rtc-sh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646
  1. /*
  2. * SuperH On-Chip RTC Support
  3. *
  4. * Copyright (C) 2006 Paul Mundt
  5. * Copyright (C) 2006 Jamie Lenehan
  6. *
  7. * Based on the old arch/sh/kernel/cpu/rtc.c by:
  8. *
  9. * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
  10. * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
  11. *
  12. * This file is subject to the terms and conditions of the GNU General Public
  13. * License. See the file "COPYING" in the main directory of this archive
  14. * for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/bcd.h>
  19. #include <linux/rtc.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/io.h>
  26. #define DRV_NAME "sh-rtc"
  27. #define DRV_VERSION "0.1.2"
  28. #ifdef CONFIG_CPU_SH3
  29. #define rtc_reg_size sizeof(u16)
  30. #define RTC_BIT_INVERTED 0 /* No bug on SH7708, SH7709A */
  31. #elif defined(CONFIG_CPU_SH4)
  32. #define rtc_reg_size sizeof(u32)
  33. #define RTC_BIT_INVERTED 0x40 /* bug on SH7750, SH7750S */
  34. #endif
  35. #define RTC_REG(r) ((r) * rtc_reg_size)
  36. #define R64CNT RTC_REG(0)
  37. #define RSECCNT RTC_REG(1) /* RTC sec */
  38. #define RMINCNT RTC_REG(2) /* RTC min */
  39. #define RHRCNT RTC_REG(3) /* RTC hour */
  40. #define RWKCNT RTC_REG(4) /* RTC week */
  41. #define RDAYCNT RTC_REG(5) /* RTC day */
  42. #define RMONCNT RTC_REG(6) /* RTC month */
  43. #define RYRCNT RTC_REG(7) /* RTC year */
  44. #define RSECAR RTC_REG(8) /* ALARM sec */
  45. #define RMINAR RTC_REG(9) /* ALARM min */
  46. #define RHRAR RTC_REG(10) /* ALARM hour */
  47. #define RWKAR RTC_REG(11) /* ALARM week */
  48. #define RDAYAR RTC_REG(12) /* ALARM day */
  49. #define RMONAR RTC_REG(13) /* ALARM month */
  50. #define RCR1 RTC_REG(14) /* Control */
  51. #define RCR2 RTC_REG(15) /* Control */
  52. /* ALARM Bits - or with BCD encoded value */
  53. #define AR_ENB 0x80 /* Enable for alarm cmp */
  54. /* RCR1 Bits */
  55. #define RCR1_CF 0x80 /* Carry Flag */
  56. #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
  57. #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
  58. #define RCR1_AF 0x01 /* Alarm Flag */
  59. /* RCR2 Bits */
  60. #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
  61. #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
  62. #define RCR2_RTCEN 0x08 /* ENable RTC */
  63. #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
  64. #define RCR2_RESET 0x02 /* Reset bit */
  65. #define RCR2_START 0x01 /* Start bit */
  66. struct sh_rtc {
  67. void __iomem *regbase;
  68. unsigned long regsize;
  69. struct resource *res;
  70. unsigned int alarm_irq, periodic_irq, carry_irq;
  71. struct rtc_device *rtc_dev;
  72. spinlock_t lock;
  73. int rearm_aie;
  74. };
  75. static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
  76. {
  77. struct platform_device *pdev = to_platform_device(dev_id);
  78. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  79. unsigned int tmp, events = 0;
  80. spin_lock(&rtc->lock);
  81. tmp = readb(rtc->regbase + RCR1);
  82. tmp &= ~RCR1_CF;
  83. if (rtc->rearm_aie) {
  84. if (tmp & RCR1_AF)
  85. tmp &= ~RCR1_AF; /* try to clear AF again */
  86. else {
  87. tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
  88. rtc->rearm_aie = 0;
  89. }
  90. }
  91. writeb(tmp, rtc->regbase + RCR1);
  92. rtc_update_irq(rtc->rtc_dev, 1, events);
  93. spin_unlock(&rtc->lock);
  94. return IRQ_HANDLED;
  95. }
  96. static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
  97. {
  98. struct platform_device *pdev = to_platform_device(dev_id);
  99. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  100. unsigned int tmp, events = 0;
  101. spin_lock(&rtc->lock);
  102. tmp = readb(rtc->regbase + RCR1);
  103. /*
  104. * If AF is set then the alarm has triggered. If we clear AF while
  105. * the alarm time still matches the RTC time then AF will
  106. * immediately be set again, and if AIE is enabled then the alarm
  107. * interrupt will immediately be retrigger. So we clear AIE here
  108. * and use rtc->rearm_aie so that the carry interrupt will keep
  109. * trying to clear AF and once it stays cleared it'll re-enable
  110. * AIE.
