sungem.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/types.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/ioport.h>
  39. #include <linux/in.h>
  40. #include <linux/slab.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/errno.h>
  45. #include <linux/pci.h>
  46. #include <linux/dma-mapping.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/mii.h>
  51. #include <linux/ethtool.h>
  52. #include <linux/crc32.h>
  53. #include <linux/random.h>
  54. #include <linux/workqueue.h>
  55. #include <linux/if_vlan.h>
  56. #include <linux/bitops.h>
  57. #include <linux/mutex.h>
  58. #include <linux/mm.h>
  59. #include <asm/system.h>
  60. #include <asm/io.h>
  61. #include <asm/byteorder.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/irq.h>
  64. #ifdef CONFIG_SPARC
  65. #include <asm/idprom.h>
  66. #include <asm/prom.h>
  67. #endif
  68. #ifdef CONFIG_PPC_PMAC
  69. #include <asm/pci-bridge.h>
  70. #include <asm/prom.h>
  71. #include <asm/machdep.h>
  72. #include <asm/pmac_feature.h>
  73. #endif
  74. #include "sungem_phy.h"
  75. #include "sungem.h"
  76. /* Stripping FCS is causing problems, disabled for now */
  77. #undef STRIP_FCS
  78. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  79. NETIF_MSG_PROBE | \
  80. NETIF_MSG_LINK)
  81. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  82. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  83. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  84. SUPPORTED_Pause | SUPPORTED_Autoneg)
  85. #define DRV_NAME "sungem"
  86. #define DRV_VERSION "0.98"
  87. #define DRV_RELDATE "8/24/03"
  88. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  89. static char version[] __devinitdata =
  90. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  91. MODULE_AUTHOR(DRV_AUTHOR);
  92. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  93. MODULE_LICENSE("GPL");
  94. #define GEM_MODULE_NAME "gem"
  95. #define PFX GEM_MODULE_NAME ": "
  96. static struct pci_device_id gem_pci_tbl[] = {
  97. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  98. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  99. /* These models only differ from the original GEM in
  100. * that their tx/rx fifos are of a different size and
  101. * they only support 10/100 speeds. -DaveM
  102. *
  103. * Apple's GMAC does support gigabit on machines with
  104. * the BCM54xx PHYs. -BenH
  105. */
  106. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  107. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  108. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  109. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  110. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  111. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  112. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  113. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  114. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  116. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  118. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  119. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  120. {0, }
  121. };
  122. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  123. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  124. {
  125. u32 cmd;
  126. int limit = 10000;
  127. cmd = (1 << 30);
  128. cmd |= (2 << 28);
  129. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  130. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  131. cmd |= (MIF_FRAME_TAMSB);
  132. writel(cmd, gp->regs + MIF_FRAME);
  133. while (limit--) {
  134. cmd = readl(gp->regs + MIF_FRAME);
  135. if (cmd & MIF_FRAME_TALSB)
  136. break;
  137. udelay(10);
  138. }
  139. if (!limit)
  140. cmd = 0xffff;
  141. return cmd & MIF_FRAME_DATA;
  142. }
  143. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  144. {
  145. struct gem *gp = dev->priv;
  146. return __phy_read(gp, mii_id, reg);
  147. }
  148. static inline u16 phy_read(struct gem *gp, int reg)
  149. {
  150. return __phy_read(gp, gp->mii_phy_addr, reg);
  151. }
  152. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  153. {
  154. u32 cmd;
  155. int limit = 10000;
  156. cmd = (1 << 30);
  157. cmd |= (1 << 28);
  158. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  159. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  160. cmd |= (MIF_FRAME_TAMSB);
  161. cmd |= (val & MIF_FRAME_DATA);
  162. writel(cmd, gp->regs + MIF_FRAME);
  163. while (limit--) {
  164. cmd = readl(gp->regs + MIF_FRAME);
  165. if (cmd & MIF_FRAME_TALSB)
  166. break;
  167. udelay(10);
  168. }
  169. }
  170. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  171. {
  172. struct gem *gp = dev->priv;
  173. __phy_write(gp, mii_id, reg, val & 0xffff);
  174. }
  175. static inline void phy_write(struct gem *gp, int reg, u16 val)
  176. {
  177. __phy_write(gp, gp->mii_phy_addr, reg, val);
  178. }
  179. static inline void gem_enable_ints(struct gem *gp)
  180. {
  181. /* Enable all interrupts but TXDONE */
  182. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  183. }
  184. static inline void gem_disable_ints(struct gem *gp)
  185. {
  186. /* Disable all interrupts, including TXDONE */
  187. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  188. }
  189. static void gem_get_cell(struct gem *gp)
  190. {
  191. BUG_ON(gp->cell_enabled < 0);
  192. gp->cell_enabled++;
  193. #ifdef CONFIG_PPC_PMAC
  194. if (gp->cell_enabled == 1) {
  195. mb();
  196. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  197. udelay(10);
  198. }
  199. #endif /* CONFIG_PPC_PMAC */
  200. }
  201. /* Turn off the chip's clock */
  202. static void gem_put_cell(struct gem *gp)
  203. {
  204. BUG_ON(gp->cell_enabled <= 0);
  205. gp->cell_enabled--;
  206. #ifdef CONFIG_PPC_PMAC
  207. if (gp->cell_enabled == 0) {
  208. mb();
  209. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  210. udelay(10);
  211. }
  212. #endif /* CONFIG_PPC_PMAC */
  213. }
  214. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  215. {
  216. if (netif_msg_intr(gp))
  217. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  218. }
  219. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  220. {
  221. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  222. u32 pcs_miistat;
  223. if (netif_msg_intr(gp))
  224. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  225. gp->dev->name, pcs_istat);
  226. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  227. printk(KERN_ERR "%s: PCS irq but no link status change???\n",
  228. dev->name);
  229. return 0;
  230. }
  231. /* The link status bit latches on zero, so you must
  232. * read it twice in such a case to see a transition
  233. * to the link being up.
  234. */
  235. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  236. if (!(pcs_miistat & PCS_MIISTAT_LS))
  237. pcs_miistat |=
  238. (readl(gp->regs + PCS_MIISTAT) &
  239. PCS_MIISTAT_LS);
  240. if (pcs_miistat & PCS_MIISTAT_ANC) {
  241. /* The remote-fault indication is only valid
  242. * when autoneg has completed.
  243. */
  244. if (pcs_miistat & PCS_MIISTAT_RF)
  245. printk(KERN_INFO "%s: PCS AutoNEG complete, "
  246. "RemoteFault\n", dev->name);
  247. else
  248. printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
  249. dev->name);
  250. }
  251. if (pcs_miistat & PCS_MIISTAT_LS) {
  252. printk(KERN_INFO "%s: PCS link is now up.\n",
  253. dev->name);
  254. netif_carrier_on(gp->dev);
  255. } else {
  256. printk(KERN_INFO "%s: PCS link is now down.\n",
  257. dev->name);
  258. netif_carrier_off(gp->dev);
  259. /* If this happens and the link timer is not running,
  260. * reset so we re-negotiate.
  261. */
  262. if (!timer_pending(&gp->link_timer))
  263. return 1;
  264. }
  265. return 0;
  266. }
  267. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  268. {
  269. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  270. if (netif_msg_intr(gp))
  271. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  272. gp->dev->name, txmac_stat);
  273. /* Defer timer expiration is quite normal,
  274. * don't even log the event.
  275. */
  276. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  277. !(txmac_stat & ~MAC_TXSTAT_DTE))
  278. return 0;
  279. if (txmac_stat & MAC_TXSTAT_URUN) {
  280. printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
  281. dev->name);
  282. gp->net_stats.tx_fifo_errors++;
  283. }
  284. if (txmac_stat & MAC_TXSTAT_MPE) {
  285. printk(KERN_ERR "%s: TX MAC max packet size error.\n",
  286. dev->name);
  287. gp->net_stats.tx_errors++;
  288. }
  289. /* The rest are all cases of one of the 16-bit TX
  290. * counters expiring.
  291. */
  292. if (txmac_stat & MAC_TXSTAT_NCE)
  293. gp->net_stats.collisions += 0x10000;
  294. if (txmac_stat & MAC_TXSTAT_ECE) {
  295. gp->net_stats.tx_aborted_errors += 0x10000;
  296. gp->net_stats.collisions += 0x10000;
  297. }
  298. if (txmac_stat & MAC_TXSTAT_LCE) {
  299. gp->net_stats.tx_aborted_errors += 0x10000;
  300. gp->net_stats.collisions += 0x10000;
  301. }
  302. /* We do not keep track of MAC_TXSTAT_FCE and
  303. * MAC_TXSTAT_PCE events.
  304. */
  305. return 0;
  306. }
  307. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  308. * so we do the following.
  309. *
  310. * If any part of the reset goes wrong, we return 1 and that causes the
  311. * whole chip to be reset.
  312. */
  313. static int gem_rxmac_reset(struct gem *gp)
  314. {
  315. struct net_device *dev = gp->dev;
  316. int limit, i;
  317. u64 desc_dma;
  318. u32 val;
  319. /* First, reset & disable MAC RX. */
  320. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  321. for (limit = 0; limit < 5000; limit++) {
  322. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  323. break;
  324. udelay(10);
  325. }
  326. if (limit == 5000) {
  327. printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
  328. "chip.\n", dev->name);
  329. return 1;
  330. }
  331. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  332. gp->regs + MAC_RXCFG);
  333. for (limit = 0; limit < 5000; limit++) {
  334. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  335. break;
  336. udelay(10);
  337. }
  338. if (limit == 5000) {
  339. printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
  340. "chip.\n", dev->name);
  341. return 1;
  342. }
  343. /* Second, disable RX DMA. */
  344. writel(0, gp->regs + RXDMA_CFG);
  345. for (limit = 0; limit < 5000; limit++) {
  346. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  347. break;
  348. udelay(10);
  349. }
  350. if (limit == 5000) {
  351. printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
  352. "chip.\n", dev->name);
  353. return 1;
  354. }
  355. udelay(5000);
  356. /* Execute RX reset command. */
  357. writel(gp->swrst_base | GREG_SWRST_RXRST,
  358. gp->regs + GREG_SWRST);
  359. for (limit = 0; limit < 5000; limit++) {
  360. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  361. break;
  362. udelay(10);
  363. }
  364. if (limit == 5000) {
  365. printk(KERN_ERR "%s: RX reset command will not execute, resetting "
  366. "whole chip.\n", dev->name);
  367. return 1;
  368. }
  369. /* Refresh the RX ring. */
  370. for (i = 0; i < RX_RING_SIZE; i++) {
  371. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  372. if (gp->rx_skbs[i] == NULL) {
  373. printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
  374. "whole chip.\n", dev->name);
  375. return 1;
  376. }
  377. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  378. }
  379. gp->rx_new = gp->rx_old = 0;
  380. /* Now we must reprogram the rest of RX unit. */
  381. desc_dma = (u64) gp->gblock_dvma;
  382. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  383. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  384. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  385. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  386. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  387. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  388. writel(val, gp->regs + RXDMA_CFG);
  389. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  390. writel(((5 & RXDMA_BLANK_IPKTS) |
  391. ((8 << 12) & RXDMA_BLANK_ITIME)),
  392. gp->regs + RXDMA_BLANK);
  393. else
  394. writel(((5 & RXDMA_BLANK_IPKTS) |
  395. ((4 << 12) & RXDMA_BLANK_ITIME)),
  396. gp->regs + RXDMA_BLANK);
  397. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  398. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  399. writel(val, gp->regs + RXDMA_PTHRESH);
  400. val = readl(gp->regs + RXDMA_CFG);
  401. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  402. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  403. val = readl(gp->regs + MAC_RXCFG);
  404. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  405. return 0;
  406. }
  407. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  408. {
  409. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  410. int ret = 0;
  411. if (netif_msg_intr(gp))
  412. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  413. gp->dev->name, rxmac_stat);
  414. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  415. u32 smac = readl(gp->regs + MAC_SMACHINE);
  416. printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
  417. dev->name, smac);
  418. gp->net_stats.rx_over_errors++;
  419. gp->net_stats.rx_fifo_errors++;
  420. ret = gem_rxmac_reset(gp);
  421. }
  422. if (rxmac_stat & MAC_RXSTAT_ACE)
  423. gp->net_stats.rx_frame_errors += 0x10000;
  424. if (rxmac_stat & MAC_RXSTAT_CCE)
  425. gp->net_stats.rx_crc_errors += 0x10000;
  426. if (rxmac_stat & MAC_RXSTAT_LCE)
  427. gp->net_stats.rx_length_errors += 0x10000;
  428. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  429. * events.
