fec.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649
  1. /*
  2. * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4. *
  5. * This version of the driver is specific to the FADS implementation,
  6. * since the board contains control registers external to the processor
  7. * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
  8. * describes connections using the internal parallel port I/O, which
  9. * is basically all of Port D.
  10. *
  11. * Right now, I am very wasteful with the buffers. I allocate memory
  12. * pages and then divide them into 2K frame buffers. This way I know I
  13. * have buffers large enough to hold one frame within one buffer descriptor.
  14. * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  15. * will be much more memory efficient and will easily handle lots of
  16. * small packets.
  17. *
  18. * Much better multiple PHY support by Magnus Damm.
  19. * Copyright (c) 2000 Ericsson Radio Systems AB.
  20. *
  21. * Support for FEC controller of ColdFire processors.
  22. * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
  23. *
  24. * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
  25. * Copyright (c) 2004-2006 Macq Electronique SA.
  26. */
  27. #include <linux/module.h>
  28. #include <linux/kernel.h>
  29. #include <linux/string.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/errno.h>
  32. #include <linux/ioport.h>
  33. #include <linux/slab.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/pci.h>
  36. #include <linux/init.h>
  37. #include <linux/delay.h>
  38. #include <linux/netdevice.h>
  39. #include <linux/etherdevice.h>
  40. #include <linux/skbuff.h>
  41. #include <linux/spinlock.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/bitops.h>
  44. #include <asm/irq.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/io.h>
  47. #include <asm/pgtable.h>
  48. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
  49. defined(CONFIG_M5272) || defined(CONFIG_M528x) || \
  50. defined(CONFIG_M520x) || defined(CONFIG_M532x)
  51. #include <asm/coldfire.h>
  52. #include <asm/mcfsim.h>
  53. #include "fec.h"
  54. #else
  55. #include <asm/8xx_immap.h>
  56. #include <asm/mpc8xx.h>
  57. #include "commproc.h"
  58. #endif
  59. #if defined(CONFIG_FEC2)
  60. #define FEC_MAX_PORTS 2
  61. #else
  62. #define FEC_MAX_PORTS 1
  63. #endif
  64. /*
  65. * Define the fixed address of the FEC hardware.
  66. */
  67. static unsigned int fec_hw[] = {
  68. #if defined(CONFIG_M5272)
  69. (MCF_MBAR + 0x840),
  70. #elif defined(CONFIG_M527x)
  71. (MCF_MBAR + 0x1000),
  72. (MCF_MBAR + 0x1800),
  73. #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
  74. (MCF_MBAR + 0x1000),
  75. #elif defined(CONFIG_M520x)
  76. (MCF_MBAR+0x30000),
  77. #elif defined(CONFIG_M532x)
  78. (MCF_MBAR+0xfc030000),
  79. #else
  80. &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
  81. #endif
  82. };
  83. static unsigned char fec_mac_default[] = {
  84. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  85. };
  86. /*
  87. * Some hardware gets it MAC address out of local flash memory.
  88. * if this is non-zero then assume it is the address to get MAC from.
  89. */
  90. #if defined(CONFIG_NETtel)
  91. #define FEC_FLASHMAC 0xf0006006
  92. #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
  93. #define FEC_FLASHMAC 0xf0006000
  94. #elif defined (CONFIG_MTD_KeyTechnology)
  95. #define FEC_FLASHMAC 0xffe04000
  96. #elif defined(CONFIG_CANCam)
  97. #define FEC_FLASHMAC 0xf0020000
  98. #elif defined (CONFIG_M5272C3)
  99. #define FEC_FLASHMAC (0xffe04000 + 4)
  100. #elif defined(CONFIG_MOD5272)
  101. #define FEC_FLASHMAC 0xffc0406b
  102. #else
  103. #define FEC_FLASHMAC 0
  104. #endif
  105. /* Forward declarations of some structures to support different PHYs
  106. */
  107. typedef struct {
  108. uint mii_data;
  109. void (*funct)(uint mii_reg, struct net_device *dev);
  110. } phy_cmd_t;
  111. typedef struct {
  112. uint id;
  113. char *name;
  114. const phy_cmd_t *config;
  115. const phy_cmd_t *startup;
  116. const phy_cmd_t *ack_int;
  117. const phy_cmd_t *shutdown;
  118. } phy_info_t;
  119. /* The number of Tx and Rx buffers. These are allocated from the page
  120. * pool. The code may assume these are power of two, so it it best
  121. * to keep them that size.
  122. * We don't need to allocate pages for the transmitter. We just use
  123. * the skbuffer directly.
  124. */
  125. #define FEC_ENET_RX_PAGES 8
  126. #define FEC_ENET_RX_FRSIZE 2048
  127. #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
  128. #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
  129. #define FEC_ENET_TX_FRSIZE 2048
  130. #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
  131. #define TX_RING_SIZE 16 /* Must be power of two */
  132. #define TX_RING_MOD_MASK 15 /* for this to work */
  133. #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
  134. #error "FEC: descriptor ring size constants too large"
  135. #endif
  136. /* Interrupt events/masks.
  137. */
  138. #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
  139. #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
  140. #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
  141. #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
  142. #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
  143. #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
  144. #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
  145. #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
  146. #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
  147. #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
  148. /* The FEC stores dest/src/type, data, and checksum for receive packets.
  149. */
  150. #define PKT_MAXBUF_SIZE 1518
  151. #define PKT_MINBUF_SIZE 64
  152. #define PKT_MAXBLR_SIZE 1520
  153. /*
  154. * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
  155. * size bits. Other FEC hardware does not, so we need to take that into
  156. * account when setting it.
  157. */
  158. #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
  159. defined(CONFIG_M520x) || defined(CONFIG_M532x)
  160. #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
  161. #else
  162. #define OPT_FRAME_SIZE 0
  163. #endif
  164. /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
  165. * tx_bd_base always point to the base of the buffer descriptors. The
  166. * cur_rx and cur_tx point to the currently available buffer.
  167. * The dirty_tx tracks the current buffer that is being sent by the
  168. * controller. The cur_tx and dirty_tx are equal under both completely
  169. * empty and completely full conditions. The empty/ready indicator in
  170. * the buffer descriptor determines the actual condition.
  171. */
  172. struct fec_enet_private {
  173. /* Hardware registers of the FEC device */
  174. volatile fec_t *hwp;
  175. /* The saved address of a sent-in-place packet/buffer, for skfree(). */
  176. unsigned char *tx_bounce[TX_RING_SIZE];
  177. struct sk_buff* tx_skbuff[TX_RING_SIZE];
  178. ushort skb_cur;
  179. ushort skb_dirty;
  180. /* CPM dual port RAM relative addresses.
  181. */
  182. cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
  183. cbd_t *tx_bd_base;
  184. cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
  185. cbd_t *dirty_tx; /* The ring entries to be free()ed. */
  186. struct net_device_stats stats;
  187. uint tx_full;
  188. spinlock_t lock;
  189. uint phy_id;
  190. uint phy_id_done;
  191. uint phy_status;
  192. uint phy_speed;
  193. phy_info_t const *phy;
  194. struct work_struct phy_task;
  195. uint sequence_done;
  196. uint mii_phy_task_queued;
  197. uint phy_addr;
  198. int index;
  199. int opened;
  200. int link;
  201. int old_link;
  202. int full_duplex;
  203. };
  204. static int fec_enet_open(struct net_device *dev);
  205. static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
  206. static void fec_enet_mii(struct net_device *dev);
  207. static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
  208. static void fec_enet_tx(struct net_device *dev);
  209. static void fec_enet_rx(struct net_device *dev);
  210. static int fec_enet_close(struct net_device *dev);
  211. static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
  212. static void set_multicast_list(struct net_device *dev);
  213. static void fec_restart(struct net_device *dev, int duplex);
  214. static void fec_stop(struct net_device *dev);
  215. static void fec_set_mac_address(struct net_device *dev);
  216. /* MII processing. We keep this as simple as possible. Requests are
  217. * placed on the list (if there is room). When the request is finished
  218. * by the MII, an optional function may be called.
  219. */
  220. typedef struct mii_list {
  221. uint mii_regval;
  222. void (*mii_func)(uint val, struct net_device *dev);
  223. struct mii_list *mii_next;
  224. } mii_list_t;
  225. #define NMII 20
  226. static mii_list_t mii_cmds[NMII];
  227. static mii_list_t *mii_free;
  228. static mii_list_t *mii_head;
  229. static mii_list_t *mii_tail;
  230. static int mii_queue(struct net_device *dev, int request,
  231. void (*func)(uint, struct net_device *));
  232. /* Make MII read/write commands for the FEC.
  233. */
  234. #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
  235. #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
  236. (VAL & 0xffff))
  237. #define mk_mii_end 0
  238. /* Transmitter timeout.
  239. */
  240. #define TX_TIMEOUT (2*HZ)
  241. /* Register definitions for the PHY.
