qla3xxx.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k4"
  40. #define PFX DRV_NAME " "
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * These are the known PHY's which are used
  65. */
  66. typedef enum {
  67. PHY_TYPE_UNKNOWN = 0,
  68. PHY_VITESSE_VSC8211,
  69. PHY_AGERE_ET1011C,
  70. MAX_PHY_DEV_TYPES
  71. } PHY_DEVICE_et;
  72. typedef struct {
  73. PHY_DEVICE_et phyDevice;
  74. u32 phyIdOUI;
  75. u16 phyIdModel;
  76. char *name;
  77. } PHY_DEVICE_INFO_t;
  78. static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
  79. {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  80. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  81. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  82. };
  83. /*
  84. * Caller must take hw_lock.
  85. */
  86. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  87. u32 sem_mask, u32 sem_bits)
  88. {
  89. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  90. u32 value;
  91. unsigned int seconds = 3;
  92. do {
  93. writel((sem_mask | sem_bits),
  94. &port_regs->CommonRegs.semaphoreReg);
  95. value = readl(&port_regs->CommonRegs.semaphoreReg);
  96. if ((value & (sem_mask >> 16)) == sem_bits)
  97. return 0;
  98. ssleep(1);
  99. } while(--seconds);
  100. return -1;
  101. }
  102. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  103. {
  104. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  105. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  106. readl(&port_regs->CommonRegs.semaphoreReg);
  107. }
  108. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  109. {
  110. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  111. u32 value;
  112. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  113. value = readl(&port_regs->CommonRegs.semaphoreReg);
  114. return ((value & (sem_mask >> 16)) == sem_bits);
  115. }
  116. /*
  117. * Caller holds hw_lock.
  118. */
  119. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  120. {
  121. int i = 0;
  122. while (1) {
  123. if (!ql_sem_lock(qdev,
  124. QL_DRVR_SEM_MASK,
  125. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  126. * 2) << 1)) {
  127. if (i < 10) {
  128. ssleep(1);
  129. i++;
  130. } else {
  131. printk(KERN_ERR PFX "%s: Timed out waiting for "
  132. "driver lock...\n",
  133. qdev->ndev->name);
  134. return 0;
  135. }
  136. } else {
  137. printk(KERN_DEBUG PFX
  138. "%s: driver lock acquired.\n",
  139. qdev->ndev->name);
  140. return 1;
  141. }
  142. }
  143. }
  144. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  145. {
  146. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  147. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  148. &port_regs->CommonRegs.ispControlStatus);
  149. readl(&port_regs->CommonRegs.ispControlStatus);
  150. qdev->current_page = page;
  151. }
  152. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  153. u32 __iomem * reg)
  154. {
  155. u32 value;
  156. unsigned long hw_flags;
  157. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  158. value = readl(reg);
  159. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  160. return value;
  161. }
  162. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  163. u32 __iomem * reg)
  164. {
  165. return readl(reg);
  166. }
  167. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  168. {
  169. u32 value;
  170. unsigned long hw_flags;
  171. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  172. if (qdev->current_page != 0)
  173. ql_set_register_page(qdev,0);
  174. value = readl(reg);
  175. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  176. return value;
  177. }
  178. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  179. {
  180. if (qdev->current_page != 0)
  181. ql_set_register_page(qdev,0);
  182. return readl(reg);
  183. }
  184. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  185. u32 __iomem *reg, u32 value)
  186. {
  187. unsigned long hw_flags;
  188. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  189. writel(value, reg);
  190. readl(reg);
  191. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  192. return;
  193. }
  194. static void ql_write_common_reg(struct ql3_adapter *qdev,
  195. u32 __iomem *reg, u32 value)
  196. {
  197. writel(value, reg);
  198. readl(reg);
  199. return;
  200. }
  201. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. writel(value, reg);
  205. readl(reg);
  206. udelay(1);
  207. return;
  208. }
  209. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  210. u32 __iomem *reg, u32 value)
  211. {
  212. if (qdev->current_page != 0)
  213. ql_set_register_page(qdev,0);
  214. writel(value, reg);
  215. readl(reg);
  216. return;
  217. }
  218. /*
  219. * Caller holds hw_lock. Only called during init.
  220. */
  221. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  222. u32 __iomem *reg, u32 value)
  223. {
  224. if (qdev->current_page != 1)
  225. ql_set_register_page(qdev,1);
  226. writel(value, reg);
  227. readl(reg);
  228. return;
  229. }
  230. /*
  231. * Caller holds hw_lock. Only called during init.
  232. */
  233. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  234. u32 __iomem *reg, u32 value)
  235. {
  236. if (qdev->current_page != 2)
  237. ql_set_register_page(qdev,2);
  238. writel(value, reg);
  239. readl(reg);
  240. return;
  241. }
  242. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  243. {
  244. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  245. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  246. (ISP_IMR_ENABLE_INT << 16));
  247. }
  248. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  249. {
  250. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  251. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  252. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  253. }
  254. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  255. struct ql_rcv_buf_cb *lrg_buf_cb)
  256. {
  257. dma_addr_t map;
  258. int err;
  259. lrg_buf_cb->next = NULL;
  260. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  261. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  262. } else {
  263. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  264. qdev->lrg_buf_free_tail = lrg_buf_cb;
  265. }
  266. if (!lrg_buf_cb->skb) {
  267. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  268. qdev->lrg_buffer_len);
  269. if (unlikely(!lrg_buf_cb->skb)) {
  270. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  271. qdev->ndev->name);
  272. qdev->lrg_buf_skb_check++;
  273. } else {
  274. /*
  275. * We save some space to copy the ethhdr from first
  276. * buffer
  277. */
  278. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  279. map = pci_map_single(qdev->pdev,
  280. lrg_buf_cb->skb->data,
  281. qdev->lrg_buffer_len -
  282. QL_HEADER_SPACE,
  283. PCI_DMA_FROMDEVICE);
  284. err = pci_dma_mapping_error(map);
  285. if(err) {
  286. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  287. qdev->ndev->name, err);
  288. dev_kfree_skb(lrg_buf_cb->skb);
  289. lrg_buf_cb->skb = NULL;
  290. qdev->lrg_buf_skb_check++;
  291. return;
  292. }
  293. lrg_buf_cb->buf_phy_addr_low =
  294. cpu_to_le32(LS_64BITS(map));
  295. lrg_buf_cb->buf_phy_addr_high =
  296. cpu_to_le32(MS_64BITS(map));
  297. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  298. pci_unmap_len_set(lrg_buf_cb, maplen,
  299. qdev->lrg_buffer_len -
  300. QL_HEADER_SPACE);
  301. }
  302. }
  303. qdev->lrg_buf_free_count++;
  304. }
  305. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  306. *qdev)
  307. {
  308. struct ql_rcv_buf_cb *lrg_buf_cb;
  309. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  310. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  311. qdev->lrg_buf_free_tail = NULL;
  312. qdev->lrg_buf_free_count--;
  313. }
  314. return lrg_buf_cb;
  315. }
  316. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  317. static u32 dataBits = EEPROM_NO_DATA_BITS;
  318. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  319. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  320. unsigned short *value);
  321. /*
  322. * Caller holds hw_lock.
  323. */
  324. static void fm93c56a_select(struct ql3_adapter *qdev)
  325. {
  326. struct ql3xxx_port_registers __iomem *port_regs =
  327. qdev->mem_map_registers;
  328. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  329. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  330. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  331. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  332. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  333. }
  334. /*
  335. * Caller holds hw_lock.
  336. */
  337. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  338. {
  339. int i;
  340. u32 mask;
  341. u32 dataBit;
  342. u32 previousBit;
  343. struct ql3xxx_port_registers __iomem *port_regs =
  344. qdev->mem_map_registers;
  345. /* Clock in a zero, then do the start bit */
  346. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  347. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  348. AUBURN_EEPROM_DO_1);
  349. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  350. ISP_NVRAM_MASK | qdev->
  351. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  352. AUBURN_EEPROM_CLK_RISE);
  353. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  354. ISP_NVRAM_MASK | qdev->
  355. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  356. AUBURN_EEPROM_CLK_FALL);
  357. mask = 1 << (FM93C56A_CMD_BITS - 1);
  358. /* Force the previous data bit to be different */
  359. previousBit = 0xffff;
  360. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  361. dataBit =
  362. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  363. if (previousBit != dataBit) {
  364. /*
  365. * If the bit changed, then change the DO state to
  366. * match
  367. */
  368. ql_write_nvram_reg(qdev,
  369. &port_regs->CommonRegs.
  370. serialPortInterfaceReg,
  371. ISP_NVRAM_MASK | qdev->
  372. eeprom_cmd_data | dataBit);
  373. previousBit = dataBit;
  374. }
  375. ql_write_nvram_reg(qdev,
  376. &port_regs->CommonRegs.
  377. serialPortInterfaceReg,
  378. ISP_NVRAM_MASK | qdev->
  379. eeprom_cmd_data | dataBit |
  380. AUBURN_EEPROM_CLK_RISE);
  381. ql_write_nvram_reg(qdev,
  382. &port_regs->CommonRegs.
  383. serialPortInterfaceReg,
  384. ISP_NVRAM_MASK | qdev->
  385. eeprom_cmd_data | dataBit |
  386. AUBURN_EEPROM_CLK_FALL);
  387. cmd = cmd << 1;
  388. }
  389. mask = 1 << (addrBits - 1);
  390. /* Force the previous data bit to be different */
  391. previousBit = 0xffff;
  392. for (i = 0; i < addrBits; i++) {
  393. dataBit =
  394. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  395. AUBURN_EEPROM_DO_0;
  396. if (previousBit != dataBit) {
  397. /*
  398. * If the bit changed, then change the DO state to
  399. * match
  400. */
  401. ql_write_nvram_reg(qdev,
  402. &port_regs->CommonRegs.
  403. serialPortInterfaceReg,
  404. ISP_NVRAM_MASK | qdev->
  405. eeprom_cmd_data | dataBit);
  406. previousBit = dataBit;
  407. }
  408. ql_write_nvram_reg(qdev,
  409. &port_regs->CommonRegs.
  410. serialPortInterfaceReg,
  411. ISP_NVRAM_MASK | qdev->
  412. eeprom_cmd_data | dataBit |
  413. AUBURN_EEPROM_CLK_RISE);
  414. ql_write_nvram_reg(qdev,
  415. &port_regs->CommonRegs.
  416. serialPortInterfaceReg,
  417. ISP_NVRAM_MASK | qdev->
  418. eeprom_cmd_data | dataBit |
  419. AUBURN_EEPROM_CLK_FALL);
  420. eepromAddr = eepromAddr << 1;
  421. }
  422. }
  423. /*
  424. * Caller holds hw_lock.
  425. */
  426. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  427. {
  428. struct ql3xxx_port_registers __iomem *port_regs =
  429. qdev->mem_map_registers;
  430. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  431. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  432. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  433. }
  434. /*
  435. * Caller holds hw_lock.
  436. */
  437. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  438. {
  439. int i;
  440. u32 data = 0;
  441. u32 dataBit;
  442. struct ql3xxx_port_registers __iomem *port_regs =
  443. qdev->mem_map_registers;
  444. /* Read the data bits */
  445. /* The first bit is a dummy. Clock right over it. */
  446. for (i = 0; i < dataBits; i++) {
  447. ql_write_nvram_reg(qdev,
  448. &port_regs->CommonRegs.
  449. serialPortInterfaceReg,
  450. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  451. AUBURN_EEPROM_CLK_RISE);
  452. ql_write_nvram_reg(qdev,
  453. &port_regs->CommonRegs.
  454. serialPortInterfaceReg,
  455. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  456. AUBURN_EEPROM_CLK_FALL);
  457. dataBit =
  458. (ql_read_common_reg
  459. (qdev,
  460. &port_regs->CommonRegs.
  461. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  462. data = (data << 1) | dataBit;
  463. }
  464. *value = (u16) data;
  465. }
  466. /*
  467. * Caller holds hw_lock.
  468. */
  469. static void eeprom_readword(struct ql3_adapter *qdev,
  470. u32 eepromAddr, unsigned short *value)
  471. {
  472. fm93c56a_select(qdev);
  473. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  474. fm93c56a_datain(qdev, value);
  475. fm93c56a_deselect(qdev);
  476. }
  477. static void ql_swap_mac_addr(u8 * macAddress)
  478. {
  479. #ifdef __BIG_ENDIAN
  480. u8 temp;
  481. temp = macAddress[0];
  482. macAddress[0] = macAddress[1];
  483. macAddress[1] = temp;
  484. temp = macAddress[2];
  485. macAddress[2] = macAddress[3];
  486. macAddress[3] = temp;
  487. temp = macAddress[4];
  488. macAddress[4] = macAddress[5];
  489. macAddress[5] = temp;
  490. #endif
  491. }
  492. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  493. {
  494. u16 *pEEPROMData;
  495. u16 checksum = 0;
  496. u32 index;
  497. unsigned long hw_flags;
  498. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  499. pEEPROMData = (u16 *) & qdev->nvram_data;
  500. qdev->eeprom_cmd_data = 0;
  501. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  502. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  503. 2) << 10)) {
  504. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  505. __func__);
  506. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  507. return -1;
  508. }
  509. for (index = 0; index < EEPROM_SIZE; index++) {
  510. eeprom_readword(qdev, index, pEEPROMData);
  511. checksum += *pEEPROMData;
  512. pEEPROMData++;
  513. }
  514. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  515. if (checksum != 0) {
  516. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  517. qdev->ndev->name, checksum);
  518. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  519. return -1;
  520. }
  521. /*
  522. * We have a problem with endianness for the MAC addresses
  523. * and the two 8-bit values version, and numPorts. We
  524. * have to swap them on big endian systems.