  430. */
  431. return ret;
  432. }
  433. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  434. {
  435. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  436. if (netif_msg_intr(gp))
  437. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  438. gp->dev->name, mac_cstat);
  439. /* This interrupt is just for pause frame and pause
  440. * tracking. It is useful for diagnostics and debug
  441. * but probably by default we will mask these events.
  442. */
  443. if (mac_cstat & MAC_CSTAT_PS)
  444. gp->pause_entered++;
  445. if (mac_cstat & MAC_CSTAT_PRCV)
  446. gp->pause_last_time_recvd = (mac_cstat >> 16);
  447. return 0;
  448. }
  449. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  450. {
  451. u32 mif_status = readl(gp->regs + MIF_STATUS);
  452. u32 reg_val, changed_bits;
  453. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  454. changed_bits = (mif_status & MIF_STATUS_STAT);
  455. gem_handle_mif_event(gp, reg_val, changed_bits);
  456. return 0;
  457. }
  458. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  459. {
  460. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  461. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  462. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  463. printk(KERN_ERR "%s: PCI error [%04x] ",
  464. dev->name, pci_estat);
  465. if (pci_estat & GREG_PCIESTAT_BADACK)
  466. printk("<No ACK64# during ABS64 cycle> ");
  467. if (pci_estat & GREG_PCIESTAT_DTRTO)
  468. printk("<Delayed transaction timeout> ");
  469. if (pci_estat & GREG_PCIESTAT_OTHER)
  470. printk("<other>");
  471. printk("\n");
  472. } else {
  473. pci_estat |= GREG_PCIESTAT_OTHER;
  474. printk(KERN_ERR "%s: PCI error\n", dev->name);
  475. }
  476. if (pci_estat & GREG_PCIESTAT_OTHER) {
  477. u16 pci_cfg_stat;
  478. /* Interrogate PCI config space for the
  479. * true cause.
  480. */
  481. pci_read_config_word(gp->pdev, PCI_STATUS,
  482. &pci_cfg_stat);
  483. printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
  484. dev->name, pci_cfg_stat);
  485. if (pci_cfg_stat & PCI_STATUS_PARITY)
  486. printk(KERN_ERR "%s: PCI parity error detected.\n",
  487. dev->name);
  488. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  489. printk(KERN_ERR "%s: PCI target abort.\n",
  490. dev->name);
  491. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  492. printk(KERN_ERR "%s: PCI master acks target abort.\n",
  493. dev->name);
  494. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  495. printk(KERN_ERR "%s: PCI master abort.\n",
  496. dev->name);
  497. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  498. printk(KERN_ERR "%s: PCI system error SERR#.\n",
  499. dev->name);
  500. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  501. printk(KERN_ERR "%s: PCI parity error.\n",
  502. dev->name);
  503. /* Write the error bits back to clear them. */
  504. pci_cfg_stat &= (PCI_STATUS_PARITY |
  505. PCI_STATUS_SIG_TARGET_ABORT |
  506. PCI_STATUS_REC_TARGET_ABORT |
  507. PCI_STATUS_REC_MASTER_ABORT |
  508. PCI_STATUS_SIG_SYSTEM_ERROR |
  509. PCI_STATUS_DETECTED_PARITY);
  510. pci_write_config_word(gp->pdev,
  511. PCI_STATUS, pci_cfg_stat);
  512. }
  513. /* For all PCI errors, we should reset the chip. */
  514. return 1;
  515. }
  516. /* All non-normal interrupt conditions get serviced here.
  517. * Returns non-zero if we should just exit the interrupt
  518. * handler right now (ie. if we reset the card which invalidates
  519. * all of the other original irq status bits).
  520. */
  521. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  522. {
  523. if (gem_status & GREG_STAT_RXNOBUF) {
  524. /* Frame arrived, no free RX buffers available. */
  525. if (netif_msg_rx_err(gp))
  526. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  527. gp->dev->name);
  528. gp->net_stats.rx_dropped++;
  529. }
  530. if (gem_status & GREG_STAT_RXTAGERR) {
  531. /* corrupt RX tag framing */
  532. if (netif_msg_rx_err(gp))
  533. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  534. gp->dev->name);
  535. gp->net_stats.rx_errors++;
  536. goto do_reset;
  537. }
  538. if (gem_status & GREG_STAT_PCS) {
  539. if (gem_pcs_interrupt(dev, gp, gem_status))
  540. goto do_reset;
  541. }
  542. if (gem_status & GREG_STAT_TXMAC) {
  543. if (gem_txmac_interrupt(dev, gp, gem_status))
  544. goto do_reset;
  545. }
  546. if (gem_status & GREG_STAT_RXMAC) {
  547. if (gem_rxmac_interrupt(dev, gp, gem_status))
  548. goto do_reset;
  549. }
  550. if (gem_status & GREG_STAT_MAC) {
  551. if (gem_mac_interrupt(dev, gp, gem_status))
  552. goto do_reset;
  553. }
  554. if (gem_status & GREG_STAT_MIF) {
  555. if (gem_mif_interrupt(dev, gp, gem_status))
  556. goto do_reset;
  557. }
  558. if (gem_status & GREG_STAT_PCIERR) {
  559. if (gem_pci_interrupt(dev, gp, gem_status))
  560. goto do_reset;
  561. }
  562. return 0;
  563. do_reset:
  564. gp->reset_task_pending = 1;
  565. schedule_work(&gp->reset_task);
  566. return 1;
  567. }
  568. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  569. {
  570. int entry, limit;
  571. if (netif_msg_intr(gp))
  572. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  573. gp->dev->name, gem_status);
  574. entry = gp->tx_old;
  575. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  576. while (entry != limit) {
  577. struct sk_buff *skb;
  578. struct gem_txd *txd;
  579. dma_addr_t dma_addr;
  580. u32 dma_len;
  581. int frag;
  582. if (netif_msg_tx_done(gp))
  583. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  584. gp->dev->name, entry);
  585. skb = gp->tx_skbs[entry];
  586. if (skb_shinfo(skb)->nr_frags) {
  587. int last = entry + skb_shinfo(skb)->nr_frags;
  588. int walk = entry;
  589. int incomplete = 0;
  590. last &= (TX_RING_SIZE - 1);
  591. for (;;) {
  592. walk = NEXT_TX(walk);
  593. if (walk == limit)
  594. incomplete = 1;
  595. if (walk == last)
  596. break;
  597. }
  598. if (incomplete)
  599. break;
  600. }
  601. gp->tx_skbs[entry] = NULL;
  602. gp->net_stats.tx_bytes += skb->len;
  603. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  604. txd = &gp->init_block->txd[entry];
  605. dma_addr = le64_to_cpu(txd->buffer);
  606. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  607. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  608. entry = NEXT_TX(entry);
  609. }
  610. gp->net_stats.tx_packets++;
  611. dev_kfree_skb_irq(skb);
  612. }
  613. gp->tx_old = entry;
  614. if (netif_queue_stopped(dev) &&
  615. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  616. netif_wake_queue(dev);
  617. }
  618. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  619. {
  620. int cluster_start, curr, count, kick;
  621. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  622. count = 0;
  623. kick = -1;
  624. wmb();
  625. while (curr != limit) {
  626. curr = NEXT_RX(curr);
  627. if (++count == 4) {
  628. struct gem_rxd *rxd =
  629. &gp->init_block->rxd[cluster_start];
  630. for (;;) {
  631. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  632. rxd++;
  633. cluster_start = NEXT_RX(cluster_start);
  634. if (cluster_start == curr)
  635. break;
  636. }
  637. kick = curr;
  638. count = 0;
  639. }
  640. }
  641. if (kick >= 0) {
  642. mb();
  643. writel(kick, gp->regs + RXDMA_KICK);
  644. }
  645. }
  646. static int gem_rx(struct gem *gp, int work_to_do)
  647. {
  648. int entry, drops, work_done = 0;
  649. u32 done;
  650. if (netif_msg_rx_status(gp))
  651. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  652. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  653. entry = gp->rx_new;
  654. drops = 0;
  655. done = readl(gp->regs + RXDMA_DONE);
  656. for (;;) {
  657. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  658. struct sk_buff *skb;
  659. u64 status = cpu_to_le64(rxd->status_word);
  660. dma_addr_t dma_addr;
  661. int len;
  662. if ((status & RXDCTRL_OWN) != 0)
  663. break;
  664. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  665. break;
  666. /* When writing back RX descriptor, GEM writes status
  667. * then buffer address, possibly in seperate transactions.
  668. * If we don't wait for the chip to write both, we could
  669. * post a new buffer to this descriptor then have GEM spam
  670. * on the buffer address. We sync on the RX completion
  671. * register to prevent this from happening.
  672. */
  673. if (entry == done) {
  674. done = readl(gp->regs + RXDMA_DONE);
  675. if (entry == done)
  676. break;
  677. }
  678. /* We can now account for the work we're about to do */
  679. work_done++;
  680. skb = gp->rx_skbs[entry];
  681. len = (status & RXDCTRL_BUFSZ) >> 16;
  682. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  683. gp->net_stats.rx_errors++;
  684. if (len < ETH_ZLEN)
  685. gp->net_stats.rx_length_errors++;
  686. if (len & RXDCTRL_BAD)
  687. gp->net_stats.rx_crc_errors++;
  688. /* We'll just return it to GEM. */
  689. drop_it:
  690. gp->net_stats.rx_dropped++;
  691. goto next;
  692. }
  693. dma_addr = cpu_to_le64(rxd->buffer);
  694. if (len > RX_COPY_THRESHOLD) {
  695. struct sk_buff *new_skb;
  696. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  697. if (new_skb == NULL) {
  698. drops++;
  699. goto drop_it;
  700. }
  701. pci_unmap_page(gp->pdev, dma_addr,
  702. RX_BUF_ALLOC_SIZE(gp),
  703. PCI_DMA_FROMDEVICE);
  704. gp->rx_skbs[entry] = new_skb;
  705. new_skb->dev = gp->dev;
  706. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  707. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  708. virt_to_page(new_skb->data),
  709. offset_in_page(new_skb->data),
  710. RX_BUF_ALLOC_SIZE(gp),
  711. PCI_DMA_FROMDEVICE));
  712. skb_reserve(new_skb, RX_OFFSET);
  713. /* Trim the original skb for the netif. */
  714. skb_trim(skb, len);
  715. } else {
  716. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  717. if (copy_skb == NULL) {
  718. drops++;
  719. goto drop_it;
  720. }
  721. skb_reserve(copy_skb, 2);
  722. skb_put(copy_skb, len);
  723. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  724. skb_copy_from_linear_data(skb, copy_skb->data, len);
  725. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  726. /* We'll reuse the original ring buffer. */
  727. skb = copy_skb;
  728. }
  729. skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  730. skb->ip_summed = CHECKSUM_COMPLETE;
  731. skb->protocol = eth_type_trans(skb, gp->dev);
  732. netif_receive_skb(skb);
  733. gp->net_stats.rx_packets++;
  734. gp->net_stats.rx_bytes += len;
  735. gp->dev->last_rx = jiffies;
  736. next:
  737. entry = NEXT_RX(entry);
  738. }
  739. gem_post_rxds(gp, entry);
  740. gp->rx_new = entry;
  741. if (drops)
  742. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
  743. gp->dev->name);
  744. return work_done;
  745. }
  746. static int gem_poll(struct net_device *dev, int *budget)
  747. {
  748. struct gem *gp = dev->priv;
  749. unsigned long flags;
  750. /*
  751. * NAPI locking nightmare: See comment at head of driver
  752. */
  753. spin_lock_irqsave(&gp->lock, flags);
  754. do {
  755. int work_to_do, work_done;
  756. /* Handle anomalies */
  757. if (gp->status & GREG_STAT_ABNORMAL) {
  758. if (gem_abnormal_irq(dev, gp, gp->status))
  759. break;
  760. }
  761. /* Run TX completion thread */
  762. spin_lock(&gp->tx_lock);
  763. gem_tx(dev, gp, gp->status);
  764. spin_unlock(&gp->tx_lock);
  765. spin_unlock_irqrestore(&gp->lock, flags);
  766. /* Run RX thread. We don't use any locking here,
  767. * code willing to do bad things - like cleaning the
  768. * rx ring - must call netif_poll_disable(), which
  769. * schedule_timeout()'s if polling is already disabled.