  111. */
  112. if (tmp & RCR1_AF) {
  113. events |= RTC_AF | RTC_IRQF;
  114. tmp &= ~(RCR1_AF|RCR1_AIE);
  115. writeb(tmp, rtc->regbase + RCR1);
  116. rtc->rearm_aie = 1;
  117. rtc_update_irq(rtc->rtc_dev, 1, events);
  118. }
  119. spin_unlock(&rtc->lock);
  120. return IRQ_HANDLED;
  121. }
  122. static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
  123. {
  124. struct platform_device *pdev = to_platform_device(dev_id);
  125. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  126. spin_lock(&rtc->lock);
  127. rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
  128. spin_unlock(&rtc->lock);
  129. return IRQ_HANDLED;
  130. }
  131. static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
  132. {
  133. struct sh_rtc *rtc = dev_get_drvdata(dev);
  134. unsigned int tmp;
  135. spin_lock_irq(&rtc->lock);
  136. tmp = readb(rtc->regbase + RCR2);
  137. if (enable) {
  138. tmp &= ~RCR2_PESMASK;
  139. tmp |= RCR2_PEF | (2 << 4);
  140. } else
  141. tmp &= ~(RCR2_PESMASK | RCR2_PEF);
  142. writeb(tmp, rtc->regbase + RCR2);
  143. spin_unlock_irq(&rtc->lock);
  144. }
  145. static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
  146. {
  147. struct sh_rtc *rtc = dev_get_drvdata(dev);
  148. unsigned int tmp;
  149. spin_lock_irq(&rtc->lock);
  150. tmp = readb(rtc->regbase + RCR1);
  151. if (!enable) {
  152. tmp &= ~RCR1_AIE;
  153. rtc->rearm_aie = 0;
  154. } else if (rtc->rearm_aie == 0)
  155. tmp |= RCR1_AIE;
  156. writeb(tmp, rtc->regbase + RCR1);
  157. spin_unlock_irq(&rtc->lock);
  158. }
  159. static int sh_rtc_open(struct device *dev)
  160. {
  161. struct sh_rtc *rtc = dev_get_drvdata(dev);
  162. unsigned int tmp;
  163. int ret;
  164. tmp = readb(rtc->regbase + RCR1);
  165. tmp &= ~RCR1_CF;
  166. tmp |= RCR1_CIE;
  167. writeb(tmp, rtc->regbase + RCR1);
  168. ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
  169. "sh-rtc period", dev);
  170. if (unlikely(ret)) {
  171. dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
  172. ret, rtc->periodic_irq);
  173. return ret;
  174. }
  175. ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
  176. "sh-rtc carry", dev);
  177. if (unlikely(ret)) {
  178. dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
  179. ret, rtc->carry_irq);
  180. free_irq(rtc->periodic_irq, dev);
  181. goto err_bad_carry;
  182. }
  183. ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
  184. "sh-rtc alarm", dev);
  185. if (unlikely(ret)) {
  186. dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
  187. ret, rtc->alarm_irq);
  188. goto err_bad_alarm;
  189. }
  190. return 0;
  191. err_bad_alarm:
  192. free_irq(rtc->carry_irq, dev);
  193. err_bad_carry:
  194. free_irq(rtc->periodic_irq, dev);
  195. return ret;
  196. }
  197. static void sh_rtc_release(struct device *dev)
  198. {
  199. struct sh_rtc *rtc = dev_get_drvdata(dev);
  200. sh_rtc_setpie(dev, 0);
  201. sh_rtc_setaie(dev, 0);
  202. free_irq(rtc->periodic_irq, dev);
  203. free_irq(rtc->carry_irq, dev);
  204. free_irq(rtc->alarm_irq, dev);
  205. }
  206. static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
  207. {
  208. struct sh_rtc *rtc = dev_get_drvdata(dev);
  209. unsigned int tmp;
  210. tmp = readb(rtc->regbase + RCR1);
  211. seq_printf(seq, "carry_IRQ\t: %s\n",
  212. (tmp & RCR1_CIE) ? "yes" : "no");
  213. tmp = readb(rtc->regbase + RCR2);
  214. seq_printf(seq, "periodic_IRQ\t: %s\n",
  215. (tmp & RCR2_PEF) ? "yes" : "no");
  216. return 0;
  217. }