  525. */
  526. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  527. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  528. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  529. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  530. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  531. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  532. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  533. return checksum;
  534. }
  535. static const u32 PHYAddr[2] = {
  536. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  537. };
  538. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  539. {
  540. struct ql3xxx_port_registers __iomem *port_regs =
  541. qdev->mem_map_registers;
  542. u32 temp;
  543. int count = 1000;
  544. while (count) {
  545. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  546. if (!(temp & MAC_MII_STATUS_BSY))
  547. return 0;
  548. udelay(10);
  549. count--;
  550. }
  551. return -1;
  552. }
  553. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  554. {
  555. struct ql3xxx_port_registers __iomem *port_regs =
  556. qdev->mem_map_registers;
  557. u32 scanControl;
  558. if (qdev->numPorts > 1) {
  559. /* Auto scan will cycle through multiple ports */
  560. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  561. } else {
  562. scanControl = MAC_MII_CONTROL_SC;
  563. }
  564. /*
  565. * Scan register 1 of PHY/PETBI,
  566. * Set up to scan both devices
  567. * The autoscan starts from the first register, completes
  568. * the last one before rolling over to the first
  569. */
  570. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  571. PHYAddr[0] | MII_SCAN_REGISTER);
  572. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  573. (scanControl) |
  574. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  575. }
  576. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  577. {
  578. u8 ret;
  579. struct ql3xxx_port_registers __iomem *port_regs =
  580. qdev->mem_map_registers;
  581. /* See if scan mode is enabled before we turn it off */
  582. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  583. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  584. /* Scan is enabled */
  585. ret = 1;
  586. } else {
  587. /* Scan is disabled */
  588. ret = 0;
  589. }
  590. /*
  591. * When disabling scan mode you must first change the MII register
  592. * address
  593. */
  594. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  595. PHYAddr[0] | MII_SCAN_REGISTER);
  596. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  597. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  598. MAC_MII_CONTROL_RC) << 16));
  599. return ret;
  600. }
  601. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  602. u16 regAddr, u16 value, u32 phyAddr)
  603. {
  604. struct ql3xxx_port_registers __iomem *port_regs =
  605. qdev->mem_map_registers;
  606. u8 scanWasEnabled;
  607. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  608. if (ql_wait_for_mii_ready(qdev)) {
  609. if (netif_msg_link(qdev))
  610. printk(KERN_WARNING PFX
  611. "%s Timed out waiting for management port to "
  612. "get free before issuing command.\n",
  613. qdev->ndev->name);
  614. return -1;
  615. }
  616. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  617. phyAddr | regAddr);
  618. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  619. /* Wait for write to complete 9/10/04 SJP */
  620. if (ql_wait_for_mii_ready(qdev)) {
  621. if (netif_msg_link(qdev))
  622. printk(KERN_WARNING PFX
  623. "%s: Timed out waiting for management port to"
  624. "get free before issuing command.\n",
  625. qdev->ndev->name);
  626. return -1;
  627. }
  628. if (scanWasEnabled)
  629. ql_mii_enable_scan_mode(qdev);
  630. return 0;
  631. }
  632. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  633. u16 * value, u32 phyAddr)
  634. {
  635. struct ql3xxx_port_registers __iomem *port_regs =
  636. qdev->mem_map_registers;
  637. u8 scanWasEnabled;
  638. u32 temp;
  639. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  640. if (ql_wait_for_mii_ready(qdev)) {
  641. if (netif_msg_link(qdev))
  642. printk(KERN_WARNING PFX
  643. "%s: Timed out waiting for management port to "
  644. "get free before issuing command.\n",
  645. qdev->ndev->name);
  646. return -1;
  647. }
  648. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  649. phyAddr | regAddr);
  650. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  651. (MAC_MII_CONTROL_RC << 16));
  652. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  653. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  654. /* Wait for the read to complete */
  655. if (ql_wait_for_mii_ready(qdev)) {
  656. if (netif_msg_link(qdev))
  657. printk(KERN_WARNING PFX
  658. "%s: Timed out waiting for management port to "
  659. "get free after issuing command.\n",
  660. qdev->ndev->name);
  661. return -1;
  662. }
  663. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  664. *value = (u16) temp;
  665. if (scanWasEnabled)
  666. ql_mii_enable_scan_mode(qdev);
  667. return 0;
  668. }
  669. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  670. {
  671. struct ql3xxx_port_registers __iomem *port_regs =
  672. qdev->mem_map_registers;
  673. ql_mii_disable_scan_mode(qdev);
  674. if (ql_wait_for_mii_ready(qdev)) {
  675. if (netif_msg_link(qdev))
  676. printk(KERN_WARNING PFX
  677. "%s: Timed out waiting for management port to "
  678. "get free before issuing command.\n",
  679. qdev->ndev->name);
  680. return -1;
  681. }
  682. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  683. qdev->PHYAddr | regAddr);
  684. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  685. /* Wait for write to complete. */
  686. if (ql_wait_for_mii_ready(qdev)) {
  687. if (netif_msg_link(qdev))
  688. printk(KERN_WARNING PFX
  689. "%s: Timed out waiting for management port to "
  690. "get free before issuing command.\n",
  691. qdev->ndev->name);
  692. return -1;
  693. }
  694. ql_mii_enable_scan_mode(qdev);
  695. return 0;
  696. }
  697. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  698. {
  699. u32 temp;
  700. struct ql3xxx_port_registers __iomem *port_regs =
  701. qdev->mem_map_registers;
  702. ql_mii_disable_scan_mode(qdev);
  703. if (ql_wait_for_mii_ready(qdev)) {
  704. if (netif_msg_link(qdev))
  705. printk(KERN_WARNING PFX
  706. "%s: Timed out waiting for management port to "
  707. "get free before issuing command.\n",
  708. qdev->ndev->name);
  709. return -1;
  710. }
  711. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  712. qdev->PHYAddr | regAddr);
  713. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  714. (MAC_MII_CONTROL_RC << 16));
  715. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  716. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  717. /* Wait for the read to complete */
  718. if (ql_wait_for_mii_ready(qdev)) {
  719. if (netif_msg_link(qdev))
  720. printk(KERN_WARNING PFX
  721. "%s: Timed out waiting for management port to "
  722. "get free before issuing command.\n",
  723. qdev->ndev->name);
  724. return -1;
  725. }
  726. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  727. *value = (u16) temp;
  728. ql_mii_enable_scan_mode(qdev);
  729. return 0;
  730. }
  731. static void ql_petbi_reset(struct ql3_adapter *qdev)
  732. {
  733. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  734. }
  735. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  736. {
  737. u16 reg;
  738. /* Enable Auto-negotiation sense */
  739. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  740. reg |= PETBI_TBI_AUTO_SENSE;
  741. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  742. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  743. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  744. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  745. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  746. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  747. }
  748. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  749. {
  750. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  751. PHYAddr[qdev->mac_index]);
  752. }
  753. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  754. {
  755. u16 reg;
  756. /* Enable Auto-negotiation sense */
  757. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  758. PHYAddr[qdev->mac_index]);
  759. reg |= PETBI_TBI_AUTO_SENSE;
  760. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  761. PHYAddr[qdev->mac_index]);
  762. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  763. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  764. PHYAddr[qdev->mac_index]);
  765. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  766. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  767. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  768. PHYAddr[qdev->mac_index]);
  769. }
  770. static void ql_petbi_init(struct ql3_adapter *qdev)
  771. {
  772. ql_petbi_reset(qdev);
  773. ql_petbi_start_neg(qdev);
  774. }
  775. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  776. {
  777. ql_petbi_reset_ex(qdev);
  778. ql_petbi_start_neg_ex(qdev);
  779. }
  780. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  781. {
  782. u16 reg;
  783. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  784. return 0;
  785. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  786. }
  787. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  788. {
  789. printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
  790. /* power down device bit 11 = 1 */
  791. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  792. /* enable diagnostic mode bit 2 = 1 */
  793. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  794. /* 1000MB amplitude adjust (see Agere errata) */
  795. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  796. /* 1000MB amplitude adjust (see Agere errata) */
  797. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  798. /* 100MB amplitude adjust (see Agere errata) */
  799. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  800. /* 100MB amplitude adjust (see Agere errata) */
  801. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  802. /* 10MB amplitude adjust (see Agere errata) */
  803. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  804. /* 10MB amplitude adjust (see Agere errata) */
  805. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  806. /* point to hidden reg 0x2806 */
  807. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  808. /* Write new PHYAD w/bit 5 set */
  809. ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  810. /*
  811. * Disable diagnostic mode bit 2 = 0
  812. * Power up device bit 11 = 0
  813. * Link up (on) and activity (blink)
  814. */
  815. ql_mii_write_reg(qdev, 0x12, 0x840a);
  816. ql_mii_write_reg(qdev, 0x00, 0x1140);
  817. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  818. }
  819. static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
  820. u16 phyIdReg0, u16 phyIdReg1)
  821. {
  822. PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
  823. u32 oui;
  824. u16 model;
  825. int i;
  826. if (phyIdReg0 == 0xffff) {
  827. return result;
  828. }
  829. if (phyIdReg1 == 0xffff) {
  830. return result;
  831. }
  832. /* oui is split between two registers */
  833. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  834. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  835. /* Scan table for this PHY */
  836. for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  837. if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
  838. {
  839. result = PHY_DEVICES[i].phyDevice;
  840. printk(KERN_INFO "%s: Phy: %s\n",
  841. qdev->ndev->name, PHY_DEVICES[i].name);
  842. break;
  843. }
  844. }
  845. return result;
  846. }
  847. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  848. {
  849. u16 reg;
  850. switch(qdev->phyType) {
  851. case PHY_AGERE_ET1011C:
  852. {
  853. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  854. return 0;
  855. reg = (reg >> 8) & 3;
  856. break;
  857. }
  858. default:
  859. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  860. return 0;
  861. reg = (((reg & 0x18) >> 3) & 3);
  862. }
  863. switch(reg) {
  864. case 2:
  865. return SPEED_1000;
  866. case 1:
  867. return SPEED_100;
  868. case 0:
  869. return SPEED_10;
  870. default:
  871. return -1;
  872. }
  873. }
  874. static int ql_is_full_dup(struct ql3_adapter *qdev)
  875. {
  876. u16 reg;
  877. switch(qdev->phyType) {
  878. case PHY_AGERE_ET1011C:
  879. {
  880. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  881. return 0;
  882. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  883. }
  884. case PHY_VITESSE_VSC8211:
  885. default:
  886. {
  887. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  888. return 0;
  889. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  890. }
  891. }
  892. }
  893. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  894. {
  895. u16 reg;
  896. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  897. return 0;
  898. return (reg & PHY_NEG_PAUSE) != 0;
  899. }
  900. static int PHY_Setup(struct ql3_adapter *qdev)
  901. {
  902. u16 reg1;
  903. u16 reg2;
  904. bool agereAddrChangeNeeded = false;
  905. u32 miiAddr = 0;
  906. int err;
  907. /* Determine the PHY we are using by reading the ID's */
  908. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  909. if(err != 0) {
  910. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  911. qdev->ndev->name);
  912. return err;
  913. }
  914. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  915. if(err != 0) {
  916. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
  917. qdev->ndev->name);
  918. return err;
  919. }
  920. /* Check if we have a Agere PHY */
  921. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  922. /* Determine which MII address we should be using
  923. determined by the index of the card */
  924. if (qdev->mac_index == 0) {
  925. miiAddr = MII_AGERE_ADDR_1;
  926. } else {
  927. miiAddr = MII_AGERE_ADDR_2;
  928. }
  929. err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  930. if(err != 0) {
  931. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  932. qdev->ndev->name);
  933. return err;
  934. }
  935. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  936. if(err != 0) {
  937. printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
  938. qdev->ndev->name);
  939. return err;
  940. }
  941. /* We need to remember to initialize the Agere PHY */
  942. agereAddrChangeNeeded = true;
  943. }
  944. /* Determine the particular PHY we have on board to apply
  945. PHY specific initializations */
  946. qdev->phyType = getPhyType(qdev, reg1, reg2);
  947. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  948. /* need this here so address gets changed */
  949. phyAgereSpecificInit(qdev, miiAddr);
  950. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  951. printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
  952. return -EIO;
  953. }
  954. return 0;
  955. }
  956. /*
  957. * Caller holds hw_lock.
  958. */
  959. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  960. {
  961. struct ql3xxx_port_registers __iomem *port_regs =
  962. qdev->mem_map_registers;
  963. u32 value;
  964. if (enable)
  965. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  966. else
  967. value = (MAC_CONFIG_REG_PE << 16);
  968. if (qdev->mac_index)
  969. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  970. else
  971. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  972. }
  973. /*
  974. * Caller holds hw_lock.
  975. */
  976. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  977. {
  978. struct ql3xxx_port_registers __iomem *port_regs =
  979. qdev->mem_map_registers;
  980. u32 value;
  981. if (enable)
  982. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  983. else
  984. value = (MAC_CONFIG_REG_SR << 16);
  985. if (qdev->mac_index)
  986. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  987. else
  988. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  989. }
  990. /*
  991. * Caller holds hw_lock.
  992. */
  993. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  994. {
  995. struct ql3xxx_port_registers __iomem *port_regs =
  996. qdev->mem_map_registers;
  997. u32 value;
  998. if (enable)
  999. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  1000. else
  1001. value = (MAC_CONFIG_REG_GM << 16);
  1002. if (qdev->mac_index)
  1003. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1004. else
  1005. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1006. }
  1007. /*
  1008. * Caller holds hw_lock.
  1009. */
  1010. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  1011. {
  1012. struct ql3xxx_port_registers __iomem *port_regs =
  1013. qdev->mem_map_registers;
  1014. u32 value;
  1015. if (enable)
  1016. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  1017. else
  1018. value = (MAC_CONFIG_REG_FD << 16);
  1019. if (qdev->mac_index)
  1020. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1021. else
  1022. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1023. }
  1024. /*
  1025. * Caller holds hw_lock.
  1026. */
  1027. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  1028. {
  1029. struct ql3xxx_port_registers __iomem *port_regs =
  1030. qdev->mem_map_registers;
  1031. u32 value;
  1032. if (enable)
  1033. value =
  1034. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  1035. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  1036. else
  1037. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  1038. if (qdev->mac_index)
  1039. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  1040. else
  1041. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  1042. }
  1043. /*
  1044. * Caller holds hw_lock.
  1045. */
  1046. static int ql_is_fiber(struct ql3_adapter *qdev)
  1047. {
  1048. struct ql3xxx_port_registers __iomem *port_regs =
  1049. qdev->mem_map_registers;
  1050. u32 bitToCheck = 0;
  1051. u32 temp;
  1052. switch (qdev->mac_index) {
  1053. case 0:
  1054. bitToCheck = PORT_STATUS_SM0;
  1055. break;
  1056. case 1:
  1057. bitToCheck = PORT_STATUS_SM1;
  1058. break;
  1059. }
  1060. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1061. return (temp & bitToCheck) != 0;
  1062. }
  1063. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  1064. {
  1065. u16 reg;
  1066. ql_mii_read_reg(qdev, 0x00, &reg);
  1067. return (reg & 0x1000) != 0;
  1068. }
  1069. /*
  1070. * Caller holds hw_lock.
