ns83820.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207
  1. #define VERSION "0.22"
  2. /* ns83820.c by Benjamin LaHaise with contributions.
  3. *
  4. * Questions/comments/discussion to linux-ns83820@kvack.org.
  5. *
  6. * $Revision: 1.34.2.23 $
  7. *
  8. * Copyright 2001 Benjamin LaHaise.
  9. * Copyright 2001, 2002 Red Hat.
  10. *
  11. * Mmmm, chocolate vanilla mocha...
  12. *
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  27. *
  28. *
  29. * ChangeLog
  30. * =========
  31. * 20010414 0.1 - created
  32. * 20010622 0.2 - basic rx and tx.
  33. * 20010711 0.3 - added duplex and link state detection support.
  34. * 20010713 0.4 - zero copy, no hangs.
  35. * 0.5 - 64 bit dma support (davem will hate me for this)
  36. * - disable jumbo frames to avoid tx hangs
  37. * - work around tx deadlocks on my 1.02 card via
  38. * fiddling with TXCFG
  39. * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
  40. * 20010816 0.7 - misc cleanups
  41. * 20010826 0.8 - fix critical zero copy bugs
  42. * 0.9 - internal experiment
  43. * 20010827 0.10 - fix ia64 unaligned access.
  44. * 20010906 0.11 - accept all packets with checksum errors as
  45. * otherwise fragments get lost
  46. * - fix >> 32 bugs
  47. * 0.12 - add statistics counters
  48. * - add allmulti/promisc support
  49. * 20011009 0.13 - hotplug support, other smaller pci api cleanups
  50. * 20011204 0.13a - optical transceiver support added
  51. * by Michael Clark <michael@metaparadigm.com>
  52. * 20011205 0.13b - call register_netdev earlier in initialization
  53. * suppress duplicate link status messages
  54. * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55. * 20011204 0.15 get ppc (big endian) working
  56. * 20011218 0.16 various cleanups
  57. * 20020310 0.17 speedups
  58. * 20020610 0.18 - actually use the pci dma api for highmem
  59. * - remove pci latency register fiddling
  60. * 0.19 - better bist support
  61. * - add ihr and reset_phy parameters
  62. * - gmii bus probing
  63. * - fix missed txok introduced during performance
  64. * tuning
  65. * 0.20 - fix stupid RFEN thinko. i am such a smurf.
  66. * 20040828 0.21 - add hardware vlan accleration
  67. * by Neil Horman <nhorman@redhat.com>
  68. * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
  69. * - removal of dead code from Adrian Bunk
  70. * - fix half duplex collision behaviour
  71. * Driver Overview
  72. * ===============
  73. *
  74. * This driver was originally written for the National Semiconductor
  75. * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
  76. * this code will turn out to be a) clean, b) correct, and c) fast.
  77. * With that in mind, I'm aiming to split the code up as much as
  78. * reasonably possible. At present there are X major sections that
  79. * break down into a) packet receive, b) packet transmit, c) link
  80. * management, d) initialization and configuration. Where possible,
  81. * these code paths are designed to run in parallel.
  82. *
  83. * This driver has been tested and found to work with the following
  84. * cards (in no particular order):
  85. *
  86. * Cameo SOHO-GA2000T SOHO-GA2500T
  87. * D-Link DGE-500T
  88. * PureData PDP8023Z-TG
  89. * SMC SMC9452TX SMC9462TX
  90. * Netgear GA621
  91. *
  92. * Special thanks to SMC for providing hardware to test this driver on.
  93. *
  94. * Reports of success or failure would be greatly appreciated.
  95. */
  96. //#define dprintk printk
  97. #define dprintk(x...) do { } while (0)
  98. #include <linux/module.h>
  99. #include <linux/moduleparam.h>
  100. #include <linux/types.h>
  101. #include <linux/pci.h>
  102. #include <linux/dma-mapping.h>
  103. #include <linux/netdevice.h>
  104. #include <linux/etherdevice.h>
  105. #include <linux/delay.h>
  106. #include <linux/workqueue.h>
  107. #include <linux/init.h>
  108. #include <linux/ip.h> /* for iph */
  109. #include <linux/in.h> /* for IPPROTO_... */
  110. #include <linux/compiler.h>
  111. #include <linux/prefetch.h>
  112. #include <linux/ethtool.h>
  113. #include <linux/timer.h>
  114. #include <linux/if_vlan.h>
  115. #include <linux/rtnetlink.h>
  116. #include <linux/jiffies.h>
  117. #include <asm/io.h>
  118. #include <asm/uaccess.h>
  119. #include <asm/system.h>
  120. #define DRV_NAME "ns83820"
  121. /* Global parameters. See module_param near the bottom. */
  122. static int ihr = 2;
  123. static int reset_phy = 0;
  124. static int lnksts = 0; /* CFG_LNKSTS bit polarity */
  125. /* Dprintk is used for more interesting debug events */
  126. #undef Dprintk
  127. #define Dprintk dprintk
  128. /* tunables */
  129. #define RX_BUF_SIZE 1500 /* 8192 */
  130. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  131. #define NS83820_VLAN_ACCEL_SUPPORT
  132. #endif
  133. /* Must not exceed ~65000. */
  134. #define NR_RX_DESC 64
  135. #define NR_TX_DESC 128
  136. /* not tunable */
  137. #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
  138. #define MIN_TX_DESC_FREE 8
  139. /* register defines */
  140. #define CFGCS 0x04
  141. #define CR_TXE 0x00000001
  142. #define CR_TXD 0x00000002
  143. /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
  144. * The Receive engine skips one descriptor and moves
  145. * onto the next one!! */
  146. #define CR_RXE 0x00000004
  147. #define CR_RXD 0x00000008
  148. #define CR_TXR 0x00000010
  149. #define CR_RXR 0x00000020
  150. #define CR_SWI 0x00000080
  151. #define CR_RST 0x00000100
  152. #define PTSCR_EEBIST_FAIL 0x00000001
  153. #define PTSCR_EEBIST_EN 0x00000002
  154. #define PTSCR_EELOAD_EN 0x00000004
  155. #define PTSCR_RBIST_FAIL 0x000001b8
  156. #define PTSCR_RBIST_DONE 0x00000200
  157. #define PTSCR_RBIST_EN 0x00000400
  158. #define PTSCR_RBIST_RST 0x00002000
  159. #define MEAR_EEDI 0x00000001
  160. #define MEAR_EEDO 0x00000002
  161. #define MEAR_EECLK 0x00000004
  162. #define MEAR_EESEL 0x00000008
  163. #define MEAR_MDIO 0x00000010
  164. #define MEAR_MDDIR 0x00000020
  165. #define MEAR_MDC 0x00000040
  166. #define ISR_TXDESC3 0x40000000
  167. #define ISR_TXDESC2 0x20000000
  168. #define ISR_TXDESC1 0x10000000
  169. #define ISR_TXDESC0 0x08000000
  170. #define ISR_RXDESC3 0x04000000
  171. #define ISR_RXDESC2 0x02000000
  172. #define ISR_RXDESC1 0x01000000
  173. #define ISR_RXDESC0 0x00800000
  174. #define ISR_TXRCMP 0x00400000
  175. #define ISR_RXRCMP 0x00200000
  176. #define ISR_DPERR 0x00100000
  177. #define ISR_SSERR 0x00080000
  178. #define ISR_RMABT 0x00040000
  179. #define ISR_RTABT 0x00020000
  180. #define ISR_RXSOVR 0x00010000
  181. #define ISR_HIBINT 0x00008000
  182. #define ISR_PHY 0x00004000
  183. #define ISR_PME 0x00002000
  184. #define ISR_SWI 0x00001000
  185. #define ISR_MIB 0x00000800
  186. #define ISR_TXURN 0x00000400
  187. #define ISR_TXIDLE 0x00000200
  188. #define ISR_TXERR 0x00000100
  189. #define ISR_TXDESC 0x00000080
  190. #define ISR_TXOK 0x00000040
  191. #define ISR_RXORN 0x00000020
  192. #define ISR_RXIDLE 0x00000010
  193. #define ISR_RXEARLY 0x00000008
  194. #define ISR_RXERR 0x00000004
  195. #define ISR_RXDESC 0x00000002
  196. #define ISR_RXOK 0x00000001
  197. #define TXCFG_CSI 0x80000000
  198. #define TXCFG_HBI 0x40000000
  199. #define TXCFG_MLB 0x20000000
  200. #define TXCFG_ATP 0x10000000
  201. #define TXCFG_ECRETRY 0x00800000
  202. #define TXCFG_BRST_DIS 0x00080000
  203. #define TXCFG_MXDMA1024 0x00000000
  204. #define TXCFG_MXDMA512 0x00700000
  205. #define TXCFG_MXDMA256 0x00600000
  206. #define TXCFG_MXDMA128 0x00500000
  207. #define TXCFG_MXDMA64 0x00400000
  208. #define TXCFG_MXDMA32 0x00300000
  209. #define TXCFG_MXDMA16 0x00200000
  210. #define TXCFG_MXDMA8 0x00100000
  211. #define CFG_LNKSTS 0x80000000
  212. #define CFG_SPDSTS 0x60000000
  213. #define CFG_SPDSTS1 0x40000000
  214. #define CFG_SPDSTS0 0x20000000
  215. #define CFG_DUPSTS 0x10000000
  216. #define CFG_TBI_EN 0x01000000
  217. #define CFG_MODE_1000 0x00400000
  218. /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
  219. * Read the Phy response and then configure the MAC accordingly */
  220. #define CFG_AUTO_1000 0x00200000
  221. #define CFG_PINT_CTL 0x001c0000
  222. #define CFG_PINT_DUPSTS 0x00100000
  223. #define CFG_PINT_LNKSTS 0x00080000
  224. #define CFG_PINT_SPDSTS 0x00040000