  218. static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  219. {
  220. unsigned int ret = -ENOIOCTLCMD;
  221. switch (cmd) {
  222. case RTC_PIE_OFF:
  223. case RTC_PIE_ON:
  224. sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
  225. ret = 0;
  226. break;
  227. case RTC_AIE_OFF:
  228. case RTC_AIE_ON:
  229. sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
  230. ret = 0;
  231. break;
  232. }
  233. return ret;
  234. }
  235. static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
  236. {
  237. struct platform_device *pdev = to_platform_device(dev);
  238. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  239. unsigned int sec128, sec2, yr, yr100, cf_bit;
  240. do {
  241. unsigned int tmp;
  242. spin_lock_irq(&rtc->lock);
  243. tmp = readb(rtc->regbase + RCR1);
  244. tmp &= ~RCR1_CF; /* Clear CF-bit */
  245. tmp |= RCR1_CIE;
  246. writeb(tmp, rtc->regbase + RCR1);
  247. sec128 = readb(rtc->regbase + R64CNT);
  248. tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
  249. tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
  250. tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
  251. tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
  252. tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
  253. tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
  254. #if defined(CONFIG_CPU_SH4)
  255. yr = readw(rtc->regbase + RYRCNT);
  256. yr100 = BCD2BIN(yr >> 8);
  257. yr &= 0xff;
  258. #else
  259. yr = readb(rtc->regbase + RYRCNT);
  260. yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
  261. #endif
  262. tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
  263. sec2 = readb(rtc->regbase + R64CNT);
  264. cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
  265. spin_unlock_irq(&rtc->lock);
  266. } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
  267. #if RTC_BIT_INVERTED != 0
  268. if ((sec128 & RTC_BIT_INVERTED))
  269. tm->tm_sec--;
  270. #endif
  271. dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
  272. "mday=%d, mon=%d, year=%d, wday=%d\n",
  273. __FUNCTION__,
  274. tm->tm_sec, tm->tm_min, tm->tm_hour,
  275. tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
  276. if (rtc_valid_tm(tm) < 0)
  277. dev_err(dev, "invalid date\n");
  278. return 0;
  279. }
  280. static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
  281. {
  282. struct platform_device *pdev = to_platform_device(dev);
  283. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  284. unsigned int tmp;
  285. int year;
  286. spin_lock_irq(&rtc->lock);
  287. /* Reset pre-scaler & stop RTC */
  288. tmp = readb(rtc->regbase + RCR2);
  289. tmp |= RCR2_RESET;
  290. writeb(tmp, rtc->regbase + RCR2);
  291. writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
  292. writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
  293. writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
  294. writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
  295. writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
  296. writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
  297. #ifdef CONFIG_CPU_SH3
  298. year = tm->tm_year % 100;
  299. writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
  300. #else
  301. year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
  302. BIN2BCD(tm->tm_year % 100);
  303. writew(year, rtc->regbase + RYRCNT);
  304. #endif
  305. /* Start RTC */
  306. tmp = readb(rtc->regbase + RCR2);
  307. tmp &= ~RCR2_RESET;
  308. tmp |= RCR2_RTCEN | RCR2_START;
  309. writeb(tmp, rtc->regbase + RCR2);