  1071. */
  1072. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  1073. {
  1074. struct ql3xxx_port_registers __iomem *port_regs =
  1075. qdev->mem_map_registers;
  1076. u32 bitToCheck = 0;
  1077. u32 temp;
  1078. switch (qdev->mac_index) {
  1079. case 0:
  1080. bitToCheck = PORT_STATUS_AC0;
  1081. break;
  1082. case 1:
  1083. bitToCheck = PORT_STATUS_AC1;
  1084. break;
  1085. }
  1086. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1087. if (temp & bitToCheck) {
  1088. if (netif_msg_link(qdev))
  1089. printk(KERN_INFO PFX
  1090. "%s: Auto-Negotiate complete.\n",
  1091. qdev->ndev->name);
  1092. return 1;
  1093. } else {
  1094. if (netif_msg_link(qdev))
  1095. printk(KERN_WARNING PFX
  1096. "%s: Auto-Negotiate incomplete.\n",
  1097. qdev->ndev->name);
  1098. return 0;
  1099. }
  1100. }
  1101. /*
  1102. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1103. */
  1104. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1105. {
  1106. if (ql_is_fiber(qdev))
  1107. return ql_is_petbi_neg_pause(qdev);
  1108. else
  1109. return ql_is_phy_neg_pause(qdev);
  1110. }
  1111. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1112. {
  1113. struct ql3xxx_port_registers __iomem *port_regs =
  1114. qdev->mem_map_registers;
  1115. u32 bitToCheck = 0;
  1116. u32 temp;
  1117. switch (qdev->mac_index) {
  1118. case 0:
  1119. bitToCheck = PORT_STATUS_AE0;
  1120. break;
  1121. case 1:
  1122. bitToCheck = PORT_STATUS_AE1;
  1123. break;
  1124. }
  1125. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1126. return (temp & bitToCheck) != 0;
  1127. }
  1128. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1129. {
  1130. if (ql_is_fiber(qdev))
  1131. return SPEED_1000;
  1132. else
  1133. return ql_phy_get_speed(qdev);
  1134. }
  1135. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1136. {
  1137. if (ql_is_fiber(qdev))
  1138. return 1;
  1139. else
  1140. return ql_is_full_dup(qdev);
  1141. }
  1142. /*
  1143. * Caller holds hw_lock.
  1144. */
  1145. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1146. {
  1147. struct ql3xxx_port_registers __iomem *port_regs =
  1148. qdev->mem_map_registers;
  1149. u32 bitToCheck = 0;
  1150. u32 temp;
  1151. switch (qdev->mac_index) {
  1152. case 0:
  1153. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1154. break;
  1155. case 1:
  1156. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1157. break;
  1158. }
  1159. temp =
  1160. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1161. return (temp & bitToCheck) != 0;
  1162. }
  1163. /*
  1164. * Caller holds hw_lock.
  1165. */
  1166. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1167. {
  1168. struct ql3xxx_port_registers __iomem *port_regs =
  1169. qdev->mem_map_registers;
  1170. switch (qdev->mac_index) {
  1171. case 0:
  1172. ql_write_common_reg(qdev,
  1173. &port_regs->CommonRegs.ispControlStatus,
  1174. (ISP_CONTROL_LINK_DN_0) |
  1175. (ISP_CONTROL_LINK_DN_0 << 16));
  1176. break;
  1177. case 1:
  1178. ql_write_common_reg(qdev,
  1179. &port_regs->CommonRegs.ispControlStatus,
  1180. (ISP_CONTROL_LINK_DN_1) |
  1181. (ISP_CONTROL_LINK_DN_1 << 16));
  1182. break;
  1183. default:
  1184. return 1;
  1185. }
  1186. return 0;
  1187. }
  1188. /*
  1189. * Caller holds hw_lock.
  1190. */
  1191. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1192. {
  1193. struct ql3xxx_port_registers __iomem *port_regs =
  1194. qdev->mem_map_registers;
  1195. u32 bitToCheck = 0;
  1196. u32 temp;
  1197. switch (qdev->mac_index) {
  1198. case 0:
  1199. bitToCheck = PORT_STATUS_F1_ENABLED;
  1200. break;
  1201. case 1:
  1202. bitToCheck = PORT_STATUS_F3_ENABLED;
  1203. break;
  1204. default:
  1205. break;
  1206. }
  1207. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1208. if (temp & bitToCheck) {
  1209. if (netif_msg_link(qdev))
  1210. printk(KERN_DEBUG PFX
  1211. "%s: is not link master.\n", qdev->ndev->name);
  1212. return 0;
  1213. } else {
  1214. if (netif_msg_link(qdev))
  1215. printk(KERN_DEBUG PFX
  1216. "%s: is link master.\n", qdev->ndev->name);
  1217. return 1;
  1218. }
  1219. }
  1220. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1221. {
  1222. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1223. PHYAddr[qdev->mac_index]);
  1224. }
  1225. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1226. {
  1227. u16 reg;
  1228. u16 portConfiguration;
  1229. if(qdev->phyType == PHY_AGERE_ET1011C) {
  1230. /* turn off external loopback */
  1231. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1232. }
  1233. if(qdev->mac_index == 0)
  1234. portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
  1235. else
  1236. portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
  1237. /* Some HBA's in the field are set to 0 and they need to
  1238. be reinterpreted with a default value */
  1239. if(portConfiguration == 0)
  1240. portConfiguration = PORT_CONFIG_DEFAULT;
  1241. /* Set the 1000 advertisements */
  1242. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1243. PHYAddr[qdev->mac_index]);
  1244. reg &= ~PHY_GIG_ALL_PARAMS;
  1245. if(portConfiguration &
  1246. PORT_CONFIG_FULL_DUPLEX_ENABLED &
  1247. PORT_CONFIG_1000MB_SPEED) {
  1248. reg |= PHY_GIG_ADV_1000F;
  1249. }
  1250. if(portConfiguration &
  1251. PORT_CONFIG_HALF_DUPLEX_ENABLED &
  1252. PORT_CONFIG_1000MB_SPEED) {
  1253. reg |= PHY_GIG_ADV_1000H;
  1254. }
  1255. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1256. PHYAddr[qdev->mac_index]);
  1257. /* Set the 10/100 & pause negotiation advertisements */
  1258. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1259. PHYAddr[qdev->mac_index]);
  1260. reg &= ~PHY_NEG_ALL_PARAMS;
  1261. if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1262. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1263. if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1264. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1265. reg |= PHY_NEG_ADV_100F;
  1266. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1267. reg |= PHY_NEG_ADV_10F;
  1268. }
  1269. if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1270. if(portConfiguration & PORT_CONFIG_100MB_SPEED)
  1271. reg |= PHY_NEG_ADV_100H;
  1272. if(portConfiguration & PORT_CONFIG_10MB_SPEED)
  1273. reg |= PHY_NEG_ADV_10H;
  1274. }
  1275. if(portConfiguration &
  1276. PORT_CONFIG_1000MB_SPEED) {
  1277. reg |= 1;
  1278. }
  1279. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1280. PHYAddr[qdev->mac_index]);
  1281. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1282. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1283. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1284. PHYAddr[qdev->mac_index]);
  1285. }
  1286. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1287. {
  1288. ql_phy_reset_ex(qdev);
  1289. PHY_Setup(qdev);
  1290. ql_phy_start_neg_ex(qdev);
  1291. }
  1292. /*
  1293. * Caller holds hw_lock.
  1294. */
  1295. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1296. {
  1297. struct ql3xxx_port_registers __iomem *port_regs =
  1298. qdev->mem_map_registers;
  1299. u32 bitToCheck = 0;
  1300. u32 temp, linkState;
  1301. switch (qdev->mac_index) {
  1302. case 0:
  1303. bitToCheck = PORT_STATUS_UP0;
  1304. break;
  1305. case 1:
  1306. bitToCheck = PORT_STATUS_UP1;
  1307. break;
  1308. }
  1309. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1310. if (temp & bitToCheck) {
  1311. linkState = LS_UP;
  1312. } else {
  1313. linkState = LS_DOWN;
  1314. if (netif_msg_link(qdev))
  1315. printk(KERN_WARNING PFX
  1316. "%s: Link is down.\n", qdev->ndev->name);
  1317. }
  1318. return linkState;
  1319. }
  1320. static int ql_port_start(struct ql3_adapter *qdev)
  1321. {
  1322. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1323. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1324. 2) << 7)) {
  1325. printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
  1326. qdev->ndev->name);
  1327. return -1;
  1328. }
  1329. if (ql_is_fiber(qdev)) {
  1330. ql_petbi_init(qdev);
  1331. } else {
  1332. /* Copper port */
  1333. ql_phy_init_ex(qdev);
  1334. }
  1335. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1336. return 0;
  1337. }
  1338. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1339. {
  1340. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1341. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1342. 2) << 7))
  1343. return -1;
  1344. if (!ql_auto_neg_error(qdev)) {
  1345. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1346. /* configure the MAC */
  1347. if (netif_msg_link(qdev))
  1348. printk(KERN_DEBUG PFX
  1349. "%s: Configuring link.\n",
  1350. qdev->ndev->
  1351. name);
  1352. ql_mac_cfg_soft_reset(qdev, 1);
  1353. ql_mac_cfg_gig(qdev,
  1354. (ql_get_link_speed
  1355. (qdev) ==
  1356. SPEED_1000));
  1357. ql_mac_cfg_full_dup(qdev,
  1358. ql_is_link_full_dup
  1359. (qdev));
  1360. ql_mac_cfg_pause(qdev,
  1361. ql_is_neg_pause
  1362. (qdev));
  1363. ql_mac_cfg_soft_reset(qdev, 0);
  1364. /* enable the MAC */
  1365. if (netif_msg_link(qdev))
  1366. printk(KERN_DEBUG PFX
  1367. "%s: Enabling mac.\n",
  1368. qdev->ndev->
  1369. name);
  1370. ql_mac_enable(qdev, 1);
  1371. }
  1372. if (netif_msg_link(qdev))
  1373. printk(KERN_DEBUG PFX
  1374. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1375. qdev->ndev->name);
  1376. qdev->port_link_state = LS_UP;
  1377. netif_start_queue(qdev->ndev);
  1378. netif_carrier_on(qdev->ndev);
  1379. if (netif_msg_link(qdev))
  1380. printk(KERN_INFO PFX
  1381. "%s: Link is up at %d Mbps, %s duplex.\n",
  1382. qdev->ndev->name,
  1383. ql_get_link_speed(qdev),
  1384. ql_is_link_full_dup(qdev)
  1385. ? "full" : "half");
  1386. } else { /* Remote error detected */
  1387. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1388. if (netif_msg_link(qdev))
  1389. printk(KERN_DEBUG PFX
  1390. "%s: Remote error detected. "
  1391. "Calling ql_port_start().\n",
  1392. qdev->ndev->
  1393. name);
  1394. /*
  1395. * ql_port_start() is shared code and needs
  1396. * to lock the PHY on it's own.
  1397. */
  1398. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1399. if(ql_port_start(qdev)) {/* Restart port */
  1400. return -1;
  1401. } else
  1402. return 0;
  1403. }
  1404. }
  1405. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1406. return 0;
  1407. }
  1408. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1409. {
  1410. u32 curr_link_state;
  1411. unsigned long hw_flags;
  1412. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1413. curr_link_state = ql_get_link_state(qdev);
  1414. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1415. if (netif_msg_link(qdev))
  1416. printk(KERN_INFO PFX
  1417. "%s: Reset in progress, skip processing link "
  1418. "state.\n", qdev->ndev->name);
  1419. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1420. return;
  1421. }
  1422. switch (qdev->port_link_state) {
  1423. default:
  1424. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1425. ql_port_start(qdev);
  1426. }
  1427. qdev->port_link_state = LS_DOWN;
  1428. /* Fall Through */
  1429. case LS_DOWN:
  1430. if (netif_msg_link(qdev))
  1431. printk(KERN_DEBUG PFX
  1432. "%s: port_link_state = LS_DOWN.\n",
  1433. qdev->ndev->name);
  1434. if (curr_link_state == LS_UP) {
  1435. if (netif_msg_link(qdev))
  1436. printk(KERN_DEBUG PFX
  1437. "%s: curr_link_state = LS_UP.\n",
  1438. qdev->ndev->name);
  1439. if (ql_is_auto_neg_complete(qdev))
  1440. ql_finish_auto_neg(qdev);
  1441. if (qdev->port_link_state == LS_UP)
  1442. ql_link_down_detect_clear(qdev);
  1443. }
  1444. break;
  1445. case LS_UP:
  1446. /*
  1447. * See if the link is currently down or went down and came
  1448. * back up
  1449. */
  1450. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1451. if (netif_msg_link(qdev))
  1452. printk(KERN_INFO PFX "%s: Link is down.\n",
  1453. qdev->ndev->name);
  1454. qdev->port_link_state = LS_DOWN;
  1455. }
  1456. break;
  1457. }
  1458. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1459. }
  1460. /*
  1461. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1462. */
  1463. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1464. {
  1465. if (ql_this_adapter_controls_port(qdev))
  1466. set_bit(QL_LINK_MASTER,&qdev->flags);
  1467. else
  1468. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1469. }
  1470. /*
  1471. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1472. */
  1473. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1474. {
  1475. ql_mii_enable_scan_mode(qdev);
  1476. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1477. if (ql_this_adapter_controls_port(qdev))
  1478. ql_petbi_init_ex(qdev);
  1479. } else {
  1480. if (ql_this_adapter_controls_port(qdev))
  1481. ql_phy_init_ex(qdev);
  1482. }
  1483. }
  1484. /*
  1485. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1486. * management interface clock speed can be set properly. It would be better if
  1487. * we had a way to disable MDC until after the PHY is out of reset, but we
  1488. * don't have that capability.