  225. #define CFG_TMRTEST 0x00020000
  226. #define CFG_MRM_DIS 0x00010000
  227. #define CFG_MWI_DIS 0x00008000
  228. #define CFG_T64ADDR 0x00004000
  229. #define CFG_PCI64_DET 0x00002000
  230. #define CFG_DATA64_EN 0x00001000
  231. #define CFG_M64ADDR 0x00000800
  232. #define CFG_PHY_RST 0x00000400
  233. #define CFG_PHY_DIS 0x00000200
  234. #define CFG_EXTSTS_EN 0x00000100
  235. #define CFG_REQALG 0x00000080
  236. #define CFG_SB 0x00000040
  237. #define CFG_POW 0x00000020
  238. #define CFG_EXD 0x00000010
  239. #define CFG_PESEL 0x00000008
  240. #define CFG_BROM_DIS 0x00000004
  241. #define CFG_EXT_125 0x00000002
  242. #define CFG_BEM 0x00000001
  243. #define EXTSTS_UDPPKT 0x00200000
  244. #define EXTSTS_TCPPKT 0x00080000
  245. #define EXTSTS_IPPKT 0x00020000
  246. #define EXTSTS_VPKT 0x00010000
  247. #define EXTSTS_VTG_MASK 0x0000ffff
  248. #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
  249. #define MIBC_MIBS 0x00000008
  250. #define MIBC_ACLR 0x00000004
  251. #define MIBC_FRZ 0x00000002
  252. #define MIBC_WRN 0x00000001
  253. #define PCR_PSEN (1 << 31)
  254. #define PCR_PS_MCAST (1 << 30)
  255. #define PCR_PS_DA (1 << 29)
  256. #define PCR_STHI_8 (3 << 23)
  257. #define PCR_STLO_4 (1 << 23)
  258. #define PCR_FFHI_8K (3 << 21)
  259. #define PCR_FFLO_4K (1 << 21)
  260. #define PCR_PAUSE_CNT 0xFFFE
  261. #define RXCFG_AEP 0x80000000
  262. #define RXCFG_ARP 0x40000000
  263. #define RXCFG_STRIPCRC 0x20000000
  264. #define RXCFG_RX_FD 0x10000000
  265. #define RXCFG_ALP 0x08000000
  266. #define RXCFG_AIRL 0x04000000
  267. #define RXCFG_MXDMA512 0x00700000
  268. #define RXCFG_DRTH 0x0000003e
  269. #define RXCFG_DRTH0 0x00000002
  270. #define RFCR_RFEN 0x80000000
  271. #define RFCR_AAB 0x40000000
  272. #define RFCR_AAM 0x20000000
  273. #define RFCR_AAU 0x10000000
  274. #define RFCR_APM 0x08000000
  275. #define RFCR_APAT 0x07800000
  276. #define RFCR_APAT3 0x04000000
  277. #define RFCR_APAT2 0x02000000
  278. #define RFCR_APAT1 0x01000000
  279. #define RFCR_APAT0 0x00800000
  280. #define RFCR_AARP 0x00400000
  281. #define RFCR_MHEN 0x00200000
  282. #define RFCR_UHEN 0x00100000
  283. #define RFCR_ULM 0x00080000
  284. #define VRCR_RUDPE 0x00000080
  285. #define VRCR_RTCPE 0x00000040
  286. #define VRCR_RIPE 0x00000020
  287. #define VRCR_IPEN 0x00000010
  288. #define VRCR_DUTF 0x00000008
  289. #define VRCR_DVTF 0x00000004
  290. #define VRCR_VTREN 0x00000002
  291. #define VRCR_VTDEN 0x00000001
  292. #define VTCR_PPCHK 0x00000008
  293. #define VTCR_GCHK 0x00000004
  294. #define VTCR_VPPTI 0x00000002
  295. #define VTCR_VGTI 0x00000001
  296. #define CR 0x00
  297. #define CFG 0x04
  298. #define MEAR 0x08
  299. #define PTSCR 0x0c
  300. #define ISR 0x10
  301. #define IMR 0x14
  302. #define IER 0x18
  303. #define IHR 0x1c
  304. #define TXDP 0x20
  305. #define TXDP_HI 0x24
  306. #define TXCFG 0x28
  307. #define GPIOR 0x2c
  308. #define RXDP 0x30
  309. #define RXDP_HI 0x34
  310. #define RXCFG 0x38
  311. #define PQCR 0x3c
  312. #define WCSR 0x40
  313. #define PCR 0x44
  314. #define RFCR 0x48
  315. #define RFDR 0x4c
  316. #define SRR 0x58
  317. #define VRCR 0xbc
  318. #define VTCR 0xc0
  319. #define VDR 0xc4
  320. #define CCSR 0xcc
  321. #define TBICR 0xe0
  322. #define TBISR 0xe4
  323. #define TANAR 0xe8
  324. #define TANLPAR 0xec
  325. #define TANER 0xf0
  326. #define TESR 0xf4
  327. #define TBICR_MR_AN_ENABLE 0x00001000
  328. #define TBICR_MR_RESTART_AN 0x00000200
  329. #define TBISR_MR_LINK_STATUS 0x00000020
  330. #define TBISR_MR_AN_COMPLETE 0x00000004
  331. #define TANAR_PS2 0x00000100
  332. #define TANAR_PS1 0x00000080
  333. #define TANAR_HALF_DUP 0x00000040
  334. #define TANAR_FULL_DUP 0x00000020
  335. #define GPIOR_GP5_OE 0x00000200
  336. #define GPIOR_GP4_OE 0x00000100
  337. #define GPIOR_GP3_OE 0x00000080
  338. #define GPIOR_GP2_OE 0x00000040
  339. #define GPIOR_GP1_OE 0x00000020
  340. #define GPIOR_GP3_OUT 0x00000004
  341. #define GPIOR_GP1_OUT 0x00000001
  342. #define LINK_AUTONEGOTIATE 0x01
  343. #define LINK_DOWN 0x02
  344. #define LINK_UP 0x04
  345. #define HW_ADDR_LEN sizeof(dma_addr_t)
  346. #define desc_addr_set(desc, addr) \
  347. do { \
  348. ((desc)[0] = cpu_to_le32(addr)); \
  349. if (HW_ADDR_LEN == 8) \
  350. (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
  351. } while(0)
  352. #define desc_addr_get(desc) \
  353. (le32_to_cpu((desc)[0]) | \
  354. (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
  355. #define DESC_LINK 0
  356. #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
  357. #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
  358. #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
  359. #define CMDSTS_OWN 0x80000000
  360. #define CMDSTS_MORE 0x40000000
  361. #define CMDSTS_INTR 0x20000000
  362. #define CMDSTS_ERR 0x10000000
  363. #define CMDSTS_OK 0x08000000
  364. #define CMDSTS_RUNT 0x00200000
  365. #define CMDSTS_LEN_MASK 0x0000ffff
  366. #define CMDSTS_DEST_MASK 0x01800000
  367. #define CMDSTS_DEST_SELF 0x00800000
  368. #define CMDSTS_DEST_MULTI 0x01000000
  369. #define DESC_SIZE 8 /* Should be cache line sized */
  370. struct rx_info {
  371. spinlock_t lock;
  372. int up;
  373. long idle;
  374. struct sk_buff *skbs[NR_RX_DESC];
  375. __le32 *next_rx_desc;
  376. u16 next_rx, next_empty;
  377. __le32 *descs;
  378. dma_addr_t phy_descs;
  379. };
  380. struct ns83820 {
  381. struct net_device_stats stats;
  382. u8 __iomem *base;
  383. struct pci_dev *pci_dev;
  384. struct net_device *ndev;
  385. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  386. struct vlan_group *vlgrp;
  387. #endif
  388. struct rx_info rx_info;
  389. struct tasklet_struct rx_tasklet;
  390. unsigned ihr;
  391. struct work_struct tq_refill;
  392. /* protects everything below. irqsave when using. */
  393. spinlock_t misc_lock;
  394. u32 CFG_cache;
  395. u32 MEAR_cache;
  396. u32 IMR_cache;
  397. unsigned linkstate;
  398. spinlock_t tx_lock;
  399. u16 tx_done_idx;
  400. u16 tx_idx;
  401. volatile u16 tx_free_idx; /* idx of free desc chain */
  402. u16 tx_intr_idx;
  403. atomic_t nr_tx_skbs;
  404. struct sk_buff *tx_skbs[NR_TX_DESC];
  405. char pad[16] __attribute__((aligned(16)));
  406. __le32 *tx_descs;
  407. dma_addr_t tx_phy_descs;
  408. struct timer_list tx_watchdog;
  409. };
  410. static inline struct ns83820 *PRIV(struct net_device *dev)
  411. {
  412. return netdev_priv(dev);
  413. }
  414. #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
  415. static inline void kick_rx(struct net_device *ndev)
  416. {
  417. struct ns83820 *dev = PRIV(ndev);
  418. dprintk("kick_rx: maybe kicking\n");
  419. if (test_and_clear_bit(0, &dev->rx_info.idle)) {
  420. dprintk("actually kicking\n");
  421. writel(dev->rx_info.phy_descs +
  422. (4 * DESC_SIZE * dev->rx_info.next_rx),
  423. dev->base + RXDP);
  424. if (dev->rx_info.next_rx == dev->rx_info.next_empty)
  425. printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
  426. ndev->name);
  427. __kick_rx(dev);
  428. }
  429. }
  430. //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
  431. #define start_tx_okay(dev) \
  432. (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
  433. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  434. static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  435. {
  436. struct ns83820 *dev = PRIV(ndev);
  437. spin_lock_irq(&dev->misc_lock);
  438. spin_lock(&dev->tx_lock);
  439. dev->vlgrp = grp;
  440. spin_unlock(&dev->tx_lock);
  441. spin_unlock_irq(&dev->misc_lock);
  442. }
  443. static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  444. {
  445. struct ns83820 *dev = PRIV(ndev);
  446. spin_lock_irq(&dev->misc_lock);
  447. spin_lock(&dev->tx_lock);
  448. vlan_group_set_device(dev->vlgrp, vid, NULL);
  449. spin_unlock(&dev->tx_lock);
  450. spin_unlock_irq(&dev->misc_lock);
  451. }
  452. #endif
  453. /* Packet Receiver
  454. *
  455. * The hardware supports linked lists of receive descriptors for
  456. * which ownership is transfered back and forth by means of an
  457. * ownership bit. While the hardware does support the use of a
  458. * ring for receive descriptors, we only make use of a chain in
  459. * an attempt to reduce bus traffic under heavy load scenarios.
