keyboard.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * drivers/s390/char/keyboard.c
  3. * ebcdic keycode functions for s390 console drivers
  4. *
  5. * S390 version
  6. * Copyright (C) 2003 IBM Deutschland Entwicklung GmbH, IBM Corporation
  7. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  8. */
  9. #include <linux/module.h>
  10. #include <linux/sched.h>
  11. #include <linux/sysrq.h>
  12. #include <linux/kbd_kern.h>
  13. #include <linux/kbd_diacr.h>
  14. #include <asm/uaccess.h>
  15. #include "keyboard.h"
  16. /*
  17. * Handler Tables.
  18. */
  19. #define K_HANDLERS\
  20. k_self, k_fn, k_spec, k_ignore,\
  21. k_dead, k_ignore, k_ignore, k_ignore,\
  22. k_ignore, k_ignore, k_ignore, k_ignore,\
  23. k_ignore, k_ignore, k_ignore, k_ignore
  24. typedef void (k_handler_fn)(struct kbd_data *, unsigned char);
  25. static k_handler_fn K_HANDLERS;
  26. static k_handler_fn *k_handler[16] = { K_HANDLERS };
  27. /* maximum values each key_handler can handle */
  28. static const int kbd_max_vals[] = {
  29. 255, ARRAY_SIZE(func_table) - 1, NR_FN_HANDLER - 1, 0,
  30. NR_DEAD - 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
  31. };
  32. static const int KBD_NR_TYPES = ARRAY_SIZE(kbd_max_vals);
  33. static unsigned char ret_diacr[NR_DEAD] = {
  34. '`', '\'', '^', '~', '"', ','
  35. };
  36. /*
  37. * Alloc/free of kbd_data structures.
  38. */
  39. struct kbd_data *
  40. kbd_alloc(void) {
  41. struct kbd_data *kbd;
  42. int i, len;
  43. kbd = kzalloc(sizeof(struct kbd_data), GFP_KERNEL);
  44. if (!kbd)
  45. goto out;
  46. kbd->key_maps = kzalloc(sizeof(key_maps), GFP_KERNEL);
  47. if (!kbd->key_maps)
  48. goto out_kbd;
  49. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  50. if (key_maps[i]) {
  51. kbd->key_maps[i] =
  52. kmalloc(sizeof(u_short)*NR_KEYS, GFP_KERNEL);
  53. if (!kbd->key_maps[i])
  54. goto out_maps;
  55. memcpy(kbd->key_maps[i], key_maps[i],
  56. sizeof(u_short)*NR_KEYS);
  57. }
  58. }
  59. kbd->func_table = kzalloc(sizeof(func_table), GFP_KERNEL);
  60. if (!kbd->func_table)
  61. goto out_maps;
  62. for (i = 0; i < ARRAY_SIZE(func_table); i++) {
  63. if (func_table[i]) {
  64. len = strlen(func_table[i]) + 1;
  65. kbd->func_table[i] = kmalloc(len, GFP_KERNEL);
  66. if (!kbd->func_table[i])
  67. goto out_func;
  68. memcpy(kbd->func_table[i], func_table[i], len);
  69. }
  70. }
  71. kbd->fn_handler =
  72. kzalloc(sizeof(fn_handler_fn *) * NR_FN_HANDLER, GFP_KERNEL);
  73. if (!kbd->fn_handler)
  74. goto out_func;
  75. kbd->accent_table =
  76. kmalloc(sizeof(struct kbdiacr)*MAX_DIACR, GFP_KERNEL);
  77. if (!kbd->accent_table)
  78. goto out_fn_handler;
  79. memcpy(kbd->accent_table, accent_table,
  80. sizeof(struct kbdiacr)*MAX_DIACR);
  81. kbd->accent_table_size = accent_table_size;
  82. return kbd;
  83. out_fn_handler:
  84. kfree(kbd->fn_handler);
  85. out_func:
  86. for (i = 0; i < ARRAY_SIZE(func_table); i++)
  87. kfree(kbd->func_table[i]);
  88. kfree(kbd->func_table);
  89. out_maps:
  90. for (i = 0; i < ARRAY_SIZE(key_maps); i++)
  91. kfree(kbd->key_maps[i]);
  92. kfree(kbd->key_maps);
  93. out_kbd:
  94. kfree(kbd);
  95. out:
  96. return NULL;
  97. }
  98. void
  99. kbd_free(struct kbd_data *kbd)
  100. {
  101. int i;
  102. kfree(kbd->accent_table);
  103. kfree(kbd->fn_handler);
  104. for (i = 0; i < ARRAY_SIZE(func_table); i++)
  105. kfree(kbd->func_table[i]);
  106. kfree(kbd->func_table);
  107. for (i = 0; i < ARRAY_SIZE(key_maps); i++)
  108. kfree(kbd->key_maps[i]);
  109. kfree(kbd->key_maps);
  110. kfree(kbd);
  111. }
  112. /*
  113. * Generate ascii -> ebcdic translation table from kbd_data.