  770. */
  771. work_to_do = min(*budget, dev->quota);
  772. work_done = gem_rx(gp, work_to_do);
  773. *budget -= work_done;
  774. dev->quota -= work_done;
  775. if (work_done >= work_to_do)
  776. return 1;
  777. spin_lock_irqsave(&gp->lock, flags);
  778. gp->status = readl(gp->regs + GREG_STAT);
  779. } while (gp->status & GREG_STAT_NAPI);
  780. __netif_rx_complete(dev);
  781. gem_enable_ints(gp);
  782. spin_unlock_irqrestore(&gp->lock, flags);
  783. return 0;
  784. }
  785. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  786. {
  787. struct net_device *dev = dev_id;
  788. struct gem *gp = dev->priv;
  789. unsigned long flags;
  790. /* Swallow interrupts when shutting the chip down, though
  791. * that shouldn't happen, we should have done free_irq() at
  792. * this point...
  793. */
  794. if (!gp->running)
  795. return IRQ_HANDLED;
  796. spin_lock_irqsave(&gp->lock, flags);
  797. if (netif_rx_schedule_prep(dev)) {
  798. u32 gem_status = readl(gp->regs + GREG_STAT);
  799. if (gem_status == 0) {
  800. netif_poll_enable(dev);
  801. spin_unlock_irqrestore(&gp->lock, flags);
  802. return IRQ_NONE;
  803. }
  804. gp->status = gem_status;
  805. gem_disable_ints(gp);
  806. __netif_rx_schedule(dev);
  807. }
  808. spin_unlock_irqrestore(&gp->lock, flags);
  809. /* If polling was disabled at the time we received that
  810. * interrupt, we may return IRQ_HANDLED here while we
  811. * should return IRQ_NONE. No big deal...
  812. */
  813. return IRQ_HANDLED;
  814. }
  815. #ifdef CONFIG_NET_POLL_CONTROLLER
  816. static void gem_poll_controller(struct net_device *dev)
  817. {
  818. /* gem_interrupt is safe to reentrance so no need
  819. * to disable_irq here.
  820. */
  821. gem_interrupt(dev->irq, dev);
  822. }
  823. #endif
  824. static void gem_tx_timeout(struct net_device *dev)
  825. {
  826. struct gem *gp = dev->priv;
  827. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  828. if (!gp->running) {
  829. printk("%s: hrm.. hw not running !\n", dev->name);
  830. return;
  831. }
  832. printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
  833. dev->name,
  834. readl(gp->regs + TXDMA_CFG),
  835. readl(gp->regs + MAC_TXSTAT),
  836. readl(gp->regs + MAC_TXCFG));
  837. printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
  838. dev->name,
  839. readl(gp->regs + RXDMA_CFG),
  840. readl(gp->regs + MAC_RXSTAT),
  841. readl(gp->regs + MAC_RXCFG));
  842. spin_lock_irq(&gp->lock);
  843. spin_lock(&gp->tx_lock);
  844. gp->reset_task_pending = 1;
  845. schedule_work(&gp->reset_task);
  846. spin_unlock(&gp->tx_lock);
  847. spin_unlock_irq(&gp->lock);
  848. }
  849. static __inline__ int gem_intme(int entry)
  850. {
  851. /* Algorithm: IRQ every 1/2 of descriptors. */
  852. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  853. return 1;
  854. return 0;
  855. }
  856. static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
  857. {
  858. struct gem *gp = dev->priv;
  859. int entry;
  860. u64 ctrl;
  861. unsigned long flags;
  862. ctrl = 0;
  863. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  864. const u64 csum_start_off = skb_transport_offset(skb);
  865. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  866. ctrl = (TXDCTRL_CENAB |
  867. (csum_start_off << 15) |
  868. (csum_stuff_off << 21));
  869. }
  870. local_irq_save(flags);
  871. if (!spin_trylock(&gp->tx_lock)) {
  872. /* Tell upper layer to requeue */
  873. local_irq_restore(flags);
  874. return NETDEV_TX_LOCKED;
  875. }
  876. /* We raced with gem_do_stop() */
  877. if (!gp->running) {
  878. spin_unlock_irqrestore(&gp->tx_lock, flags);
  879. return NETDEV_TX_BUSY;
  880. }
  881. /* This is a hard error, log it. */
  882. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  883. netif_stop_queue(dev);
  884. spin_unlock_irqrestore(&gp->tx_lock, flags);
  885. printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
  886. dev->name);
  887. return NETDEV_TX_BUSY;
  888. }
  889. entry = gp->tx_new;
  890. gp->tx_skbs[entry] = skb;
  891. if (skb_shinfo(skb)->nr_frags == 0) {
  892. struct gem_txd *txd = &gp->init_block->txd[entry];
  893. dma_addr_t mapping;
  894. u32 len;
  895. len = skb->len;
  896. mapping = pci_map_page(gp->pdev,
  897. virt_to_page(skb->data),
  898. offset_in_page(skb->data),
  899. len, PCI_DMA_TODEVICE);
  900. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  901. if (gem_intme(entry))
  902. ctrl |= TXDCTRL_INTME;
  903. txd->buffer = cpu_to_le64(mapping);
  904. wmb();
  905. txd->control_word = cpu_to_le64(ctrl);
  906. entry = NEXT_TX(entry);
  907. } else {
  908. struct gem_txd *txd;
  909. u32 first_len;
  910. u64 intme;
  911. dma_addr_t first_mapping;
  912. int frag, first_entry = entry;
  913. intme = 0;
  914. if (gem_intme(entry))
  915. intme |= TXDCTRL_INTME;
  916. /* We must give this initial chunk to the device last.
  917. * Otherwise we could race with the device.
  918. */
  919. first_len = skb_headlen(skb);
  920. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  921. offset_in_page(skb->data),
  922. first_len, PCI_DMA_TODEVICE);
  923. entry = NEXT_TX(entry);
  924. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  925. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  926. u32 len;
  927. dma_addr_t mapping;
  928. u64 this_ctrl;
  929. len = this_frag->size;
  930. mapping = pci_map_page(gp->pdev,
  931. this_frag->page,
  932. this_frag->page_offset,
  933. len, PCI_DMA_TODEVICE);
  934. this_ctrl = ctrl;
  935. if (frag == skb_shinfo(skb)->nr_frags - 1)
  936. this_ctrl |= TXDCTRL_EOF;
  937. txd = &gp->init_block->txd[entry];
  938. txd->buffer = cpu_to_le64(mapping);
  939. wmb();
  940. txd->control_word = cpu_to_le64(this_ctrl | len);
  941. if (gem_intme(entry))
  942. intme |= TXDCTRL_INTME;
  943. entry = NEXT_TX(entry);
  944. }
  945. txd = &gp->init_block->txd[first_entry];
  946. txd->buffer = cpu_to_le64(first_mapping);
  947. wmb();
  948. txd->control_word =
  949. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  950. }
  951. gp->tx_new = entry;
  952. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  953. netif_stop_queue(dev);
  954. if (netif_msg_tx_queued(gp))
  955. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  956. dev->name, entry, skb->len);
  957. mb();
  958. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  959. spin_unlock_irqrestore(&gp->tx_lock, flags);
  960. dev->trans_start = jiffies;
  961. return NETDEV_TX_OK;
  962. }
  963. #define STOP_TRIES 32
  964. /* Must be invoked under gp->lock and gp->tx_lock. */
  965. static void gem_reset(struct gem *gp)
  966. {
  967. int limit;
  968. u32 val;
  969. /* Make sure we won't get any more interrupts */
  970. writel(0xffffffff, gp->regs + GREG_IMASK);
  971. /* Reset the chip */
  972. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  973. gp->regs + GREG_SWRST);
  974. limit = STOP_TRIES;
  975. do {
  976. udelay(20);
  977. val = readl(gp->regs + GREG_SWRST);
  978. if (limit-- <= 0)
  979. break;
  980. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  981. if (limit <= 0)
  982. printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
  983. }
  984. /* Must be invoked under gp->lock and gp->tx_lock. */
  985. static void gem_start_dma(struct gem *gp)
  986. {
  987. u32 val;
  988. /* We are ready to rock, turn everything on. */
  989. val = readl(gp->regs + TXDMA_CFG);
  990. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  991. val = readl(gp->regs + RXDMA_CFG);
  992. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  993. val = readl(gp->regs + MAC_TXCFG);
  994. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  995. val = readl(gp->regs + MAC_RXCFG);
  996. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  997. (void) readl(gp->regs + MAC_RXCFG);
  998. udelay(100);
  999. gem_enable_ints(gp);
  1000. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1001. }
  1002. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1003. * actually stopped before about 4ms tho ...
  1004. */
  1005. static void gem_stop_dma(struct gem *gp)
  1006. {
  1007. u32 val;
  1008. /* We are done rocking, turn everything off. */
  1009. val = readl(gp->regs + TXDMA_CFG);
  1010. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1011. val = readl(gp->regs + RXDMA_CFG);
  1012. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1013. val = readl(gp->regs + MAC_TXCFG);
  1014. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1015. val = readl(gp->regs + MAC_RXCFG);
  1016. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1017. (void) readl(gp->regs + MAC_RXCFG);
  1018. /* Need to wait a bit ... done by the caller */
  1019. }
  1020. /* Must be invoked under gp->lock and gp->tx_lock. */
  1021. // XXX dbl check what that function should do when called on PCS PHY
  1022. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1023. {
  1024. u32 advertise, features;
  1025. int autoneg;
  1026. int speed;
  1027. int duplex;
  1028. if (gp->phy_type != phy_mii_mdio0 &&
  1029. gp->phy_type != phy_mii_mdio1)
  1030. goto non_mii;
  1031. /* Setup advertise */
  1032. if (found_mii_phy(gp))
  1033. features = gp->phy_mii.def->features;
  1034. else
  1035. features = 0;
  1036. advertise = features & ADVERTISE_MASK;
  1037. if (gp->phy_mii.advertising != 0)
  1038. advertise &= gp->phy_mii.advertising;
  1039. autoneg = gp->want_autoneg;
  1040. speed = gp->phy_mii.speed;
  1041. duplex = gp->phy_mii.duplex;
  1042. /* Setup link parameters */
  1043. if (!ep)
  1044. goto start_aneg;
  1045. if (ep->autoneg == AUTONEG_ENABLE) {
  1046. advertise = ep->advertising;
  1047. autoneg = 1;
  1048. } else {
  1049. autoneg = 0;
  1050. speed = ep->speed;
  1051. duplex = ep->duplex;
  1052. }
  1053. start_aneg:
  1054. /* Sanitize settings based on PHY capabilities */
  1055. if ((features & SUPPORTED_Autoneg) == 0)
  1056. autoneg = 0;
  1057. if (speed == SPEED_1000 &&
  1058. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1059. speed = SPEED_100;
  1060. if (speed == SPEED_100 &&
  1061. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1062. speed = SPEED_10;
  1063. if (duplex == DUPLEX_FULL &&
  1064. !(features & (SUPPORTED_1000baseT_Full |
  1065. SUPPORTED_100baseT_Full |
  1066. SUPPORTED_10baseT_Full)))
  1067. duplex = DUPLEX_HALF;
  1068. if (speed == 0)
  1069. speed = SPEED_10;
  1070. /* If we are asleep, we don't try to actually setup the PHY, we
  1071. * just store the settings
  1072. */
  1073. if (gp->asleep) {
  1074. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1075. gp->phy_mii.speed = speed;
  1076. gp->phy_mii.duplex = duplex;
  1077. return;
  1078. }
  1079. /* Configure PHY & start aneg */
  1080. gp->want_autoneg = autoneg;
  1081. if (autoneg) {
  1082. if (found_mii_phy(gp))
  1083. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1084. gp->lstate = link_aneg;
  1085. } else {
  1086. if (found_mii_phy(gp))
  1087. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1088. gp->lstate = link_force_ok;
  1089. }
  1090. non_mii:
  1091. gp->timer_ticks = 0;
  1092. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1093. }
  1094. /* A link-up condition has occurred, initialize and enable the
  1095. * rest of the chip.