  460. * This will also make bugs a bit more obvious. The current code
  461. * only makes use of a single rx chain; I hope to implement
  462. * priority based rx for version 1.0. Goal: even under overload
  463. * conditions, still route realtime traffic with as low jitter as
  464. * possible.
  465. */
  466. static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
  467. {
  468. desc_addr_set(desc + DESC_LINK, link);
  469. desc_addr_set(desc + DESC_BUFPTR, buf);
  470. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  471. mb();
  472. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  473. }
  474. #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
  475. static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
  476. {
  477. unsigned next_empty;
  478. u32 cmdsts;
  479. __le32 *sg;
  480. dma_addr_t buf;
  481. next_empty = dev->rx_info.next_empty;
  482. /* don't overrun last rx marker */
  483. if (unlikely(nr_rx_empty(dev) <= 2)) {
  484. kfree_skb(skb);
  485. return 1;
  486. }
  487. #if 0
  488. dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
  489. dev->rx_info.next_empty,
  490. dev->rx_info.nr_used,
  491. dev->rx_info.next_rx
  492. );
  493. #endif
  494. sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
  495. BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
  496. dev->rx_info.skbs[next_empty] = skb;
  497. dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
  498. cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
  499. buf = pci_map_single(dev->pci_dev, skb->data,
  500. REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  501. build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
  502. /* update link of previous rx */
  503. if (likely(next_empty != dev->rx_info.next_rx))
  504. dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
  505. return 0;
  506. }
  507. static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
  508. {
  509. struct ns83820 *dev = PRIV(ndev);
  510. unsigned i;
  511. unsigned long flags = 0;
  512. if (unlikely(nr_rx_empty(dev) <= 2))
  513. return 0;
  514. dprintk("rx_refill(%p)\n", ndev);
  515. if (gfp == GFP_ATOMIC)
  516. spin_lock_irqsave(&dev->rx_info.lock, flags);
  517. for (i=0; i<NR_RX_DESC; i++) {
  518. struct sk_buff *skb;
  519. long res;
  520. /* extra 16 bytes for alignment */
  521. skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
  522. if (unlikely(!skb))
  523. break;
  524. res = (long)skb->data & 0xf;
  525. res = 0x10 - res;
  526. res &= 0xf;
  527. skb_reserve(skb, res);
  528. if (gfp != GFP_ATOMIC)
  529. spin_lock_irqsave(&dev->rx_info.lock, flags);
  530. res = ns83820_add_rx_skb(dev, skb);
  531. if (gfp != GFP_ATOMIC)
  532. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  533. if (res) {
  534. i = 1;
  535. break;
  536. }
  537. }
  538. if (gfp == GFP_ATOMIC)
  539. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  540. return i ? 0 : -ENOMEM;
  541. }
  542. static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
  543. static void fastcall rx_refill_atomic(struct net_device *ndev)
  544. {
  545. rx_refill(ndev, GFP_ATOMIC);
  546. }
  547. /* REFILL */
  548. static inline void queue_refill(struct work_struct *work)
  549. {
  550. struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
  551. struct net_device *ndev = dev->ndev;
  552. rx_refill(ndev, GFP_KERNEL);
  553. if (dev->rx_info.up)
  554. kick_rx(ndev);
  555. }
  556. static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
  557. {
  558. build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
  559. }
  560. static void FASTCALL(phy_intr(struct net_device *ndev));
  561. static void fastcall phy_intr(struct net_device *ndev)
  562. {
  563. struct ns83820 *dev = PRIV(ndev);
  564. static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
  565. u32 cfg, new_cfg;
  566. u32 tbisr, tanar, tanlpar;
  567. int speed, fullduplex, newlinkstate;
  568. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  569. if (dev->CFG_cache & CFG_TBI_EN) {
  570. /* we have an optical transceiver */
  571. tbisr = readl(dev->base + TBISR);
  572. tanar = readl(dev->base + TANAR);
  573. tanlpar = readl(dev->base + TANLPAR);
  574. dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
  575. tbisr, tanar, tanlpar);
  576. if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
  577. && (tanar & TANAR_FULL_DUP)) ) {
  578. /* both of us are full duplex */
  579. writel(readl(dev->base + TXCFG)
  580. | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
  581. dev->base + TXCFG);
  582. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  583. dev->base + RXCFG);
  584. /* Light up full duplex LED */
  585. writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
  586. dev->base + GPIOR);
  587. } else if(((tanlpar & TANAR_HALF_DUP)
  588. && (tanar & TANAR_HALF_DUP))
  589. || ((tanlpar & TANAR_FULL_DUP)
  590. && (tanar & TANAR_HALF_DUP))
  591. || ((tanlpar & TANAR_HALF_DUP)
  592. && (tanar & TANAR_FULL_DUP))) {
  593. /* one or both of us are half duplex */
  594. writel((readl(dev->base + TXCFG)
  595. & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
  596. dev->base + TXCFG);
  597. writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
  598. dev->base + RXCFG);
  599. /* Turn off full duplex LED */
  600. writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
  601. dev->base + GPIOR);
  602. }
  603. speed = 4; /* 1000F */
  604. } else {
  605. /* we have a copper transceiver */
  606. new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
  607. if (cfg & CFG_SPDSTS1)
  608. new_cfg |= CFG_MODE_1000;
  609. else
  610. new_cfg &= ~CFG_MODE_1000;
  611. speed = ((cfg / CFG_SPDSTS0) & 3);
  612. fullduplex = (cfg & CFG_DUPSTS);
  613. if (fullduplex) {
  614. new_cfg |= CFG_SB;
  615. writel(readl(dev->base + TXCFG)
  616. | TXCFG_CSI | TXCFG_HBI,
  617. dev->base + TXCFG);
  618. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  619. dev->base + RXCFG);
  620. } else {
  621. writel(readl(dev->base + TXCFG)
  622. & ~(TXCFG_CSI | TXCFG_HBI),
  623. dev->base + TXCFG);
  624. writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
  625. dev->base + RXCFG);
  626. }
  627. if ((cfg & CFG_LNKSTS) &&
  628. ((new_cfg ^ dev->CFG_cache) != 0)) {
  629. writel(new_cfg, dev->base + CFG);
  630. dev->CFG_cache = new_cfg;
  631. }
  632. dev->CFG_cache &= ~CFG_SPDSTS;
  633. dev->CFG_cache |= cfg & CFG_SPDSTS;
  634. }
  635. newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
  636. if (newlinkstate & LINK_UP
  637. && dev->linkstate != newlinkstate) {
  638. netif_start_queue(ndev);
  639. netif_wake_queue(ndev);
  640. printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
  641. ndev->name,
  642. speeds[speed],
  643. fullduplex ? "full" : "half");
  644. } else if (newlinkstate & LINK_DOWN
  645. && dev->linkstate != newlinkstate) {
  646. netif_stop_queue(ndev);
  647. printk(KERN_INFO "%s: link now down.\n", ndev->name);
  648. }
  649. dev->linkstate = newlinkstate;
  650. }
  651. static int ns83820_setup_rx(struct net_device *ndev)
  652. {
  653. struct ns83820 *dev = PRIV(ndev);
  654. unsigned i;
  655. int ret;
  656. dprintk("ns83820_setup_rx(%p)\n", ndev);
  657. dev->rx_info.idle = 1;
  658. dev->rx_info.next_rx = 0;
  659. dev->rx_info.next_rx_desc = dev->rx_info.descs;
  660. dev->rx_info.next_empty = 0;
  661. for (i=0; i<NR_RX_DESC; i++)
  662. clear_rx_desc(dev, i);
  663. writel(0, dev->base + RXDP_HI);
  664. writel(dev->rx_info.phy_descs, dev->base + RXDP);
  665. ret = rx_refill(ndev, GFP_KERNEL);
  666. if (!ret) {
  667. dprintk("starting receiver\n");
  668. /* prevent the interrupt handler from stomping on us */
  669. spin_lock_irq(&dev->rx_info.lock);
  670. writel(0x0001, dev->base + CCSR);
  671. writel(0, dev->base + RFCR);
  672. writel(0x7fc00000, dev->base + RFCR);
  673. writel(0xffc00000, dev->base + RFCR);
  674. dev->rx_info.up = 1;
  675. phy_intr(ndev);
  676. /* Okay, let it rip */
  677. spin_lock_irq(&dev->misc_lock);
  678. dev->IMR_cache |= ISR_PHY;
  679. dev->IMR_cache |= ISR_RXRCMP;
  680. //dev->IMR_cache |= ISR_RXERR;
  681. //dev->IMR_cache |= ISR_RXOK;
  682. dev->IMR_cache |= ISR_RXORN;