  114. */
  115. void
  116. kbd_ascebc(struct kbd_data *kbd, unsigned char *ascebc)
  117. {
  118. unsigned short *keymap, keysym;
  119. int i, j, k;
  120. memset(ascebc, 0x40, 256);
  121. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  122. keymap = kbd->key_maps[i];
  123. if (!keymap)
  124. continue;
  125. for (j = 0; j < NR_KEYS; j++) {
  126. k = ((i & 1) << 7) + j;
  127. keysym = keymap[j];
  128. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  129. KTYP(keysym) == (KT_LETTER | 0xf0))
  130. ascebc[KVAL(keysym)] = k;
  131. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  132. ascebc[ret_diacr[KVAL(keysym)]] = k;
  133. }
  134. }
  135. }
  136. #if 0
  137. /*
  138. * Generate ebcdic -> ascii translation table from kbd_data.
  139. */
  140. void
  141. kbd_ebcasc(struct kbd_data *kbd, unsigned char *ebcasc)
  142. {
  143. unsigned short *keymap, keysym;
  144. int i, j, k;
  145. memset(ebcasc, ' ', 256);
  146. for (i = 0; i < ARRAY_SIZE(key_maps); i++) {
  147. keymap = kbd->key_maps[i];
  148. if (!keymap)
  149. continue;
  150. for (j = 0; j < NR_KEYS; j++) {
  151. keysym = keymap[j];
  152. k = ((i & 1) << 7) + j;
  153. if (KTYP(keysym) == (KT_LATIN | 0xf0) ||
  154. KTYP(keysym) == (KT_LETTER | 0xf0))
  155. ebcasc[k] = KVAL(keysym);
  156. else if (KTYP(keysym) == (KT_DEAD | 0xf0))
  157. ebcasc[k] = ret_diacr[KVAL(keysym)];
  158. }
  159. }
  160. }
  161. #endif
  162. /*
  163. * We have a combining character DIACR here, followed by the character CH.
  164. * If the combination occurs in the table, return the corresponding value.
  165. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  166. * Otherwise, conclude that DIACR was not combining after all,
  167. * queue it and return CH.
  168. */
  169. static unsigned char
  170. handle_diacr(struct kbd_data *kbd, unsigned char ch)
  171. {
  172. int i, d;
  173. d = kbd->diacr;
  174. kbd->diacr = 0;
  175. for (i = 0; i < kbd->accent_table_size; i++) {
  176. if (kbd->accent_table[i].diacr == d &&
  177. kbd->accent_table[i].base == ch)
  178. return kbd->accent_table[i].result;
  179. }
  180. if (ch == ' ' || ch == d)
  181. return d;
  182. kbd_put_queue(kbd->tty, d);
  183. return ch;
  184. }
  185. /*
  186. * Handle dead key.
  187. */
  188. static void
  189. k_dead(struct kbd_data *kbd, unsigned char value)
  190. {
  191. value = ret_diacr[value];
  192. kbd->diacr = (kbd->diacr ? handle_diacr(kbd, value) : value);
  193. }
  194. /*
  195. * Normal character handler.
  196. */
  197. static void
  198. k_self(struct kbd_data *kbd, unsigned char value)
  199. {
  200. if (kbd->diacr)
  201. value = handle_diacr(kbd, value);
  202. kbd_put_queue(kbd->tty, value);
  203. }
  204. /*
  205. * Special key handlers
  206. */
  207. static void
  208. k_ignore(struct kbd_data *kbd, unsigned char value)
  209. {
  210. }
  211. /*
  212. * Function key handler.
  213. */
  214. static void
  215. k_fn(struct kbd_data *kbd, unsigned char value)
  216. {
  217. if (kbd->func_table[value])
  218. kbd_puts_queue(kbd->tty, kbd->func_table[value]);
  219. }
  220. static void
  221. k_spec(struct kbd_data *kbd, unsigned char value)
  222. {
  223. if (value >= NR_FN_HANDLER)
  224. return;
  225. if (kbd->fn_handler[value])
  226. kbd->fn_handler[value](kbd);
  227. }
  228. /*
  229. * Put utf8 character to tty flip buffer.