  1489. */
  1490. static int ql_mii_setup(struct ql3_adapter *qdev)
  1491. {
  1492. u32 reg;
  1493. struct ql3xxx_port_registers __iomem *port_regs =
  1494. qdev->mem_map_registers;
  1495. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1496. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1497. 2) << 7))
  1498. return -1;
  1499. if (qdev->device_id == QL3032_DEVICE_ID)
  1500. ql_write_page0_reg(qdev,
  1501. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1502. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1503. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1504. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1505. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1506. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1507. return 0;
  1508. }
  1509. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1510. {
  1511. u32 supported;
  1512. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1513. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1514. | SUPPORTED_Autoneg;
  1515. } else {
  1516. supported = SUPPORTED_10baseT_Half
  1517. | SUPPORTED_10baseT_Full
  1518. | SUPPORTED_100baseT_Half
  1519. | SUPPORTED_100baseT_Full
  1520. | SUPPORTED_1000baseT_Half
  1521. | SUPPORTED_1000baseT_Full
  1522. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1523. }
  1524. return supported;
  1525. }
  1526. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1527. {
  1528. int status;
  1529. unsigned long hw_flags;
  1530. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1531. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1532. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1533. 2) << 7)) {
  1534. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1535. return 0;
  1536. }
  1537. status = ql_is_auto_cfg(qdev);
  1538. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1539. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1540. return status;
  1541. }
  1542. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1543. {
  1544. u32 status;
  1545. unsigned long hw_flags;
  1546. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1547. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1548. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1549. 2) << 7)) {
  1550. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1551. return 0;
  1552. }
  1553. status = ql_get_link_speed(qdev);
  1554. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1555. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1556. return status;
  1557. }
  1558. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1559. {
  1560. int status;
  1561. unsigned long hw_flags;
  1562. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1563. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1564. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1565. 2) << 7)) {
  1566. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1567. return 0;
  1568. }
  1569. status = ql_is_link_full_dup(qdev);
  1570. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1571. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1572. return status;
  1573. }
  1574. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1575. {
  1576. struct ql3_adapter *qdev = netdev_priv(ndev);
  1577. ecmd->transceiver = XCVR_INTERNAL;
  1578. ecmd->supported = ql_supported_modes(qdev);
  1579. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1580. ecmd->port = PORT_FIBRE;
  1581. } else {
  1582. ecmd->port = PORT_TP;
  1583. ecmd->phy_address = qdev->PHYAddr;
  1584. }
  1585. ecmd->advertising = ql_supported_modes(qdev);
  1586. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1587. ecmd->speed = ql_get_speed(qdev);
  1588. ecmd->duplex = ql_get_full_dup(qdev);
  1589. return 0;
  1590. }
  1591. static void ql_get_drvinfo(struct net_device *ndev,
  1592. struct ethtool_drvinfo *drvinfo)
  1593. {
  1594. struct ql3_adapter *qdev = netdev_priv(ndev);
  1595. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1596. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1597. strncpy(drvinfo->fw_version, "N/A", 32);
  1598. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1599. drvinfo->n_stats = 0;
  1600. drvinfo->testinfo_len = 0;
  1601. drvinfo->regdump_len = 0;
  1602. drvinfo->eedump_len = 0;
  1603. }
  1604. static u32 ql_get_msglevel(struct net_device *ndev)
  1605. {
  1606. struct ql3_adapter *qdev = netdev_priv(ndev);
  1607. return qdev->msg_enable;
  1608. }
  1609. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1610. {
  1611. struct ql3_adapter *qdev = netdev_priv(ndev);
  1612. qdev->msg_enable = value;
  1613. }
  1614. static void ql_get_pauseparam(struct net_device *ndev,
  1615. struct ethtool_pauseparam *pause)
  1616. {
  1617. struct ql3_adapter *qdev = netdev_priv(ndev);
  1618. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1619. u32 reg;
  1620. if(qdev->mac_index == 0)
  1621. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1622. else
  1623. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1624. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1625. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1626. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1627. }
  1628. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1629. .get_settings = ql_get_settings,
  1630. .get_drvinfo = ql_get_drvinfo,
  1631. .get_perm_addr = ethtool_op_get_perm_addr,
  1632. .get_link = ethtool_op_get_link,
  1633. .get_msglevel = ql_get_msglevel,
  1634. .set_msglevel = ql_set_msglevel,
  1635. .get_pauseparam = ql_get_pauseparam,
  1636. };
  1637. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1638. {
  1639. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1640. dma_addr_t map;
  1641. int err;
  1642. while (lrg_buf_cb) {
  1643. if (!lrg_buf_cb->skb) {
  1644. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1645. qdev->lrg_buffer_len);
  1646. if (unlikely(!lrg_buf_cb->skb)) {
  1647. printk(KERN_DEBUG PFX
  1648. "%s: Failed netdev_alloc_skb().\n",
  1649. qdev->ndev->name);
  1650. break;
  1651. } else {
  1652. /*
  1653. * We save some space to copy the ethhdr from
  1654. * first buffer
  1655. */
  1656. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1657. map = pci_map_single(qdev->pdev,
  1658. lrg_buf_cb->skb->data,
  1659. qdev->lrg_buffer_len -
  1660. QL_HEADER_SPACE,
  1661. PCI_DMA_FROMDEVICE);
  1662. err = pci_dma_mapping_error(map);
  1663. if(err) {
  1664. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1665. qdev->ndev->name, err);
  1666. dev_kfree_skb(lrg_buf_cb->skb);
  1667. lrg_buf_cb->skb = NULL;
  1668. break;
  1669. }
  1670. lrg_buf_cb->buf_phy_addr_low =
  1671. cpu_to_le32(LS_64BITS(map));
  1672. lrg_buf_cb->buf_phy_addr_high =
  1673. cpu_to_le32(MS_64BITS(map));
  1674. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1675. pci_unmap_len_set(lrg_buf_cb, maplen,
  1676. qdev->lrg_buffer_len -
  1677. QL_HEADER_SPACE);
  1678. --qdev->lrg_buf_skb_check;
  1679. if (!qdev->lrg_buf_skb_check)
  1680. return 1;
  1681. }
  1682. }
  1683. lrg_buf_cb = lrg_buf_cb->next;
  1684. }
  1685. return 0;
  1686. }
  1687. /*
  1688. * Caller holds hw_lock.
  1689. */
  1690. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1691. {
  1692. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1693. if (qdev->small_buf_release_cnt >= 16) {
  1694. while (qdev->small_buf_release_cnt >= 16) {
  1695. qdev->small_buf_q_producer_index++;
  1696. if (qdev->small_buf_q_producer_index ==
  1697. NUM_SBUFQ_ENTRIES)
  1698. qdev->small_buf_q_producer_index = 0;
  1699. qdev->small_buf_release_cnt -= 8;
  1700. }
  1701. wmb();
  1702. writel(qdev->small_buf_q_producer_index,
  1703. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1704. }
  1705. }
  1706. /*
  1707. * Caller holds hw_lock.
  1708. */
  1709. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1710. {
  1711. struct bufq_addr_element *lrg_buf_q_ele;
  1712. int i;
  1713. struct ql_rcv_buf_cb *lrg_buf_cb;
  1714. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1715. if ((qdev->lrg_buf_free_count >= 8)
  1716. && (qdev->lrg_buf_release_cnt >= 16)) {
  1717. if (qdev->lrg_buf_skb_check)
  1718. if (!ql_populate_free_queue(qdev))
  1719. return;
  1720. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1721. while ((qdev->lrg_buf_release_cnt >= 16)
  1722. && (qdev->lrg_buf_free_count >= 8)) {
  1723. for (i = 0; i < 8; i++) {
  1724. lrg_buf_cb =
  1725. ql_get_from_lrg_buf_free_list(qdev);
  1726. lrg_buf_q_ele->addr_high =
  1727. lrg_buf_cb->buf_phy_addr_high;
  1728. lrg_buf_q_ele->addr_low =
  1729. lrg_buf_cb->buf_phy_addr_low;
  1730. lrg_buf_q_ele++;
  1731. qdev->lrg_buf_release_cnt--;
  1732. }
  1733. qdev->lrg_buf_q_producer_index++;
  1734. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1735. qdev->lrg_buf_q_producer_index = 0;
  1736. if (qdev->lrg_buf_q_producer_index ==
  1737. (qdev->num_lbufq_entries - 1)) {
  1738. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1739. }
  1740. }
  1741. wmb();
  1742. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1743. writel(qdev->lrg_buf_q_producer_index,
  1744. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1745. }
  1746. }
  1747. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1748. struct ob_mac_iocb_rsp *mac_rsp)
  1749. {
  1750. struct ql_tx_buf_cb *tx_cb;
  1751. int i;
  1752. int retval = 0;
  1753. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1754. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1755. }
  1756. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1757. /* Check the transmit response flags for any errors */
  1758. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1759. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1760. qdev->stats.tx_errors++;
  1761. retval = -EIO;
  1762. goto frame_not_sent;
  1763. }
  1764. if(tx_cb->seg_count == 0) {
  1765. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1766. qdev->stats.tx_errors++;
  1767. retval = -EIO;
  1768. goto invalid_seg_count;
  1769. }
  1770. pci_unmap_single(qdev->pdev,
  1771. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1772. pci_unmap_len(&tx_cb->map[0], maplen),
  1773. PCI_DMA_TODEVICE);
  1774. tx_cb->seg_count--;
  1775. if (tx_cb->seg_count) {
  1776. for (i = 1; i < tx_cb->seg_count; i++) {
  1777. pci_unmap_page(qdev->pdev,
  1778. pci_unmap_addr(&tx_cb->map[i],
  1779. mapaddr),
  1780. pci_unmap_len(&tx_cb->map[i], maplen),
  1781. PCI_DMA_TODEVICE);
  1782. }
  1783. }
  1784. qdev->stats.tx_packets++;
  1785. qdev->stats.tx_bytes += tx_cb->skb->len;
  1786. frame_not_sent:
  1787. dev_kfree_skb_irq(tx_cb->skb);
  1788. tx_cb->skb = NULL;
  1789. invalid_seg_count:
  1790. atomic_inc(&qdev->tx_count);
  1791. }
  1792. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1793. {
  1794. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1795. qdev->small_buf_index = 0;
  1796. qdev->small_buf_release_cnt++;
  1797. }
  1798. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1799. {
  1800. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1801. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1802. qdev->lrg_buf_release_cnt++;
  1803. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1804. qdev->lrg_buf_index = 0;
  1805. return(lrg_buf_cb);
  1806. }
  1807. /*
  1808. * The difference between 3022 and 3032 for inbound completions:
  1809. * 3022 uses two buffers per completion. The first buffer contains
  1810. * (some) header info, the second the remainder of the headers plus
  1811. * the data. For this chip we reserve some space at the top of the
  1812. * receive buffer so that the header info in buffer one can be
  1813. * prepended to the buffer two. Buffer two is the sent up while
  1814. * buffer one is returned to the hardware to be reused.
  1815. * 3032 receives all of it's data and headers in one buffer for a
  1816. * simpler process. 3032 also supports checksum verification as
  1817. * can be seen in ql_process_macip_rx_intr().
  1818. */
  1819. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1820. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1821. {
  1822. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1823. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1824. struct sk_buff *skb;
  1825. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1826. /*
  1827. * Get the inbound address list (small buffer).
  1828. */
  1829. ql_get_sbuf(qdev);
  1830. if (qdev->device_id == QL3022_DEVICE_ID)
  1831. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1832. /* start of second buffer */
  1833. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1834. skb = lrg_buf_cb2->skb;
  1835. qdev->stats.rx_packets++;
  1836. qdev->stats.rx_bytes += length;
  1837. skb_put(skb, length);
  1838. pci_unmap_single(qdev->pdev,
  1839. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1840. pci_unmap_len(lrg_buf_cb2, maplen),
  1841. PCI_DMA_FROMDEVICE);
  1842. prefetch(skb->data);
  1843. skb->ip_summed = CHECKSUM_NONE;
  1844. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1845. netif_receive_skb(skb);
  1846. qdev->ndev->last_rx = jiffies;
  1847. lrg_buf_cb2->skb = NULL;
  1848. if (qdev->device_id == QL3022_DEVICE_ID)
  1849. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1850. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1851. }
  1852. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1853. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1854. {
  1855. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1856. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1857. struct sk_buff *skb1 = NULL, *skb2;
  1858. struct net_device *ndev = qdev->ndev;
  1859. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1860. u16 size = 0;
  1861. /*
  1862. * Get the inbound address list (small buffer).
  1863. */
  1864. ql_get_sbuf(qdev);
  1865. if (qdev->device_id == QL3022_DEVICE_ID) {
  1866. /* start of first buffer on 3022 */
  1867. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1868. skb1 = lrg_buf_cb1->skb;
  1869. size = ETH_HLEN;
  1870. if (*((u16 *) skb1->data) != 0xFFFF)
  1871. size += VLAN_ETH_HLEN - ETH_HLEN;
  1872. }
  1873. /* start of second buffer */
  1874. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1875. skb2 = lrg_buf_cb2->skb;
  1876. skb_put(skb2, length); /* Just the second buffer length here. */
  1877. pci_unmap_single(qdev->pdev,
  1878. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1879. pci_unmap_len(lrg_buf_cb2, maplen),
  1880. PCI_DMA_FROMDEVICE);
  1881. prefetch(skb2->data);
  1882. skb2->ip_summed = CHECKSUM_NONE;
  1883. if (qdev->device_id == QL3022_DEVICE_ID) {
  1884. /*
  1885. * Copy the ethhdr from first buffer to second. This
  1886. * is necessary for 3022 IP completions.