  1096. *
  1097. * Must be invoked under gp->lock and gp->tx_lock.
  1098. */
  1099. static int gem_set_link_modes(struct gem *gp)
  1100. {
  1101. u32 val;
  1102. int full_duplex, speed, pause;
  1103. full_duplex = 0;
  1104. speed = SPEED_10;
  1105. pause = 0;
  1106. if (found_mii_phy(gp)) {
  1107. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1108. return 1;
  1109. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1110. speed = gp->phy_mii.speed;
  1111. pause = gp->phy_mii.pause;
  1112. } else if (gp->phy_type == phy_serialink ||
  1113. gp->phy_type == phy_serdes) {
  1114. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1115. if (pcs_lpa & PCS_MIIADV_FD)
  1116. full_duplex = 1;
  1117. speed = SPEED_1000;
  1118. }
  1119. if (netif_msg_link(gp))
  1120. printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
  1121. gp->dev->name, speed, (full_duplex ? "full" : "half"));
  1122. if (!gp->running)
  1123. return 0;
  1124. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1125. if (full_duplex) {
  1126. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1127. } else {
  1128. /* MAC_TXCFG_NBO must be zero. */
  1129. }
  1130. writel(val, gp->regs + MAC_TXCFG);
  1131. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1132. if (!full_duplex &&
  1133. (gp->phy_type == phy_mii_mdio0 ||
  1134. gp->phy_type == phy_mii_mdio1)) {
  1135. val |= MAC_XIFCFG_DISE;
  1136. } else if (full_duplex) {
  1137. val |= MAC_XIFCFG_FLED;
  1138. }
  1139. if (speed == SPEED_1000)
  1140. val |= (MAC_XIFCFG_GMII);
  1141. writel(val, gp->regs + MAC_XIFCFG);
  1142. /* If gigabit and half-duplex, enable carrier extension
  1143. * mode. Else, disable it.
  1144. */
  1145. if (speed == SPEED_1000 && !full_duplex) {
  1146. val = readl(gp->regs + MAC_TXCFG);
  1147. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1148. val = readl(gp->regs + MAC_RXCFG);
  1149. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1150. } else {
  1151. val = readl(gp->regs + MAC_TXCFG);
  1152. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1153. val = readl(gp->regs + MAC_RXCFG);
  1154. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1155. }
  1156. if (gp->phy_type == phy_serialink ||
  1157. gp->phy_type == phy_serdes) {
  1158. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1159. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1160. pause = 1;
  1161. }
  1162. if (netif_msg_link(gp)) {
  1163. if (pause) {
  1164. printk(KERN_INFO "%s: Pause is enabled "
  1165. "(rxfifo: %d off: %d on: %d)\n",
  1166. gp->dev->name,
  1167. gp->rx_fifo_sz,
  1168. gp->rx_pause_off,
  1169. gp->rx_pause_on);
  1170. } else {
  1171. printk(KERN_INFO "%s: Pause is disabled\n",
  1172. gp->dev->name);
  1173. }
  1174. }
  1175. if (!full_duplex)
  1176. writel(512, gp->regs + MAC_STIME);
  1177. else
  1178. writel(64, gp->regs + MAC_STIME);
  1179. val = readl(gp->regs + MAC_MCCFG);
  1180. if (pause)
  1181. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1182. else
  1183. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1184. writel(val, gp->regs + MAC_MCCFG);
  1185. gem_start_dma(gp);
  1186. return 0;
  1187. }
  1188. /* Must be invoked under gp->lock and gp->tx_lock. */
  1189. static int gem_mdio_link_not_up(struct gem *gp)
  1190. {
  1191. switch (gp->lstate) {
  1192. case link_force_ret:
  1193. if (netif_msg_link(gp))
  1194. printk(KERN_INFO "%s: Autoneg failed again, keeping"
  1195. " forced mode\n", gp->dev->name);
  1196. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1197. gp->last_forced_speed, DUPLEX_HALF);
  1198. gp->timer_ticks = 5;
  1199. gp->lstate = link_force_ok;
  1200. return 0;
  1201. case link_aneg:
  1202. /* We try forced modes after a failed aneg only on PHYs that don't
  1203. * have "magic_aneg" bit set, which means they internally do the
  1204. * while forced-mode thingy. On these, we just restart aneg
  1205. */
  1206. if (gp->phy_mii.def->magic_aneg)
  1207. return 1;
  1208. if (netif_msg_link(gp))
  1209. printk(KERN_INFO "%s: switching to forced 100bt\n",
  1210. gp->dev->name);
  1211. /* Try forced modes. */
  1212. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1213. DUPLEX_HALF);
  1214. gp->timer_ticks = 5;
  1215. gp->lstate = link_force_try;
  1216. return 0;
  1217. case link_force_try:
  1218. /* Downgrade from 100 to 10 Mbps if necessary.
  1219. * If already at 10Mbps, warn user about the
  1220. * situation every 10 ticks.
  1221. */
  1222. if (gp->phy_mii.speed == SPEED_100) {
  1223. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1224. DUPLEX_HALF);
  1225. gp->timer_ticks = 5;
  1226. if (netif_msg_link(gp))
  1227. printk(KERN_INFO "%s: switching to forced 10bt\n",
  1228. gp->dev->name);
  1229. return 0;
  1230. } else
  1231. return 1;
  1232. default:
  1233. return 0;
  1234. }
  1235. }
  1236. static void gem_link_timer(unsigned long data)
  1237. {
  1238. struct gem *gp = (struct gem *) data;
  1239. int restart_aneg = 0;
  1240. if (gp->asleep)
  1241. return;
  1242. spin_lock_irq(&gp->lock);
  1243. spin_lock(&gp->tx_lock);
  1244. gem_get_cell(gp);
  1245. /* If the reset task is still pending, we just
  1246. * reschedule the link timer
  1247. */
  1248. if (gp->reset_task_pending)
  1249. goto restart;
  1250. if (gp->phy_type == phy_serialink ||
  1251. gp->phy_type == phy_serdes) {
  1252. u32 val = readl(gp->regs + PCS_MIISTAT);
  1253. if (!(val & PCS_MIISTAT_LS))
  1254. val = readl(gp->regs + PCS_MIISTAT);
  1255. if ((val & PCS_MIISTAT_LS) != 0) {
  1256. gp->lstate = link_up;
  1257. netif_carrier_on(gp->dev);
  1258. (void)gem_set_link_modes(gp);
  1259. }
  1260. goto restart;
  1261. }
  1262. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1263. /* Ok, here we got a link. If we had it due to a forced
  1264. * fallback, and we were configured for autoneg, we do
  1265. * retry a short autoneg pass. If you know your hub is
  1266. * broken, use ethtool ;)
  1267. */
  1268. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1269. gp->lstate = link_force_ret;
  1270. gp->last_forced_speed = gp->phy_mii.speed;
  1271. gp->timer_ticks = 5;
  1272. if (netif_msg_link(gp))
  1273. printk(KERN_INFO "%s: Got link after fallback, retrying"
  1274. " autoneg once...\n", gp->dev->name);
  1275. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1276. } else if (gp->lstate != link_up) {
  1277. gp->lstate = link_up;
  1278. netif_carrier_on(gp->dev);
  1279. if (gem_set_link_modes(gp))
  1280. restart_aneg = 1;
  1281. }
  1282. } else {
  1283. /* If the link was previously up, we restart the
  1284. * whole process
  1285. */
  1286. if (gp->lstate == link_up) {
  1287. gp->lstate = link_down;
  1288. if (netif_msg_link(gp))
  1289. printk(KERN_INFO "%s: Link down\n",
  1290. gp->dev->name);
  1291. netif_carrier_off(gp->dev);
  1292. gp->reset_task_pending = 1;
  1293. schedule_work(&gp->reset_task);
  1294. restart_aneg = 1;
  1295. } else if (++gp->timer_ticks > 10) {
  1296. if (found_mii_phy(gp))
  1297. restart_aneg = gem_mdio_link_not_up(gp);
  1298. else
  1299. restart_aneg = 1;
  1300. }
  1301. }
  1302. if (restart_aneg) {
  1303. gem_begin_auto_negotiation(gp, NULL);
  1304. goto out_unlock;
  1305. }
  1306. restart:
  1307. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1308. out_unlock:
  1309. gem_put_cell(gp);
  1310. spin_unlock(&gp->tx_lock);
  1311. spin_unlock_irq(&gp->lock);
  1312. }
  1313. /* Must be invoked under gp->lock and gp->tx_lock. */
  1314. static void gem_clean_rings(struct gem *gp)
  1315. {
  1316. struct gem_init_block *gb = gp->init_block;
  1317. struct sk_buff *skb;
  1318. int i;
  1319. dma_addr_t dma_addr;
  1320. for (i = 0; i < RX_RING_SIZE; i++) {
  1321. struct gem_rxd *rxd;
  1322. rxd = &gb->rxd[i];
  1323. if (gp->rx_skbs[i] != NULL) {
  1324. skb = gp->rx_skbs[i];
  1325. dma_addr = le64_to_cpu(rxd->buffer);
  1326. pci_unmap_page(gp->pdev, dma_addr,
  1327. RX_BUF_ALLOC_SIZE(gp),
  1328. PCI_DMA_FROMDEVICE);
  1329. dev_kfree_skb_any(skb);
  1330. gp->rx_skbs[i] = NULL;
  1331. }
  1332. rxd->status_word = 0;
  1333. wmb();
  1334. rxd->buffer = 0;
  1335. }
  1336. for (i = 0; i < TX_RING_SIZE; i++) {
  1337. if (gp->tx_skbs[i] != NULL) {
  1338. struct gem_txd *txd;
  1339. int frag;
  1340. skb = gp->tx_skbs[i];
  1341. gp->tx_skbs[i] = NULL;
  1342. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1343. int ent = i & (TX_RING_SIZE - 1);
  1344. txd = &gb->txd[ent];
  1345. dma_addr = le64_to_cpu(txd->buffer);
  1346. pci_unmap_page(gp->pdev, dma_addr,
  1347. le64_to_cpu(txd->control_word) &
  1348. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1349. if (frag != skb_shinfo(skb)->nr_frags)
  1350. i++;
  1351. }
  1352. dev_kfree_skb_any(skb);
  1353. }
  1354. }
  1355. }
  1356. /* Must be invoked under gp->lock and gp->tx_lock. */
  1357. static void gem_init_rings(struct gem *gp)
  1358. {
  1359. struct gem_init_block *gb = gp->init_block;
  1360. struct net_device *dev = gp->dev;
  1361. int i;
  1362. dma_addr_t dma_addr;
  1363. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1364. gem_clean_rings(gp);
  1365. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1366. (unsigned)VLAN_ETH_FRAME_LEN);
  1367. for (i = 0; i < RX_RING_SIZE; i++) {
  1368. struct sk_buff *skb;
  1369. struct gem_rxd *rxd = &gb->rxd[i];
  1370. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1371. if (!skb) {
  1372. rxd->buffer = 0;
  1373. rxd->status_word = 0;
  1374. continue;
  1375. }
  1376. gp->rx_skbs[i] = skb;
  1377. skb->dev = dev;
  1378. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1379. dma_addr = pci_map_page(gp->pdev,
  1380. virt_to_page(skb->data),
  1381. offset_in_page(skb->data),
  1382. RX_BUF_ALLOC_SIZE(gp),
  1383. PCI_DMA_FROMDEVICE);
  1384. rxd->buffer = cpu_to_le64(dma_addr);
  1385. wmb();
  1386. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1387. skb_reserve(skb, RX_OFFSET);
  1388. }
  1389. for (i = 0; i < TX_RING_SIZE; i++) {
  1390. struct gem_txd *txd = &gb->txd[i];
  1391. txd->control_word = 0;
  1392. wmb();
  1393. txd->buffer = 0;
  1394. }
  1395. wmb();
  1396. }
  1397. /* Init PHY interface and start link poll state machine */
  1398. static void gem_init_phy(struct gem *gp)
  1399. {
  1400. u32 mifcfg;
  1401. /* Revert MIF CFG setting done on stop_phy */
  1402. mifcfg = readl(gp->regs + MIF_CFG);
  1403. mifcfg &= ~MIF_CFG_BBMODE;
  1404. writel(mifcfg, gp->regs + MIF_CFG);
  1405. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1406. int i;
  1407. /* Those delay sucks, the HW seem to love them though, I'll
  1408. * serisouly consider breaking some locks here to be able
  1409. * to schedule instead
  1410. */
  1411. for (i = 0; i < 3; i++) {
  1412. #ifdef CONFIG_PPC_PMAC
  1413. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1414. msleep(20);
  1415. #endif
  1416. /* Some PHYs used by apple have problem getting back to us,
  1417. * we do an additional reset here
  1418. */
  1419. phy_write(gp, MII_BMCR, BMCR_RESET);
  1420. msleep(20);
  1421. if (phy_read(gp, MII_BMCR) != 0xffff)
  1422. break;
  1423. if (i == 2)
  1424. printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
  1425. gp->dev->name);
  1426. }
  1427. }
  1428. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1429. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1430. u32 val;
  1431. /* Init datapath mode register. */
  1432. if (gp->phy_type == phy_mii_mdio0 ||
  1433. gp->phy_type == phy_mii_mdio1) {
  1434. val = PCS_DMODE_MGM;
  1435. } else if (gp->phy_type == phy_serialink) {
  1436. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1437. } else {
  1438. val = PCS_DMODE_ESM;
  1439. }
  1440. writel(val, gp->regs + PCS_DMODE);
  1441. }
  1442. if (gp->phy_type == phy_mii_mdio0 ||
  1443. gp->phy_type == phy_mii_mdio1) {
  1444. // XXX check for errors
  1445. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1446. /* Init PHY */
  1447. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1448. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1449. } else {
  1450. u32 val;
  1451. int limit;
  1452. /* Reset PCS unit. */
  1453. val = readl(gp->regs + PCS_MIICTRL);
  1454. val |= PCS_MIICTRL_RST;
  1455. writeb(val, gp->regs + PCS_MIICTRL);
  1456. limit = 32;
  1457. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  1458. udelay(100);
  1459. if (limit-- <= 0)
  1460. break;
  1461. }
  1462. if (limit <= 0)
  1463. printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
  1464. gp->dev->name);
  1465. /* Make sure PCS is disabled while changing advertisement
  1466. * configuration.