  230. * UTF-8 is defined for words of up to 31 bits,
  231. * but we need only 16 bits here
  232. */
  233. static void
  234. to_utf8(struct tty_struct *tty, ushort c)
  235. {
  236. if (c < 0x80)
  237. /* 0******* */
  238. kbd_put_queue(tty, c);
  239. else if (c < 0x800) {
  240. /* 110***** 10****** */
  241. kbd_put_queue(tty, 0xc0 | (c >> 6));
  242. kbd_put_queue(tty, 0x80 | (c & 0x3f));
  243. } else {
  244. /* 1110**** 10****** 10****** */
  245. kbd_put_queue(tty, 0xe0 | (c >> 12));
  246. kbd_put_queue(tty, 0x80 | ((c >> 6) & 0x3f));
  247. kbd_put_queue(tty, 0x80 | (c & 0x3f));
  248. }
  249. }
  250. /*
  251. * Process keycode.
  252. */
  253. void
  254. kbd_keycode(struct kbd_data *kbd, unsigned int keycode)
  255. {
  256. unsigned short keysym;
  257. unsigned char type, value;
  258. if (!kbd || !kbd->tty)
  259. return;
  260. if (keycode >= 384)
  261. keysym = kbd->key_maps[5][keycode - 384];
  262. else if (keycode >= 256)
  263. keysym = kbd->key_maps[4][keycode - 256];
  264. else if (keycode >= 128)
  265. keysym = kbd->key_maps[1][keycode - 128];
  266. else
  267. keysym = kbd->key_maps[0][keycode];
  268. type = KTYP(keysym);
  269. if (type >= 0xf0) {
  270. type -= 0xf0;
  271. if (type == KT_LETTER)
  272. type = KT_LATIN;
  273. value = KVAL(keysym);
  274. #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
  275. if (kbd->sysrq) {
  276. if (kbd->sysrq == K(KT_LATIN, '-')) {
  277. kbd->sysrq = 0;
  278. handle_sysrq(value, kbd->tty);
  279. return;
  280. }
  281. if (value == '-') {
  282. kbd->sysrq = K(KT_LATIN, '-');
  283. return;
  284. }
  285. /* Incomplete sysrq sequence. */
  286. (*k_handler[KTYP(kbd->sysrq)])(kbd, KVAL(kbd->sysrq));
  287. kbd->sysrq = 0;
  288. } else if ((type == KT_LATIN && value == '^') ||
  289. (type == KT_DEAD && ret_diacr[value] == '^')) {
  290. kbd->sysrq = K(type, value);
  291. return;
  292. }
  293. #endif
  294. (*k_handler[type])(kbd, value);
  295. } else
  296. to_utf8(kbd->tty, keysym);
  297. }
  298. /*
  299. * Ioctl stuff.
  300. */
  301. static int
  302. do_kdsk_ioctl(struct kbd_data *kbd, struct kbentry __user *user_kbe,
  303. int cmd, int perm)
  304. {
  305. struct kbentry tmp;
  306. ushort *key_map, val, ov;
  307. if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
  308. return -EFAULT;
  309. #if NR_KEYS < 256
  310. if (tmp.kb_index >= NR_KEYS)
  311. return -EINVAL;
  312. #endif
  313. #if MAX_NR_KEYMAPS < 256
  314. if (tmp.kb_table >= MAX_NR_KEYMAPS)
  315. return -EINVAL;
  316. #endif
  317. switch (cmd) {
  318. case KDGKBENT:
  319. key_map = kbd->key_maps[tmp.kb_table];
  320. if (key_map) {
  321. val = U(key_map[tmp.kb_index]);
  322. if (KTYP(val) >= KBD_NR_TYPES)
  323. val = K_HOLE;
  324. } else
  325. val = (tmp.kb_index ? K_HOLE : K_NOSUCHMAP);
  326. return put_user(val, &user_kbe->kb_value);
  327. case KDSKBENT:
  328. if (!perm)
  329. return -EPERM;
  330. if (!tmp.kb_index && tmp.kb_value == K_NOSUCHMAP) {
  331. /* disallocate map */
  332. key_map = kbd->key_maps[tmp.kb_table];
  333. if (key_map) {
  334. kbd->key_maps[tmp.kb_table] = NULL;
  335. kfree(key_map);
  336. }
  337. break;
  338. }
  339. if (KTYP(tmp.kb_value) >= KBD_NR_TYPES)
  340. return -EINVAL;
  341. if (KVAL(tmp.kb_value) > kbd_max_vals[KTYP(tmp.kb_value)])
  342. return -EINVAL;
  343. if (!(key_map = kbd->key_maps[tmp.kb_table])) {
  344. int j;
  345. key_map = kmalloc(sizeof(plain_map),
  346. GFP_KERNEL);
  347. if (!key_map)
  348. return -ENOMEM;
  349. kbd->key_maps[tmp.kb_table] = key_map;
  350. for (j = 0; j < NR_KEYS; j++)
  351. key_map[j] = U(K_HOLE);
  352. }
  353. ov = U(key_map[tmp.kb_index]);
  354. if (tmp.kb_value == ov)
  355. break; /* nothing to do */
  356. /*
  357. * Attention Key.