  1887. */
  1888. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1889. skb_push(skb2, size), size);
  1890. } else {
  1891. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1892. if (checksum &
  1893. (IB_IP_IOCB_RSP_3032_ICE |
  1894. IB_IP_IOCB_RSP_3032_CE)) {
  1895. printk(KERN_ERR
  1896. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1897. __func__,
  1898. ((checksum &
  1899. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1900. "UDP"),checksum);
  1901. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1902. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1903. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1904. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1905. }
  1906. }
  1907. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1908. netif_receive_skb(skb2);
  1909. qdev->stats.rx_packets++;
  1910. qdev->stats.rx_bytes += length;
  1911. ndev->last_rx = jiffies;
  1912. lrg_buf_cb2->skb = NULL;
  1913. if (qdev->device_id == QL3022_DEVICE_ID)
  1914. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1915. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1916. }
  1917. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1918. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1919. {
  1920. struct net_rsp_iocb *net_rsp;
  1921. struct net_device *ndev = qdev->ndev;
  1922. int work_done = 0;
  1923. /* While there are entries in the completion queue. */
  1924. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1925. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1926. net_rsp = qdev->rsp_current;
  1927. switch (net_rsp->opcode) {
  1928. case OPCODE_OB_MAC_IOCB_FN0:
  1929. case OPCODE_OB_MAC_IOCB_FN2:
  1930. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1931. net_rsp);
  1932. (*tx_cleaned)++;
  1933. break;
  1934. case OPCODE_IB_MAC_IOCB:
  1935. case OPCODE_IB_3032_MAC_IOCB:
  1936. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1937. net_rsp);
  1938. (*rx_cleaned)++;
  1939. break;
  1940. case OPCODE_IB_IP_IOCB:
  1941. case OPCODE_IB_3032_IP_IOCB:
  1942. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1943. net_rsp);
  1944. (*rx_cleaned)++;
  1945. break;
  1946. default:
  1947. {
  1948. u32 *tmp = (u32 *) net_rsp;
  1949. printk(KERN_ERR PFX
  1950. "%s: Hit default case, not "
  1951. "handled!\n"
  1952. " dropping the packet, opcode = "
  1953. "%x.\n",
  1954. ndev->name, net_rsp->opcode);
  1955. printk(KERN_ERR PFX
  1956. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1957. (unsigned long int)tmp[0],
  1958. (unsigned long int)tmp[1],
  1959. (unsigned long int)tmp[2],
  1960. (unsigned long int)tmp[3]);
  1961. }
  1962. }
  1963. qdev->rsp_consumer_index++;
  1964. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1965. qdev->rsp_consumer_index = 0;
  1966. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1967. } else {
  1968. qdev->rsp_current++;
  1969. }
  1970. work_done = *tx_cleaned + *rx_cleaned;
  1971. }
  1972. return work_done;
  1973. }
  1974. static int ql_poll(struct net_device *ndev, int *budget)
  1975. {
  1976. struct ql3_adapter *qdev = netdev_priv(ndev);
  1977. int work_to_do = min(*budget, ndev->quota);
  1978. int rx_cleaned = 0, tx_cleaned = 0;
  1979. unsigned long hw_flags;
  1980. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1981. if (!netif_carrier_ok(ndev))
  1982. goto quit_polling;
  1983. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1984. *budget -= rx_cleaned;
  1985. ndev->quota -= rx_cleaned;
  1986. if( tx_cleaned + rx_cleaned != work_to_do ||
  1987. !netif_running(ndev)) {
  1988. quit_polling:
  1989. netif_rx_complete(ndev);
  1990. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1991. ql_update_small_bufq_prod_index(qdev);
  1992. ql_update_lrg_bufq_prod_index(qdev);
  1993. writel(qdev->rsp_consumer_index,
  1994. &port_regs->CommonRegs.rspQConsumerIndex);
  1995. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1996. ql_enable_interrupts(qdev);
  1997. return 0;
  1998. }
  1999. return 1;
  2000. }
  2001. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  2002. {
  2003. struct net_device *ndev = dev_id;
  2004. struct ql3_adapter *qdev = netdev_priv(ndev);
  2005. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2006. u32 value;
  2007. int handled = 1;
  2008. u32 var;
  2009. port_regs = qdev->mem_map_registers;
  2010. value =
  2011. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2012. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  2013. spin_lock(&qdev->adapter_lock);
  2014. netif_stop_queue(qdev->ndev);
  2015. netif_carrier_off(qdev->ndev);
  2016. ql_disable_interrupts(qdev);
  2017. qdev->port_link_state = LS_DOWN;
  2018. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  2019. if (value & ISP_CONTROL_FE) {
  2020. /*
  2021. * Chip Fatal Error.
  2022. */
  2023. var =
  2024. ql_read_page0_reg_l(qdev,
  2025. &port_regs->PortFatalErrStatus);
  2026. printk(KERN_WARNING PFX
  2027. "%s: Resetting chip. PortFatalErrStatus "
  2028. "register = 0x%x\n", ndev->name, var);
  2029. set_bit(QL_RESET_START,&qdev->flags) ;
  2030. } else {
  2031. /*
  2032. * Soft Reset Requested.
  2033. */
  2034. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  2035. printk(KERN_ERR PFX
  2036. "%s: Another function issued a reset to the "
  2037. "chip. ISR value = %x.\n", ndev->name, value);
  2038. }
  2039. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  2040. spin_unlock(&qdev->adapter_lock);
  2041. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  2042. ql_disable_interrupts(qdev);
  2043. if (likely(netif_rx_schedule_prep(ndev))) {
  2044. __netif_rx_schedule(ndev);
  2045. }
  2046. } else {
  2047. return IRQ_NONE;
  2048. }
  2049. return IRQ_RETVAL(handled);
  2050. }
  2051. /*
  2052. * Get the total number of segments needed for the
  2053. * given number of fragments. This is necessary because
  2054. * outbound address lists (OAL) will be used when more than
  2055. * two frags are given. Each address list has 5 addr/len
  2056. * pairs. The 5th pair in each AOL is used to point to
  2057. * the next AOL if more frags are coming.
  2058. * That is why the frags:segment count ratio is not linear.
  2059. */
  2060. static int ql_get_seg_count(struct ql3_adapter *qdev,
  2061. unsigned short frags)
  2062. {
  2063. if (qdev->device_id == QL3022_DEVICE_ID)
  2064. return 1;
  2065. switch(frags) {
  2066. case 0: return 1; /* just the skb->data seg */
  2067. case 1: return 2; /* skb->data + 1 frag */
  2068. case 2: return 3; /* skb->data + 2 frags */
  2069. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  2070. case 4: return 6;
  2071. case 5: return 7;
  2072. case 6: return 8;
  2073. case 7: return 10;
  2074. case 8: return 11;
  2075. case 9: return 12;
  2076. case 10: return 13;
  2077. case 11: return 15;
  2078. case 12: return 16;
  2079. case 13: return 17;
  2080. case 14: return 18;
  2081. case 15: return 20;
  2082. case 16: return 21;
  2083. case 17: return 22;
  2084. case 18: return 23;
  2085. }
  2086. return -1;
  2087. }
  2088. static void ql_hw_csum_setup(struct sk_buff *skb,
  2089. struct ob_mac_iocb_req *mac_iocb_ptr)
  2090. {
  2091. struct ethhdr *eth;
  2092. struct iphdr *ip = NULL;
  2093. u8 offset = ETH_HLEN;
  2094. eth = (struct ethhdr *)(skb->data);
  2095. if (eth->h_proto == __constant_htons(ETH_P_IP)) {
  2096. ip = (struct iphdr *)&skb->data[ETH_HLEN];
  2097. } else if (eth->h_proto == htons(ETH_P_8021Q) &&
  2098. ((struct vlan_ethhdr *)skb->data)->
  2099. h_vlan_encapsulated_proto == __constant_htons(ETH_P_IP)) {
  2100. ip = (struct iphdr *)&skb->data[VLAN_ETH_HLEN];
  2101. offset = VLAN_ETH_HLEN;
  2102. }
  2103. if (ip) {
  2104. if (ip->protocol == IPPROTO_TCP) {
  2105. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  2106. OB_3032MAC_IOCB_REQ_IC;
  2107. mac_iocb_ptr->ip_hdr_off = offset;
  2108. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2109. } else if (ip->protocol == IPPROTO_UDP) {
  2110. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  2111. OB_3032MAC_IOCB_REQ_IC;
  2112. mac_iocb_ptr->ip_hdr_off = offset;
  2113. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  2114. }
  2115. }
  2116. }
  2117. /*
  2118. * Map the buffers for this transmit. This will return
  2119. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  2120. */
  2121. static int ql_send_map(struct ql3_adapter *qdev,
  2122. struct ob_mac_iocb_req *mac_iocb_ptr,
  2123. struct ql_tx_buf_cb *tx_cb,
  2124. struct sk_buff *skb)
  2125. {
  2126. struct oal *oal;
  2127. struct oal_entry *oal_entry;
  2128. int len = skb_headlen(skb);
  2129. dma_addr_t map;
  2130. int err;
  2131. int completed_segs, i;
  2132. int seg_cnt, seg = 0;
  2133. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  2134. seg_cnt = tx_cb->seg_count;
  2135. /*
  2136. * Map the skb buffer first.
  2137. */
  2138. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2139. err = pci_dma_mapping_error(map);
  2140. if(err) {
  2141. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2142. qdev->ndev->name, err);
  2143. return NETDEV_TX_BUSY;
  2144. }
  2145. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2146. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2147. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2148. oal_entry->len = cpu_to_le32(len);
  2149. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2150. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  2151. seg++;
  2152. if (seg_cnt == 1) {
  2153. /* Terminate the last segment. */
  2154. oal_entry->len =
  2155. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2156. } else {
  2157. oal = tx_cb->oal;
  2158. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  2159. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  2160. oal_entry++;
  2161. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2162. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2163. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2164. (seg == 17 && seg_cnt > 18)) {
  2165. /* Continuation entry points to outbound address list. */
  2166. map = pci_map_single(qdev->pdev, oal,
  2167. sizeof(struct oal),
  2168. PCI_DMA_TODEVICE);
  2169. err = pci_dma_mapping_error(map);
  2170. if(err) {
  2171. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  2172. qdev->ndev->name, err);
  2173. goto map_error;
  2174. }
  2175. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2176. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2177. oal_entry->len =
  2178. cpu_to_le32(sizeof(struct oal) |
  2179. OAL_CONT_ENTRY);
  2180. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  2181. map);
  2182. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2183. sizeof(struct oal));
  2184. oal_entry = (struct oal_entry *)oal;
  2185. oal++;
  2186. seg++;
  2187. }
  2188. map =
  2189. pci_map_page(qdev->pdev, frag->page,
  2190. frag->page_offset, frag->size,
  2191. PCI_DMA_TODEVICE);
  2192. err = pci_dma_mapping_error(map);
  2193. if(err) {
  2194. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  2195. qdev->ndev->name, err);
  2196. goto map_error;
  2197. }
  2198. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2199. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2200. oal_entry->len = cpu_to_le32(frag->size);
  2201. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2202. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  2203. frag->size);
  2204. }
  2205. /* Terminate the last segment. */
  2206. oal_entry->len =
  2207. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  2208. }
  2209. return NETDEV_TX_OK;
  2210. map_error:
  2211. /* A PCI mapping failed and now we will need to back out
  2212. * We need to traverse through the oal's and associated pages which
  2213. * have been mapped and now we must unmap them to clean up properly
  2214. */
  2215. seg = 1;
  2216. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2217. oal = tx_cb->oal;
  2218. for (i=0; i<completed_segs; i++,seg++) {
  2219. oal_entry++;
  2220. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  2221. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  2222. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  2223. (seg == 17 && seg_cnt > 18)) {
  2224. pci_unmap_single(qdev->pdev,
  2225. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2226. pci_unmap_len(&tx_cb->map[seg], maplen),
  2227. PCI_DMA_TODEVICE);
  2228. oal++;
  2229. seg++;
  2230. }
  2231. pci_unmap_page(qdev->pdev,
  2232. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2233. pci_unmap_len(&tx_cb->map[seg], maplen),
  2234. PCI_DMA_TODEVICE);
  2235. }
  2236. pci_unmap_single(qdev->pdev,
  2237. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2238. pci_unmap_addr(&tx_cb->map[0], maplen),
  2239. PCI_DMA_TODEVICE);
  2240. return NETDEV_TX_BUSY;
  2241. }
  2242. /*
  2243. * The difference between 3022 and 3032 sends:
  2244. * 3022 only supports a simple single segment transmission.
  2245. * 3032 supports checksumming and scatter/gather lists (fragments).
  2246. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2247. * in the IOCB plus a chain of outbound address lists (OAL) that
  2248. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2249. * will used to point to an OAL when more ALP entries are required.
  2250. * The IOCB is always the top of the chain followed by one or more
  2251. * OALs (when necessary).