  1467. */
  1468. val = readl(gp->regs + PCS_CFG);
  1469. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  1470. writel(val, gp->regs + PCS_CFG);
  1471. /* Advertise all capabilities except assymetric
  1472. * pause.
  1473. */
  1474. val = readl(gp->regs + PCS_MIIADV);
  1475. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  1476. PCS_MIIADV_SP | PCS_MIIADV_AP);
  1477. writel(val, gp->regs + PCS_MIIADV);
  1478. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  1479. * and re-enable PCS.
  1480. */
  1481. val = readl(gp->regs + PCS_MIICTRL);
  1482. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  1483. val &= ~PCS_MIICTRL_WB;
  1484. writel(val, gp->regs + PCS_MIICTRL);
  1485. val = readl(gp->regs + PCS_CFG);
  1486. val |= PCS_CFG_ENABLE;
  1487. writel(val, gp->regs + PCS_CFG);
  1488. /* Make sure serialink loopback is off. The meaning
  1489. * of this bit is logically inverted based upon whether
  1490. * you are in Serialink or SERDES mode.
  1491. */
  1492. val = readl(gp->regs + PCS_SCTRL);
  1493. if (gp->phy_type == phy_serialink)
  1494. val &= ~PCS_SCTRL_LOOP;
  1495. else
  1496. val |= PCS_SCTRL_LOOP;
  1497. writel(val, gp->regs + PCS_SCTRL);
  1498. }
  1499. /* Default aneg parameters */
  1500. gp->timer_ticks = 0;
  1501. gp->lstate = link_down;
  1502. netif_carrier_off(gp->dev);
  1503. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1504. spin_lock_irq(&gp->lock);
  1505. gem_begin_auto_negotiation(gp, NULL);
  1506. spin_unlock_irq(&gp->lock);
  1507. }
  1508. /* Must be invoked under gp->lock and gp->tx_lock. */
  1509. static void gem_init_dma(struct gem *gp)
  1510. {
  1511. u64 desc_dma = (u64) gp->gblock_dvma;
  1512. u32 val;
  1513. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1514. writel(val, gp->regs + TXDMA_CFG);
  1515. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1516. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1517. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1518. writel(0, gp->regs + TXDMA_KICK);
  1519. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1520. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1521. writel(val, gp->regs + RXDMA_CFG);
  1522. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1523. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1524. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1525. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1526. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1527. writel(val, gp->regs + RXDMA_PTHRESH);
  1528. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1529. writel(((5 & RXDMA_BLANK_IPKTS) |
  1530. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1531. gp->regs + RXDMA_BLANK);
  1532. else
  1533. writel(((5 & RXDMA_BLANK_IPKTS) |
  1534. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1535. gp->regs + RXDMA_BLANK);
  1536. }
  1537. /* Must be invoked under gp->lock and gp->tx_lock. */
  1538. static u32 gem_setup_multicast(struct gem *gp)
  1539. {
  1540. u32 rxcfg = 0;
  1541. int i;
  1542. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1543. (gp->dev->mc_count > 256)) {
  1544. for (i=0; i<16; i++)
  1545. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1546. rxcfg |= MAC_RXCFG_HFE;
  1547. } else if (gp->dev->flags & IFF_PROMISC) {
  1548. rxcfg |= MAC_RXCFG_PROM;
  1549. } else {
  1550. u16 hash_table[16];
  1551. u32 crc;
  1552. struct dev_mc_list *dmi = gp->dev->mc_list;
  1553. int i;
  1554. for (i = 0; i < 16; i++)
  1555. hash_table[i] = 0;
  1556. for (i = 0; i < gp->dev->mc_count; i++) {
  1557. char *addrs = dmi->dmi_addr;
  1558. dmi = dmi->next;
  1559. if (!(*addrs & 1))
  1560. continue;
  1561. crc = ether_crc_le(6, addrs);
  1562. crc >>= 24;
  1563. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1564. }
  1565. for (i=0; i<16; i++)
  1566. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1567. rxcfg |= MAC_RXCFG_HFE;
  1568. }
  1569. return rxcfg;
  1570. }
  1571. /* Must be invoked under gp->lock and gp->tx_lock. */
  1572. static void gem_init_mac(struct gem *gp)
  1573. {
  1574. unsigned char *e = &gp->dev->dev_addr[0];
  1575. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1576. writel(0x00, gp->regs + MAC_IPG0);
  1577. writel(0x08, gp->regs + MAC_IPG1);
  1578. writel(0x04, gp->regs + MAC_IPG2);
  1579. writel(0x40, gp->regs + MAC_STIME);
  1580. writel(0x40, gp->regs + MAC_MINFSZ);
  1581. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1582. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1583. writel(0x07, gp->regs + MAC_PASIZE);
  1584. writel(0x04, gp->regs + MAC_JAMSIZE);
  1585. writel(0x10, gp->regs + MAC_ATTLIM);
  1586. writel(0x8808, gp->regs + MAC_MCTYPE);
  1587. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1588. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1589. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1590. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1591. writel(0, gp->regs + MAC_ADDR3);
  1592. writel(0, gp->regs + MAC_ADDR4);
  1593. writel(0, gp->regs + MAC_ADDR5);
  1594. writel(0x0001, gp->regs + MAC_ADDR6);
  1595. writel(0xc200, gp->regs + MAC_ADDR7);
  1596. writel(0x0180, gp->regs + MAC_ADDR8);
  1597. writel(0, gp->regs + MAC_AFILT0);
  1598. writel(0, gp->regs + MAC_AFILT1);
  1599. writel(0, gp->regs + MAC_AFILT2);
  1600. writel(0, gp->regs + MAC_AF21MSK);
  1601. writel(0, gp->regs + MAC_AF0MSK);
  1602. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1603. #ifdef STRIP_FCS
  1604. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1605. #endif
  1606. writel(0, gp->regs + MAC_NCOLL);
  1607. writel(0, gp->regs + MAC_FASUCC);
  1608. writel(0, gp->regs + MAC_ECOLL);
  1609. writel(0, gp->regs + MAC_LCOLL);
  1610. writel(0, gp->regs + MAC_DTIMER);
  1611. writel(0, gp->regs + MAC_PATMPS);
  1612. writel(0, gp->regs + MAC_RFCTR);
  1613. writel(0, gp->regs + MAC_LERR);
  1614. writel(0, gp->regs + MAC_AERR);
  1615. writel(0, gp->regs + MAC_FCSERR);
  1616. writel(0, gp->regs + MAC_RXCVERR);
  1617. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1618. * them once a link is established.
  1619. */
  1620. writel(0, gp->regs + MAC_TXCFG);
  1621. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1622. writel(0, gp->regs + MAC_MCCFG);
  1623. writel(0, gp->regs + MAC_XIFCFG);
  1624. /* Setup MAC interrupts. We want to get all of the interesting
  1625. * counter expiration events, but we do not want to hear about
  1626. * normal rx/tx as the DMA engine tells us that.
  1627. */
  1628. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1629. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1630. /* Don't enable even the PAUSE interrupts for now, we
  1631. * make no use of those events other than to record them.
  1632. */
  1633. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1634. /* Don't enable GEM's WOL in normal operations
  1635. */
  1636. if (gp->has_wol)
  1637. writel(0, gp->regs + WOL_WAKECSR);
  1638. }
  1639. /* Must be invoked under gp->lock and gp->tx_lock. */
  1640. static void gem_init_pause_thresholds(struct gem *gp)
  1641. {
  1642. u32 cfg;
  1643. /* Calculate pause thresholds. Setting the OFF threshold to the
  1644. * full RX fifo size effectively disables PAUSE generation which
  1645. * is what we do for 10/100 only GEMs which have FIFOs too small
  1646. * to make real gains from PAUSE.
  1647. */
  1648. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1649. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1650. } else {
  1651. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1652. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1653. int on = off - max_frame;
  1654. gp->rx_pause_off = off;
  1655. gp->rx_pause_on = on;
  1656. }
  1657. /* Configure the chip "burst" DMA mode & enable some
  1658. * HW bug fixes on Apple version
  1659. */
  1660. cfg = 0;
  1661. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1662. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1663. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1664. cfg |= GREG_CFG_IBURST;
  1665. #endif
  1666. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1667. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1668. writel(cfg, gp->regs + GREG_CFG);
  1669. /* If Infinite Burst didn't stick, then use different
  1670. * thresholds (and Apple bug fixes don't exist)
  1671. */
  1672. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1673. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1674. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1675. writel(cfg, gp->regs + GREG_CFG);
  1676. }
  1677. }
  1678. static int gem_check_invariants(struct gem *gp)
  1679. {
  1680. struct pci_dev *pdev = gp->pdev;
  1681. u32 mif_cfg;
  1682. /* On Apple's sungem, we can't rely on registers as the chip
  1683. * was been powered down by the firmware. The PHY is looked
  1684. * up later on.
  1685. */
  1686. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1687. gp->phy_type = phy_mii_mdio0;
  1688. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1689. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1690. gp->swrst_base = 0;
  1691. mif_cfg = readl(gp->regs + MIF_CFG);
  1692. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1693. mif_cfg |= MIF_CFG_MDI0;
  1694. writel(mif_cfg, gp->regs + MIF_CFG);
  1695. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1696. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1697. /* We hard-code the PHY address so we can properly bring it out of
  1698. * reset later on, we can't really probe it at this point, though
  1699. * that isn't an issue.
  1700. */
  1701. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1702. gp->mii_phy_addr = 1;
  1703. else
  1704. gp->mii_phy_addr = 0;
  1705. return 0;
  1706. }
  1707. mif_cfg = readl(gp->regs + MIF_CFG);
  1708. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1709. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1710. /* One of the MII PHYs _must_ be present
  1711. * as this chip has no gigabit PHY.
  1712. */
  1713. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1714. printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1715. mif_cfg);
  1716. return -1;
  1717. }
  1718. }
  1719. /* Determine initial PHY interface type guess. MDIO1 is the
  1720. * external PHY and thus takes precedence over MDIO0.