  310. spin_unlock_irq(&rtc->lock);
  311. return 0;
  312. }
  313. static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
  314. {
  315. unsigned int byte;
  316. int value = 0xff; /* return 0xff for ignored values */
  317. byte = readb(rtc->regbase + reg_off);
  318. if (byte & AR_ENB) {
  319. byte &= ~AR_ENB; /* strip the enable bit */
  320. value = BCD2BIN(byte);
  321. }
  322. return value;
  323. }
  324. static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  325. {
  326. struct platform_device *pdev = to_platform_device(dev);
  327. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  328. struct rtc_time* tm = &wkalrm->time;
  329. spin_lock_irq(&rtc->lock);
  330. tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
  331. tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
  332. tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
  333. tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
  334. tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
  335. tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
  336. if (tm->tm_mon > 0)
  337. tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
  338. tm->tm_year = 0xffff;
  339. wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
  340. spin_unlock_irq(&rtc->lock);
  341. return 0;
  342. }
  343. static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
  344. int value, int reg_off)
  345. {
  346. /* < 0 for a value that is ignored */
  347. if (value < 0)
  348. writeb(0, rtc->regbase + reg_off);
  349. else
  350. writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
  351. }
  352. static int sh_rtc_check_alarm(struct rtc_time* tm)
  353. {
  354. /*
  355. * The original rtc says anything > 0xc0 is "don't care" or "match
  356. * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
  357. * The original rtc doesn't support years - some things use -1 and
  358. * some 0xffff. We use -1 to make out tests easier.
  359. */
  360. if (tm->tm_year == 0xffff)
  361. tm->tm_year = -1;
  362. if (tm->tm_mon >= 0xff)
  363. tm->tm_mon = -1;
  364. if (tm->tm_mday >= 0xff)
  365. tm->tm_mday = -1;
  366. if (tm->tm_wday >= 0xff)
  367. tm->tm_wday = -1;
  368. if (tm->tm_hour >= 0xff)
  369. tm->tm_hour = -1;
  370. if (tm->tm_min >= 0xff)
  371. tm->tm_min = -1;
  372. if (tm->tm_sec >= 0xff)
  373. tm->tm_sec = -1;
  374. if (tm->tm_year > 9999 ||
  375. tm->tm_mon >= 12 ||
  376. tm->tm_mday == 0 || tm->tm_mday >= 32 ||
  377. tm->tm_wday >= 7 ||
  378. tm->tm_hour >= 24 ||
  379. tm->tm_min >= 60 ||
  380. tm->tm_sec >= 60)
  381. return -EINVAL;
  382. return 0;
  383. }
  384. static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  385. {
  386. struct platform_device *pdev = to_platform_device(dev);
  387. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  388. unsigned int rcr1;
  389. struct rtc_time *tm = &wkalrm->time;
  390. int mon, err;
  391. err = sh_rtc_check_alarm(tm);
  392. if (unlikely(err < 0))
  393. return err;
  394. spin_lock_irq(&rtc->lock);
  395. /* disable alarm interrupt and clear the alarm flag */
  396. rcr1 = readb(rtc->regbase + RCR1);
  397. rcr1 &= ~(RCR1_AF|RCR1_AIE);
  398. writeb(rcr1, rtc->regbase + RCR1);
  399. rtc->rearm_aie = 0;
  400. /* set alarm time */
  401. sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
  402. sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
  403. sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
  404. sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