  683. dev->IMR_cache |= ISR_RXSOVR;
  684. dev->IMR_cache |= ISR_RXDESC;
  685. dev->IMR_cache |= ISR_RXIDLE;
  686. dev->IMR_cache |= ISR_TXDESC;
  687. dev->IMR_cache |= ISR_TXIDLE;
  688. writel(dev->IMR_cache, dev->base + IMR);
  689. writel(1, dev->base + IER);
  690. spin_unlock(&dev->misc_lock);
  691. kick_rx(ndev);
  692. spin_unlock_irq(&dev->rx_info.lock);
  693. }
  694. return ret;
  695. }
  696. static void ns83820_cleanup_rx(struct ns83820 *dev)
  697. {
  698. unsigned i;
  699. unsigned long flags;
  700. dprintk("ns83820_cleanup_rx(%p)\n", dev);
  701. /* disable receive interrupts */
  702. spin_lock_irqsave(&dev->misc_lock, flags);
  703. dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
  704. writel(dev->IMR_cache, dev->base + IMR);
  705. spin_unlock_irqrestore(&dev->misc_lock, flags);
  706. /* synchronize with the interrupt handler and kill it */
  707. dev->rx_info.up = 0;
  708. synchronize_irq(dev->pci_dev->irq);
  709. /* touch the pci bus... */
  710. readl(dev->base + IMR);
  711. /* assumes the transmitter is already disabled and reset */
  712. writel(0, dev->base + RXDP_HI);
  713. writel(0, dev->base + RXDP);
  714. for (i=0; i<NR_RX_DESC; i++) {
  715. struct sk_buff *skb = dev->rx_info.skbs[i];
  716. dev->rx_info.skbs[i] = NULL;
  717. clear_rx_desc(dev, i);
  718. if (skb)
  719. kfree_skb(skb);
  720. }
  721. }
  722. static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
  723. static void fastcall ns83820_rx_kick(struct net_device *ndev)
  724. {
  725. struct ns83820 *dev = PRIV(ndev);
  726. /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
  727. if (dev->rx_info.up) {
  728. rx_refill_atomic(ndev);
  729. kick_rx(ndev);
  730. }
  731. }
  732. if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
  733. schedule_work(&dev->tq_refill);
  734. else
  735. kick_rx(ndev);
  736. if (dev->rx_info.idle)
  737. printk(KERN_DEBUG "%s: BAD\n", ndev->name);
  738. }
  739. /* rx_irq
  740. *
  741. */
  742. static void FASTCALL(rx_irq(struct net_device *ndev));
  743. static void fastcall rx_irq(struct net_device *ndev)
  744. {
  745. struct ns83820 *dev = PRIV(ndev);
  746. struct rx_info *info = &dev->rx_info;
  747. unsigned next_rx;
  748. int rx_rc, len;
  749. u32 cmdsts;
  750. __le32 *desc;
  751. unsigned long flags;
  752. int nr = 0;
  753. dprintk("rx_irq(%p)\n", ndev);
  754. dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
  755. readl(dev->base + RXDP),
  756. (long)(dev->rx_info.phy_descs),
  757. (int)dev->rx_info.next_rx,
  758. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
  759. (int)dev->rx_info.next_empty,
  760. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
  761. );
  762. spin_lock_irqsave(&info->lock, flags);
  763. if (!info->up)
  764. goto out;
  765. dprintk("walking descs\n");
  766. next_rx = info->next_rx;
  767. desc = info->next_rx_desc;
  768. while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
  769. (cmdsts != CMDSTS_OWN)) {
  770. struct sk_buff *skb;
  771. u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
  772. dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
  773. dprintk("cmdsts: %08x\n", cmdsts);
  774. dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
  775. dprintk("extsts: %08x\n", extsts);
  776. skb = info->skbs[next_rx];
  777. info->skbs[next_rx] = NULL;
  778. info->next_rx = (next_rx + 1) % NR_RX_DESC;
  779. mb();
  780. clear_rx_desc(dev, next_rx);
  781. pci_unmap_single(dev->pci_dev, bufptr,
  782. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  783. len = cmdsts & CMDSTS_LEN_MASK;
  784. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  785. /* NH: As was mentioned below, this chip is kinda
  786. * brain dead about vlan tag stripping. Frames
  787. * that are 64 bytes with a vlan header appended
  788. * like arp frames, or pings, are flagged as Runts
  789. * when the tag is stripped and hardware. This
  790. * also means that the OK bit in the descriptor
  791. * is cleared when the frame comes in so we have
  792. * to do a specific length check here to make sure
  793. * the frame would have been ok, had we not stripped
  794. * the tag.
  795. */
  796. if (likely((CMDSTS_OK & cmdsts) ||
  797. ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
  798. #else
  799. if (likely(CMDSTS_OK & cmdsts)) {
  800. #endif
  801. skb_put(skb, len);
  802. if (unlikely(!skb))
  803. goto netdev_mangle_me_harder_failed;
  804. if (cmdsts & CMDSTS_DEST_MULTI)
  805. dev->stats.multicast ++;
  806. dev->stats.rx_packets ++;
  807. dev->stats.rx_bytes += len;
  808. if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
  809. skb->ip_summed = CHECKSUM_UNNECESSARY;
  810. } else {
  811. skb->ip_summed = CHECKSUM_NONE;
  812. }
  813. skb->protocol = eth_type_trans(skb, ndev);
  814. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  815. if(extsts & EXTSTS_VPKT) {
  816. unsigned short tag;
  817. tag = ntohs(extsts & EXTSTS_VTG_MASK);
  818. rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
  819. } else {
  820. rx_rc = netif_rx(skb);
  821. }
  822. #else
  823. rx_rc = netif_rx(skb);
  824. #endif
  825. if (NET_RX_DROP == rx_rc) {
  826. netdev_mangle_me_harder_failed:
  827. dev->stats.rx_dropped ++;
  828. }
  829. } else {
  830. kfree_skb(skb);
  831. }
  832. nr++;
  833. next_rx = info->next_rx;
  834. desc = info->descs + (DESC_SIZE * next_rx);
  835. }
  836. info->next_rx = next_rx;
  837. info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
  838. out:
  839. if (0 && !nr) {
  840. Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
  841. }
  842. spin_unlock_irqrestore(&info->lock, flags);
  843. }
  844. static void rx_action(unsigned long _dev)
  845. {
  846. struct net_device *ndev = (void *)_dev;
  847. struct ns83820 *dev = PRIV(ndev);
  848. rx_irq(ndev);
  849. writel(ihr, dev->base + IHR);
  850. spin_lock_irq(&dev->misc_lock);
  851. dev->IMR_cache |= ISR_RXDESC;
  852. writel(dev->IMR_cache, dev->base + IMR);
  853. spin_unlock_irq(&dev->misc_lock);
  854. rx_irq(ndev);
  855. ns83820_rx_kick(ndev);
  856. }
  857. /* Packet Transmit code
  858. */
  859. static inline void kick_tx(struct ns83820 *dev)
  860. {
  861. dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
  862. dev, dev->tx_idx, dev->tx_free_idx);
  863. writel(CR_TXE, dev->base + CR);
  864. }
  865. /* No spinlock needed on the transmit irq path as the interrupt handler is
  866. * serialized.
  867. */
  868. static void do_tx_done(struct net_device *ndev)
  869. {
  870. struct ns83820 *dev = PRIV(ndev);
  871. u32 cmdsts, tx_done_idx;
  872. __le32 *desc;
  873. dprintk("do_tx_done(%p)\n", ndev);
  874. tx_done_idx = dev->tx_done_idx;
  875. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  876. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  877. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  878. while ((tx_done_idx != dev->tx_free_idx) &&
  879. !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
  880. struct sk_buff *skb;
  881. unsigned len;
  882. dma_addr_t addr;
  883. if (cmdsts & CMDSTS_ERR)
  884. dev->stats.tx_errors ++;
  885. if (cmdsts & CMDSTS_OK)
  886. dev->stats.tx_packets ++;
  887. if (cmdsts & CMDSTS_OK)
  888. dev->stats.tx_bytes += cmdsts & 0xffff;
  889. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  890. tx_done_idx, dev->tx_free_idx, cmdsts);
  891. skb = dev->tx_skbs[tx_done_idx];
  892. dev->tx_skbs[tx_done_idx] = NULL;
  893. dprintk("done(%p)\n", skb);
  894. len = cmdsts & CMDSTS_LEN_MASK;
  895. addr = desc_addr_get(desc + DESC_BUFPTR);
  896. if (skb) {
  897. pci_unmap_single(dev->pci_dev,
  898. addr,
  899. len,
  900. PCI_DMA_TODEVICE);
  901. dev_kfree_skb_irq(skb);
  902. atomic_dec(&dev->nr_tx_skbs);
  903. } else
  904. pci_unmap_page(dev->pci_dev,
  905. addr,
  906. len,
  907. PCI_DMA_TODEVICE);
  908. tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
  909. dev->tx_done_idx = tx_done_idx;
  910. desc[DESC_CMDSTS] = cpu_to_le32(0);
  911. mb();
  912. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  913. }
  914. /* Allow network stack to resume queueing packets after we've
  915. * finished transmitting at least 1/4 of the packets in the queue.