  1721. */
  1722. if (mif_cfg & MIF_CFG_MDI1) {
  1723. gp->phy_type = phy_mii_mdio1;
  1724. mif_cfg |= MIF_CFG_PSELECT;
  1725. writel(mif_cfg, gp->regs + MIF_CFG);
  1726. } else if (mif_cfg & MIF_CFG_MDI0) {
  1727. gp->phy_type = phy_mii_mdio0;
  1728. mif_cfg &= ~MIF_CFG_PSELECT;
  1729. writel(mif_cfg, gp->regs + MIF_CFG);
  1730. } else {
  1731. gp->phy_type = phy_serialink;
  1732. }
  1733. if (gp->phy_type == phy_mii_mdio1 ||
  1734. gp->phy_type == phy_mii_mdio0) {
  1735. int i;
  1736. for (i = 0; i < 32; i++) {
  1737. gp->mii_phy_addr = i;
  1738. if (phy_read(gp, MII_BMCR) != 0xffff)
  1739. break;
  1740. }
  1741. if (i == 32) {
  1742. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1743. printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
  1744. return -1;
  1745. }
  1746. gp->phy_type = phy_serdes;
  1747. }
  1748. }
  1749. /* Fetch the FIFO configurations now too. */
  1750. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1751. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1752. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1753. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1754. if (gp->tx_fifo_sz != (9 * 1024) ||
  1755. gp->rx_fifo_sz != (20 * 1024)) {
  1756. printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1757. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1758. return -1;
  1759. }
  1760. gp->swrst_base = 0;
  1761. } else {
  1762. if (gp->tx_fifo_sz != (2 * 1024) ||
  1763. gp->rx_fifo_sz != (2 * 1024)) {
  1764. printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1765. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1766. return -1;
  1767. }
  1768. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1769. }
  1770. }
  1771. return 0;
  1772. }
  1773. /* Must be invoked under gp->lock and gp->tx_lock. */
  1774. static void gem_reinit_chip(struct gem *gp)
  1775. {
  1776. /* Reset the chip */
  1777. gem_reset(gp);
  1778. /* Make sure ints are disabled */
  1779. gem_disable_ints(gp);
  1780. /* Allocate & setup ring buffers */
  1781. gem_init_rings(gp);
  1782. /* Configure pause thresholds */
  1783. gem_init_pause_thresholds(gp);
  1784. /* Init DMA & MAC engines */
  1785. gem_init_dma(gp);
  1786. gem_init_mac(gp);
  1787. }
  1788. /* Must be invoked with no lock held. */
  1789. static void gem_stop_phy(struct gem *gp, int wol)
  1790. {
  1791. u32 mifcfg;
  1792. unsigned long flags;
  1793. /* Let the chip settle down a bit, it seems that helps
  1794. * for sleep mode on some models
  1795. */
  1796. msleep(10);
  1797. /* Make sure we aren't polling PHY status change. We
  1798. * don't currently use that feature though
  1799. */
  1800. mifcfg = readl(gp->regs + MIF_CFG);
  1801. mifcfg &= ~MIF_CFG_POLL;
  1802. writel(mifcfg, gp->regs + MIF_CFG);
  1803. if (wol && gp->has_wol) {
  1804. unsigned char *e = &gp->dev->dev_addr[0];
  1805. u32 csr;
  1806. /* Setup wake-on-lan for MAGIC packet */
  1807. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1808. gp->regs + MAC_RXCFG);
  1809. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1810. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1811. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1812. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1813. csr = WOL_WAKECSR_ENABLE;
  1814. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1815. csr |= WOL_WAKECSR_MII;
  1816. writel(csr, gp->regs + WOL_WAKECSR);
  1817. } else {
  1818. writel(0, gp->regs + MAC_RXCFG);
  1819. (void)readl(gp->regs + MAC_RXCFG);
  1820. /* Machine sleep will die in strange ways if we
  1821. * dont wait a bit here, looks like the chip takes
  1822. * some time to really shut down
  1823. */
  1824. msleep(10);
  1825. }
  1826. writel(0, gp->regs + MAC_TXCFG);
  1827. writel(0, gp->regs + MAC_XIFCFG);
  1828. writel(0, gp->regs + TXDMA_CFG);
  1829. writel(0, gp->regs + RXDMA_CFG);
  1830. if (!wol) {
  1831. spin_lock_irqsave(&gp->lock, flags);
  1832. spin_lock(&gp->tx_lock);
  1833. gem_reset(gp);
  1834. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1835. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1836. spin_unlock(&gp->tx_lock);
  1837. spin_unlock_irqrestore(&gp->lock, flags);
  1838. /* No need to take the lock here */
  1839. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1840. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1841. /* According to Apple, we must set the MDIO pins to this begnign
  1842. * state or we may 1) eat more current, 2) damage some PHYs
  1843. */
  1844. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1845. writel(0, gp->regs + MIF_BBCLK);
  1846. writel(0, gp->regs + MIF_BBDATA);
  1847. writel(0, gp->regs + MIF_BBOENAB);
  1848. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1849. (void) readl(gp->regs + MAC_XIFCFG);
  1850. }
  1851. }
  1852. static int gem_do_start(struct net_device *dev)
  1853. {
  1854. struct gem *gp = dev->priv;
  1855. unsigned long flags;
  1856. spin_lock_irqsave(&gp->lock, flags);
  1857. spin_lock(&gp->tx_lock);
  1858. /* Enable the cell */
  1859. gem_get_cell(gp);
  1860. /* Init & setup chip hardware */
  1861. gem_reinit_chip(gp);
  1862. gp->running = 1;
  1863. if (gp->lstate == link_up) {
  1864. netif_carrier_on(gp->dev);
  1865. gem_set_link_modes(gp);
  1866. }
  1867. netif_wake_queue(gp->dev);
  1868. spin_unlock(&gp->tx_lock);
  1869. spin_unlock_irqrestore(&gp->lock, flags);
  1870. if (request_irq(gp->pdev->irq, gem_interrupt,
  1871. IRQF_SHARED, dev->name, (void *)dev)) {
  1872. printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
  1873. spin_lock_irqsave(&gp->lock, flags);
  1874. spin_lock(&gp->tx_lock);
  1875. gp->running = 0;
  1876. gem_reset(gp);
  1877. gem_clean_rings(gp);
  1878. gem_put_cell(gp);
  1879. spin_unlock(&gp->tx_lock);
  1880. spin_unlock_irqrestore(&gp->lock, flags);
  1881. return -EAGAIN;
  1882. }
  1883. return 0;
  1884. }
  1885. static void gem_do_stop(struct net_device *dev, int wol)
  1886. {
  1887. struct gem *gp = dev->priv;
  1888. unsigned long flags;
  1889. spin_lock_irqsave(&gp->lock, flags);
  1890. spin_lock(&gp->tx_lock);
  1891. gp->running = 0;
  1892. /* Stop netif queue */
  1893. netif_stop_queue(dev);
  1894. /* Make sure ints are disabled */
  1895. gem_disable_ints(gp);
  1896. /* We can drop the lock now */
  1897. spin_unlock(&gp->tx_lock);
  1898. spin_unlock_irqrestore(&gp->lock, flags);
  1899. /* If we are going to sleep with WOL */
  1900. gem_stop_dma(gp);
  1901. msleep(10);
  1902. if (!wol)
  1903. gem_reset(gp);
  1904. msleep(10);
  1905. /* Get rid of rings */
  1906. gem_clean_rings(gp);
  1907. /* No irq needed anymore */
  1908. free_irq(gp->pdev->irq, (void *) dev);
  1909. /* Cell not needed neither if no WOL */
  1910. if (!wol) {
  1911. spin_lock_irqsave(&gp->lock, flags);
  1912. gem_put_cell(gp);
  1913. spin_unlock_irqrestore(&gp->lock, flags);
  1914. }
  1915. }
  1916. static void gem_reset_task(struct work_struct *work)
  1917. {
  1918. struct gem *gp = container_of(work, struct gem, reset_task);
  1919. mutex_lock(&gp->pm_mutex);
  1920. netif_poll_disable(gp->dev);
  1921. spin_lock_irq(&gp->lock);
  1922. spin_lock(&gp->tx_lock);
  1923. if (gp->running == 0)
  1924. goto not_running;
  1925. if (gp->running) {
  1926. netif_stop_queue(gp->dev);
  1927. /* Reset the chip & rings */
  1928. gem_reinit_chip(gp);
  1929. if (gp->lstate == link_up)
  1930. gem_set_link_modes(gp);
  1931. netif_wake_queue(gp->dev);
  1932. }
  1933. not_running:
  1934. gp->reset_task_pending = 0;
  1935. spin_unlock(&gp->tx_lock);
  1936. spin_unlock_irq(&gp->lock);
  1937. netif_poll_enable(gp->dev);
  1938. mutex_unlock(&gp->pm_mutex);
  1939. }
  1940. static int gem_open(struct net_device *dev)
  1941. {
  1942. struct gem *gp = dev->priv;
  1943. int rc = 0;
  1944. mutex_lock(&gp->pm_mutex);
  1945. /* We need the cell enabled */
  1946. if (!gp->asleep)
  1947. rc = gem_do_start(dev);
  1948. gp->opened = (rc == 0);
  1949. mutex_unlock(&gp->pm_mutex);
  1950. return rc;
  1951. }
  1952. static int gem_close(struct net_device *dev)
  1953. {
  1954. struct gem *gp = dev->priv;
  1955. /* Note: we don't need to call netif_poll_disable() here because
  1956. * our caller (dev_close) already did it for us
  1957. */
  1958. mutex_lock(&gp->pm_mutex);
  1959. gp->opened = 0;
  1960. if (!gp->asleep)
  1961. gem_do_stop(dev, 0);
  1962. mutex_unlock(&gp->pm_mutex);
  1963. return 0;
  1964. }
  1965. #ifdef CONFIG_PM
  1966. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1967. {
  1968. struct net_device *dev = pci_get_drvdata(pdev);
  1969. struct gem *gp = dev->priv;
  1970. unsigned long flags;
  1971. mutex_lock(&gp->pm_mutex);
  1972. netif_poll_disable(dev);
  1973. printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
  1974. dev->name,
  1975. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1976. /* Keep the cell enabled during the entire operation */
  1977. spin_lock_irqsave(&gp->lock, flags);
  1978. spin_lock(&gp->tx_lock);
  1979. gem_get_cell(gp);
  1980. spin_unlock(&gp->tx_lock);
  1981. spin_unlock_irqrestore(&gp->lock, flags);
  1982. /* If the driver is opened, we stop the MAC */
  1983. if (gp->opened) {
  1984. /* Stop traffic, mark us closed */
  1985. netif_device_detach(dev);
  1986. /* Switch off MAC, remember WOL setting */
  1987. gp->asleep_wol = gp->wake_on_lan;
  1988. gem_do_stop(dev, gp->asleep_wol);
  1989. } else
  1990. gp->asleep_wol = 0;
  1991. /* Mark us asleep */
  1992. gp->asleep = 1;
  1993. wmb();
  1994. /* Stop the link timer */
  1995. del_timer_sync(&gp->link_timer);
  1996. /* Now we release the mutex to not block the reset task who
  1997. * can take it too. We are marked asleep, so there will be no
  1998. * conflict here
  1999. */
  2000. mutex_unlock(&gp->pm_mutex);
  2001. /* Wait for a pending reset task to complete */
  2002. while (gp->reset_task_pending)
  2003. yield();
  2004. flush_scheduled_work();
  2005. /* Shut the PHY down eventually and setup WOL */
  2006. gem_stop_phy(gp, gp->asleep_wol);
  2007. /* Make sure bus master is disabled */
  2008. pci_disable_device(gp->pdev);
  2009. /* Release the cell, no need to take a lock at this point since
  2010. * nothing else can happen now
  2011. */
  2012. gem_put_cell(gp);
  2013. return 0;
  2014. }
  2015. static int gem_resume(struct pci_dev *pdev)
  2016. {
  2017. struct net_device *dev = pci_get_drvdata(pdev);
  2018. struct gem *gp = dev->priv;
  2019. unsigned long flags;
  2020. printk(KERN_INFO "%s: resuming\n", dev->name);
  2021. mutex_lock(&gp->pm_mutex);
  2022. /* Keep the cell enabled during the entire operation, no need to
  2023. * take a lock here tho since nothing else can happen while we are
  2024. * marked asleep
  2025. */
  2026. gem_get_cell(gp);
  2027. /* Make sure PCI access and bus master are enabled */
  2028. if (pci_enable_device(gp->pdev)) {
  2029. printk(KERN_ERR "%s: Can't re-enable chip !\n",
  2030. dev->name);
  2031. /* Put cell and forget it for now, it will be considered as
  2032. * still asleep, a new sleep cycle may bring it back
  2033. */
  2034. gem_put_cell(gp);
  2035. mutex_unlock(&gp->pm_mutex);
  2036. return 0;
  2037. }
  2038. pci_set_master(gp->pdev);
  2039. /* Reset everything */
  2040. gem_reset(gp);
  2041. /* Mark us woken up */
  2042. gp->asleep = 0;
  2043. wmb();
  2044. /* Bring the PHY back. Again, lock is useless at this point as
  2045. * nothing can be happening until we restart the whole thing
  2046. */
  2047. gem_init_phy(gp);
  2048. /* If we were opened, bring everything back */
  2049. if (gp->opened) {
  2050. /* Restart MAC */
  2051. gem_do_start(dev);
  2052. /* Re-attach net device */
  2053. netif_device_attach(dev);
  2054. }
  2055. spin_lock_irqsave(&gp->lock, flags);
  2056. spin_lock(&gp->tx_lock);
  2057. /* If we had WOL enabled, the cell clock was never turned off during
  2058. * sleep, so we end up beeing unbalanced. Fix that here
  2059. */
  2060. if (gp->asleep_wol)
  2061. gem_put_cell(gp);
  2062. /* This function doesn't need to hold the cell, it will be held if the
  2063. * driver is open by gem_do_start().