  242. */
  243. #define MII_REG_CR 0 /* Control Register */
  244. #define MII_REG_SR 1 /* Status Register */
  245. #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
  246. #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
  247. #define MII_REG_ANAR 4 /* A-N Advertisement Register */
  248. #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
  249. #define MII_REG_ANER 6 /* A-N Expansion Register */
  250. #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
  251. #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
  252. /* values for phy_status */
  253. #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
  254. #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
  255. #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
  256. #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
  257. #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
  258. #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
  259. #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
  260. #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
  261. #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
  262. #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
  263. #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
  264. #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
  265. #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
  266. #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
  267. #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
  268. static int
  269. fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  270. {
  271. struct fec_enet_private *fep;
  272. volatile fec_t *fecp;
  273. volatile cbd_t *bdp;
  274. unsigned short status;
  275. fep = netdev_priv(dev);
  276. fecp = (volatile fec_t*)dev->base_addr;
  277. if (!fep->link) {
  278. /* Link is down or autonegotiation is in progress. */
  279. return 1;
  280. }
  281. /* Fill in a Tx ring entry */
  282. bdp = fep->cur_tx;
  283. status = bdp->cbd_sc;
  284. #ifndef final_version
  285. if (status & BD_ENET_TX_READY) {
  286. /* Ooops. All transmit buffers are full. Bail out.
  287. * This should not happen, since dev->tbusy should be set.
  288. */
  289. printk("%s: tx queue full!.\n", dev->name);
  290. return 1;
  291. }
  292. #endif
  293. /* Clear all of the status flags.
  294. */
  295. status &= ~BD_ENET_TX_STATS;
  296. /* Set buffer length and buffer pointer.
  297. */
  298. bdp->cbd_bufaddr = __pa(skb->data);
  299. bdp->cbd_datlen = skb->len;
  300. /*
  301. * On some FEC implementations data must be aligned on
  302. * 4-byte boundaries. Use bounce buffers to copy data
  303. * and get it aligned. Ugh.
  304. */
  305. if (bdp->cbd_bufaddr & 0x3) {
  306. unsigned int index;
  307. index = bdp - fep->tx_bd_base;
  308. memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
  309. bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
  310. }
  311. /* Save skb pointer.
  312. */
  313. fep->tx_skbuff[fep->skb_cur] = skb;
  314. fep->stats.tx_bytes += skb->len;
  315. fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
  316. /* Push the data cache so the CPM does not get stale memory
  317. * data.
  318. */
  319. flush_dcache_range((unsigned long)skb->data,
  320. (unsigned long)skb->data + skb->len);
  321. spin_lock_irq(&fep->lock);
  322. /* Send it on its way. Tell FEC it's ready, interrupt when done,
  323. * it's the last BD of the frame, and to put the CRC on the end.
  324. */
  325. status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
  326. | BD_ENET_TX_LAST | BD_ENET_TX_TC);
  327. bdp->cbd_sc = status;
  328. dev->trans_start = jiffies;
  329. /* Trigger transmission start */
  330. fecp->fec_x_des_active = 0;
  331. /* If this was the last BD in the ring, start at the beginning again.
  332. */
  333. if (status & BD_ENET_TX_WRAP) {
  334. bdp = fep->tx_bd_base;
  335. } else {
  336. bdp++;
  337. }
  338. if (bdp == fep->dirty_tx) {
  339. fep->tx_full = 1;
  340. netif_stop_queue(dev);
  341. }
  342. fep->cur_tx = (cbd_t *)bdp;
  343. spin_unlock_irq(&fep->lock);
  344. return 0;
  345. }
  346. static void
  347. fec_timeout(struct net_device *dev)
  348. {
  349. struct fec_enet_private *fep = netdev_priv(dev);
  350. printk("%s: transmit timed out.\n", dev->name);
  351. fep->stats.tx_errors++;
  352. #ifndef final_version
  353. {
  354. int i;
  355. cbd_t *bdp;
  356. printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
  357. (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
  358. (unsigned long)fep->dirty_tx,
  359. (unsigned long)fep->cur_rx);
  360. bdp = fep->tx_bd_base;
  361. printk(" tx: %u buffers\n", TX_RING_SIZE);
  362. for (i = 0 ; i < TX_RING_SIZE; i++) {
  363. printk(" %08x: %04x %04x %08x\n",
  364. (uint) bdp,
  365. bdp->cbd_sc,
  366. bdp->cbd_datlen,
  367. (int) bdp->cbd_bufaddr);
  368. bdp++;
  369. }
  370. bdp = fep->rx_bd_base;
  371. printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
  372. for (i = 0 ; i < RX_RING_SIZE; i++) {
  373. printk(" %08x: %04x %04x %08x\n",
  374. (uint) bdp,
  375. bdp->cbd_sc,
  376. bdp->cbd_datlen,
  377. (int) bdp->cbd_bufaddr);
  378. bdp++;
  379. }
  380. }
  381. #endif
  382. fec_restart(dev, fep->full_duplex);
  383. netif_wake_queue(dev);
  384. }
  385. /* The interrupt handler.
  386. * This is called from the MPC core interrupt.
  387. */
  388. static irqreturn_t
  389. fec_enet_interrupt(int irq, void * dev_id)
  390. {
  391. struct net_device *dev = dev_id;
  392. volatile fec_t *fecp;
  393. uint int_events;
  394. int handled = 0;
  395. fecp = (volatile fec_t*)dev->base_addr;
  396. /* Get the interrupt events that caused us to be here.
  397. */
  398. while ((int_events = fecp->fec_ievent) != 0) {
  399. fecp->fec_ievent = int_events;
  400. /* Handle receive event in its own function.
  401. */
  402. if (int_events & FEC_ENET_RXF) {
  403. handled = 1;
  404. fec_enet_rx(dev);
  405. }
  406. /* Transmit OK, or non-fatal error. Update the buffer
  407. descriptors. FEC handles all errors, we just discover
  408. them as part of the transmit process.
  409. */
  410. if (int_events & FEC_ENET_TXF) {
  411. handled = 1;
  412. fec_enet_tx(dev);
  413. }
  414. if (int_events & FEC_ENET_MII) {
  415. handled = 1;
  416. fec_enet_mii(dev);
  417. }
  418. }
  419. return IRQ_RETVAL(handled);
  420. }
  421. static void
  422. fec_enet_tx(struct net_device *dev)
  423. {
  424. struct fec_enet_private *fep;
  425. volatile cbd_t *bdp;
  426. unsigned short status;
  427. struct sk_buff *skb;
  428. fep = netdev_priv(dev);
  429. spin_lock(&fep->lock);
  430. bdp = fep->dirty_tx;
  431. while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
  432. if (bdp == fep->cur_tx && fep->tx_full == 0) break;
  433. skb = fep->tx_skbuff[fep->skb_dirty];
  434. /* Check for errors. */
  435. if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  436. BD_ENET_TX_RL | BD_ENET_TX_UN |
  437. BD_ENET_TX_CSL)) {
  438. fep->stats.tx_errors++;
  439. if (status & BD_ENET_TX_HB) /* No heartbeat */
  440. fep->stats.tx_heartbeat_errors++;
  441. if (status & BD_ENET_TX_LC) /* Late collision */
  442. fep->stats.tx_window_errors++;
  443. if (status & BD_ENET_TX_RL) /* Retrans limit */
  444. fep->stats.tx_aborted_errors++;
  445. if (status & BD_ENET_TX_UN) /* Underrun */
  446. fep->stats.tx_fifo_errors++;
  447. if (status & BD_ENET_TX_CSL) /* Carrier lost */
  448. fep->stats.tx_carrier_errors++;
  449. } else {
  450. fep->stats.tx_packets++;
  451. }
  452. #ifndef final_version
  453. if (status & BD_ENET_TX_READY)
  454. printk("HEY! Enet xmit interrupt and TX_READY.\n");
  455. #endif
  456. /* Deferred means some collisions occurred during transmit,
  457. * but we eventually sent the packet OK.
  458. */
  459. if (status & BD_ENET_TX_DEF)
  460. fep->stats.collisions++;
  461. /* Free the sk buffer associated with this last transmit.
  462. */
  463. dev_kfree_skb_any(skb);
  464. fep->tx_skbuff[fep->skb_dirty] = NULL;
  465. fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
  466. /* Update pointer to next buffer descriptor to be transmitted.
  467. */
  468. if (status & BD_ENET_TX_WRAP)
  469. bdp = fep->tx_bd_base;
  470. else
  471. bdp++;
  472. /* Since we have freed up a buffer, the ring is no longer
  473. * full.
  474. */
  475. if (fep->tx_full) {
  476. fep->tx_full = 0;
  477. if (netif_queue_stopped(dev))
  478. netif_wake_queue(dev);
  479. }
  480. }
  481. fep->dirty_tx = (cbd_t *)bdp;
  482. spin_unlock(&fep->lock);
  483. }
  484. /* During a receive, the cur_rx points to the current incoming buffer.
  485. * When we update through the ring, if the next incoming buffer has
  486. * not been given to the system, we just set the empty indicator,
  487. * effectively tossing the packet.
