,phy->sas_phy.linkrate,
  599. phy->sas_phy.iproto);
  600. } else if (oob_status & CURRENT_SPINUP_HOLD) {
  601. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  602. asd_turn_led(asd_ha, phy_id, 1);
  603. ASD_DPRINTK("%s: phy%d, spinup hold\n", __FUNCTION__,
  604. phy_id);
  605. } else if (oob_status & CURRENT_ERR_MASK) {
  606. asd_turn_led(asd_ha, phy_id, 0);
  607. ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
  608. __FUNCTION__, phy_id, oob_status);
  609. } else if (oob_status & (CURRENT_HOT_PLUG_CNCT
  610. | CURRENT_DEVICE_PRESENT)) {
  611. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  612. asd_turn_led(asd_ha, phy_id, 1);
  613. ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
  614. __FUNCTION__, phy_id);
  615. } else {
  616. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  617. asd_turn_led(asd_ha, phy_id, 0);
  618. ASD_DPRINTK("%s: phy%d: no device present: "
  619. "oob_status:0x%x\n",
  620. __FUNCTION__, phy_id, oob_status);
  621. }
  622. break;
  623. case RELEASE_SPINUP_HOLD:
  624. case PHY_NO_OP:
  625. case EXECUTE_HARD_RESET:
  626. ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __FUNCTION__,
  627. phy_id, control_phy->sub_func);
  628. /* XXX finish */
  629. break;
  630. default:
  631. ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __FUNCTION__,
  632. phy_id, control_phy->sub_func);
  633. break;
  634. }
  635. out:
  636. asd_ascb_free(ascb);
  637. }
  638. static inline void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
  639. {
  640. /* disable all speeds, then enable defaults */
  641. *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
  642. | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
  643. switch (pd->max_sas_lrate) {
  644. case SAS_LINK_RATE_6_0_GBPS:
  645. *speed_mask &= ~SAS_SPEED_60_DIS;
  646. default:
  647. case SAS_LINK_RATE_3_0_GBPS:
  648. *speed_mask &= ~SAS_SPEED_30_DIS;
  649. case SAS_LINK_RATE_1_5_GBPS:
  650. *speed_mask &= ~SAS_SPEED_15_DIS;
  651. }
  652. switch (pd->min_sas_lrate) {
  653. case SAS_LINK_RATE_6_0_GBPS:
  654. *speed_mask |= SAS_SPEED_30_DIS;
  655. case SAS_LINK_RATE_3_0_GBPS:
  656. *speed_mask |= SAS_SPEED_15_DIS;
  657. default:
  658. case SAS_LINK_RATE_1_5_GBPS:
  659. /* nothing to do */
  660. ;
  661. }
  662. switch (pd->max_sata_lrate) {
  663. case SAS_LINK_RATE_3_0_GBPS:
  664. *speed_mask &= ~SATA_SPEED_30_DIS;
  665. default:
  666. case SAS_LINK_RATE_1_5_GBPS:
  667. *speed_mask &= ~SATA_SPEED_15_DIS;
  668. }
  669. switch (pd->min_sata_lrate) {
  670. case SAS_LINK_RATE_3_0_GBPS:
  671. *speed_mask |= SATA_SPEED_15_DIS;
  672. default:
  673. case SAS_LINK_RATE_1_5_GBPS:
  674. /* nothing to do */
  675. ;
  676. }
  677. }
  678. /**
  679. * asd_build_control_phy -- build a CONTROL PHY SCB
  680. * @ascb: pointer to an ascb
  681. * @phy_id: phy id to control, integer
  682. * @subfunc: subfunction, what to actually to do the phy
  683. *
  684. * This function builds a CONTROL PHY scb. No allocation of any kind
  685. * is performed. @ascb is allocated with the list function.
  686. * The caller can override the ascb->tasklet_complete to point
  687. * to its own callback function. It must call asd_ascb_free()
  688. * at its tasklet complete function.
  689. * See the default implementation.