  2064. */
  2065. gem_put_cell(gp);
  2066. spin_unlock(&gp->tx_lock);
  2067. spin_unlock_irqrestore(&gp->lock, flags);
  2068. netif_poll_enable(dev);
  2069. mutex_unlock(&gp->pm_mutex);
  2070. return 0;
  2071. }
  2072. #endif /* CONFIG_PM */
  2073. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2074. {
  2075. struct gem *gp = dev->priv;
  2076. struct net_device_stats *stats = &gp->net_stats;
  2077. spin_lock_irq(&gp->lock);
  2078. spin_lock(&gp->tx_lock);
  2079. /* I have seen this being called while the PM was in progress,
  2080. * so we shield against this
  2081. */
  2082. if (gp->running) {
  2083. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2084. writel(0, gp->regs + MAC_FCSERR);
  2085. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2086. writel(0, gp->regs + MAC_AERR);
  2087. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2088. writel(0, gp->regs + MAC_LERR);
  2089. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2090. stats->collisions +=
  2091. (readl(gp->regs + MAC_ECOLL) +
  2092. readl(gp->regs + MAC_LCOLL));
  2093. writel(0, gp->regs + MAC_ECOLL);
  2094. writel(0, gp->regs + MAC_LCOLL);
  2095. }
  2096. spin_unlock(&gp->tx_lock);
  2097. spin_unlock_irq(&gp->lock);
  2098. return &gp->net_stats;
  2099. }
  2100. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2101. {
  2102. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2103. struct gem *gp = dev->priv;
  2104. unsigned char *e = &dev->dev_addr[0];
  2105. if (!is_valid_ether_addr(macaddr->sa_data))
  2106. return -EADDRNOTAVAIL;
  2107. if (!netif_running(dev) || !netif_device_present(dev)) {
  2108. /* We'll just catch it later when the
  2109. * device is up'd or resumed.
  2110. */
  2111. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2112. return 0;
  2113. }
  2114. mutex_lock(&gp->pm_mutex);
  2115. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2116. if (gp->running) {
  2117. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2118. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2119. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2120. }
  2121. mutex_unlock(&gp->pm_mutex);
  2122. return 0;
  2123. }
  2124. static void gem_set_multicast(struct net_device *dev)
  2125. {
  2126. struct gem *gp = dev->priv;
  2127. u32 rxcfg, rxcfg_new;
  2128. int limit = 10000;
  2129. spin_lock_irq(&gp->lock);
  2130. spin_lock(&gp->tx_lock);
  2131. if (!gp->running)
  2132. goto bail;
  2133. netif_stop_queue(dev);
  2134. rxcfg = readl(gp->regs + MAC_RXCFG);
  2135. rxcfg_new = gem_setup_multicast(gp);
  2136. #ifdef STRIP_FCS
  2137. rxcfg_new |= MAC_RXCFG_SFCS;
  2138. #endif
  2139. gp->mac_rx_cfg = rxcfg_new;
  2140. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2141. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2142. if (!limit--)
  2143. break;
  2144. udelay(10);
  2145. }
  2146. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2147. rxcfg |= rxcfg_new;
  2148. writel(rxcfg, gp->regs + MAC_RXCFG);
  2149. netif_wake_queue(dev);
  2150. bail:
  2151. spin_unlock(&gp->tx_lock);
  2152. spin_unlock_irq(&gp->lock);
  2153. }
  2154. /* Jumbo-grams don't seem to work :-( */
  2155. #define GEM_MIN_MTU 68
  2156. #if 1
  2157. #define GEM_MAX_MTU 1500
  2158. #else
  2159. #define GEM_MAX_MTU 9000
  2160. #endif
  2161. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2162. {
  2163. struct gem *gp = dev->priv;
  2164. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2165. return -EINVAL;
  2166. if (!netif_running(dev) || !netif_device_present(dev)) {
  2167. /* We'll just catch it later when the
  2168. * device is up'd or resumed.
  2169. */
  2170. dev->mtu = new_mtu;
  2171. return 0;
  2172. }
  2173. mutex_lock(&gp->pm_mutex);
  2174. spin_lock_irq(&gp->lock);
  2175. spin_lock(&gp->tx_lock);
  2176. dev->mtu = new_mtu;
  2177. if (gp->running) {
  2178. gem_reinit_chip(gp);
  2179. if (gp->lstate == link_up)
  2180. gem_set_link_modes(gp);
  2181. }
  2182. spin_unlock(&gp->tx_lock);
  2183. spin_unlock_irq(&gp->lock);
  2184. mutex_unlock(&gp->pm_mutex);
  2185. return 0;
  2186. }
  2187. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2188. {
  2189. struct gem *gp = dev->priv;
  2190. strcpy(info->driver, DRV_NAME);
  2191. strcpy(info->version, DRV_VERSION);
  2192. strcpy(info->bus_info, pci_name(gp->pdev));
  2193. }
  2194. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2195. {
  2196. struct gem *gp = dev->priv;
  2197. if (gp->phy_type == phy_mii_mdio0 ||
  2198. gp->phy_type == phy_mii_mdio1) {
  2199. if (gp->phy_mii.def)
  2200. cmd->supported = gp->phy_mii.def->features;
  2201. else
  2202. cmd->supported = (SUPPORTED_10baseT_Half |
  2203. SUPPORTED_10baseT_Full);
  2204. /* XXX hardcoded stuff for now */
  2205. cmd->port = PORT_MII;
  2206. cmd->transceiver = XCVR_EXTERNAL;
  2207. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2208. /* Return current PHY settings */
  2209. spin_lock_irq(&gp->lock);
  2210. cmd->autoneg = gp->want_autoneg;
  2211. cmd->speed = gp->phy_mii.speed;
  2212. cmd->duplex = gp->phy_mii.duplex;
  2213. cmd->advertising = gp->phy_mii.advertising;
  2214. /* If we started with a forced mode, we don't have a default
  2215. * advertise set, we need to return something sensible so
  2216. * userland can re-enable autoneg properly.
  2217. */
  2218. if (cmd->advertising == 0)
  2219. cmd->advertising = cmd->supported;
  2220. spin_unlock_irq(&gp->lock);
  2221. } else { // XXX PCS ?
  2222. cmd->supported =
  2223. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2224. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2225. SUPPORTED_Autoneg);
  2226. cmd->advertising = cmd->supported;
  2227. cmd->speed = 0;
  2228. cmd->duplex = cmd->port = cmd->phy_address =
  2229. cmd->transceiver = cmd->autoneg = 0;
  2230. }
  2231. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2232. return 0;
  2233. }
  2234. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2235. {
  2236. struct gem *gp = dev->priv;
  2237. /* Verify the settings we care about. */
  2238. if (cmd->autoneg != AUTONEG_ENABLE &&
  2239. cmd->autoneg != AUTONEG_DISABLE)
  2240. return -EINVAL;
  2241. if (cmd->autoneg == AUTONEG_ENABLE &&
  2242. cmd->advertising == 0)
  2243. return -EINVAL;
  2244. if (cmd->autoneg == AUTONEG_DISABLE &&
  2245. ((cmd->speed != SPEED_1000 &&
  2246. cmd->speed != SPEED_100 &&
  2247. cmd->speed != SPEED_10) ||
  2248. (cmd->duplex != DUPLEX_HALF &&
  2249. cmd->duplex != DUPLEX_FULL)))
  2250. return -EINVAL;
  2251. /* Apply settings and restart link process. */
  2252. spin_lock_irq(&gp->lock);
  2253. gem_get_cell(gp);
  2254. gem_begin_auto_negotiation(gp, cmd);
  2255. gem_put_cell(gp);
  2256. spin_unlock_irq(&gp->lock);
  2257. return 0;
  2258. }
  2259. static int gem_nway_reset(struct net_device *dev)
  2260. {
  2261. struct gem *gp = dev->priv;
  2262. if (!gp->want_autoneg)
  2263. return -EINVAL;
  2264. /* Restart link process. */
  2265. spin_lock_irq(&gp->lock);
  2266. gem_get_cell(gp);
  2267. gem_begin_auto_negotiation(gp, NULL);
  2268. gem_put_cell(gp);
  2269. spin_unlock_irq(&gp->lock);
  2270. return 0;
  2271. }
  2272. static u32 gem_get_msglevel(struct net_device *dev)
  2273. {
  2274. struct gem *gp = dev->priv;
  2275. return gp->msg_enable;
  2276. }
  2277. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2278. {
  2279. struct gem *gp = dev->priv;
  2280. gp->msg_enable = value;
  2281. }
  2282. /* Add more when I understand how to program the chip */
  2283. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2284. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2285. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2286. {
  2287. struct gem *gp = dev->priv;
  2288. /* Add more when I understand how to program the chip */
  2289. if (gp->has_wol) {
  2290. wol->supported = WOL_SUPPORTED_MASK;
  2291. wol->wolopts = gp->wake_on_lan;
  2292. } else {
  2293. wol->supported = 0;
  2294. wol->wolopts = 0;
  2295. }
  2296. }
  2297. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2298. {
  2299. struct gem *gp = dev->priv;
  2300. if (!gp->has_wol)
  2301. return -EOPNOTSUPP;
  2302. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2303. return 0;
  2304. }
  2305. static const struct ethtool_ops gem_ethtool_ops = {
  2306. .get_drvinfo = gem_get_drvinfo,
  2307. .get_link = ethtool_op_get_link,
  2308. .get_settings = gem_get_settings,
  2309. .set_settings = gem_set_settings,
  2310. .nway_reset = gem_nway_reset,
  2311. .get_msglevel = gem_get_msglevel,
  2312. .set_msglevel = gem_set_msglevel,
  2313. .get_wol = gem_get_wol,
  2314. .set_wol = gem_set_wol,
  2315. };
  2316. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2317. {
  2318. struct gem *gp = dev->priv;
  2319. struct mii_ioctl_data *data = if_mii(ifr);
  2320. int rc = -EOPNOTSUPP;
  2321. unsigned long flags;
  2322. /* Hold the PM mutex while doing ioctl's or we may collide
  2323. * with power management.