  488. */
  489. static void
  490. fec_enet_rx(struct net_device *dev)
  491. {
  492. struct fec_enet_private *fep;
  493. volatile fec_t *fecp;
  494. volatile cbd_t *bdp;
  495. unsigned short status;
  496. struct sk_buff *skb;
  497. ushort pkt_len;
  498. __u8 *data;
  499. #ifdef CONFIG_M532x
  500. flush_cache_all();
  501. #endif
  502. fep = netdev_priv(dev);
  503. fecp = (volatile fec_t*)dev->base_addr;
  504. /* First, grab all of the stats for the incoming packet.
  505. * These get messed up if we get called due to a busy condition.
  506. */
  507. bdp = fep->cur_rx;
  508. while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
  509. #ifndef final_version
  510. /* Since we have allocated space to hold a complete frame,
  511. * the last indicator should be set.
  512. */
  513. if ((status & BD_ENET_RX_LAST) == 0)
  514. printk("FEC ENET: rcv is not +last\n");
  515. #endif
  516. if (!fep->opened)
  517. goto rx_processing_done;
  518. /* Check for errors. */
  519. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
  520. BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  521. fep->stats.rx_errors++;
  522. if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
  523. /* Frame too long or too short. */
  524. fep->stats.rx_length_errors++;
  525. }
  526. if (status & BD_ENET_RX_NO) /* Frame alignment */
  527. fep->stats.rx_frame_errors++;
  528. if (status & BD_ENET_RX_CR) /* CRC Error */
  529. fep->stats.rx_crc_errors++;
  530. if (status & BD_ENET_RX_OV) /* FIFO overrun */
  531. fep->stats.rx_fifo_errors++;
  532. }
  533. /* Report late collisions as a frame error.
  534. * On this error, the BD is closed, but we don't know what we
  535. * have in the buffer. So, just drop this frame on the floor.
  536. */
  537. if (status & BD_ENET_RX_CL) {
  538. fep->stats.rx_errors++;
  539. fep->stats.rx_frame_errors++;
  540. goto rx_processing_done;
  541. }
  542. /* Process the incoming frame.
  543. */
  544. fep->stats.rx_packets++;
  545. pkt_len = bdp->cbd_datlen;
  546. fep->stats.rx_bytes += pkt_len;
  547. data = (__u8*)__va(bdp->cbd_bufaddr);
  548. /* This does 16 byte alignment, exactly what we need.
  549. * The packet length includes FCS, but we don't want to
  550. * include that when passing upstream as it messes up
  551. * bridging applications.
  552. */
  553. skb = dev_alloc_skb(pkt_len-4);
  554. if (skb == NULL) {
  555. printk("%s: Memory squeeze, dropping packet.\n", dev->name);
  556. fep->stats.rx_dropped++;
  557. } else {
  558. skb_put(skb,pkt_len-4); /* Make room */
  559. eth_copy_and_sum(skb, data, pkt_len-4, 0);
  560. skb->protocol=eth_type_trans(skb,dev);
  561. netif_rx(skb);
  562. }
  563. rx_processing_done:
  564. /* Clear the status flags for this buffer.
  565. */
  566. status &= ~BD_ENET_RX_STATS;
  567. /* Mark the buffer empty.
  568. */
  569. status |= BD_ENET_RX_EMPTY;
  570. bdp->cbd_sc = status;
  571. /* Update BD pointer to next entry.
  572. */
  573. if (status & BD_ENET_RX_WRAP)
  574. bdp = fep->rx_bd_base;
  575. else
  576. bdp++;
  577. #if 1
  578. /* Doing this here will keep the FEC running while we process
  579. * incoming frames. On a heavily loaded network, we should be
  580. * able to keep up at the expense of system resources.
  581. */
  582. fecp->fec_r_des_active = 0;
  583. #endif
  584. } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
  585. fep->cur_rx = (cbd_t *)bdp;
  586. #if 0
  587. /* Doing this here will allow us to process all frames in the
  588. * ring before the FEC is allowed to put more there. On a heavily
  589. * loaded network, some frames may be lost. Unfortunately, this
  590. * increases the interrupt overhead since we can potentially work
  591. * our way back to the interrupt return only to come right back
  592. * here.
  593. */
  594. fecp->fec_r_des_active = 0;
  595. #endif
  596. }
  597. /* called from interrupt context */
  598. static void
  599. fec_enet_mii(struct net_device *dev)
  600. {
  601. struct fec_enet_private *fep;
  602. volatile fec_t *ep;
  603. mii_list_t *mip;
  604. uint mii_reg;
  605. fep = netdev_priv(dev);
  606. ep = fep->hwp;
  607. mii_reg = ep->fec_mii_data;
  608. spin_lock(&fep->lock);
  609. if ((mip = mii_head) == NULL) {
  610. printk("MII and no head!\n");
  611. goto unlock;
  612. }
  613. if (mip->mii_func != NULL)
  614. (*(mip->mii_func))(mii_reg, dev);
  615. mii_head = mip->mii_next;
  616. mip->mii_next = mii_free;
  617. mii_free = mip;
  618. if ((mip = mii_head) != NULL)
  619. ep->fec_mii_data = mip->mii_regval;
  620. unlock:
  621. spin_unlock(&fep->lock);
  622. }
  623. static int
  624. mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
  625. {
  626. struct fec_enet_private *fep;
  627. unsigned long flags;
  628. mii_list_t *mip;
  629. int retval;
  630. /* Add PHY address to register command.
  631. */
  632. fep = netdev_priv(dev);
  633. regval |= fep->phy_addr << 23;
  634. retval = 0;
  635. spin_lock_irqsave(&fep->lock,flags);
  636. if ((mip = mii_free) != NULL) {
  637. mii_free = mip->mii_next;
  638. mip->mii_regval = regval;
  639. mip->mii_func = func;
  640. mip->mii_next = NULL;
  641. if (mii_head) {
  642. mii_tail->mii_next = mip;
  643. mii_tail = mip;
  644. }
  645. else {
  646. mii_head = mii_tail = mip;
  647. fep->hwp->fec_mii_data = regval;
  648. }
  649. }
  650. else {
  651. retval = 1;
  652. }
  653. spin_unlock_irqrestore(&fep->lock,flags);
  654. return(retval);
  655. }
  656. static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
  657. {
  658. int k;
  659. if(!c)
  660. return;
  661. for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
  662. mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
  663. }
  664. }
  665. static void mii_parse_sr(uint mii_reg, struct net_device *dev)
  666. {
  667. struct fec_enet_private *fep = netdev_priv(dev);
  668. volatile uint *s = &(fep->phy_status);
  669. uint status;
  670. status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
  671. if (mii_reg & 0x0004)
  672. status |= PHY_STAT_LINK;
  673. if (mii_reg & 0x0010)
  674. status |= PHY_STAT_FAULT;
  675. if (mii_reg & 0x0020)
  676. status |= PHY_STAT_ANC;
  677. *s = status;
  678. }
  679. static void mii_parse_cr(uint mii_reg, struct net_device *dev)
  680. {
  681. struct fec_enet_private *fep = netdev_priv(dev);
  682. volatile uint *s = &(fep->phy_status);
  683. uint status;
  684. status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
  685. if (mii_reg & 0x1000)
  686. status |= PHY_CONF_ANE;
  687. if (mii_reg & 0x4000)
  688. status |= PHY_CONF_LOOP;
  689. *s = status;
  690. }
  691. static void mii_parse_anar(uint mii_reg, struct net_device *dev)
  692. {
  693. struct fec_enet_private *fep = netdev_priv(dev);
  694. volatile uint *s = &(fep->phy_status);
  695. uint status;
  696. status = *s & ~(PHY_CONF_SPMASK);
  697. if (mii_reg & 0x0020)
  698. status |= PHY_CONF_10HDX;
  699. if (mii_reg & 0x0040)
  700. status |= PHY_CONF_10FDX;
  701. if (mii_reg & 0x0080)
  702. status |= PHY_CONF_100HDX;
  703. if (mii_reg & 0x00100)
  704. status |= PHY_CONF_100FDX;
  705. *s = status;
  706. }
  707. /* ------------------------------------------------------------------------- */
  708. /* The Level one LXT970 is used by many boards */
  709. #define MII_LXT970_MIRROR 16 /* Mirror register */
  710. #define MII_LXT970_IER 17 /* Interrupt Enable Register */
  711. #define MII_LXT970_ISR 18 /* Interrupt Status Register */
  712. #define MII_LXT970_CONFIG 19 /* Configuration Register */
  713. #define MII_LXT970_CSR 20 /* Chip Status Register */
  714. static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
  715. {
  716. struct fec_enet_private *fep = netdev_priv(dev);
  717. volatile uint *s = &(fep->phy_status);
  718. uint status;
  719. status = *s & ~(PHY_STAT_SPMASK);
  720. if (mii_reg & 0x0800) {
  721. if (mii_reg & 0x1000)
  722. status |= PHY_STAT_100FDX;
  723. else
  724. status |= PHY_STAT_100HDX;
  725. } else {
  726. if (mii_reg & 0x1000)
  727. status |= PHY_STAT_10FDX;
  728. else
  729. status |= PHY_STAT_10HDX;
  730. }
  731. *s = status;
  732. }
  733. static phy_cmd_t const phy_cmd_lxt970_config[] = {
  734. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  735. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  736. { mk_mii_end, }
  737. };
  738. static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
  739. { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
  740. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  741. { mk_mii_end, }
  742. };
  743. static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
  744. /* read SR and ISR to acknowledge */
  745. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  746. { mk_mii_read(MII_LXT970_ISR), NULL },
  747. /* find out the current status */
  748. { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
  749. { mk_mii_end, }
  750. };
  751. static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
  752. { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
  753. { mk_mii_end, }
  754. };
  755. static phy_info_t const phy_info_lxt970 = {
  756. .id = 0x07810000,
  757. .name = "LXT970",
  758. .config = phy_cmd_lxt970_config,
  759. .startup = phy_cmd_lxt970_startup,
  760. .ack_int = phy_cmd_lxt970_ack_int,
  761. .shutdown = phy_cmd_lxt970_shutdown
  762. };
  763. /* ------------------------------------------------------------------------- */
  764. /* The Level one LXT971 is used on some of my custom boards */
  765. /* register definitions for the 971 */
  766. #define MII_LXT971_PCR 16 /* Port Control Register */
  767. #define MII_LXT971_SR2 17 /* Status Register 2 */
  768. #define MII_LXT971_IER 18 /* Interrupt Enable Register */
  769. #define MII_LXT971_ISR 19 /* Interrupt Status Register */
  770. #define MII_LXT971_LCR 20 /* LED Control Register */
  771. #define MII_LXT971_TCR 30 /* Transmit Control Register */
  772. /*
  773. * I had some nice ideas of running the MDIO faster...