  916. */
  917. if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
  918. dprintk("start_queue(%p)\n", ndev);
  919. netif_start_queue(ndev);
  920. netif_wake_queue(ndev);
  921. }
  922. }
  923. static void ns83820_cleanup_tx(struct ns83820 *dev)
  924. {
  925. unsigned i;
  926. for (i=0; i<NR_TX_DESC; i++) {
  927. struct sk_buff *skb = dev->tx_skbs[i];
  928. dev->tx_skbs[i] = NULL;
  929. if (skb) {
  930. __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
  931. pci_unmap_single(dev->pci_dev,
  932. desc_addr_get(desc + DESC_BUFPTR),
  933. le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
  934. PCI_DMA_TODEVICE);
  935. dev_kfree_skb_irq(skb);
  936. atomic_dec(&dev->nr_tx_skbs);
  937. }
  938. }
  939. memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
  940. }
  941. /* transmit routine. This code relies on the network layer serializing
  942. * its calls in, but will run happily in parallel with the interrupt
  943. * handler. This code currently has provisions for fragmenting tx buffers
  944. * while trying to track down a bug in either the zero copy code or
  945. * the tx fifo (hence the MAX_FRAG_LEN).
  946. */
  947. static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  948. {
  949. struct ns83820 *dev = PRIV(ndev);
  950. u32 free_idx, cmdsts, extsts;
  951. int nr_free, nr_frags;
  952. unsigned tx_done_idx, last_idx;
  953. dma_addr_t buf;
  954. unsigned len;
  955. skb_frag_t *frag;
  956. int stopped = 0;
  957. int do_intr = 0;
  958. volatile __le32 *first_desc;
  959. dprintk("ns83820_hard_start_xmit\n");
  960. nr_frags = skb_shinfo(skb)->nr_frags;
  961. again:
  962. if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
  963. netif_stop_queue(ndev);
  964. if (unlikely(dev->CFG_cache & CFG_LNKSTS))
  965. return 1;
  966. netif_start_queue(ndev);
  967. }
  968. last_idx = free_idx = dev->tx_free_idx;
  969. tx_done_idx = dev->tx_done_idx;
  970. nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
  971. nr_free -= 1;
  972. if (nr_free <= nr_frags) {
  973. dprintk("stop_queue - not enough(%p)\n", ndev);
  974. netif_stop_queue(ndev);
  975. /* Check again: we may have raced with a tx done irq */
  976. if (dev->tx_done_idx != tx_done_idx) {
  977. dprintk("restart queue(%p)\n", ndev);
  978. netif_start_queue(ndev);
  979. goto again;
  980. }
  981. return 1;
  982. }
  983. if (free_idx == dev->tx_intr_idx) {
  984. do_intr = 1;
  985. dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
  986. }
  987. nr_free -= nr_frags;
  988. if (nr_free < MIN_TX_DESC_FREE) {
  989. dprintk("stop_queue - last entry(%p)\n", ndev);
  990. netif_stop_queue(ndev);
  991. stopped = 1;
  992. }
  993. frag = skb_shinfo(skb)->frags;
  994. if (!nr_frags)
  995. frag = NULL;
  996. extsts = 0;
  997. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  998. extsts |= EXTSTS_IPPKT;
  999. if (IPPROTO_TCP == ip_hdr(skb)->protocol)
  1000. extsts |= EXTSTS_TCPPKT;
  1001. else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
  1002. extsts |= EXTSTS_UDPPKT;
  1003. }
  1004. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1005. if(vlan_tx_tag_present(skb)) {
  1006. /* fetch the vlan tag info out of the
  1007. * ancilliary data if the vlan code
  1008. * is using hw vlan acceleration
  1009. */
  1010. short tag = vlan_tx_tag_get(skb);
  1011. extsts |= (EXTSTS_VPKT | htons(tag));
  1012. }
  1013. #endif
  1014. len = skb->len;
  1015. if (nr_frags)
  1016. len -= skb->data_len;
  1017. buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
  1018. first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1019. for (;;) {
  1020. volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1021. dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
  1022. (unsigned long long)buf);
  1023. last_idx = free_idx;
  1024. free_idx = (free_idx + 1) % NR_TX_DESC;
  1025. desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
  1026. desc_addr_set(desc + DESC_BUFPTR, buf);
  1027. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  1028. cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
  1029. cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
  1030. cmdsts |= len;
  1031. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  1032. if (!nr_frags)
  1033. break;
  1034. buf = pci_map_page(dev->pci_dev, frag->page,
  1035. frag->page_offset,
  1036. frag->size, PCI_DMA_TODEVICE);
  1037. dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
  1038. (long long)buf, (long) page_to_pfn(frag->page),
  1039. frag->page_offset);
  1040. len = frag->size;
  1041. frag++;
  1042. nr_frags--;
  1043. }
  1044. dprintk("done pkt\n");
  1045. spin_lock_irq(&dev->tx_lock);
  1046. dev->tx_skbs[last_idx] = skb;
  1047. first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
  1048. dev->tx_free_idx = free_idx;
  1049. atomic_inc(&dev->nr_tx_skbs);
  1050. spin_unlock_irq(&dev->tx_lock);
  1051. kick_tx(dev);
  1052. /* Check again: we may have raced with a tx done irq */
  1053. if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
  1054. netif_start_queue(ndev);
  1055. /* set the transmit start time to catch transmit timeouts */
  1056. ndev->trans_start = jiffies;
  1057. return 0;
  1058. }
  1059. static void ns83820_update_stats(struct ns83820 *dev)
  1060. {
  1061. u8 __iomem *base = dev->base;
  1062. /* the DP83820 will freeze counters, so we need to read all of them */
  1063. dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
  1064. dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
  1065. dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
  1066. dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
  1067. /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
  1068. dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
  1069. dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
  1070. /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
  1071. /*dev->stats.rx_pause_count += */ readl(base + 0x80);
  1072. /*dev->stats.tx_pause_count += */ readl(base + 0x84);
  1073. dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
  1074. }
  1075. static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
  1076. {
  1077. struct ns83820 *dev = PRIV(ndev);
  1078. /* somewhat overkill */
  1079. spin_lock_irq(&dev->misc_lock);
  1080. ns83820_update_stats(dev);
  1081. spin_unlock_irq(&dev->misc_lock);
  1082. return &dev->stats;
  1083. }
  1084. static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
  1085. {
  1086. struct ns83820 *dev = PRIV(ndev);
  1087. strcpy(info->driver, "ns83820");
  1088. strcpy(info->version, VERSION);
  1089. strcpy(info->bus_info, pci_name(dev->pci_dev));
  1090. }
  1091. static u32 ns83820_get_link(struct net_device *ndev)
  1092. {
  1093. struct ns83820 *dev = PRIV(ndev);
  1094. u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1095. return cfg & CFG_LNKSTS ? 1 : 0;
  1096. }
  1097. static const struct ethtool_ops ops = {
  1098. .get_drvinfo = ns83820_get_drvinfo,
  1099. .get_link = ns83820_get_link
  1100. };
  1101. /* this function is called in irq context from the ISR */
  1102. static void ns83820_mib_isr(struct ns83820 *dev)
  1103. {
  1104. unsigned long flags;
  1105. spin_lock_irqsave(&dev->misc_lock, flags);
  1106. ns83820_update_stats(dev);
  1107. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1108. }
  1109. static void ns83820_do_isr(struct net_device *ndev, u32 isr);
  1110. static irqreturn_t ns83820_irq(int foo, void *data)
  1111. {
  1112. struct net_device *ndev = data;
  1113. struct ns83820 *dev = PRIV(ndev);
  1114. u32 isr;
  1115. dprintk("ns83820_irq(%p)\n", ndev);
  1116. dev->ihr = 0;
  1117. isr = readl(dev->base + ISR);
  1118. dprintk("irq: %08x\n", isr);
  1119. ns83820_do_isr(ndev, isr);
  1120. return IRQ_HANDLED;
  1121. }
  1122. static void ns83820_do_isr(struct net_device *ndev, u32 isr)
  1123. {
  1124. struct ns83820 *dev = PRIV(ndev);
  1125. unsigned long flags;
  1126. #ifdef DEBUG
  1127. if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
  1128. Dprintk("odd isr? 0x%08x\n", isr);
  1129. #endif
  1130. if (ISR_RXIDLE & isr) {
  1131. dev->rx_info.idle = 1;
  1132. Dprintk("oh dear, we are idle\n");
  1133. ns83820_rx_kick(ndev);
  1134. }
  1135. if ((ISR_RXDESC | ISR_RXOK) & isr) {
  1136. prefetch(dev->rx_info.next_rx_desc);
  1137. spin_lock_irqsave(&dev->misc_lock, flags);
  1138. dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
  1139. writel(dev->IMR_cache, dev->base + IMR);
  1140. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1141. tasklet_schedule(&dev->rx_tasklet);
  1142. //rx_irq(ndev);
  1143. //writel(4, dev->base + IHR);
  1144. }
  1145. if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
  1146. ns83820_rx_kick(ndev);
  1147. if (unlikely(ISR_RXSOVR & isr)) {
  1148. //printk("overrun: rxsovr\n");
  1149. dev->stats.rx_fifo_errors ++;
  1150. }
  1151. if (unlikely(ISR_RXORN & isr)) {
  1152. //printk("overrun: rxorn\n");
  1153. dev->stats.rx_fifo_errors ++;
  1154. }
  1155. if ((ISR_RXRCMP & isr) && dev->rx_info.up)
  1156. writel(CR_RXE, dev->base + CR);
  1157. if (ISR_TXIDLE & isr) {
  1158. u32 txdp;
  1159. txdp = readl(dev->base + TXDP);
  1160. dprintk("txdp: %08x\n", txdp);
  1161. txdp -= dev->tx_phy_descs;
  1162. dev->tx_idx = txdp / (DESC_SIZE * 4);
  1163. if (dev->tx_idx >= NR_TX_DESC) {
  1164. printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
  1165. dev->tx_idx = 0;
  1166. }
  1167. /* The may have been a race between a pci originated read
  1168. * and the descriptor update from the cpu. Just in case,
  1169. * kick the transmitter if the hardware thinks it is on a
  1170. * different descriptor than we are.