  690. */
  691. void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
  692. {
  693. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  694. struct scb *scb = ascb->scb;
  695. struct control_phy *control_phy = &scb->control_phy;
  696. scb->header.opcode = CONTROL_PHY;
  697. control_phy->phy_id = (u8) phy_id;
  698. control_phy->sub_func = subfunc;
  699. switch (subfunc) {
  700. case EXECUTE_HARD_RESET: /* 0x81 */
  701. case ENABLE_PHY: /* 0x01 */
  702. /* decide hot plug delay */
  703. control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
  704. /* decide speed mask */
  705. set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
  706. /* initiator port settings are in the hi nibble */
  707. if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
  708. control_phy->port_type = SAS_PROTO_ALL << 4;
  709. else if (phy->sas_phy.role == PHY_ROLE_TARGET)
  710. control_phy->port_type = SAS_PROTO_ALL;
  711. else
  712. control_phy->port_type =
  713. (SAS_PROTO_ALL << 4) | SAS_PROTO_ALL;
  714. /* link reset retries, this should be nominal */
  715. control_phy->link_reset_retries = 10;
  716. case RELEASE_SPINUP_HOLD: /* 0x02 */
  717. /* decide the func_mask */
  718. control_phy->func_mask = FUNCTION_MASK_DEFAULT;
  719. if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
  720. control_phy->func_mask &= ~SPINUP_HOLD_DIS;
  721. else
  722. control_phy->func_mask |= SPINUP_HOLD_DIS;
  723. }
  724. control_phy->conn_handle = cpu_to_le16(0xFFFF);
  725. ascb->tasklet_complete = control_phy_tasklet_complete;
  726. }
  727. /* ---------- INITIATE LINK ADM TASK ---------- */
  728. static void link_adm_tasklet_complete(struct asd_ascb *ascb,
  729. struct done_list_struct *dl)
  730. {
  731. u8 opcode = dl->opcode;
  732. struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
  733. u8 phy_id = link_adm->phy_id;
  734. if (opcode != TC_NO_ERROR) {
  735. asd_printk("phy%d: link adm task 0x%x completed with error "
  736. "0x%x\n", phy_id, link_adm->sub_func, opcode);
  737. }
  738. ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
  739. phy_id, link_adm->sub_func, opcode);
  740. asd_ascb_free(ascb);
  741. }
  742. void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
  743. u8 subfunc)
  744. {
  745. struct scb *scb = ascb->scb;
  746. struct initiate_link_adm *link_adm = &scb->link_adm;
  747. scb->header.opcode = INITIATE_LINK_ADM_TASK;
  748. link_adm->phy_id = phy_id;
  749. link_adm->sub_func = subfunc;
  750. link_adm->conn_handle = cpu_to_le16(0xFFFF);
  751. ascb->tasklet_complete = link_adm_tasklet_complete;
  752. }
  753. /* ---------- SCB timer ---------- */
  754. /**
  755. * asd_ascb_timedout -- called when a pending SCB's timer has expired
  756. * @data: unsigned long, a pointer to the ascb in question
  757. *
  758. * This is the default timeout function which does the most necessary.
  759. * Upper layers can implement their own timeout function, say to free
  760. * resources they have with this SCB, and then call this one at the
  761. * end of their timeout function. To do this, one should initialize
  762. * the ascb->timer.{function, data, expires} prior to calling the post
  763. * funcion. The timer is started by the post function.
  764. */
  765. void asd_ascb_timedout(unsigned long data)
  766. {
  767. struct asd_ascb *ascb = (void *) data;
  768. struct asd_seq_data *seq = &ascb->ha->seq;
  769. unsigned long flags;
  770. ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
  771. spin_lock_irqsave(&seq->pend_q_lock, flags);
  772. seq->pending--;
  773. list_del_init(&ascb->list);
  774. spin_unlock_irqrestore(&seq->pend_q_lock, flags);
  775. asd_ascb_free(ascb);
  776. }
  777. /* ---------- CONTROL PHY ---------- */
  778. /* Given the spec value, return a driver value. */
  779. static const int phy_func_table[] = {
  780. [PHY_FUNC_NOP] = PHY_NO_OP,
  781. [PHY_FUNC_LINK_RESET] = ENABLE_PHY,
  782. [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
  783. [PHY_FUNC_DISABLE] = DISABLE_PHY,
  784. [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
  785. };
  786. int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
  787. {
  788. struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
  789. struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
  790. struct asd_ascb *ascb;
  791. struct sas_phy_linkrates *rates;
  792. int res = 1;
  793. switch (func) {
  794. case PHY_FUNC_CLEAR_ERROR_LOG:
  795. return -ENOSYS;
  796. case PHY_FUNC_SET_LINK_RATE:
  797. rates = arg;
  798. if (rates->minimum_linkrate) {
  799. pd->min_sas_lrate = rates->minimum_linkrate;
  800. pd->min_sata_lrate = rates->minimum_linkrate;
  801. }
  802. if (rates->maximum_linkrate) {
  803. pd->max_sas_lrate = rates->maximum_linkrate;
  804. pd->max_sata_lrate = rates->maximum_linkrate;
  805. }
  806. func = PHY_FUNC_LINK_RESET;
  807. break;
  808. default:
  809. break;
  810. }
  811. ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
  812. if (!ascb)
  813. return -ENOMEM;
  814. asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
  815. res = asd_post_ascb_list(asd_ha, ascb , 1);
  816. if (res)
  817. asd_ascb_free(ascb);
  818. return res;
  819. }