  774. * The 971 should support 8MHz and I tried it, but things acted really
  775. * weird, so 2.5 MHz ought to be enough for anyone...
  776. */
  777. static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
  778. {
  779. struct fec_enet_private *fep = netdev_priv(dev);
  780. volatile uint *s = &(fep->phy_status);
  781. uint status;
  782. status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
  783. if (mii_reg & 0x0400) {
  784. fep->link = 1;
  785. status |= PHY_STAT_LINK;
  786. } else {
  787. fep->link = 0;
  788. }
  789. if (mii_reg & 0x0080)
  790. status |= PHY_STAT_ANC;
  791. if (mii_reg & 0x4000) {
  792. if (mii_reg & 0x0200)
  793. status |= PHY_STAT_100FDX;
  794. else
  795. status |= PHY_STAT_100HDX;
  796. } else {
  797. if (mii_reg & 0x0200)
  798. status |= PHY_STAT_10FDX;
  799. else
  800. status |= PHY_STAT_10HDX;
  801. }
  802. if (mii_reg & 0x0008)
  803. status |= PHY_STAT_FAULT;
  804. *s = status;
  805. }
  806. static phy_cmd_t const phy_cmd_lxt971_config[] = {
  807. /* limit to 10MBit because my prototype board
  808. * doesn't work with 100. */
  809. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  810. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  811. { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
  812. { mk_mii_end, }
  813. };
  814. static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
  815. { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
  816. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  817. { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
  818. /* Somehow does the 971 tell me that the link is down
  819. * the first read after power-up.
  820. * read here to get a valid value in ack_int */
  821. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  822. { mk_mii_end, }
  823. };
  824. static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
  825. /* acknowledge the int before reading status ! */
  826. { mk_mii_read(MII_LXT971_ISR), NULL },
  827. /* find out the current status */
  828. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  829. { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
  830. { mk_mii_end, }
  831. };
  832. static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
  833. { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
  834. { mk_mii_end, }
  835. };
  836. static phy_info_t const phy_info_lxt971 = {
  837. .id = 0x0001378e,
  838. .name = "LXT971",
  839. .config = phy_cmd_lxt971_config,
  840. .startup = phy_cmd_lxt971_startup,
  841. .ack_int = phy_cmd_lxt971_ack_int,
  842. .shutdown = phy_cmd_lxt971_shutdown
  843. };
  844. /* ------------------------------------------------------------------------- */
  845. /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
  846. /* register definitions */
  847. #define MII_QS6612_MCR 17 /* Mode Control Register */
  848. #define MII_QS6612_FTR 27 /* Factory Test Register */
  849. #define MII_QS6612_MCO 28 /* Misc. Control Register */
  850. #define MII_QS6612_ISR 29 /* Interrupt Source Register */
  851. #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
  852. #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
  853. static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
  854. {
  855. struct fec_enet_private *fep = netdev_priv(dev);
  856. volatile uint *s = &(fep->phy_status);
  857. uint status;
  858. status = *s & ~(PHY_STAT_SPMASK);
  859. switch((mii_reg >> 2) & 7) {
  860. case 1: status |= PHY_STAT_10HDX; break;
  861. case 2: status |= PHY_STAT_100HDX; break;
  862. case 5: status |= PHY_STAT_10FDX; break;
  863. case 6: status |= PHY_STAT_100FDX; break;
  864. }
  865. *s = status;
  866. }
  867. static phy_cmd_t const phy_cmd_qs6612_config[] = {
  868. /* The PHY powers up isolated on the RPX,
  869. * so send a command to allow operation.
  870. */
  871. { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
  872. /* parse cr and anar to get some info */
  873. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  874. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  875. { mk_mii_end, }
  876. };
  877. static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
  878. { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
  879. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  880. { mk_mii_end, }
  881. };
  882. static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
  883. /* we need to read ISR, SR and ANER to acknowledge */
  884. { mk_mii_read(MII_QS6612_ISR), NULL },
  885. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  886. { mk_mii_read(MII_REG_ANER), NULL },
  887. /* read pcr to get info */
  888. { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
  889. { mk_mii_end, }
  890. };
  891. static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
  892. { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
  893. { mk_mii_end, }
  894. };
  895. static phy_info_t const phy_info_qs6612 = {
  896. .id = 0x00181440,
  897. .name = "QS6612",
  898. .config = phy_cmd_qs6612_config,
  899. .startup = phy_cmd_qs6612_startup,
  900. .ack_int = phy_cmd_qs6612_ack_int,
  901. .shutdown = phy_cmd_qs6612_shutdown
  902. };
  903. /* ------------------------------------------------------------------------- */
  904. /* AMD AM79C874 phy */
  905. /* register definitions for the 874 */
  906. #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
  907. #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
  908. #define MII_AM79C874_DR 18 /* Diagnostic Register */
  909. #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
  910. #define MII_AM79C874_MCR 21 /* ModeControl Register */
  911. #define MII_AM79C874_DC 23 /* Disconnect Counter */
  912. #define MII_AM79C874_REC 24 /* Recieve Error Counter */
  913. static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
  914. {
  915. struct fec_enet_private *fep = netdev_priv(dev);
  916. volatile uint *s = &(fep->phy_status);
  917. uint status;
  918. status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
  919. if (mii_reg & 0x0080)
  920. status |= PHY_STAT_ANC;
  921. if (mii_reg & 0x0400)
  922. status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
  923. else
  924. status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
  925. *s = status;
  926. }
  927. static phy_cmd_t const phy_cmd_am79c874_config[] = {
  928. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  929. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  930. { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
  931. { mk_mii_end, }
  932. };
  933. static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
  934. { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
  935. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  936. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  937. { mk_mii_end, }
  938. };
  939. static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
  940. /* find out the current status */
  941. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  942. { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
  943. /* we only need to read ISR to acknowledge */
  944. { mk_mii_read(MII_AM79C874_ICSR), NULL },
  945. { mk_mii_end, }
  946. };
  947. static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
  948. { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
  949. { mk_mii_end, }
  950. };
  951. static phy_info_t const phy_info_am79c874 = {
  952. .id = 0x00022561,
  953. .name = "AM79C874",
  954. .config = phy_cmd_am79c874_config,
  955. .startup = phy_cmd_am79c874_startup,
  956. .ack_int = phy_cmd_am79c874_ack_int,
  957. .shutdown = phy_cmd_am79c874_shutdown
  958. };
  959. /* ------------------------------------------------------------------------- */
  960. /* Kendin KS8721BL phy */
  961. /* register definitions for the 8721 */
  962. #define MII_KS8721BL_RXERCR 21
  963. #define MII_KS8721BL_ICSR 22
  964. #define MII_KS8721BL_PHYCR 31
  965. static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
  966. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  967. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  968. { mk_mii_end, }
  969. };
  970. static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
  971. { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
  972. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  973. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  974. { mk_mii_end, }
  975. };
  976. static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
  977. /* find out the current status */
  978. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  979. /* we only need to read ISR to acknowledge */
  980. { mk_mii_read(MII_KS8721BL_ICSR), NULL },
  981. { mk_mii_end, }
  982. };
  983. static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
  984. { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
  985. { mk_mii_end, }
  986. };
  987. static phy_info_t const phy_info_ks8721bl = {
  988. .id = 0x00022161,
  989. .name = "KS8721BL",
  990. .config = phy_cmd_ks8721bl_config,
  991. .startup = phy_cmd_ks8721bl_startup,
  992. .ack_int = phy_cmd_ks8721bl_ack_int,