  2252. */
  2253. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2254. {
  2255. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2256. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2257. struct ql_tx_buf_cb *tx_cb;
  2258. u32 tot_len = skb->len;
  2259. struct ob_mac_iocb_req *mac_iocb_ptr;
  2260. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2261. return NETDEV_TX_BUSY;
  2262. }
  2263. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2264. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2265. (skb_shinfo(skb)->nr_frags))) == -1) {
  2266. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2267. return NETDEV_TX_OK;
  2268. }
  2269. mac_iocb_ptr = tx_cb->queue_entry;
  2270. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2271. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2272. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2273. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2274. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2275. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2276. tx_cb->skb = skb;
  2277. if (qdev->device_id == QL3032_DEVICE_ID &&
  2278. skb->ip_summed == CHECKSUM_PARTIAL)
  2279. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2280. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2281. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2282. return NETDEV_TX_BUSY;
  2283. }
  2284. wmb();
  2285. qdev->req_producer_index++;
  2286. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2287. qdev->req_producer_index = 0;
  2288. wmb();
  2289. ql_write_common_reg_l(qdev,
  2290. &port_regs->CommonRegs.reqQProducerIndex,
  2291. qdev->req_producer_index);
  2292. ndev->trans_start = jiffies;
  2293. if (netif_msg_tx_queued(qdev))
  2294. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2295. ndev->name, qdev->req_producer_index, skb->len);
  2296. atomic_dec(&qdev->tx_count);
  2297. return NETDEV_TX_OK;
  2298. }
  2299. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2300. {
  2301. qdev->req_q_size =
  2302. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2303. qdev->req_q_virt_addr =
  2304. pci_alloc_consistent(qdev->pdev,
  2305. (size_t) qdev->req_q_size,
  2306. &qdev->req_q_phy_addr);
  2307. if ((qdev->req_q_virt_addr == NULL) ||
  2308. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2309. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2310. qdev->ndev->name);
  2311. return -ENOMEM;
  2312. }
  2313. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2314. qdev->rsp_q_virt_addr =
  2315. pci_alloc_consistent(qdev->pdev,
  2316. (size_t) qdev->rsp_q_size,
  2317. &qdev->rsp_q_phy_addr);
  2318. if ((qdev->rsp_q_virt_addr == NULL) ||
  2319. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2320. printk(KERN_ERR PFX
  2321. "%s: rspQ allocation failed\n",
  2322. qdev->ndev->name);
  2323. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2324. qdev->req_q_virt_addr,
  2325. qdev->req_q_phy_addr);
  2326. return -ENOMEM;
  2327. }
  2328. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2329. return 0;
  2330. }
  2331. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2332. {
  2333. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2334. printk(KERN_INFO PFX
  2335. "%s: Already done.\n", qdev->ndev->name);
  2336. return;
  2337. }
  2338. pci_free_consistent(qdev->pdev,
  2339. qdev->req_q_size,
  2340. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2341. qdev->req_q_virt_addr = NULL;
  2342. pci_free_consistent(qdev->pdev,
  2343. qdev->rsp_q_size,
  2344. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2345. qdev->rsp_q_virt_addr = NULL;
  2346. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2347. }
  2348. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2349. {
  2350. /* Create Large Buffer Queue */
  2351. qdev->lrg_buf_q_size =
  2352. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2353. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2354. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2355. else
  2356. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2357. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2358. if (qdev->lrg_buf == NULL) {
  2359. printk(KERN_ERR PFX
  2360. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2361. return -ENOMEM;
  2362. }
  2363. qdev->lrg_buf_q_alloc_virt_addr =
  2364. pci_alloc_consistent(qdev->pdev,
  2365. qdev->lrg_buf_q_alloc_size,
  2366. &qdev->lrg_buf_q_alloc_phy_addr);
  2367. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2368. printk(KERN_ERR PFX
  2369. "%s: lBufQ failed\n", qdev->ndev->name);
  2370. return -ENOMEM;
  2371. }
  2372. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2373. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2374. /* Create Small Buffer Queue */
  2375. qdev->small_buf_q_size =
  2376. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2377. if (qdev->small_buf_q_size < PAGE_SIZE)
  2378. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2379. else
  2380. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2381. qdev->small_buf_q_alloc_virt_addr =
  2382. pci_alloc_consistent(qdev->pdev,
  2383. qdev->small_buf_q_alloc_size,
  2384. &qdev->small_buf_q_alloc_phy_addr);
  2385. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2386. printk(KERN_ERR PFX
  2387. "%s: Small Buffer Queue allocation failed.\n",
  2388. qdev->ndev->name);
  2389. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2390. qdev->lrg_buf_q_alloc_virt_addr,
  2391. qdev->lrg_buf_q_alloc_phy_addr);
  2392. return -ENOMEM;
  2393. }
  2394. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2395. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2396. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2397. return 0;
  2398. }
  2399. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2400. {
  2401. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2402. printk(KERN_INFO PFX
  2403. "%s: Already done.\n", qdev->ndev->name);
  2404. return;
  2405. }
  2406. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2407. pci_free_consistent(qdev->pdev,
  2408. qdev->lrg_buf_q_alloc_size,
  2409. qdev->lrg_buf_q_alloc_virt_addr,
  2410. qdev->lrg_buf_q_alloc_phy_addr);
  2411. qdev->lrg_buf_q_virt_addr = NULL;
  2412. pci_free_consistent(qdev->pdev,
  2413. qdev->small_buf_q_alloc_size,
  2414. qdev->small_buf_q_alloc_virt_addr,
  2415. qdev->small_buf_q_alloc_phy_addr);
  2416. qdev->small_buf_q_virt_addr = NULL;
  2417. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2418. }
  2419. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2420. {
  2421. int i;
  2422. struct bufq_addr_element *small_buf_q_entry;
  2423. /* Currently we allocate on one of memory and use it for smallbuffers */
  2424. qdev->small_buf_total_size =
  2425. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2426. QL_SMALL_BUFFER_SIZE);
  2427. qdev->small_buf_virt_addr =
  2428. pci_alloc_consistent(qdev->pdev,
  2429. qdev->small_buf_total_size,
  2430. &qdev->small_buf_phy_addr);
  2431. if (qdev->small_buf_virt_addr == NULL) {
  2432. printk(KERN_ERR PFX
  2433. "%s: Failed to get small buffer memory.\n",
  2434. qdev->ndev->name);
  2435. return -ENOMEM;
  2436. }
  2437. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2438. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2439. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2440. /* Initialize the small buffer queue. */
  2441. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2442. small_buf_q_entry->addr_high =
  2443. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2444. small_buf_q_entry->addr_low =
  2445. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2446. (i * QL_SMALL_BUFFER_SIZE));
  2447. small_buf_q_entry++;
  2448. }
  2449. qdev->small_buf_index = 0;
  2450. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2451. return 0;
  2452. }
  2453. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2454. {
  2455. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2456. printk(KERN_INFO PFX
  2457. "%s: Already done.\n", qdev->ndev->name);
  2458. return;
  2459. }
  2460. if (qdev->small_buf_virt_addr != NULL) {
  2461. pci_free_consistent(qdev->pdev,
  2462. qdev->small_buf_total_size,
  2463. qdev->small_buf_virt_addr,
  2464. qdev->small_buf_phy_addr);
  2465. qdev->small_buf_virt_addr = NULL;
  2466. }
  2467. }
  2468. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2469. {
  2470. int i = 0;
  2471. struct ql_rcv_buf_cb *lrg_buf_cb;
  2472. for (i = 0; i < qdev->num_large_buffers; i++) {
  2473. lrg_buf_cb = &qdev->lrg_buf[i];
  2474. if (lrg_buf_cb->skb) {
  2475. dev_kfree_skb(lrg_buf_cb->skb);
  2476. pci_unmap_single(qdev->pdev,
  2477. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2478. pci_unmap_len(lrg_buf_cb, maplen),
  2479. PCI_DMA_FROMDEVICE);
  2480. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2481. } else {
  2482. break;
  2483. }
  2484. }
  2485. }
  2486. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2487. {
  2488. int i;
  2489. struct ql_rcv_buf_cb *lrg_buf_cb;
  2490. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2491. for (i = 0; i < qdev->num_large_buffers; i++) {
  2492. lrg_buf_cb = &qdev->lrg_buf[i];
  2493. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2494. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2495. buf_addr_ele++;
  2496. }
  2497. qdev->lrg_buf_index = 0;
  2498. qdev->lrg_buf_skb_check = 0;
  2499. }
  2500. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2501. {
  2502. int i;
  2503. struct ql_rcv_buf_cb *lrg_buf_cb;
  2504. struct sk_buff *skb;
  2505. dma_addr_t map;
  2506. int err;
  2507. for (i = 0; i < qdev->num_large_buffers; i++) {
  2508. skb = netdev_alloc_skb(qdev->ndev,
  2509. qdev->lrg_buffer_len);
  2510. if (unlikely(!skb)) {
  2511. /* Better luck next round */
  2512. printk(KERN_ERR PFX
  2513. "%s: large buff alloc failed, "
  2514. "for %d bytes at index %d.\n",
  2515. qdev->ndev->name,
  2516. qdev->lrg_buffer_len * 2, i);
  2517. ql_free_large_buffers(qdev);
  2518. return -ENOMEM;
  2519. } else {
  2520. lrg_buf_cb = &qdev->lrg_buf[i];
  2521. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2522. lrg_buf_cb->index = i;
  2523. lrg_buf_cb->skb = skb;
  2524. /*
  2525. * We save some space to copy the ethhdr from first
  2526. * buffer
  2527. */
  2528. skb_reserve(skb, QL_HEADER_SPACE);
  2529. map = pci_map_single(qdev->pdev,
  2530. skb->data,
  2531. qdev->lrg_buffer_len -
  2532. QL_HEADER_SPACE,
  2533. PCI_DMA_FROMDEVICE);
  2534. err = pci_dma_mapping_error(map);
  2535. if(err) {
  2536. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2537. qdev->ndev->name, err);
  2538. ql_free_large_buffers(qdev);
  2539. return -ENOMEM;
  2540. }
  2541. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2542. pci_unmap_len_set(lrg_buf_cb, maplen,
  2543. qdev->lrg_buffer_len -
  2544. QL_HEADER_SPACE);
  2545. lrg_buf_cb->buf_phy_addr_low =
  2546. cpu_to_le32(LS_64BITS(map));
  2547. lrg_buf_cb->buf_phy_addr_high =
  2548. cpu_to_le32(MS_64BITS(map));
  2549. }
  2550. }
  2551. return 0;
  2552. }
  2553. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2554. {
  2555. struct ql_tx_buf_cb *tx_cb;
  2556. int i;
  2557. tx_cb = &qdev->tx_buf[0];
  2558. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2559. if (tx_cb->oal) {
  2560. kfree(tx_cb->oal);
  2561. tx_cb->oal = NULL;
  2562. }
  2563. tx_cb++;
  2564. }
  2565. }
  2566. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2567. {
  2568. struct ql_tx_buf_cb *tx_cb;
  2569. int i;
  2570. struct ob_mac_iocb_req *req_q_curr =
  2571. qdev->req_q_virt_addr;
  2572. /* Create free list of transmit buffers */
  2573. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2574. tx_cb = &qdev->tx_buf[i];
  2575. tx_cb->skb = NULL;
  2576. tx_cb->queue_entry = req_q_curr;
  2577. req_q_curr++;
  2578. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2579. if (tx_cb->oal == NULL)
  2580. return -1;
  2581. }
  2582. return 0;
  2583. }
  2584. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2585. {
  2586. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2587. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2588. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2589. }
  2590. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2591. /*
  2592. * Bigger buffers, so less of them.
  2593. */
  2594. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2595. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2596. } else {
  2597. printk(KERN_ERR PFX
  2598. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2599. qdev->ndev->name);
  2600. return -ENOMEM;
  2601. }
  2602. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2603. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2604. qdev->max_frame_size =
  2605. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2606. /*
  2607. * First allocate a page of shared memory and use it for shadow
  2608. * locations of Network Request Queue Consumer Address Register and
  2609. * Network Completion Queue Producer Index Register
  2610. */
  2611. qdev->shadow_reg_virt_addr =
  2612. pci_alloc_consistent(qdev->pdev,
  2613. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2614. if (qdev->shadow_reg_virt_addr != NULL) {
  2615. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2616. qdev->req_consumer_index_phy_addr_high =
  2617. MS_64BITS(qdev->shadow_reg_phy_addr);
  2618. qdev->req_consumer_index_phy_addr_low =
  2619. LS_64BITS(qdev->shadow_reg_phy_addr);
  2620. qdev->prsp_producer_index =
  2621. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2622. qdev->rsp_producer_index_phy_addr_high =
  2623. qdev->req_consumer_index_phy_addr_high;
  2624. qdev->rsp_producer_index_phy_addr_low =
  2625. qdev->req_consumer_index_phy_addr_low + 8;
  2626. } else {
  2627. printk(KERN_ERR PFX
  2628. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2629. return -ENOMEM;
  2630. }
  2631. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2632. printk(KERN_ERR PFX
  2633. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2634. qdev->ndev->name);
  2635. goto err_req_rsp;
  2636. }
  2637. if (ql_alloc_buffer_queues(qdev) != 0) {
  2638. printk(KERN_ERR PFX
  2639. "%s: ql_alloc_buffer_queues failed.\n",
  2640. qdev->ndev->name);
  2641. goto err_buffer_queues;
  2642. }
  2643. if (ql_alloc_small_buffers(qdev) != 0) {
  2644. printk(KERN_ERR PFX
  2645. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2646. goto err_small_buffers;
  2647. }
  2648. if (ql_alloc_large_buffers(qdev) != 0) {
  2649. printk(KERN_ERR PFX
  2650. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2651. goto err_small_buffers;
  2652. }
  2653. /* Initialize the large buffer queue. */
  2654. ql_init_large_buffers(qdev);
  2655. if (ql_create_send_free_list(qdev))
  2656. goto err_free_list;
  2657. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2658. return 0;
  2659. err_free_list:
  2660. ql_free_send_free_list(qdev);
  2661. err_small_buffers:
  2662. ql_free_buffer_queues(qdev);
  2663. err_buffer_queues:
  2664. ql_free_net_req_rsp_queues(qdev);
  2665. err_req_rsp:
  2666. pci_free_consistent(qdev->pdev,
  2667. PAGE_SIZE,
  2668. qdev->shadow_reg_virt_addr,
  2669. qdev->shadow_reg_phy_addr);
  2670. return -ENOMEM;
  2671. }
  2672. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2673. {
  2674. ql_free_send_free_list(qdev);
  2675. ql_free_large_buffers(qdev);
  2676. ql_free_small_buffers(qdev);
  2677. ql_free_buffer_queues(qdev);
  2678. ql_free_net_req_rsp_queues(qdev);
  2679. if (qdev->shadow_reg_virt_addr != NULL) {
  2680. pci_free_consistent(qdev->pdev,
  2681. PAGE_SIZE,
  2682. qdev->shadow_reg_virt_addr,
  2683. qdev->shadow_reg_phy_addr);
  2684. qdev->shadow_reg_virt_addr = NULL;
  2685. }
  2686. }
  2687. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2688. {
  2689. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2690. (void __iomem *)qdev->mem_map_registers;
  2691. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2692. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2693. 2) << 4))
  2694. return -1;
  2695. ql_write_page2_reg(qdev,
  2696. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2697. ql_write_page2_reg(qdev,
  2698. &local_ram->maxBufletCount,
  2699. qdev->nvram_data.bufletCount);
  2700. ql_write_page2_reg(qdev,
  2701. &local_ram->freeBufletThresholdLow,
  2702. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2703. (qdev->nvram_data.tcpWindowThreshold0));
  2704. ql_write_page2_reg(qdev,
  2705. &local_ram->freeBufletThresholdHigh,
  2706. qdev->nvram_data.tcpWindowThreshold50);
  2707. ql_write_page2_reg(qdev,
  2708. &local_ram->ipHashTableBase,
  2709. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2710. qdev->nvram_data.ipHashTableBaseLo);
  2711. ql_write_page2_reg(qdev,
  2712. &local_ram->ipHashTableCount,
  2713. qdev->nvram_data.ipHashTableSize);
  2714. ql_write_page2_reg(qdev,
  2715. &local_ram->tcpHashTableBase,
  2716. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2717. qdev->nvram_data.tcpHashTableBaseLo);
  2718. ql_write_page2_reg(qdev,
  2719. &local_ram->tcpHashTableCount,
  2720. qdev->nvram_data.tcpHashTableSize);
  2721. ql_write_page2_reg(qdev,
  2722. &local_ram->ncbBase,
  2723. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2724. qdev->nvram_data.ncbTableBaseLo);
  2725. ql_write_page2_reg(qdev,
  2726. &local_ram->maxNcbCount,
  2727. qdev->nvram_data.ncbTableSize);
  2728. ql_write_page2_reg(qdev,
  2729. &local_ram->drbBase,
  2730. (qdev->nvram_data.drbTableBaseHi << 16) |
  2731. qdev->nvram_data.drbTableBaseLo);
  2732. ql_write_page2_reg(qdev,
  2733. &local_ram->maxDrbCount,
  2734. qdev->nvram_data.drbTableSize);
  2735. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2736. return 0;
  2737. }
  2738. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2739. {
  2740. u32 value;
  2741. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2742. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2743. (void __iomem *)port_regs;
  2744. u32 delay = 10;
  2745. int status = 0;
  2746. if(ql_mii_setup(qdev))
  2747. return -1;
  2748. /* Bring out PHY out of reset */
  2749. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2750. (ISP_SERIAL_PORT_IF_WE |
  2751. (ISP_SERIAL_PORT_IF_WE << 16)));
  2752. qdev->port_link_state = LS_DOWN;
  2753. netif_carrier_off(qdev->ndev);
  2754. /* V2 chip fix for ARS-39168. */
  2755. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2756. (ISP_SERIAL_PORT_IF_SDE |
  2757. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2758. /* Request Queue Registers */
  2759. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2760. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2761. qdev->req_producer_index = 0;
  2762. ql_write_page1_reg(qdev,
  2763. &hmem_regs->reqConsumerIndexAddrHigh,
  2764. qdev->req_consumer_index_phy_addr_high);
  2765. ql_write_page1_reg(qdev,
  2766. &hmem_regs->reqConsumerIndexAddrLow,
  2767. qdev->req_consumer_index_phy_addr_low);
  2768. ql_write_page1_reg(qdev,
  2769. &hmem_regs->reqBaseAddrHigh,
  2770. MS_64BITS(qdev->req_q_phy_addr));
  2771. ql_write_page1_reg(qdev,
  2772. &hmem_regs->reqBaseAddrLow,
  2773. LS_64BITS(qdev->req_q_phy_addr));
  2774. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2775. /* Response Queue Registers */
  2776. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2777. qdev->rsp_consumer_index = 0;
  2778. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2779. ql_write_page1_reg(qdev,
  2780. &hmem_regs->rspProducerIndexAddrHigh,
  2781. qdev->rsp_producer_index_phy_addr_high);
  2782. ql_write_page1_reg(qdev,
  2783. &hmem_regs->rspProducerIndexAddrLow,
  2784. qdev->rsp_producer_index_phy_addr_low);
  2785. ql_write_page1_reg(qdev,
  2786. &hmem_regs->rspBaseAddrHigh,
  2787. MS_64BITS(qdev->rsp_q_phy_addr));
  2788. ql_write_page1_reg(qdev,
  2789. &hmem_regs->rspBaseAddrLow,
  2790. LS_64BITS(qdev->rsp_q_phy_addr));
  2791. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2792. /* Large Buffer Queue */
  2793. ql_write_page1_reg(qdev,
  2794. &hmem_regs->rxLargeQBaseAddrHigh,
  2795. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2796. ql_write_page1_reg(qdev,
  2797. &hmem_regs->rxLargeQBaseAddrLow,
  2798. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2799. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2800. ql_write_page1_reg(qdev,
  2801. &hmem_regs->rxLargeBufferLength,
  2802. qdev->lrg_buffer_len);
  2803. /* Small Buffer Queue */
  2804. ql_write_page1_reg(qdev,
  2805. &hmem_regs->rxSmallQBaseAddrHigh,
  2806. MS_64BITS(qdev->small_buf_q_phy_addr));
  2807. ql_write_page1_reg(qdev,
  2808. &hmem_regs->rxSmallQBaseAddrLow,
  2809. LS_64BITS(qdev->small_buf_q_phy_addr));
  2810. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2811. ql_write_page1_reg(qdev,
  2812. &hmem_regs->rxSmallBufferLength,
  2813. QL_SMALL_BUFFER_SIZE);
  2814. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2815. qdev->small_buf_release_cnt = 8;
  2816. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2817. qdev->lrg_buf_release_cnt = 8;
  2818. qdev->lrg_buf_next_free =
  2819. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2820. qdev->small_buf_index = 0;
  2821. qdev->lrg_buf_index = 0;
  2822. qdev->lrg_buf_free_count = 0;
  2823. qdev->lrg_buf_free_head = NULL;
  2824. qdev->lrg_buf_free_tail = NULL;
  2825. ql_write_common_reg(qdev,
  2826. &port_regs->CommonRegs.