  2324. */
  2325. mutex_lock(&gp->pm_mutex);
  2326. spin_lock_irqsave(&gp->lock, flags);
  2327. gem_get_cell(gp);
  2328. spin_unlock_irqrestore(&gp->lock, flags);
  2329. switch (cmd) {
  2330. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2331. data->phy_id = gp->mii_phy_addr;
  2332. /* Fallthrough... */
  2333. case SIOCGMIIREG: /* Read MII PHY register. */
  2334. if (!gp->running)
  2335. rc = -EAGAIN;
  2336. else {
  2337. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2338. data->reg_num & 0x1f);
  2339. rc = 0;
  2340. }
  2341. break;
  2342. case SIOCSMIIREG: /* Write MII PHY register. */
  2343. if (!capable(CAP_NET_ADMIN))
  2344. rc = -EPERM;
  2345. else if (!gp->running)
  2346. rc = -EAGAIN;
  2347. else {
  2348. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2349. data->val_in);
  2350. rc = 0;
  2351. }
  2352. break;
  2353. };
  2354. spin_lock_irqsave(&gp->lock, flags);
  2355. gem_put_cell(gp);
  2356. spin_unlock_irqrestore(&gp->lock, flags);
  2357. mutex_unlock(&gp->pm_mutex);
  2358. return rc;
  2359. }
  2360. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2361. /* Fetch MAC address from vital product data of PCI ROM. */
  2362. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2363. {
  2364. int this_offset;
  2365. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2366. void __iomem *p = rom_base + this_offset;
  2367. int i;
  2368. if (readb(p + 0) != 0x90 ||
  2369. readb(p + 1) != 0x00 ||
  2370. readb(p + 2) != 0x09 ||
  2371. readb(p + 3) != 0x4e ||
  2372. readb(p + 4) != 0x41 ||
  2373. readb(p + 5) != 0x06)
  2374. continue;
  2375. this_offset += 6;
  2376. p += 6;
  2377. for (i = 0; i < 6; i++)
  2378. dev_addr[i] = readb(p + i);
  2379. return 1;
  2380. }
  2381. return 0;
  2382. }
  2383. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2384. {
  2385. size_t size;
  2386. void __iomem *p = pci_map_rom(pdev, &size);
  2387. if (p) {
  2388. int found;
  2389. found = readb(p) == 0x55 &&
  2390. readb(p + 1) == 0xaa &&
  2391. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2392. pci_unmap_rom(pdev, p);
  2393. if (found)
  2394. return;
  2395. }
  2396. /* Sun MAC prefix then 3 random bytes. */
  2397. dev_addr[0] = 0x08;
  2398. dev_addr[1] = 0x00;
  2399. dev_addr[2] = 0x20;
  2400. get_random_bytes(dev_addr + 3, 3);
  2401. return;
  2402. }
  2403. #endif /* not Sparc and not PPC */
  2404. static int __devinit gem_get_device_address(struct gem *gp)
  2405. {
  2406. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2407. struct net_device *dev = gp->dev;
  2408. const unsigned char *addr;
  2409. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2410. if (addr == NULL) {
  2411. #ifdef CONFIG_SPARC
  2412. addr = idprom->id_ethaddr;
  2413. #else
  2414. printk("\n");
  2415. printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
  2416. return -1;
  2417. #endif
  2418. }
  2419. memcpy(dev->dev_addr, addr, 6);
  2420. #else
  2421. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2422. #endif
  2423. return 0;
  2424. }
  2425. static void gem_remove_one(struct pci_dev *pdev)
  2426. {
  2427. struct net_device *dev = pci_get_drvdata(pdev);
  2428. if (dev) {
  2429. struct gem *gp = dev->priv;
  2430. unregister_netdev(dev);
  2431. /* Stop the link timer */
  2432. del_timer_sync(&gp->link_timer);
  2433. /* We shouldn't need any locking here */
  2434. gem_get_cell(gp);
  2435. /* Wait for a pending reset task to complete */
  2436. while (gp->reset_task_pending)
  2437. yield();
  2438. flush_scheduled_work();
  2439. /* Shut the PHY down */
  2440. gem_stop_phy(gp, 0);
  2441. gem_put_cell(gp);
  2442. /* Make sure bus master is disabled */
  2443. pci_disable_device(gp->pdev);
  2444. /* Free resources */
  2445. pci_free_consistent(pdev,
  2446. sizeof(struct gem_init_block),
  2447. gp->init_block,
  2448. gp->gblock_dvma);
  2449. iounmap(gp->regs);
  2450. pci_release_regions(pdev);
  2451. free_netdev(dev);
  2452. pci_set_drvdata(pdev, NULL);
  2453. }
  2454. }
  2455. static int __devinit gem_init_one(struct pci_dev *pdev,
  2456. const struct pci_device_id *ent)
  2457. {
  2458. static int gem_version_printed = 0;
  2459. unsigned long gemreg_base, gemreg_len;
  2460. struct net_device *dev;
  2461. struct gem *gp;
  2462. int i, err, pci_using_dac;
  2463. if (gem_version_printed++ == 0)
  2464. printk(KERN_INFO "%s", version);
  2465. /* Apple gmac note: during probe, the chip is powered up by
  2466. * the arch code to allow the code below to work (and to let
  2467. * the chip be probed on the config space. It won't stay powered
  2468. * up until the interface is brought up however, so we can't rely
  2469. * on register configuration done at this point.
  2470. */
  2471. err = pci_enable_device(pdev);
  2472. if (err) {
  2473. printk(KERN_ERR PFX "Cannot enable MMIO operation, "
  2474. "aborting.\n");
  2475. return err;
  2476. }
  2477. pci_set_master(pdev);
  2478. /* Configure DMA attributes. */
  2479. /* All of the GEM documentation states that 64-bit DMA addressing
  2480. * is fully supported and should work just fine. However the
  2481. * front end for RIO based GEMs is different and only supports
  2482. * 32-bit addressing.
  2483. *
  2484. * For now we assume the various PPC GEMs are 32-bit only as well.
  2485. */
  2486. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2487. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2488. !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2489. pci_using_dac = 1;
  2490. } else {
  2491. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2492. if (err) {
  2493. printk(KERN_ERR PFX "No usable DMA configuration, "
  2494. "aborting.\n");
  2495. goto err_disable_device;
  2496. }
  2497. pci_using_dac = 0;
  2498. }
  2499. gemreg_base = pci_resource_start(pdev, 0);
  2500. gemreg_len = pci_resource_len(pdev, 0);
  2501. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2502. printk(KERN_ERR PFX "Cannot find proper PCI device "
  2503. "base address, aborting.\n");
  2504. err = -ENODEV;
  2505. goto err_disable_device;
  2506. }
  2507. dev = alloc_etherdev(sizeof(*gp));
  2508. if (!dev) {
  2509. printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
  2510. err = -ENOMEM;
  2511. goto err_disable_device;
  2512. }
  2513. SET_MODULE_OWNER(dev);
  2514. SET_NETDEV_DEV(dev, &pdev->dev);
  2515. gp = dev->priv;
  2516. err = pci_request_regions(pdev, DRV_NAME);
  2517. if (err) {
  2518. printk(KERN_ERR PFX "Cannot obtain PCI resources, "
  2519. "aborting.\n");
  2520. goto err_out_free_netdev;
  2521. }
  2522. gp->pdev = pdev;
  2523. dev->base_addr = (long) pdev;
  2524. gp->dev = dev;
  2525. gp->msg_enable = DEFAULT_MSG;
  2526. spin_lock_init(&gp->lock);
  2527. spin_lock_init(&gp->tx_lock);
  2528. mutex_init(&gp->pm_mutex);
  2529. init_timer(&gp->link_timer);
  2530. gp->link_timer.function = gem_link_timer;
  2531. gp->link_timer.data = (unsigned long) gp;
  2532. INIT_WORK(&gp->reset_task, gem_reset_task);
  2533. gp->lstate = link_down;
  2534. gp->timer_ticks = 0;
  2535. netif_carrier_off(dev);
  2536. gp->regs = ioremap(gemreg_base, gemreg_len);
  2537. if (gp->regs == 0UL) {
  2538. printk(KERN_ERR PFX "Cannot map device registers, "
  2539. "aborting.\n");
  2540. err = -EIO;
  2541. goto err_out_free_res;
  2542. }
  2543. /* On Apple, we want a reference to the Open Firmware device-tree
  2544. * node. We use it for clock control.
  2545. */
  2546. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2547. gp->of_node = pci_device_to_OF_node(pdev);
  2548. #endif
  2549. /* Only Apple version supports WOL afaik */
  2550. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2551. gp->has_wol = 1;
  2552. /* Make sure cell is enabled */
  2553. gem_get_cell(gp);
  2554. /* Make sure everything is stopped and in init state */
  2555. gem_reset(gp);
  2556. /* Fill up the mii_phy structure (even if we won't use it) */
  2557. gp->phy_mii.dev = dev;
  2558. gp->phy_mii.mdio_read = _phy_read;
  2559. gp->phy_mii.mdio_write = _phy_write;
  2560. #ifdef CONFIG_PPC_PMAC
  2561. gp->phy_mii.platform_data = gp->of_node;
  2562. #endif
  2563. /* By default, we start with autoneg */
  2564. gp->want_autoneg = 1;
  2565. /* Check fifo sizes, PHY type, etc... */
  2566. if (gem_check_invariants(gp)) {
  2567. err = -ENODEV;
  2568. goto err_out_iounmap;
  2569. }
  2570. /* It is guaranteed that the returned buffer will be at least
  2571. * PAGE_SIZE aligned.
  2572. */
  2573. gp->init_block = (struct gem_init_block *)
  2574. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2575. &gp->gblock_dvma);
  2576. if (!gp->init_block) {
  2577. printk(KERN_ERR PFX "Cannot allocate init block, "
  2578. "aborting.\n");
  2579. err = -ENOMEM;
  2580. goto err_out_iounmap;
  2581. }
  2582. if (gem_get_device_address(gp))
  2583. goto err_out_free_consistent;
  2584. dev->open = gem_open;
  2585. dev->stop = gem_close;
  2586. dev->hard_start_xmit = gem_start_xmit;
  2587. dev->get_stats = gem_get_stats;
  2588. dev->set_multicast_list = gem_set_multicast;
  2589. dev->do_ioctl = gem_ioctl;
  2590. dev->poll = gem_poll;
  2591. dev->weight = 64;
  2592. dev->ethtool_ops = &gem_ethtool_ops;
  2593. dev->tx_timeout = gem_tx_timeout;
  2594. dev->watchdog_timeo = 5 * HZ;
  2595. dev->change_mtu = gem_change_mtu;
  2596. dev->irq = pdev->irq;
  2597. dev->dma = 0;
  2598. dev->set_mac_address = gem_set_mac_address;
  2599. #ifdef CONFIG_NET_POLL_CONTROLLER
  2600. dev->poll_controller = gem_poll_controller;
  2601. #endif
  2602. /* Set that now, in case PM kicks in now */
  2603. pci_set_drvdata(pdev, dev);
  2604. /* Detect & init PHY, start autoneg, we release the cell now
  2605. * too, it will be managed by whoever needs it
  2606. */
  2607. gem_init_phy(gp);
  2608. spin_lock_irq(&gp->lock);
  2609. gem_put_cell(gp);
  2610. spin_unlock_irq(&gp->lock);
  2611. /* Register with kernel */
  2612. if (register_netdev(dev)) {
  2613. printk(KERN_ERR PFX "Cannot register net device, "
  2614. "aborting.\n");
  2615. err = -ENOMEM;
  2616. goto err_out_free_consistent;
  2617. }
  2618. printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
  2619. dev->name);
  2620. for (i = 0; i < 6; i++)
  2621. printk("%2.2x%c", dev->dev_addr[i],
  2622. i == 5 ? ' ' : ':');
  2623. printk("\n");
  2624. if (gp->phy_type == phy_mii_mdio0 ||
  2625. gp->phy_type == phy_mii_mdio1)
  2626. printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
  2627. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2628. /* GEM can do it all... */
  2629. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2630. if (pci_using_dac)
  2631. dev->features |= NETIF_F_HIGHDMA;
  2632. return 0;
  2633. err_out_free_consistent:
  2634. gem_remove_one(pdev);
  2635. err_out_iounmap:
  2636. gem_put_cell(gp);
  2637. iounmap(gp->regs);
  2638. err_out_free_res:
  2639. pci_release_regions(pdev);
  2640. err_out_free_netdev:
  2641. free_netdev(dev);
  2642. err_disable_device:
  2643. pci_disable_device(pdev);
  2644. return err;
  2645. }
  2646. static struct pci_driver gem_driver = {
  2647. .name = GEM_MODULE_NAME,
  2648. .id_table = gem_pci_tbl,
  2649. .probe = gem_init_one,
  2650. .remove = gem_remove_one,
  2651. #ifdef CONFIG_PM
  2652. .suspend = gem_suspend,
  2653. .resume = gem_resume,
  2654. #endif /* CONFIG_PM */
  2655. };
  2656. static int __init gem_init(void)
  2657. {
  2658. return pci_register_driver(&gem_driver);
  2659. }
  2660. static void __exit gem_cleanup(void)
  2661. {
  2662. pci_unregister_driver(&gem_driver);
  2663. }
  2664. module_init(gem_init);
  2665. module_exit(gem_cleanup);