  993. .shutdown = phy_cmd_ks8721bl_shutdown
  994. };
  995. /* ------------------------------------------------------------------------- */
  996. /* register definitions for the DP83848 */
  997. #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
  998. static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
  999. {
  1000. struct fec_enet_private *fep = dev->priv;
  1001. volatile uint *s = &(fep->phy_status);
  1002. *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
  1003. /* Link up */
  1004. if (mii_reg & 0x0001) {
  1005. fep->link = 1;
  1006. *s |= PHY_STAT_LINK;
  1007. } else
  1008. fep->link = 0;
  1009. /* Status of link */
  1010. if (mii_reg & 0x0010) /* Autonegotioation complete */
  1011. *s |= PHY_STAT_ANC;
  1012. if (mii_reg & 0x0002) { /* 10MBps? */
  1013. if (mii_reg & 0x0004) /* Full Duplex? */
  1014. *s |= PHY_STAT_10FDX;
  1015. else
  1016. *s |= PHY_STAT_10HDX;
  1017. } else { /* 100 Mbps? */
  1018. if (mii_reg & 0x0004) /* Full Duplex? */
  1019. *s |= PHY_STAT_100FDX;
  1020. else
  1021. *s |= PHY_STAT_100HDX;
  1022. }
  1023. if (mii_reg & 0x0008)
  1024. *s |= PHY_STAT_FAULT;
  1025. }
  1026. static phy_info_t phy_info_dp83848= {
  1027. 0x020005c9,
  1028. "DP83848",
  1029. (const phy_cmd_t []) { /* config */
  1030. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  1031. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  1032. { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
  1033. { mk_mii_end, }
  1034. },
  1035. (const phy_cmd_t []) { /* startup - enable interrupts */
  1036. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  1037. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  1038. { mk_mii_end, }
  1039. },
  1040. (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
  1041. { mk_mii_end, }
  1042. },
  1043. (const phy_cmd_t []) { /* shutdown */
  1044. { mk_mii_end, }
  1045. },
  1046. };
  1047. /* ------------------------------------------------------------------------- */
  1048. static phy_info_t const * const phy_info[] = {
  1049. &phy_info_lxt970,
  1050. &phy_info_lxt971,
  1051. &phy_info_qs6612,
  1052. &phy_info_am79c874,
  1053. &phy_info_ks8721bl,
  1054. &phy_info_dp83848,
  1055. NULL
  1056. };
  1057. /* ------------------------------------------------------------------------- */
  1058. #if !defined(CONFIG_M532x)
  1059. #ifdef CONFIG_RPXCLASSIC
  1060. static void
  1061. mii_link_interrupt(void *dev_id);
  1062. #else
  1063. static irqreturn_t
  1064. mii_link_interrupt(int irq, void * dev_id);
  1065. #endif
  1066. #endif
  1067. #if defined(CONFIG_M5272)
  1068. /*
  1069. * Code specific to Coldfire 5272 setup.
  1070. */
  1071. static void __inline__ fec_request_intrs(struct net_device *dev)
  1072. {
  1073. volatile unsigned long *icrp;
  1074. static const struct idesc {
  1075. char *name;
  1076. unsigned short irq;
  1077. irq_handler_t handler;
  1078. } *idp, id[] = {
  1079. { "fec(RX)", 86, fec_enet_interrupt },
  1080. { "fec(TX)", 87, fec_enet_interrupt },
  1081. { "fec(OTHER)", 88, fec_enet_interrupt },
  1082. { "fec(MII)", 66, mii_link_interrupt },
  1083. { NULL },
  1084. };
  1085. /* Setup interrupt handlers. */
  1086. for (idp = id; idp->name; idp++) {
  1087. if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
  1088. printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
  1089. }
  1090. /* Unmask interrupt at ColdFire 5272 SIM */
  1091. icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
  1092. *icrp = 0x00000ddd;
  1093. icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
  1094. *icrp = (*icrp & 0x70777777) | 0x0d000000;
  1095. }
  1096. static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
  1097. {
  1098. volatile fec_t *fecp;
  1099. fecp = fep->hwp;
  1100. fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
  1101. fecp->fec_x_cntrl = 0x00;
  1102. /*
  1103. * Set MII speed to 2.5 MHz
  1104. * See 5272 manual section 11.5.8: MSCR
  1105. */
  1106. fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
  1107. fecp->fec_mii_speed = fep->phy_speed;
  1108. fec_restart(dev, 0);
  1109. }
  1110. static void __inline__ fec_get_mac(struct net_device *dev)
  1111. {
  1112. struct fec_enet_private *fep = netdev_priv(dev);
  1113. volatile fec_t *fecp;
  1114. unsigned char *iap, tmpaddr[ETH_ALEN];
  1115. fecp = fep->hwp;
  1116. if (FEC_FLASHMAC) {
  1117. /*
  1118. * Get MAC address from FLASH.
  1119. * If it is all 1's or 0's, use the default.
  1120. */
  1121. iap = (unsigned char *)FEC_FLASHMAC;
  1122. if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
  1123. (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
  1124. iap = fec_mac_default;
  1125. if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
  1126. (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
  1127. iap = fec_mac_default;
  1128. } else {
  1129. *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
  1130. *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
  1131. iap = &tmpaddr[0];
  1132. }
  1133. memcpy(dev->dev_addr, iap, ETH_ALEN);
  1134. /* Adjust MAC if using default MAC address */
  1135. if (iap == fec_mac_default)
  1136. dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
  1137. }
  1138. static void __inline__ fec_enable_phy_intr(void)
  1139. {
  1140. }
  1141. static void __inline__ fec_disable_phy_intr(void)
  1142. {
  1143. volatile unsigned long *icrp;
  1144. icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
  1145. *icrp = (*icrp & 0x70777777) | 0x08000000;
  1146. }
  1147. static void __inline__ fec_phy_ack_intr(void)
  1148. {
  1149. volatile unsigned long *icrp;
  1150. /* Acknowledge the interrupt */
  1151. icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
  1152. *icrp = (*icrp & 0x77777777) | 0x08000000;
  1153. }
  1154. static void __inline__ fec_localhw_setup(void)
  1155. {
  1156. }
  1157. /*
  1158. * Do not need to make region uncached on 5272.
  1159. */
  1160. static void __inline__ fec_uncache(unsigned long addr)
  1161. {
  1162. }
  1163. /* ------------------------------------------------------------------------- */
  1164. #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
  1165. /*
  1166. * Code specific to Coldfire 5230/5231/5232/5234/5235,
  1167. * the 5270/5271/5274/5275 and 5280/5282 setups.
  1168. */
  1169. static void __inline__ fec_request_intrs(struct net_device *dev)
  1170. {
  1171. struct fec_enet_private *fep;
  1172. int b;
  1173. static const struct idesc {
  1174. char *name;
  1175. unsigned short irq;
  1176. } *idp, id[] = {
  1177. { "fec(TXF)", 23 },
  1178. { "fec(TXB)", 24 },
  1179. { "fec(TXFIFO)", 25 },
  1180. { "fec(TXCR)", 26 },
  1181. { "fec(RXF)", 27 },
  1182. { "fec(RXB)", 28 },
  1183. { "fec(MII)", 29 },
  1184. { "fec(LC)", 30 },
  1185. { "fec(HBERR)", 31 },
  1186. { "fec(GRA)", 32 },
  1187. { "fec(EBERR)", 33 },
  1188. { "fec(BABT)", 34 },
  1189. { "fec(BABR)", 35 },
  1190. { NULL },
  1191. };
  1192. fep = netdev_priv(dev);
  1193. b = (fep->index) ? 128 : 64;
  1194. /* Setup interrupt handlers. */
  1195. for (idp = id; idp->name; idp++) {
  1196. if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
  1197. printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
  1198. }
  1199. /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
  1200. {
  1201. volatile unsigned char *icrp;
  1202. volatile unsigned long *imrp;
  1203. int i, ilip;
  1204. b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
  1205. icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
  1206. MCFINTC_ICR0);
  1207. for (i = 23, ilip = 0x28; (i < 36); i++)
  1208. icrp[i] = ilip--;
  1209. imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
  1210. MCFINTC_IMRH);
  1211. *imrp &= ~0x0000000f;
  1212. imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
  1213. MCFINTC_IMRL);
  1214. *imrp &= ~0xff800001;
  1215. }
  1216. #if defined(CONFIG_M528x)
  1217. /* Set up gpio outputs for MII lines */
  1218. {
  1219. volatile u16 *gpio_paspar;
  1220. volatile u8 *gpio_pehlpar;
  1221. gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
  1222. gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
  1223. *gpio_paspar |= 0x0f00;
  1224. *gpio_pehlpar = 0xc0;
  1225. }
  1226. #endif
  1227. }
  1228. static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
  1229. {
  1230. volatile fec_t *fecp;
  1231. fecp = fep->hwp;
  1232. fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
  1233. fecp->fec_x_cntrl = 0x00;
  1234. /*
  1235. * Set MII speed to 2.5 MHz
  1236. * See 5282 manual section 17.5.4.7: MSCR
  1237. */
  1238. fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
  1239. fecp->fec_mii_speed = fep->phy_speed;
  1240. fec_restart(dev, 0);
  1241. }
  1242. static void __inline__ fec_get_mac(struct net_device *dev)
  1243. {
  1244. struct fec_enet_private *fep = netdev_priv(dev);
  1245. volatile fec_t *fecp;
  1246. unsigned char *iap, tmpaddr[ETH_ALEN];
  1247. fecp = fep->hwp;
  1248. if (FEC_FLASHMAC) {
  1249. /*
  1250. * Get MAC address from FLASH.