  358. */
  359. if (((ov == K_SAK) || (tmp.kb_value == K_SAK)) &&
  360. !capable(CAP_SYS_ADMIN))
  361. return -EPERM;
  362. key_map[tmp.kb_index] = U(tmp.kb_value);
  363. break;
  364. }
  365. return 0;
  366. }
  367. static int
  368. do_kdgkb_ioctl(struct kbd_data *kbd, struct kbsentry __user *u_kbs,
  369. int cmd, int perm)
  370. {
  371. unsigned char kb_func;
  372. char *p;
  373. int len;
  374. /* Get u_kbs->kb_func. */
  375. if (get_user(kb_func, &u_kbs->kb_func))
  376. return -EFAULT;
  377. #if MAX_NR_FUNC < 256
  378. if (kb_func >= MAX_NR_FUNC)
  379. return -EINVAL;
  380. #endif
  381. switch (cmd) {
  382. case KDGKBSENT:
  383. p = kbd->func_table[kb_func];
  384. if (p) {
  385. len = strlen(p);
  386. if (len >= sizeof(u_kbs->kb_string))
  387. len = sizeof(u_kbs->kb_string) - 1;
  388. if (copy_to_user(u_kbs->kb_string, p, len))
  389. return -EFAULT;
  390. } else
  391. len = 0;
  392. if (put_user('\0', u_kbs->kb_string + len))
  393. return -EFAULT;
  394. break;
  395. case KDSKBSENT:
  396. if (!perm)
  397. return -EPERM;
  398. len = strnlen_user(u_kbs->kb_string,
  399. sizeof(u_kbs->kb_string) - 1);
  400. if (!len)
  401. return -EFAULT;
  402. if (len > sizeof(u_kbs->kb_string) - 1)
  403. return -EINVAL;
  404. p = kmalloc(len + 1, GFP_KERNEL);
  405. if (!p)
  406. return -ENOMEM;
  407. if (copy_from_user(p, u_kbs->kb_string, len)) {
  408. kfree(p);
  409. return -EFAULT;
  410. }
  411. p[len] = 0;
  412. kfree(kbd->func_table[kb_func]);
  413. kbd->func_table[kb_func] = p;
  414. break;
  415. }
  416. return 0;
  417. }
  418. int
  419. kbd_ioctl(struct kbd_data *kbd, struct file *file,
  420. unsigned int cmd, unsigned long arg)
  421. {
  422. struct kbdiacrs __user *a;
  423. void __user *argp;
  424. int ct, perm;
  425. argp = (void __user *)arg;
  426. /*
  427. * To have permissions to do most of the vt ioctls, we either have
  428. * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
  429. */
  430. perm = current->signal->tty == kbd->tty || capable(CAP_SYS_TTY_CONFIG);
  431. switch (cmd) {
  432. case KDGKBTYPE:
  433. return put_user(KB_101, (char __user *)argp);
  434. case KDGKBENT:
  435. case KDSKBENT:
  436. return do_kdsk_ioctl(kbd, argp, cmd, perm);
  437. case KDGKBSENT:
  438. case KDSKBSENT:
  439. return do_kdgkb_ioctl(kbd, argp, cmd, perm);
  440. case KDGKBDIACR:
  441. a = argp;
  442. if (put_user(kbd->accent_table_size, &a->kb_cnt))
  443. return -EFAULT;
  444. ct = kbd->accent_table_size;
  445. if (copy_to_user(a->kbdiacr, kbd->accent_table,
  446. ct * sizeof(struct kbdiacr)))
  447. return -EFAULT;
  448. return 0;
  449. case KDSKBDIACR:
  450. a = argp;
  451. if (!perm)
  452. return -EPERM;
  453. if (get_user(ct, &a->kb_cnt))
  454. return -EFAULT;
  455. if (ct >= MAX_DIACR)
  456. return -EINVAL;
  457. kbd->accent_table_size = ct;
  458. if (copy_from_user(kbd->accent_table, a->kbdiacr,
  459. ct * sizeof(struct kbdiacr)))
  460. return -EFAULT;
  461. return 0;
  462. default:
  463. return -ENOIOCTLCMD;
  464. }
  465. }
  466. EXPORT_SYMBOL(kbd_ioctl);
  467. EXPORT_SYMBOL(kbd_ascebc);
  468. EXPORT_SYMBOL(kbd_free);
  469. EXPORT_SYMBOL(kbd_alloc);
  470. EXPORT_SYMBOL(kbd_keycode);