  405. sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
  406. mon = tm->tm_mon;
  407. if (mon >= 0)
  408. mon += 1;
  409. sh_rtc_write_alarm_value(rtc, mon, RMONAR);
  410. if (wkalrm->enabled) {
  411. rcr1 |= RCR1_AIE;
  412. writeb(rcr1, rtc->regbase + RCR1);
  413. }
  414. spin_unlock_irq(&rtc->lock);
  415. return 0;
  416. }
  417. static struct rtc_class_ops sh_rtc_ops = {
  418. .open = sh_rtc_open,
  419. .release = sh_rtc_release,
  420. .ioctl = sh_rtc_ioctl,
  421. .read_time = sh_rtc_read_time,
  422. .set_time = sh_rtc_set_time,
  423. .read_alarm = sh_rtc_read_alarm,
  424. .set_alarm = sh_rtc_set_alarm,
  425. .proc = sh_rtc_proc,
  426. };
  427. static int __devinit sh_rtc_probe(struct platform_device *pdev)
  428. {
  429. struct sh_rtc *rtc;
  430. struct resource *res;
  431. int ret = -ENOENT;
  432. rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
  433. if (unlikely(!rtc))
  434. return -ENOMEM;
  435. spin_lock_init(&rtc->lock);
  436. rtc->periodic_irq = platform_get_irq(pdev, 0);
  437. if (unlikely(rtc->periodic_irq < 0)) {
  438. dev_err(&pdev->dev, "No IRQ for period\n");
  439. goto err_badres;
  440. }
  441. rtc->carry_irq = platform_get_irq(pdev, 1);
  442. if (unlikely(rtc->carry_irq < 0)) {
  443. dev_err(&pdev->dev, "No IRQ for carry\n");
  444. goto err_badres;
  445. }
  446. rtc->alarm_irq = platform_get_irq(pdev, 2);
  447. if (unlikely(rtc->alarm_irq < 0)) {
  448. dev_err(&pdev->dev, "No IRQ for alarm\n");
  449. goto err_badres;
  450. }
  451. res = platform_get_resource(pdev, IORESOURCE_IO, 0);
  452. if (unlikely(res == NULL)) {
  453. dev_err(&pdev->dev, "No IO resource\n");
  454. goto err_badres;
  455. }
  456. rtc->regsize = res->end - res->start + 1;
  457. rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
  458. if (unlikely(!rtc->res)) {
  459. ret = -EBUSY;
  460. goto err_badres;
  461. }
  462. rtc->regbase = (void __iomem *)rtc->res->start;
  463. if (unlikely(!rtc->regbase)) {
  464. ret = -EINVAL;
  465. goto err_badmap;
  466. }
  467. rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
  468. &sh_rtc_ops, THIS_MODULE);
  469. if (IS_ERR(rtc)) {
  470. ret = PTR_ERR(rtc->rtc_dev);
  471. goto err_badmap;
  472. }
  473. platform_set_drvdata(pdev, rtc);
  474. return 0;
  475. err_badmap:
  476. release_resource(rtc->res);
  477. err_badres:
  478. kfree(rtc);
  479. return ret;
  480. }
  481. static int __devexit sh_rtc_remove(struct platform_device *pdev)
  482. {
  483. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  484. if (likely(rtc->rtc_dev))
  485. rtc_device_unregister(rtc->rtc_dev);
  486. sh_rtc_setpie(&pdev->dev, 0);
  487. sh_rtc_setaie(&pdev->dev, 0);
  488. release_resource(rtc->res);
  489. platform_set_drvdata(pdev, NULL);
  490. kfree(rtc);
  491. return 0;
  492. }
  493. static struct platform_driver sh_rtc_platform_driver = {
  494. .driver = {
  495. .name = DRV_NAME,
  496. .owner = THIS_MODULE,
  497. },
  498. .probe = sh_rtc_probe,
  499. .remove = __devexit_p(sh_rtc_remove),
  500. };
  501. static int __init sh_rtc_init(void)
  502. {
  503. return platform_driver_register(&sh_rtc_platform_driver);
  504. }
  505. static void __exit sh_rtc_exit(void)
  506. {
  507. platform_driver_unregister(&sh_rtc_platform_driver);
  508. }
  509. module_init(sh_rtc_init);
  510. module_exit(sh_rtc_exit);
  511. MODULE_DESCRIPTION("SuperH on-chip RTC driver");
  512. MODULE_VERSION(DRV_VERSION);
  513. MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
  514. MODULE_LICENSE("GPL");