  1251. * If it is all 1's or 0's, use the default.
  1252. */
  1253. iap = FEC_FLASHMAC;
  1254. if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
  1255. (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
  1256. iap = fec_mac_default;
  1257. if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
  1258. (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
  1259. iap = fec_mac_default;
  1260. } else {
  1261. *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
  1262. *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
  1263. iap = &tmpaddr[0];
  1264. }
  1265. memcpy(dev->dev_addr, iap, ETH_ALEN);
  1266. /* Adjust MAC if using default MAC address */
  1267. if (iap == fec_mac_default)
  1268. dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
  1269. }
  1270. static void __inline__ fec_enable_phy_intr(void)
  1271. {
  1272. }
  1273. static void __inline__ fec_disable_phy_intr(void)
  1274. {
  1275. }
  1276. static void __inline__ fec_phy_ack_intr(void)
  1277. {
  1278. }
  1279. static void __inline__ fec_localhw_setup(void)
  1280. {
  1281. }
  1282. /*
  1283. * Do not need to make region uncached on 5272.
  1284. */
  1285. static void __inline__ fec_uncache(unsigned long addr)
  1286. {
  1287. }
  1288. /* ------------------------------------------------------------------------- */
  1289. #elif defined(CONFIG_M520x)
  1290. /*
  1291. * Code specific to Coldfire 520x
  1292. */
  1293. static void __inline__ fec_request_intrs(struct net_device *dev)
  1294. {
  1295. struct fec_enet_private *fep;
  1296. int b;
  1297. static const struct idesc {
  1298. char *name;
  1299. unsigned short irq;
  1300. } *idp, id[] = {
  1301. { "fec(TXF)", 23 },
  1302. { "fec(TXB)", 24 },
  1303. { "fec(TXFIFO)", 25 },
  1304. { "fec(TXCR)", 26 },
  1305. { "fec(RXF)", 27 },
  1306. { "fec(RXB)", 28 },
  1307. { "fec(MII)", 29 },
  1308. { "fec(LC)", 30 },
  1309. { "fec(HBERR)", 31 },
  1310. { "fec(GRA)", 32 },
  1311. { "fec(EBERR)", 33 },
  1312. { "fec(BABT)", 34 },
  1313. { "fec(BABR)", 35 },
  1314. { NULL },
  1315. };
  1316. fep = netdev_priv(dev);
  1317. b = 64 + 13;
  1318. /* Setup interrupt handlers. */
  1319. for (idp = id; idp->name; idp++) {
  1320. if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
  1321. printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
  1322. }
  1323. /* Unmask interrupts at ColdFire interrupt controller */
  1324. {
  1325. volatile unsigned char *icrp;
  1326. volatile unsigned long *imrp;
  1327. icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 +
  1328. MCFINTC_ICR0);
  1329. for (b = 36; (b < 49); b++)
  1330. icrp[b] = 0x04;
  1331. imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 +
  1332. MCFINTC_IMRH);
  1333. *imrp &= ~0x0001FFF0;
  1334. }
  1335. *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0;
  1336. *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f;
  1337. }
  1338. static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
  1339. {
  1340. volatile fec_t *fecp;
  1341. fecp = fep->hwp;
  1342. fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
  1343. fecp->fec_x_cntrl = 0x00;
  1344. /*
  1345. * Set MII speed to 2.5 MHz
  1346. * See 5282 manual section 17.5.4.7: MSCR
  1347. */
  1348. fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
  1349. fecp->fec_mii_speed = fep->phy_speed;
  1350. fec_restart(dev, 0);
  1351. }
  1352. static void __inline__ fec_get_mac(struct net_device *dev)
  1353. {
  1354. struct fec_enet_private *fep = netdev_priv(dev);
  1355. volatile fec_t *fecp;
  1356. unsigned char *iap, tmpaddr[ETH_ALEN];
  1357. fecp = fep->hwp;
  1358. if (FEC_FLASHMAC) {
  1359. /*
  1360. * Get MAC address from FLASH.
  1361. * If it is all 1's or 0's, use the default.
  1362. */
  1363. iap = FEC_FLASHMAC;
  1364. if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
  1365. (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
  1366. iap = fec_mac_default;
  1367. if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
  1368. (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
  1369. iap = fec_mac_default;
  1370. } else {
  1371. *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
  1372. *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
  1373. iap = &tmpaddr[0];
  1374. }
  1375. memcpy(dev->dev_addr, iap, ETH_ALEN);
  1376. /* Adjust MAC if using default MAC address */
  1377. if (iap == fec_mac_default)
  1378. dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
  1379. }
  1380. static void __inline__ fec_enable_phy_intr(void)
  1381. {
  1382. }
  1383. static void __inline__ fec_disable_phy_intr(void)
  1384. {
  1385. }
  1386. static void __inline__ fec_phy_ack_intr(void)
  1387. {
  1388. }
  1389. static void __inline__ fec_localhw_setup(void)
  1390. {
  1391. }
  1392. static void __inline__ fec_uncache(unsigned long addr)
  1393. {
  1394. }
  1395. /* ------------------------------------------------------------------------- */
  1396. #elif defined(CONFIG_M532x)
  1397. /*
  1398. * Code specific for M532x
  1399. */
  1400. static void __inline__ fec_request_intrs(struct net_device *dev)
  1401. {
  1402. struct fec_enet_private *fep;
  1403. int b;
  1404. static const struct idesc {
  1405. char *name;
  1406. unsigned short irq;
  1407. } *idp, id[] = {
  1408. { "fec(TXF)", 36 },
  1409. { "fec(TXB)", 37 },
  1410. { "fec(TXFIFO)", 38 },
  1411. { "fec(TXCR)", 39 },
  1412. { "fec(RXF)", 40 },
  1413. { "fec(RXB)", 41 },
  1414. { "fec(MII)", 42 },
  1415. { "fec(LC)", 43 },
  1416. { "fec(HBERR)", 44 },
  1417. { "fec(GRA)", 45 },
  1418. { "fec(EBERR)", 46 },
  1419. { "fec(BABT)", 47 },
  1420. { "fec(BABR)", 48 },
  1421. { NULL },
  1422. };
  1423. fep = netdev_priv(dev);
  1424. b = (fep->index) ? 128 : 64;
  1425. /* Setup interrupt handlers. */
  1426. for (idp = id; idp->name; idp++) {
  1427. if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0)
  1428. printk("FEC: Could not allocate %s IRQ(%d)!\n",
  1429. idp->name, b+idp->irq);
  1430. }
  1431. /* Unmask interrupts */
  1432. MCF_INTC0_ICR36 = 0x2;
  1433. MCF_INTC0_ICR37 = 0x2;
  1434. MCF_INTC0_ICR38 = 0x2;
  1435. MCF_INTC0_ICR39 = 0x2;
  1436. MCF_INTC0_ICR40 = 0x2;
  1437. MCF_INTC0_ICR41 = 0x2;
  1438. MCF_INTC0_ICR42 = 0x2;
  1439. MCF_INTC0_ICR43 = 0x2;
  1440. MCF_INTC0_ICR44 = 0x2;
  1441. MCF_INTC0_ICR45 = 0x2;
  1442. MCF_INTC0_ICR46 = 0x2;
  1443. MCF_INTC0_ICR47 = 0x2;
  1444. MCF_INTC0_ICR48 = 0x2;
  1445. MCF_INTC0_IMRH &= ~(
  1446. MCF_INTC_IMRH_INT_MASK36 |
  1447. MCF_INTC_IMRH_INT_MASK37 |
  1448. MCF_INTC_IMRH_INT_MASK38 |
  1449. MCF_INTC_IMRH_INT_MASK39 |
  1450. MCF_INTC_IMRH_INT_MASK40 |
  1451. MCF_INTC_IMRH_INT_MASK41 |
  1452. MCF_INTC_IMRH_INT_MASK42 |
  1453. MCF_INTC_IMRH_INT_MASK43 |
  1454. MCF_INTC_IMRH_INT_MASK44 |
  1455. MCF_INTC_IMRH_INT_MASK45 |
  1456. MCF_INTC_IMRH_INT_MASK46 |
  1457. MCF_INTC_IMRH_INT_MASK47 |
  1458. MCF_INTC_IMRH_INT_MASK48 );
  1459. /* Set up gpio outputs for MII lines */
  1460. MCF_GPIO_PAR_FECI2C |= (0 |
  1461. MCF_GPIO_PAR_FECI2C_PAR_MDC_EMDC |
  1462. MCF_GPIO_PAR_FECI2C_PAR_MDIO_EMDIO);
  1463. MCF_GPIO_PAR_FEC = (0 |
  1464. MCF_GPIO_PAR_FEC_PAR_FEC_7W_FEC |
  1465. MCF_GPIO_PAR_FEC_PAR_FEC_MII_FEC);
  1466. }
  1467. static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
  1468. {
  1469. volatile fec_t *fecp;
  1470. fecp = fep->hwp;
  1471. fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
  1472. fecp->fec_x_cntrl = 0x00;
  1473. /*
  1474. * Set MII speed to 2.5 MHz
  1475. */
  1476. fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
  1477. fecp->fec_mii_speed = fep->phy_speed;
  1478. fec_restart(dev, 0);
  1479. }
  1480. static void __inline__ fec_get_mac(struct net_device *dev)
  1481. {
  1482. struct fec_enet_private *fep = netdev_priv(dev);
  1483. volatile fec_t *fecp;
  1484. unsigned char *iap, tmpaddr[ETH_ALEN];
  1485. fecp = fep->hwp;
  1486. if (FEC_FLASHMAC) {
  1487. /*
  1488. * Get MAC address from FLASH.