  1171. */
  1172. if (dev->tx_idx != dev->tx_free_idx)
  1173. kick_tx(dev);
  1174. }
  1175. /* Defer tx ring processing until more than a minimum amount of
  1176. * work has accumulated
  1177. */
  1178. if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
  1179. spin_lock_irqsave(&dev->tx_lock, flags);
  1180. do_tx_done(ndev);
  1181. spin_unlock_irqrestore(&dev->tx_lock, flags);
  1182. /* Disable TxOk if there are no outstanding tx packets.
  1183. */
  1184. if ((dev->tx_done_idx == dev->tx_free_idx) &&
  1185. (dev->IMR_cache & ISR_TXOK)) {
  1186. spin_lock_irqsave(&dev->misc_lock, flags);
  1187. dev->IMR_cache &= ~ISR_TXOK;
  1188. writel(dev->IMR_cache, dev->base + IMR);
  1189. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1190. }
  1191. }
  1192. /* The TxIdle interrupt can come in before the transmit has
  1193. * completed. Normally we reap packets off of the combination
  1194. * of TxDesc and TxIdle and leave TxOk disabled (since it
  1195. * occurs on every packet), but when no further irqs of this
  1196. * nature are expected, we must enable TxOk.
  1197. */
  1198. if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
  1199. spin_lock_irqsave(&dev->misc_lock, flags);
  1200. dev->IMR_cache |= ISR_TXOK;
  1201. writel(dev->IMR_cache, dev->base + IMR);
  1202. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1203. }
  1204. /* MIB interrupt: one of the statistics counters is about to overflow */
  1205. if (unlikely(ISR_MIB & isr))
  1206. ns83820_mib_isr(dev);
  1207. /* PHY: Link up/down/negotiation state change */
  1208. if (unlikely(ISR_PHY & isr))
  1209. phy_intr(ndev);
  1210. #if 0 /* Still working on the interrupt mitigation strategy */
  1211. if (dev->ihr)
  1212. writel(dev->ihr, dev->base + IHR);
  1213. #endif
  1214. }
  1215. static void ns83820_do_reset(struct ns83820 *dev, u32 which)
  1216. {
  1217. Dprintk("resetting chip...\n");
  1218. writel(which, dev->base + CR);
  1219. do {
  1220. schedule();
  1221. } while (readl(dev->base + CR) & which);
  1222. Dprintk("okay!\n");
  1223. }
  1224. static int ns83820_stop(struct net_device *ndev)
  1225. {
  1226. struct ns83820 *dev = PRIV(ndev);
  1227. /* FIXME: protect against interrupt handler? */
  1228. del_timer_sync(&dev->tx_watchdog);
  1229. /* disable interrupts */
  1230. writel(0, dev->base + IMR);
  1231. writel(0, dev->base + IER);
  1232. readl(dev->base + IER);
  1233. dev->rx_info.up = 0;
  1234. synchronize_irq(dev->pci_dev->irq);
  1235. ns83820_do_reset(dev, CR_RST);
  1236. synchronize_irq(dev->pci_dev->irq);
  1237. spin_lock_irq(&dev->misc_lock);
  1238. dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
  1239. spin_unlock_irq(&dev->misc_lock);
  1240. ns83820_cleanup_rx(dev);
  1241. ns83820_cleanup_tx(dev);
  1242. return 0;
  1243. }
  1244. static void ns83820_tx_timeout(struct net_device *ndev)
  1245. {
  1246. struct ns83820 *dev = PRIV(ndev);
  1247. u32 tx_done_idx;
  1248. __le32 *desc;
  1249. unsigned long flags;
  1250. spin_lock_irqsave(&dev->tx_lock, flags);
  1251. tx_done_idx = dev->tx_done_idx;
  1252. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1253. printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1254. ndev->name,
  1255. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1256. #if defined(DEBUG)
  1257. {
  1258. u32 isr;
  1259. isr = readl(dev->base + ISR);
  1260. printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
  1261. ns83820_do_isr(ndev, isr);
  1262. }
  1263. #endif
  1264. do_tx_done(ndev);
  1265. tx_done_idx = dev->tx_done_idx;
  1266. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1267. printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1268. ndev->name,
  1269. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1270. spin_unlock_irqrestore(&dev->tx_lock, flags);
  1271. }
  1272. static void ns83820_tx_watch(unsigned long data)
  1273. {
  1274. struct net_device *ndev = (void *)data;
  1275. struct ns83820 *dev = PRIV(ndev);
  1276. #if defined(DEBUG)
  1277. printk("ns83820_tx_watch: %u %u %d\n",
  1278. dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
  1279. );
  1280. #endif
  1281. if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
  1282. dev->tx_done_idx != dev->tx_free_idx) {
  1283. printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
  1284. ndev->name,
  1285. dev->tx_done_idx, dev->tx_free_idx,
  1286. atomic_read(&dev->nr_tx_skbs));
  1287. ns83820_tx_timeout(ndev);
  1288. }
  1289. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1290. }
  1291. static int ns83820_open(struct net_device *ndev)
  1292. {
  1293. struct ns83820 *dev = PRIV(ndev);
  1294. unsigned i;
  1295. u32 desc;
  1296. int ret;
  1297. dprintk("ns83820_open\n");
  1298. writel(0, dev->base + PQCR);
  1299. ret = ns83820_setup_rx(ndev);
  1300. if (ret)
  1301. goto failed;
  1302. memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
  1303. for (i=0; i<NR_TX_DESC; i++) {
  1304. dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
  1305. = cpu_to_le32(
  1306. dev->tx_phy_descs
  1307. + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
  1308. }
  1309. dev->tx_idx = 0;
  1310. dev->tx_done_idx = 0;
  1311. desc = dev->tx_phy_descs;
  1312. writel(0, dev->base + TXDP_HI);
  1313. writel(desc, dev->base + TXDP);
  1314. init_timer(&dev->tx_watchdog);
  1315. dev->tx_watchdog.data = (unsigned long)ndev;
  1316. dev->tx_watchdog.function = ns83820_tx_watch;
  1317. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1318. netif_start_queue(ndev); /* FIXME: wait for phy to come up */
  1319. return 0;
  1320. failed:
  1321. ns83820_stop(ndev);
  1322. return ret;
  1323. }
  1324. static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
  1325. {
  1326. unsigned i;
  1327. for (i=0; i<3; i++) {
  1328. u32 data;
  1329. /* Read from the perfect match memory: this is loaded by
  1330. * the chip from the EEPROM via the EELOAD self test.