  2827. rxSmallQProducerIndex,
  2828. qdev->small_buf_q_producer_index);
  2829. ql_write_common_reg(qdev,
  2830. &port_regs->CommonRegs.
  2831. rxLargeQProducerIndex,
  2832. qdev->lrg_buf_q_producer_index);
  2833. /*
  2834. * Find out if the chip has already been initialized. If it has, then
  2835. * we skip some of the initialization.
  2836. */
  2837. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2838. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2839. if ((value & PORT_STATUS_IC) == 0) {
  2840. /* Chip has not been configured yet, so let it rip. */
  2841. if(ql_init_misc_registers(qdev)) {
  2842. status = -1;
  2843. goto out;
  2844. }
  2845. value = qdev->nvram_data.tcpMaxWindowSize;
  2846. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2847. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2848. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2849. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2850. * 2) << 13)) {
  2851. status = -1;
  2852. goto out;
  2853. }
  2854. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2855. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2856. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2857. 16) | (INTERNAL_CHIP_SD |
  2858. INTERNAL_CHIP_WE)));
  2859. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2860. }
  2861. if (qdev->mac_index)
  2862. ql_write_page0_reg(qdev,
  2863. &port_regs->mac1MaxFrameLengthReg,
  2864. qdev->max_frame_size);
  2865. else
  2866. ql_write_page0_reg(qdev,
  2867. &port_regs->mac0MaxFrameLengthReg,
  2868. qdev->max_frame_size);
  2869. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2870. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2871. 2) << 7)) {
  2872. status = -1;
  2873. goto out;
  2874. }
  2875. PHY_Setup(qdev);
  2876. ql_init_scan_mode(qdev);
  2877. ql_get_phy_owner(qdev);
  2878. /* Load the MAC Configuration */
  2879. /* Program lower 32 bits of the MAC address */
  2880. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2881. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2882. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2883. ((qdev->ndev->dev_addr[2] << 24)
  2884. | (qdev->ndev->dev_addr[3] << 16)
  2885. | (qdev->ndev->dev_addr[4] << 8)
  2886. | qdev->ndev->dev_addr[5]));
  2887. /* Program top 16 bits of the MAC address */
  2888. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2889. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2890. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2891. ((qdev->ndev->dev_addr[0] << 8)
  2892. | qdev->ndev->dev_addr[1]));
  2893. /* Enable Primary MAC */
  2894. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2895. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2896. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2897. /* Clear Primary and Secondary IP addresses */
  2898. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2899. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2900. (qdev->mac_index << 2)));
  2901. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2902. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2903. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2904. ((qdev->mac_index << 2) + 1)));
  2905. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2906. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2907. /* Indicate Configuration Complete */
  2908. ql_write_page0_reg(qdev,
  2909. &port_regs->portControl,
  2910. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2911. do {
  2912. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2913. if (value & PORT_STATUS_IC)
  2914. break;
  2915. msleep(500);
  2916. } while (--delay);
  2917. if (delay == 0) {
  2918. printk(KERN_ERR PFX
  2919. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2920. status = -1;
  2921. goto out;
  2922. }
  2923. /* Enable Ethernet Function */
  2924. if (qdev->device_id == QL3032_DEVICE_ID) {
  2925. value =
  2926. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2927. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2928. QL3032_PORT_CONTROL_ET);
  2929. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2930. ((value << 16) | value));
  2931. } else {
  2932. value =
  2933. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2934. PORT_CONTROL_HH);
  2935. ql_write_page0_reg(qdev, &port_regs->portControl,
  2936. ((value << 16) | value));
  2937. }
  2938. out:
  2939. return status;
  2940. }
  2941. /*
  2942. * Caller holds hw_lock.
  2943. */
  2944. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2945. {
  2946. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2947. int status = 0;
  2948. u16 value;
  2949. int max_wait_time;
  2950. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2951. clear_bit(QL_RESET_DONE, &qdev->flags);
  2952. /*
  2953. * Issue soft reset to chip.
  2954. */
  2955. printk(KERN_DEBUG PFX
  2956. "%s: Issue soft reset to chip.\n",
  2957. qdev->ndev->name);
  2958. ql_write_common_reg(qdev,
  2959. &port_regs->CommonRegs.ispControlStatus,
  2960. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2961. /* Wait 3 seconds for reset to complete. */
  2962. printk(KERN_DEBUG PFX
  2963. "%s: Wait 10 milliseconds for reset to complete.\n",
  2964. qdev->ndev->name);
  2965. /* Wait until the firmware tells us the Soft Reset is done */
  2966. max_wait_time = 5;
  2967. do {
  2968. value =
  2969. ql_read_common_reg(qdev,
  2970. &port_regs->CommonRegs.ispControlStatus);
  2971. if ((value & ISP_CONTROL_SR) == 0)
  2972. break;
  2973. ssleep(1);
  2974. } while ((--max_wait_time));
  2975. /*
  2976. * Also, make sure that the Network Reset Interrupt bit has been
  2977. * cleared after the soft reset has taken place.
  2978. */
  2979. value =
  2980. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2981. if (value & ISP_CONTROL_RI) {
  2982. printk(KERN_DEBUG PFX
  2983. "ql_adapter_reset: clearing RI after reset.\n");
  2984. ql_write_common_reg(qdev,
  2985. &port_regs->CommonRegs.
  2986. ispControlStatus,
  2987. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2988. }
  2989. if (max_wait_time == 0) {
  2990. /* Issue Force Soft Reset */
  2991. ql_write_common_reg(qdev,
  2992. &port_regs->CommonRegs.
  2993. ispControlStatus,
  2994. ((ISP_CONTROL_FSR << 16) |
  2995. ISP_CONTROL_FSR));
  2996. /*
  2997. * Wait until the firmware tells us the Force Soft Reset is
  2998. * done
  2999. */
  3000. max_wait_time = 5;
  3001. do {
  3002. value =
  3003. ql_read_common_reg(qdev,
  3004. &port_regs->CommonRegs.
  3005. ispControlStatus);
  3006. if ((value & ISP_CONTROL_FSR) == 0) {
  3007. break;
  3008. }
  3009. ssleep(1);
  3010. } while ((--max_wait_time));
  3011. }
  3012. if (max_wait_time == 0)
  3013. status = 1;
  3014. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3015. set_bit(QL_RESET_DONE, &qdev->flags);
  3016. return status;
  3017. }
  3018. static void ql_set_mac_info(struct ql3_adapter *qdev)
  3019. {
  3020. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3021. u32 value, port_status;
  3022. u8 func_number;
  3023. /* Get the function number */
  3024. value =
  3025. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  3026. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  3027. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  3028. switch (value & ISP_CONTROL_FN_MASK) {
  3029. case ISP_CONTROL_FN0_NET:
  3030. qdev->mac_index = 0;
  3031. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3032. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3033. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3034. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  3035. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  3036. if (port_status & PORT_STATUS_SM0)
  3037. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3038. else
  3039. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3040. break;
  3041. case ISP_CONTROL_FN1_NET:
  3042. qdev->mac_index = 1;
  3043. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  3044. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  3045. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  3046. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  3047. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  3048. if (port_status & PORT_STATUS_SM1)
  3049. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  3050. else
  3051. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  3052. break;
  3053. case ISP_CONTROL_FN0_SCSI:
  3054. case ISP_CONTROL_FN1_SCSI:
  3055. default:
  3056. printk(KERN_DEBUG PFX
  3057. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  3058. qdev->ndev->name,value);
  3059. break;
  3060. }
  3061. qdev->numPorts = qdev->nvram_data.numPorts;
  3062. }
  3063. static void ql_display_dev_info(struct net_device *ndev)
  3064. {
  3065. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3066. struct pci_dev *pdev = qdev->pdev;
  3067. printk(KERN_INFO PFX
  3068. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  3069. DRV_NAME, qdev->index, qdev->chip_rev_id,
  3070. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  3071. qdev->pci_slot);
  3072. printk(KERN_INFO PFX
  3073. "%s Interface.\n",
  3074. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  3075. /*
  3076. * Print PCI bus width/type.
  3077. */
  3078. printk(KERN_INFO PFX
  3079. "Bus interface is %s %s.\n",
  3080. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  3081. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  3082. printk(KERN_INFO PFX
  3083. "mem IO base address adjusted = 0x%p\n",
  3084. qdev->mem_map_registers);
  3085. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  3086. if (netif_msg_probe(qdev))
  3087. printk(KERN_INFO PFX
  3088. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  3089. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  3090. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  3091. ndev->dev_addr[5]);
  3092. }
  3093. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  3094. {
  3095. struct net_device *ndev = qdev->ndev;
  3096. int retval = 0;
  3097. netif_stop_queue(ndev);
  3098. netif_carrier_off(ndev);
  3099. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  3100. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3101. ql_disable_interrupts(qdev);
  3102. free_irq(qdev->pdev->irq, ndev);
  3103. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3104. printk(KERN_INFO PFX
  3105. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  3106. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3107. pci_disable_msi(qdev->pdev);
  3108. }
  3109. del_timer_sync(&qdev->adapter_timer);
  3110. netif_poll_disable(ndev);
  3111. if (do_reset) {
  3112. int soft_reset;
  3113. unsigned long hw_flags;
  3114. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3115. if (ql_wait_for_drvr_lock(qdev)) {
  3116. if ((soft_reset = ql_adapter_reset(qdev))) {
  3117. printk(KERN_ERR PFX
  3118. "%s: ql_adapter_reset(%d) FAILED!\n",
  3119. ndev->name, qdev->index);
  3120. }
  3121. printk(KERN_ERR PFX
  3122. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  3123. } else {
  3124. printk(KERN_ERR PFX
  3125. "%s: Could not acquire driver lock to do "
  3126. "reset!\n", ndev->name);
  3127. retval = -1;
  3128. }
  3129. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3130. }
  3131. ql_free_mem_resources(qdev);
  3132. return retval;
  3133. }
  3134. static int ql_adapter_up(struct ql3_adapter *qdev)
  3135. {
  3136. struct net_device *ndev = qdev->ndev;
  3137. int err;
  3138. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  3139. unsigned long hw_flags;
  3140. if (ql_alloc_mem_resources(qdev)) {
  3141. printk(KERN_ERR PFX
  3142. "%s Unable to allocate buffers.\n", ndev->name);
  3143. return -ENOMEM;
  3144. }
  3145. if (qdev->msi) {
  3146. if (pci_enable_msi(qdev->pdev)) {
  3147. printk(KERN_ERR PFX
  3148. "%s: User requested MSI, but MSI failed to "
  3149. "initialize. Continuing without MSI.\n",
  3150. qdev->ndev->name);
  3151. qdev->msi = 0;
  3152. } else {
  3153. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  3154. set_bit(QL_MSI_ENABLED,&qdev->flags);
  3155. irq_flags &= ~IRQF_SHARED;
  3156. }
  3157. }
  3158. if ((err = request_irq(qdev->pdev->irq,
  3159. ql3xxx_isr,
  3160. irq_flags, ndev->name, ndev))) {
  3161. printk(KERN_ERR PFX
  3162. "%s: Failed to reserve interrupt %d already in use.\n",
  3163. ndev->name, qdev->pdev->irq);
  3164. goto err_irq;
  3165. }
  3166. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3167. if ((err = ql_wait_for_drvr_lock(qdev))) {
  3168. if ((err = ql_adapter_initialize(qdev))) {
  3169. printk(KERN_ERR PFX
  3170. "%s: Unable to initialize adapter.\n",
  3171. ndev->name);
  3172. goto err_init;
  3173. }
  3174. printk(KERN_ERR PFX
  3175. "%s: Releaseing driver lock.\n",ndev->name);
  3176. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3177. } else {
  3178. printk(KERN_ERR PFX
  3179. "%s: Could not aquire driver lock.\n",
  3180. ndev->name);
  3181. goto err_lock;
  3182. }
  3183. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3184. set_bit(QL_ADAPTER_UP,&qdev->flags);
  3185. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3186. netif_poll_enable(ndev);
  3187. ql_enable_interrupts(qdev);
  3188. return 0;
  3189. err_init:
  3190. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  3191. err_lock:
  3192. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3193. free_irq(qdev->pdev->irq, ndev);
  3194. err_irq:
  3195. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  3196. printk(KERN_INFO PFX
  3197. "%s: calling pci_disable_msi().\n",
  3198. qdev->ndev->name);
  3199. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  3200. pci_disable_msi(qdev->pdev);
  3201. }
  3202. return err;
  3203. }
  3204. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3205. {
  3206. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  3207. printk(KERN_ERR PFX
  3208. "%s: Driver up/down cycle failed, "
  3209. "closing device\n",qdev->ndev->name);
  3210. dev_close(qdev->ndev);
  3211. return -1;
  3212. }
  3213. return 0;
  3214. }
  3215. static int ql3xxx_close(struct net_device *ndev)
  3216. {
  3217. struct ql3_adapter *qdev = netdev_priv(ndev);
  3218. /*
  3219. * Wait for device to recover from a reset.