  1489. * If it is all 1's or 0's, use the default.
  1490. */
  1491. iap = FEC_FLASHMAC;
  1492. if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
  1493. (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
  1494. iap = fec_mac_default;
  1495. if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
  1496. (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
  1497. iap = fec_mac_default;
  1498. } else {
  1499. *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
  1500. *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
  1501. iap = &tmpaddr[0];
  1502. }
  1503. memcpy(dev->dev_addr, iap, ETH_ALEN);
  1504. /* Adjust MAC if using default MAC address */
  1505. if (iap == fec_mac_default)
  1506. dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
  1507. }
  1508. static void __inline__ fec_enable_phy_intr(void)
  1509. {
  1510. }
  1511. static void __inline__ fec_disable_phy_intr(void)
  1512. {
  1513. }
  1514. static void __inline__ fec_phy_ack_intr(void)
  1515. {
  1516. }
  1517. static void __inline__ fec_localhw_setup(void)
  1518. {
  1519. }
  1520. /*
  1521. * Do not need to make region uncached on 532x.
  1522. */
  1523. static void __inline__ fec_uncache(unsigned long addr)
  1524. {
  1525. }
  1526. /* ------------------------------------------------------------------------- */
  1527. #else
  1528. /*
  1529. * Code specific to the MPC860T setup.
  1530. */
  1531. static void __inline__ fec_request_intrs(struct net_device *dev)
  1532. {
  1533. volatile immap_t *immap;
  1534. immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
  1535. if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
  1536. panic("Could not allocate FEC IRQ!");
  1537. #ifdef CONFIG_RPXCLASSIC
  1538. /* Make Port C, bit 15 an input that causes interrupts.
  1539. */
  1540. immap->im_ioport.iop_pcpar &= ~0x0001;
  1541. immap->im_ioport.iop_pcdir &= ~0x0001;
  1542. immap->im_ioport.iop_pcso &= ~0x0001;
  1543. immap->im_ioport.iop_pcint |= 0x0001;
  1544. cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
  1545. /* Make LEDS reflect Link status.
  1546. */
  1547. *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
  1548. #endif
  1549. #ifdef CONFIG_FADS
  1550. if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
  1551. panic("Could not allocate MII IRQ!");
  1552. #endif
  1553. }
  1554. static void __inline__ fec_get_mac(struct net_device *dev)
  1555. {
  1556. bd_t *bd;
  1557. bd = (bd_t *)__res;
  1558. memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
  1559. #ifdef CONFIG_RPXCLASSIC
  1560. /* The Embedded Planet boards have only one MAC address in
  1561. * the EEPROM, but can have two Ethernet ports. For the
  1562. * FEC port, we create another address by setting one of
  1563. * the address bits above something that would have (up to
  1564. * now) been allocated.
  1565. */
  1566. dev->dev_adrd[3] |= 0x80;
  1567. #endif
  1568. }
  1569. static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
  1570. {
  1571. extern uint _get_IMMR(void);
  1572. volatile immap_t *immap;
  1573. volatile fec_t *fecp;
  1574. fecp = fep->hwp;
  1575. immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
  1576. /* Configure all of port D for MII.
  1577. */
  1578. immap->im_ioport.iop_pdpar = 0x1fff;
  1579. /* Bits moved from Rev. D onward.
  1580. */
  1581. if ((_get_IMMR() & 0xffff) < 0x0501)
  1582. immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
  1583. else
  1584. immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
  1585. /* Set MII speed to 2.5 MHz
  1586. */
  1587. fecp->fec_mii_speed = fep->phy_speed =
  1588. ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
  1589. }
  1590. static void __inline__ fec_enable_phy_intr(void)
  1591. {
  1592. volatile fec_t *fecp;
  1593. fecp = fep->hwp;
  1594. /* Enable MII command finished interrupt
  1595. */
  1596. fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
  1597. }
  1598. static void __inline__ fec_disable_phy_intr(void)
  1599. {
  1600. }
  1601. static void __inline__ fec_phy_ack_intr(void)
  1602. {
  1603. }
  1604. static void __inline__ fec_localhw_setup(void)
  1605. {
  1606. volatile fec_t *fecp;
  1607. fecp = fep->hwp;
  1608. fecp->fec_r_hash = PKT_MAXBUF_SIZE;
  1609. /* Enable big endian and don't care about SDMA FC.
  1610. */
  1611. fecp->fec_fun_code = 0x78000000;
  1612. }
  1613. static void __inline__ fec_uncache(unsigned long addr)
  1614. {
  1615. pte_t *pte;
  1616. pte = va_to_pte(mem_addr);
  1617. pte_val(*pte) |= _PAGE_NO_CACHE;
  1618. flush_tlb_page(init_mm.mmap, mem_addr);
  1619. }
  1620. #endif
  1621. /* ------------------------------------------------------------------------- */
  1622. static void mii_display_status(struct net_device *dev)
  1623. {
  1624. struct fec_enet_private *fep = netdev_priv(dev);
  1625. volatile uint *s = &(fep->phy_status);
  1626. if (!fep->link && !fep->old_link) {
  1627. /* Link is still down - don't print anything */
  1628. return;
  1629. }
  1630. printk("%s: status: ", dev->name);
  1631. if (!fep->link) {
  1632. printk("link down");
  1633. } else {
  1634. printk("link up");
  1635. switch(*s & PHY_STAT_SPMASK) {
  1636. case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
  1637. case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
  1638. case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
  1639. case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
  1640. default:
  1641. printk(", Unknown speed/duplex");
  1642. }
  1643. if (*s & PHY_STAT_ANC)
  1644. printk(", auto-negotiation complete");
  1645. }
  1646. if (*s & PHY_STAT_FAULT)
  1647. printk(", remote fault");
  1648. printk(".\n");
  1649. }
  1650. static void mii_display_config(struct net_device *dev)
  1651. {
  1652. struct fec_enet_private *fep = netdev_priv(dev);
  1653. uint status = fep->phy_status;
  1654. /*
  1655. ** When we get here, phy_task is already removed from
  1656. ** the workqueue. It is thus safe to allow to reuse it.
  1657. */
  1658. fep->mii_phy_task_queued = 0;
  1659. printk("%s: config: auto-negotiation ", dev->name);
  1660. if (status & PHY_CONF_ANE)
  1661. printk("on");
  1662. else
  1663. printk("off");
  1664. if (status & PHY_CONF_100FDX)
  1665. printk(", 100FDX");
  1666. if (status & PHY_CONF_100HDX)
  1667. printk(", 100HDX");
  1668. if (status & PHY_CONF_10FDX)
  1669. printk(", 10FDX");
  1670. if (status & PHY_CONF_10HDX)
  1671. printk(", 10HDX");
  1672. if (!(status & PHY_CONF_SPMASK))
  1673. printk(", No speed/duplex selected?");
  1674. if (status & PHY_CONF_LOOP)
  1675. printk(", loopback enabled");
  1676. printk(".\n");
  1677. fep->sequence_done = 1;
  1678. }
  1679. static void mii_relink(struct net_device *dev)
  1680. {
  1681. struct fec_enet_private *fep = netdev_priv(dev);
  1682. int duplex;
  1683. /*
  1684. ** When we get here, phy_task is already removed from
  1685. ** the workqueue. It is thus safe to allow to reuse it.
  1686. */
  1687. fep->mii_phy_task_queued = 0;
  1688. fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
  1689. mii_display_status(dev);
  1690. fep->old_link = fep->link;
  1691. if (fep->link) {
  1692. duplex = 0;
  1693. if (fep->phy_status
  1694. & (PHY_STAT_100FDX | PHY_STAT_10FDX))
  1695. duplex = 1;
  1696. fec_restart(dev, duplex);
  1697. }
  1698. else
  1699. fec_stop(dev);
  1700. #if 0
  1701. enable_irq(fep->mii_irq);
  1702. #endif
  1703. }
  1704. /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
  1705. static void mii_queue_relink(uint mii_reg, struct net_device *dev)
  1706. {
  1707. struct fec_enet_private *fep = netdev_priv(dev);
  1708. /*
  1709. ** We cannot queue phy_task twice in the workqueue. It
  1710. ** would cause an endless loop in the workqueue.