  1331. */
  1332. writel(i*2, dev->base + RFCR);
  1333. data = readl(dev->base + RFDR);
  1334. *mac++ = data;
  1335. *mac++ = data >> 8;
  1336. }
  1337. }
  1338. static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
  1339. {
  1340. if (new_mtu > RX_BUF_SIZE)
  1341. return -EINVAL;
  1342. ndev->mtu = new_mtu;
  1343. return 0;
  1344. }
  1345. static void ns83820_set_multicast(struct net_device *ndev)
  1346. {
  1347. struct ns83820 *dev = PRIV(ndev);
  1348. u8 __iomem *rfcr = dev->base + RFCR;
  1349. u32 and_mask = 0xffffffff;
  1350. u32 or_mask = 0;
  1351. u32 val;
  1352. if (ndev->flags & IFF_PROMISC)
  1353. or_mask |= RFCR_AAU | RFCR_AAM;
  1354. else
  1355. and_mask &= ~(RFCR_AAU | RFCR_AAM);
  1356. if (ndev->flags & IFF_ALLMULTI)
  1357. or_mask |= RFCR_AAM;
  1358. else
  1359. and_mask &= ~RFCR_AAM;
  1360. spin_lock_irq(&dev->misc_lock);
  1361. val = (readl(rfcr) & and_mask) | or_mask;
  1362. /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
  1363. writel(val & ~RFCR_RFEN, rfcr);
  1364. writel(val, rfcr);
  1365. spin_unlock_irq(&dev->misc_lock);
  1366. }
  1367. static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
  1368. {
  1369. struct ns83820 *dev = PRIV(ndev);
  1370. int timed_out = 0;
  1371. unsigned long start;
  1372. u32 status;
  1373. int loops = 0;
  1374. dprintk("%s: start %s\n", ndev->name, name);
  1375. start = jiffies;
  1376. writel(enable, dev->base + PTSCR);
  1377. for (;;) {
  1378. loops++;
  1379. status = readl(dev->base + PTSCR);
  1380. if (!(status & enable))
  1381. break;
  1382. if (status & done)
  1383. break;
  1384. if (status & fail)
  1385. break;
  1386. if (time_after_eq(jiffies, start + HZ)) {
  1387. timed_out = 1;
  1388. break;
  1389. }
  1390. schedule_timeout_uninterruptible(1);
  1391. }
  1392. if (status & fail)
  1393. printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
  1394. ndev->name, name, status, fail);
  1395. else if (timed_out)
  1396. printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
  1397. ndev->name, name, status);
  1398. dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
  1399. }
  1400. #ifdef PHY_CODE_IS_FINISHED
  1401. static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
  1402. {
  1403. /* drive MDC low */
  1404. dev->MEAR_cache &= ~MEAR_MDC;
  1405. writel(dev->MEAR_cache, dev->base + MEAR);
  1406. readl(dev->base + MEAR);
  1407. /* enable output, set bit */
  1408. dev->MEAR_cache |= MEAR_MDDIR;
  1409. if (bit)
  1410. dev->MEAR_cache |= MEAR_MDIO;
  1411. else
  1412. dev->MEAR_cache &= ~MEAR_MDIO;
  1413. /* set the output bit */
  1414. writel(dev->MEAR_cache, dev->base + MEAR);
  1415. readl(dev->base + MEAR);
  1416. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1417. udelay(1);
  1418. /* drive MDC high causing the data bit to be latched */
  1419. dev->MEAR_cache |= MEAR_MDC;
  1420. writel(dev->MEAR_cache, dev->base + MEAR);
  1421. readl(dev->base + MEAR);
  1422. /* Wait again... */
  1423. udelay(1);
  1424. }
  1425. static int ns83820_mii_read_bit(struct ns83820 *dev)
  1426. {
  1427. int bit;
  1428. /* drive MDC low, disable output */
  1429. dev->MEAR_cache &= ~MEAR_MDC;
  1430. dev->MEAR_cache &= ~MEAR_MDDIR;
  1431. writel(dev->MEAR_cache, dev->base + MEAR);
  1432. readl(dev->base + MEAR);
  1433. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1434. udelay(1);
  1435. /* drive MDC high causing the data bit to be latched */
  1436. bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
  1437. dev->MEAR_cache |= MEAR_MDC;
  1438. writel(dev->MEAR_cache, dev->base + MEAR);
  1439. /* Wait again... */
  1440. udelay(1);
  1441. return bit;
  1442. }
  1443. static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
  1444. {
  1445. unsigned data = 0;
  1446. int i;
  1447. /* read some garbage so that we eventually sync up */
  1448. for (i=0; i<64; i++)
  1449. ns83820_mii_read_bit(dev);
  1450. ns83820_mii_write_bit(dev, 0); /* start */
  1451. ns83820_mii_write_bit(dev, 1);
  1452. ns83820_mii_write_bit(dev, 1); /* opcode read */
  1453. ns83820_mii_write_bit(dev, 0);
  1454. /* write out the phy address: 5 bits, msb first */
  1455. for (i=0; i<5; i++)
  1456. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1457. /* write out the register address, 5 bits, msb first */
  1458. for (i=0; i<5; i++)
  1459. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1460. ns83820_mii_read_bit(dev); /* turn around cycles */
  1461. ns83820_mii_read_bit(dev);
  1462. /* read in the register data, 16 bits msb first */
  1463. for (i=0; i<16; i++) {
  1464. data <<= 1;
  1465. data |= ns83820_mii_read_bit(dev);
  1466. }
  1467. return data;
  1468. }
  1469. static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
  1470. {
  1471. int i;
  1472. /* read some garbage so that we eventually sync up */
  1473. for (i=0; i<64; i++)
  1474. ns83820_mii_read_bit(dev);
  1475. ns83820_mii_write_bit(dev, 0); /* start */
  1476. ns83820_mii_write_bit(dev, 1);
  1477. ns83820_mii_write_bit(dev, 0); /* opcode read */
  1478. ns83820_mii_write_bit(dev, 1);
  1479. /* write out the phy address: 5 bits, msb first */
  1480. for (i=0; i<5; i++)
  1481. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1482. /* write out the register address, 5 bits, msb first */
  1483. for (i=0; i<5; i++)
  1484. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1485. ns83820_mii_read_bit(dev); /* turn around cycles */
  1486. ns83820_mii_read_bit(dev);
  1487. /* read in the register data, 16 bits msb first */
  1488. for (i=0; i<16; i++)
  1489. ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
  1490. return data;
  1491. }
  1492. static void ns83820_probe_phy(struct net_device *ndev)
  1493. {
  1494. struct ns83820 *dev = PRIV(ndev);
  1495. static int first;
  1496. int i;
  1497. #define MII_PHYIDR1 0x02
  1498. #define MII_PHYIDR2 0x03
  1499. #if 0
  1500. if (!first) {
  1501. unsigned tmp;
  1502. ns83820_mii_read_reg(dev, 1, 0x09);
  1503. ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
  1504. tmp = ns83820_mii_read_reg(dev, 1, 0x00);
  1505. ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
  1506. udelay(1300);
  1507. ns83820_mii_read_reg(dev, 1, 0x09);
  1508. }
  1509. #endif
  1510. first = 1;
  1511. for (i=1; i<2; i++) {
  1512. int j;
  1513. unsigned a, b;
  1514. a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
  1515. b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
  1516. //printk("%s: phy %d: 0x%04x 0x%04x\n",
  1517. // ndev->name, i, a, b);
  1518. for (j=0; j<0x16; j+=4) {
  1519. dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
  1520. ndev->name, j,
  1521. ns83820_mii_read_reg(dev, i, 0 + j),
  1522. ns83820_mii_read_reg(dev, i, 1 + j),
  1523. ns83820_mii_read_reg(dev, i, 2 + j),
  1524. ns83820_mii_read_reg(dev, i, 3 + j)
  1525. );
  1526. }
  1527. }
  1528. {
  1529. unsigned a, b;
  1530. /* read firmware version: memory addr is 0x8402 and 0x8403 */
  1531. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1532. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1533. a = ns83820_mii_read_reg(dev, 1, 0x1d);
  1534. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1535. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1536. b = ns83820_mii_read_reg(dev, 1, 0x1d);
  1537. dprintk("version: 0x%04x 0x%04x\n", a, b);
  1538. }
  1539. }
  1540. #endif
  1541. static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
  1542. {
  1543. struct net_device *ndev;
  1544. struct ns83820 *dev;
  1545. long addr;
  1546. int err;
  1547. int using_dac = 0;
  1548. /* See if we can set the dma mask early on; failure is fatal. */
  1549. if (sizeof(dma_addr_t) == 8 &&
  1550. !pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
  1551. using_dac = 1;
  1552. } else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
  1553. using_dac = 0;
  1554. } else {
  1555. dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
  1556. return -ENODEV;
  1557. }
  1558. ndev = alloc_etherdev(sizeof(struct ns83820));
  1559. dev = PRIV(ndev);
  1560. dev->ndev = ndev;
  1561. err = -ENOMEM;
  1562. if (!dev)
  1563. goto out;
  1564. spin_lock_init(&dev->rx_info.lock);
  1565. spin_lock_init(&dev->tx_lock);
  1566. spin_lock_init(&dev->misc_lock);
  1567. dev->pci_dev = pci_dev;
  1568. SET_MODULE_OWNER(ndev);
  1569. SET_NETDEV_DEV(ndev, &pci_dev->dev);
  1570. INIT_WORK(&dev->tq_refill, queue_refill);
  1571. tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
  1572. err = pci_enable_device(pci_dev);
  1573. if (err) {
  1574. dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
  1575. goto out_free;
  1576. }
  1577. pci_set_master(pci_dev);
  1578. addr = pci_resource_start(pci_dev, 1);
  1579. dev->base = ioremap_nocache(addr, PAGE_SIZE);
  1580. dev->tx_descs = pci_alloc_consistent(pci_dev,
  1581. 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
  1582. dev->rx_info.descs = pci_alloc_consistent(pci_dev,
  1583. 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
  1584. err = -ENOMEM;
  1585. if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
  1586. goto out_disable;
  1587. dprintk("%p: %08lx %p: %08lx\n",
  1588. dev->tx_descs, (long)dev->tx_phy_descs,
  1589. dev->rx_info.descs, (long)dev->rx_info.phy_descs);
  1590. /* disable interrupts */
  1591. writel(0, dev->base + IMR);
  1592. writel(0, dev->base + IER);
  1593. readl(dev->base + IER);
  1594. dev->IMR_cache = 0;
  1595. err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
  1596. DRV_NAME, ndev);
  1597. if (err) {
  1598. dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
  1599. pci_dev->irq, err);
  1600. goto out_disable;
  1601. }
  1602. /*
  1603. * FIXME: we are holding rtnl_lock() over obscenely long area only
  1604. * because some of the setup code uses dev->name. It's Wrong(tm) -
  1605. * we should be using driver-specific names for all that stuff.
  1606. * For now that will do, but we really need to come back and kill
  1607. * most of the dev_alloc_name() users later.