  3220. * (Rarely happens, but possible.)
  3221. */
  3222. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  3223. msleep(50);
  3224. ql_adapter_down(qdev,QL_DO_RESET);
  3225. return 0;
  3226. }
  3227. static int ql3xxx_open(struct net_device *ndev)
  3228. {
  3229. struct ql3_adapter *qdev = netdev_priv(ndev);
  3230. return (ql_adapter_up(qdev));
  3231. }
  3232. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  3233. {
  3234. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  3235. return &qdev->stats;
  3236. }
  3237. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3238. {
  3239. /*
  3240. * We are manually parsing the list in the net_device structure.
  3241. */
  3242. return;
  3243. }
  3244. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3245. {
  3246. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3247. struct ql3xxx_port_registers __iomem *port_regs =
  3248. qdev->mem_map_registers;
  3249. struct sockaddr *addr = p;
  3250. unsigned long hw_flags;
  3251. if (netif_running(ndev))
  3252. return -EBUSY;
  3253. if (!is_valid_ether_addr(addr->sa_data))
  3254. return -EADDRNOTAVAIL;
  3255. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3256. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3257. /* Program lower 32 bits of the MAC address */
  3258. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3259. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3260. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3261. ((ndev->dev_addr[2] << 24) | (ndev->
  3262. dev_addr[3] << 16) |
  3263. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3264. /* Program top 16 bits of the MAC address */
  3265. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3266. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3267. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3268. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3269. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3270. return 0;
  3271. }
  3272. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3273. {
  3274. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3275. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3276. /*
  3277. * Stop the queues, we've got a problem.
  3278. */
  3279. netif_stop_queue(ndev);
  3280. /*
  3281. * Wake up the worker to process this event.
  3282. */
  3283. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3284. }
  3285. static void ql_reset_work(struct work_struct *work)
  3286. {
  3287. struct ql3_adapter *qdev =
  3288. container_of(work, struct ql3_adapter, reset_work.work);
  3289. struct net_device *ndev = qdev->ndev;
  3290. u32 value;
  3291. struct ql_tx_buf_cb *tx_cb;
  3292. int max_wait_time, i;
  3293. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3294. unsigned long hw_flags;
  3295. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3296. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3297. /*
  3298. * Loop through the active list and return the skb.
  3299. */
  3300. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3301. int j;
  3302. tx_cb = &qdev->tx_buf[i];
  3303. if (tx_cb->skb) {
  3304. printk(KERN_DEBUG PFX
  3305. "%s: Freeing lost SKB.\n",
  3306. qdev->ndev->name);
  3307. pci_unmap_single(qdev->pdev,
  3308. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3309. pci_unmap_len(&tx_cb->map[0], maplen),
  3310. PCI_DMA_TODEVICE);
  3311. for(j=1;j<tx_cb->seg_count;j++) {
  3312. pci_unmap_page(qdev->pdev,
  3313. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3314. pci_unmap_len(&tx_cb->map[j],maplen),
  3315. PCI_DMA_TODEVICE);
  3316. }
  3317. dev_kfree_skb(tx_cb->skb);
  3318. tx_cb->skb = NULL;
  3319. }
  3320. }
  3321. printk(KERN_ERR PFX
  3322. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3323. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3324. ql_write_common_reg(qdev,
  3325. &port_regs->CommonRegs.
  3326. ispControlStatus,
  3327. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3328. /*
  3329. * Wait the for Soft Reset to Complete.
  3330. */
  3331. max_wait_time = 10;
  3332. do {
  3333. value = ql_read_common_reg(qdev,
  3334. &port_regs->CommonRegs.
  3335. ispControlStatus);
  3336. if ((value & ISP_CONTROL_SR) == 0) {
  3337. printk(KERN_DEBUG PFX
  3338. "%s: reset completed.\n",
  3339. qdev->ndev->name);
  3340. break;
  3341. }
  3342. if (value & ISP_CONTROL_RI) {
  3343. printk(KERN_DEBUG PFX
  3344. "%s: clearing NRI after reset.\n",
  3345. qdev->ndev->name);
  3346. ql_write_common_reg(qdev,
  3347. &port_regs->
  3348. CommonRegs.
  3349. ispControlStatus,
  3350. ((ISP_CONTROL_RI <<
  3351. 16) | ISP_CONTROL_RI));
  3352. }
  3353. ssleep(1);
  3354. } while (--max_wait_time);
  3355. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3356. if (value & ISP_CONTROL_SR) {
  3357. /*
  3358. * Set the reset flags and clear the board again.
  3359. * Nothing else to do...
  3360. */
  3361. printk(KERN_ERR PFX
  3362. "%s: Timed out waiting for reset to "
  3363. "complete.\n", ndev->name);
  3364. printk(KERN_ERR PFX
  3365. "%s: Do a reset.\n", ndev->name);
  3366. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3367. clear_bit(QL_RESET_START,&qdev->flags);
  3368. ql_cycle_adapter(qdev,QL_DO_RESET);
  3369. return;
  3370. }
  3371. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3372. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3373. clear_bit(QL_RESET_START,&qdev->flags);
  3374. ql_cycle_adapter(qdev,QL_NO_RESET);
  3375. }
  3376. }
  3377. static void ql_tx_timeout_work(struct work_struct *work)
  3378. {
  3379. struct ql3_adapter *qdev =
  3380. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3381. ql_cycle_adapter(qdev, QL_DO_RESET);
  3382. }
  3383. static void ql_get_board_info(struct ql3_adapter *qdev)
  3384. {
  3385. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3386. u32 value;
  3387. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3388. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3389. if (value & PORT_STATUS_64)
  3390. qdev->pci_width = 64;
  3391. else
  3392. qdev->pci_width = 32;
  3393. if (value & PORT_STATUS_X)
  3394. qdev->pci_x = 1;
  3395. else
  3396. qdev->pci_x = 0;
  3397. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3398. }
  3399. static void ql3xxx_timer(unsigned long ptr)
  3400. {
  3401. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3402. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3403. printk(KERN_DEBUG PFX
  3404. "%s: Reset in progress.\n",
  3405. qdev->ndev->name);
  3406. goto end;
  3407. }
  3408. ql_link_state_machine(qdev);
  3409. /* Restart timer on 2 second interval. */
  3410. end:
  3411. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3412. }
  3413. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3414. const struct pci_device_id *pci_entry)
  3415. {
  3416. struct net_device *ndev = NULL;
  3417. struct ql3_adapter *qdev = NULL;
  3418. static int cards_found = 0;
  3419. int pci_using_dac, err;
  3420. err = pci_enable_device(pdev);
  3421. if (err) {
  3422. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3423. pci_name(pdev));
  3424. goto err_out;
  3425. }
  3426. err = pci_request_regions(pdev, DRV_NAME);
  3427. if (err) {
  3428. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3429. pci_name(pdev));
  3430. goto err_out_disable_pdev;
  3431. }
  3432. pci_set_master(pdev);
  3433. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3434. pci_using_dac = 1;
  3435. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3436. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3437. pci_using_dac = 0;
  3438. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3439. }
  3440. if (err) {
  3441. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3442. pci_name(pdev));
  3443. goto err_out_free_regions;
  3444. }
  3445. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3446. if (!ndev) {
  3447. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3448. pci_name(pdev));
  3449. err = -ENOMEM;
  3450. goto err_out_free_regions;
  3451. }
  3452. SET_MODULE_OWNER(ndev);
  3453. SET_NETDEV_DEV(ndev, &pdev->dev);
  3454. pci_set_drvdata(pdev, ndev);
  3455. qdev = netdev_priv(ndev);
  3456. qdev->index = cards_found;
  3457. qdev->ndev = ndev;
  3458. qdev->pdev = pdev;
  3459. qdev->device_id = pci_entry->device;
  3460. qdev->port_link_state = LS_DOWN;
  3461. if (msi)
  3462. qdev->msi = 1;
  3463. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3464. if (pci_using_dac)
  3465. ndev->features |= NETIF_F_HIGHDMA;
  3466. if (qdev->device_id == QL3032_DEVICE_ID)
  3467. ndev->features |= (NETIF_F_HW_CSUM | NETIF_F_SG);
  3468. qdev->mem_map_registers =
  3469. ioremap_nocache(pci_resource_start(pdev, 1),
  3470. pci_resource_len(qdev->pdev, 1));
  3471. if (!qdev->mem_map_registers) {
  3472. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3473. pci_name(pdev));
  3474. err = -EIO;
  3475. goto err_out_free_ndev;
  3476. }
  3477. spin_lock_init(&qdev->adapter_lock);
  3478. spin_lock_init(&qdev->hw_lock);
  3479. /* Set driver entry points */
  3480. ndev->open = ql3xxx_open;
  3481. ndev->hard_start_xmit = ql3xxx_send;
  3482. ndev->stop = ql3xxx_close;
  3483. ndev->get_stats = ql3xxx_get_stats;
  3484. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3485. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3486. ndev->set_mac_address = ql3xxx_set_mac_address;
  3487. ndev->tx_timeout = ql3xxx_tx_timeout;
  3488. ndev->watchdog_timeo = 5 * HZ;
  3489. ndev->poll = &ql_poll;
  3490. ndev->weight = 64;
  3491. ndev->irq = pdev->irq;
  3492. /* make sure the EEPROM is good */
  3493. if (ql_get_nvram_params(qdev)) {
  3494. printk(KERN_ALERT PFX
  3495. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3496. qdev->index);
  3497. err = -EIO;
  3498. goto err_out_iounmap;
  3499. }
  3500. ql_set_mac_info(qdev);
  3501. /* Validate and set parameters */
  3502. if (qdev->mac_index) {
  3503. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3504. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3505. ETH_ALEN);
  3506. } else {
  3507. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3508. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3509. ETH_ALEN);
  3510. }
  3511. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3512. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3513. /* Turn off support for multicasting */
  3514. ndev->flags &= ~IFF_MULTICAST;
  3515. /* Record PCI bus information. */
  3516. ql_get_board_info(qdev);
  3517. /*
  3518. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3519. * jumbo frames.
  3520. */
  3521. if (qdev->pci_x) {
  3522. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3523. }
  3524. err = register_netdev(ndev);
  3525. if (err) {
  3526. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3527. pci_name(pdev));
  3528. goto err_out_iounmap;
  3529. }
  3530. /* we're going to reset, so assume we have no link for now */
  3531. netif_carrier_off(ndev);
  3532. netif_stop_queue(ndev);
  3533. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3534. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3535. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3536. init_timer(&qdev->adapter_timer);
  3537. qdev->adapter_timer.function = ql3xxx_timer;
  3538. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3539. qdev->adapter_timer.data = (unsigned long)qdev;
  3540. if(!cards_found) {
  3541. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3542. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3543. DRV_NAME, DRV_VERSION);
  3544. }
  3545. ql_display_dev_info(ndev);
  3546. cards_found++;
  3547. return 0;
  3548. err_out_iounmap:
  3549. iounmap(qdev->mem_map_registers);
  3550. err_out_free_ndev:
  3551. free_netdev(ndev);
  3552. err_out_free_regions:
  3553. pci_release_regions(pdev);
  3554. err_out_disable_pdev:
  3555. pci_disable_device(pdev);
  3556. pci_set_drvdata(pdev, NULL);
  3557. err_out:
  3558. return err;
  3559. }
  3560. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3561. {
  3562. struct net_device *ndev = pci_get_drvdata(pdev);
  3563. struct ql3_adapter *qdev = netdev_priv(ndev);
  3564. unregister_netdev(ndev);
  3565. qdev = netdev_priv(ndev);
  3566. ql_disable_interrupts(qdev);
  3567. if (qdev->workqueue) {
  3568. cancel_delayed_work(&qdev->reset_work);
  3569. cancel_delayed_work(&qdev->tx_timeout_work);
  3570. destroy_workqueue(qdev->workqueue);
  3571. qdev->workqueue = NULL;
  3572. }
  3573. iounmap(qdev->mem_map_registers);
  3574. pci_release_regions(pdev);
  3575. pci_set_drvdata(pdev, NULL);
  3576. free_netdev(ndev);
  3577. }
  3578. static struct pci_driver ql3xxx_driver = {
  3579. .name = DRV_NAME,
  3580. .id_table = ql3xxx_pci_tbl,
  3581. .probe = ql3xxx_probe,
  3582. .remove = __devexit_p(ql3xxx_remove),
  3583. };
  3584. static int __init ql3xxx_init_module(void)
  3585. {
  3586. return pci_register_driver(&ql3xxx_driver);
  3587. }
  3588. static void __exit ql3xxx_exit(void)
  3589. {
  3590. pci_unregister_driver(&ql3xxx_driver);
  3591. }
  3592. module_init(ql3xxx_init_module);
  3593. module_exit(ql3xxx_exit);