  1608. */
  1609. rtnl_lock();
  1610. err = dev_alloc_name(ndev, ndev->name);
  1611. if (err < 0) {
  1612. dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
  1613. goto out_free_irq;
  1614. }
  1615. printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
  1616. ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
  1617. pci_dev->subsystem_vendor, pci_dev->subsystem_device);
  1618. ndev->open = ns83820_open;
  1619. ndev->stop = ns83820_stop;
  1620. ndev->hard_start_xmit = ns83820_hard_start_xmit;
  1621. ndev->get_stats = ns83820_get_stats;
  1622. ndev->change_mtu = ns83820_change_mtu;
  1623. ndev->set_multicast_list = ns83820_set_multicast;
  1624. SET_ETHTOOL_OPS(ndev, &ops);
  1625. ndev->tx_timeout = ns83820_tx_timeout;
  1626. ndev->watchdog_timeo = 5 * HZ;
  1627. pci_set_drvdata(pci_dev, ndev);
  1628. ns83820_do_reset(dev, CR_RST);
  1629. /* Must reset the ram bist before running it */
  1630. writel(PTSCR_RBIST_RST, dev->base + PTSCR);
  1631. ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
  1632. PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
  1633. ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
  1634. PTSCR_EEBIST_FAIL);
  1635. ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
  1636. /* I love config registers */
  1637. dev->CFG_cache = readl(dev->base + CFG);
  1638. if ((dev->CFG_cache & CFG_PCI64_DET)) {
  1639. printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
  1640. ndev->name);
  1641. /*dev->CFG_cache |= CFG_DATA64_EN;*/
  1642. if (!(dev->CFG_cache & CFG_DATA64_EN))
  1643. printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
  1644. ndev->name);
  1645. } else
  1646. dev->CFG_cache &= ~(CFG_DATA64_EN);
  1647. dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
  1648. CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
  1649. CFG_M64ADDR);
  1650. dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
  1651. CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
  1652. dev->CFG_cache |= CFG_REQALG;
  1653. dev->CFG_cache |= CFG_POW;
  1654. dev->CFG_cache |= CFG_TMRTEST;
  1655. /* When compiled with 64 bit addressing, we must always enable
  1656. * the 64 bit descriptor format.
  1657. */
  1658. if (sizeof(dma_addr_t) == 8)
  1659. dev->CFG_cache |= CFG_M64ADDR;
  1660. if (using_dac)
  1661. dev->CFG_cache |= CFG_T64ADDR;
  1662. /* Big endian mode does not seem to do what the docs suggest */
  1663. dev->CFG_cache &= ~CFG_BEM;
  1664. /* setup optical transceiver if we have one */
  1665. if (dev->CFG_cache & CFG_TBI_EN) {
  1666. printk(KERN_INFO "%s: enabling optical transceiver\n",
  1667. ndev->name);
  1668. writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
  1669. /* setup auto negotiation feature advertisement */
  1670. writel(readl(dev->base + TANAR)
  1671. | TANAR_HALF_DUP | TANAR_FULL_DUP,
  1672. dev->base + TANAR);
  1673. /* start auto negotiation */
  1674. writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
  1675. dev->base + TBICR);
  1676. writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
  1677. dev->linkstate = LINK_AUTONEGOTIATE;
  1678. dev->CFG_cache |= CFG_MODE_1000;
  1679. }
  1680. writel(dev->CFG_cache, dev->base + CFG);
  1681. dprintk("CFG: %08x\n", dev->CFG_cache);
  1682. if (reset_phy) {
  1683. printk(KERN_INFO "%s: resetting phy\n", ndev->name);
  1684. writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
  1685. msleep(10);
  1686. writel(dev->CFG_cache, dev->base + CFG);
  1687. }
  1688. #if 0 /* Huh? This sets the PCI latency register. Should be done via
  1689. * the PCI layer. FIXME.
  1690. */
  1691. if (readl(dev->base + SRR))
  1692. writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
  1693. #endif
  1694. /* Note! The DMA burst size interacts with packet
  1695. * transmission, such that the largest packet that
  1696. * can be transmitted is 8192 - FLTH - burst size.
  1697. * If only the transmit fifo was larger...
  1698. */
  1699. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1700. * some DELL and COMPAQ SMP systems */
  1701. writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
  1702. | ((1600 / 32) * 0x100),
  1703. dev->base + TXCFG);
  1704. /* Flush the interrupt holdoff timer */
  1705. writel(0x000, dev->base + IHR);
  1706. writel(0x100, dev->base + IHR);
  1707. writel(0x000, dev->base + IHR);
  1708. /* Set Rx to full duplex, don't accept runt, errored, long or length
  1709. * range errored packets. Use 512 byte DMA.
  1710. */
  1711. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1712. * some DELL and COMPAQ SMP systems
  1713. * Turn on ALP, only we are accpeting Jumbo Packets */
  1714. writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
  1715. | RXCFG_STRIPCRC
  1716. //| RXCFG_ALP
  1717. | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
  1718. /* Disable priority queueing */
  1719. writel(0, dev->base + PQCR);
  1720. /* Enable IP checksum validation and detetion of VLAN headers.
  1721. * Note: do not set the reject options as at least the 0x102
  1722. * revision of the chip does not properly accept IP fragments
  1723. * at least for UDP.
  1724. */
  1725. /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
  1726. * the MAC it calculates the packetsize AFTER stripping the VLAN
  1727. * header, and if a VLAN Tagged packet of 64 bytes is received (like
  1728. * a ping with a VLAN header) then the card, strips the 4 byte VLAN
  1729. * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
  1730. * it discrards it!. These guys......
  1731. * also turn on tag stripping if hardware acceleration is enabled
  1732. */
  1733. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1734. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
  1735. #else
  1736. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
  1737. #endif
  1738. writel(VRCR_INIT_VALUE, dev->base + VRCR);
  1739. /* Enable per-packet TCP/UDP/IP checksumming
  1740. * and per packet vlan tag insertion if
  1741. * vlan hardware acceleration is enabled
  1742. */
  1743. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1744. #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
  1745. #else
  1746. #define VTCR_INIT_VALUE VTCR_PPCHK
  1747. #endif
  1748. writel(VTCR_INIT_VALUE, dev->base + VTCR);
  1749. /* Ramit : Enable async and sync pause frames */
  1750. /* writel(0, dev->base + PCR); */
  1751. writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
  1752. PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
  1753. dev->base + PCR);
  1754. /* Disable Wake On Lan */
  1755. writel(0, dev->base + WCSR);
  1756. ns83820_getmac(dev, ndev->dev_addr);
  1757. /* Yes, we support dumb IP checksum on transmit */
  1758. ndev->features |= NETIF_F_SG;
  1759. ndev->features |= NETIF_F_IP_CSUM;
  1760. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1761. /* We also support hardware vlan acceleration */
  1762. ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  1763. ndev->vlan_rx_register = ns83820_vlan_rx_register;
  1764. ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
  1765. #endif
  1766. if (using_dac) {
  1767. printk(KERN_INFO "%s: using 64 bit addressing.\n",
  1768. ndev->name);
  1769. ndev->features |= NETIF_F_HIGHDMA;
  1770. }
  1771. printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
  1772. ndev->name,
  1773. (unsigned)readl(dev->base + SRR) >> 8,
  1774. (unsigned)readl(dev->base + SRR) & 0xff,
  1775. ndev->dev_addr[0], ndev->dev_addr[1],
  1776. ndev->dev_addr[2], ndev->dev_addr[3],
  1777. ndev->dev_addr[4], ndev->dev_addr[5],
  1778. addr, pci_dev->irq,
  1779. (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
  1780. );
  1781. #ifdef PHY_CODE_IS_FINISHED
  1782. ns83820_probe_phy(ndev);
  1783. #endif
  1784. err = register_netdevice(ndev);
  1785. if (err) {
  1786. printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
  1787. goto out_cleanup;
  1788. }
  1789. rtnl_unlock();
  1790. return 0;
  1791. out_cleanup:
  1792. writel(0, dev->base + IMR); /* paranoia */
  1793. writel(0, dev->base + IER);
  1794. readl(dev->base + IER);
  1795. out_free_irq:
  1796. rtnl_unlock();
  1797. free_irq(pci_dev->irq, ndev);
  1798. out_disable:
  1799. if (dev->base)
  1800. iounmap(dev->base);
  1801. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
  1802. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
  1803. pci_disable_device(pci_dev);
  1804. out_free:
  1805. free_netdev(ndev);
  1806. pci_set_drvdata(pci_dev, NULL);
  1807. out:
  1808. return err;
  1809. }
  1810. static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
  1811. {
  1812. struct net_device *ndev = pci_get_drvdata(pci_dev);
  1813. struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
  1814. if (!ndev) /* paranoia */
  1815. return;
  1816. writel(0, dev->base + IMR); /* paranoia */
  1817. writel(0, dev->base + IER);
  1818. readl(dev->base + IER);
  1819. unregister_netdev(ndev);
  1820. free_irq(dev->pci_dev->irq, ndev);
  1821. iounmap(dev->base);
  1822. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
  1823. dev->tx_descs, dev->tx_phy_descs);
  1824. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
  1825. dev->rx_info.descs, dev->rx_info.phy_descs);
  1826. pci_disable_device(dev->pci_dev);
  1827. free_netdev(ndev);
  1828. pci_set_drvdata(pci_dev, NULL);
  1829. }
  1830. static struct pci_device_id ns83820_pci_tbl[] = {
  1831. { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
  1832. { 0, },
  1833. };
  1834. static struct pci_driver driver = {
  1835. .name = "ns83820",
  1836. .id_table = ns83820_pci_tbl,
  1837. .probe = ns83820_init_one,
  1838. .remove = __devexit_p(ns83820_remove_one),
  1839. #if 0 /* FIXME: implement */
  1840. .suspend = ,
  1841. .resume = ,
  1842. #endif
  1843. };
  1844. static int __init ns83820_init(void)
  1845. {
  1846. printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
  1847. return pci_register_driver(&driver);
  1848. }
  1849. static void __exit ns83820_exit(void)
  1850. {
  1851. pci_unregister_driver(&driver);
  1852. }
  1853. MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
  1854. MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
  1855. MODULE_LICENSE("GPL");
  1856. MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
  1857. module_param(lnksts, int, 0);
  1858. MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
  1859. module_param(ihr, int, 0);
  1860. MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
  1861. module_param(reset_phy, int, 0);
  1862. MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
  1863. module_init(ns83820_init);
  1864. module_exit(ns83820_exit);