  1711. ** Fortunately, if the last mii_relink entry has not yet been
  1712. ** executed now, it will do the job for the current interrupt,
  1713. ** which is just what we want.
  1714. */
  1715. if (fep->mii_phy_task_queued)
  1716. return;
  1717. fep->mii_phy_task_queued = 1;
  1718. INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
  1719. schedule_work(&fep->phy_task);
  1720. }
  1721. /* mii_queue_config is called in interrupt context from fec_enet_mii */
  1722. static void mii_queue_config(uint mii_reg, struct net_device *dev)
  1723. {
  1724. struct fec_enet_private *fep = netdev_priv(dev);
  1725. if (fep->mii_phy_task_queued)
  1726. return;
  1727. fep->mii_phy_task_queued = 1;
  1728. INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
  1729. schedule_work(&fep->phy_task);
  1730. }
  1731. phy_cmd_t const phy_cmd_relink[] = {
  1732. { mk_mii_read(MII_REG_CR), mii_queue_relink },
  1733. { mk_mii_end, }
  1734. };
  1735. phy_cmd_t const phy_cmd_config[] = {
  1736. { mk_mii_read(MII_REG_CR), mii_queue_config },
  1737. { mk_mii_end, }
  1738. };
  1739. /* Read remainder of PHY ID.
  1740. */
  1741. static void
  1742. mii_discover_phy3(uint mii_reg, struct net_device *dev)
  1743. {
  1744. struct fec_enet_private *fep;
  1745. int i;
  1746. fep = netdev_priv(dev);
  1747. fep->phy_id |= (mii_reg & 0xffff);
  1748. printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
  1749. for(i = 0; phy_info[i]; i++) {
  1750. if(phy_info[i]->id == (fep->phy_id >> 4))
  1751. break;
  1752. }
  1753. if (phy_info[i])
  1754. printk(" -- %s\n", phy_info[i]->name);
  1755. else
  1756. printk(" -- unknown PHY!\n");
  1757. fep->phy = phy_info[i];
  1758. fep->phy_id_done = 1;
  1759. }
  1760. /* Scan all of the MII PHY addresses looking for someone to respond
  1761. * with a valid ID. This usually happens quickly.
  1762. */
  1763. static void
  1764. mii_discover_phy(uint mii_reg, struct net_device *dev)
  1765. {
  1766. struct fec_enet_private *fep;
  1767. volatile fec_t *fecp;
  1768. uint phytype;
  1769. fep = netdev_priv(dev);
  1770. fecp = fep->hwp;
  1771. if (fep->phy_addr < 32) {
  1772. if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
  1773. /* Got first part of ID, now get remainder.
  1774. */
  1775. fep->phy_id = phytype << 16;
  1776. mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
  1777. mii_discover_phy3);
  1778. }
  1779. else {
  1780. fep->phy_addr++;
  1781. mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
  1782. mii_discover_phy);
  1783. }
  1784. } else {
  1785. printk("FEC: No PHY device found.\n");
  1786. /* Disable external MII interface */
  1787. fecp->fec_mii_speed = fep->phy_speed = 0;
  1788. fec_disable_phy_intr();
  1789. }
  1790. }
  1791. /* This interrupt occurs when the PHY detects a link change.
  1792. */
  1793. #ifdef CONFIG_RPXCLASSIC
  1794. static void
  1795. mii_link_interrupt(void *dev_id)
  1796. #else
  1797. static irqreturn_t
  1798. mii_link_interrupt(int irq, void * dev_id)
  1799. #endif
  1800. {
  1801. struct net_device *dev = dev_id;
  1802. struct fec_enet_private *fep = netdev_priv(dev);
  1803. fec_phy_ack_intr();
  1804. #if 0
  1805. disable_irq(fep->mii_irq); /* disable now, enable later */
  1806. #endif
  1807. mii_do_cmd(dev, fep->phy->ack_int);
  1808. mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
  1809. return IRQ_HANDLED;
  1810. }
  1811. static int
  1812. fec_enet_open(struct net_device *dev)
  1813. {
  1814. struct fec_enet_private *fep = netdev_priv(dev);
  1815. /* I should reset the ring buffers here, but I don't yet know
  1816. * a simple way to do that.
  1817. */
  1818. fec_set_mac_address(dev);
  1819. fep->sequence_done = 0;
  1820. fep->link = 0;
  1821. if (fep->phy) {
  1822. mii_do_cmd(dev, fep->phy->ack_int);
  1823. mii_do_cmd(dev, fep->phy->config);
  1824. mii_do_cmd(dev, phy_cmd_config); /* display configuration */
  1825. /* Poll until the PHY tells us its configuration
  1826. * (not link state).
  1827. * Request is initiated by mii_do_cmd above, but answer
  1828. * comes by interrupt.
  1829. * This should take about 25 usec per register at 2.5 MHz,
  1830. * and we read approximately 5 registers.
  1831. */
  1832. while(!fep->sequence_done)
  1833. schedule();
  1834. mii_do_cmd(dev, fep->phy->startup);
  1835. /* Set the initial link state to true. A lot of hardware
  1836. * based on this device does not implement a PHY interrupt,
  1837. * so we are never notified of link change.
  1838. */
  1839. fep->link = 1;
  1840. } else {
  1841. fep->link = 1; /* lets just try it and see */
  1842. /* no phy, go full duplex, it's most likely a hub chip */
  1843. fec_restart(dev, 1);
  1844. }
  1845. netif_start_queue(dev);
  1846. fep->opened = 1;
  1847. return 0; /* Success */
  1848. }
  1849. static int
  1850. fec_enet_close(struct net_device *dev)
  1851. {
  1852. struct fec_enet_private *fep = netdev_priv(dev);
  1853. /* Don't know what to do yet.
  1854. */
  1855. fep->opened = 0;
  1856. netif_stop_queue(dev);
  1857. fec_stop(dev);
  1858. return 0;
  1859. }
  1860. static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
  1861. {
  1862. struct fec_enet_private *fep = netdev_priv(dev);
  1863. return &fep->stats;
  1864. }
  1865. /* Set or clear the multicast filter for this adaptor.
  1866. * Skeleton taken from sunlance driver.
  1867. * The CPM Ethernet implementation allows Multicast as well as individual
  1868. * MAC address filtering. Some of the drivers check to make sure it is
  1869. * a group multicast address, and discard those that are not. I guess I
  1870. * will do the same for now, but just remove the test if you want
  1871. * individual filtering as well (do the upper net layers want or support
  1872. * this kind of feature?).
  1873. */
  1874. #define HASH_BITS 6 /* #bits in hash */
  1875. #define CRC32_POLY 0xEDB88320
  1876. static void set_multicast_list(struct net_device *dev)
  1877. {
  1878. struct fec_enet_private *fep;
  1879. volatile fec_t *ep;
  1880. struct dev_mc_list *dmi;
  1881. unsigned int i, j, bit, data, crc;
  1882. unsigned char hash;
  1883. fep = netdev_priv(dev);
  1884. ep = fep->hwp;
  1885. if (dev->flags&IFF_PROMISC) {
  1886. ep->fec_r_cntrl |= 0x0008;
  1887. } else {
  1888. ep->fec_r_cntrl &= ~0x0008;
  1889. if (dev->flags & IFF_ALLMULTI) {
  1890. /* Catch all multicast addresses, so set the
  1891. * filter to all 1's.
  1892. */
  1893. ep->fec_hash_table_high = 0xffffffff;
  1894. ep->fec_hash_table_low = 0xffffffff;
  1895. } else {
  1896. /* Clear filter and add the addresses in hash register.
  1897. */
  1898. ep->fec_hash_table_high = 0;
  1899. ep->fec_hash_table_low = 0;
  1900. dmi = dev->mc_list;
  1901. for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
  1902. {
  1903. /* Only support group multicast for now.
  1904. */
  1905. if (!(dmi->dmi_addr[0] & 1))
  1906. continue;
  1907. /* calculate crc32 value of mac address
  1908. */
  1909. crc = 0xffffffff;
  1910. for (i = 0; i < dmi->dmi_addrlen; i++)
  1911. {
  1912. data = dmi->dmi_addr[i];
  1913. for (bit = 0; bit < 8; bit++, data >>= 1)
  1914. {
  1915. crc = (crc >> 1) ^
  1916. (((crc ^ data) & 1) ? CRC32_POLY : 0);
  1917. }
  1918. }
  1919. /* only upper 6 bits (HASH_BITS) are used
  1920. which point to specific bit in he hash registers
  1921. */
  1922. hash = (crc >> (32 - HASH_BITS)) & 0x3f;
  1923. if (hash > 31)
  1924. ep->fec_hash_table_high |= 1 << (hash - 32);
  1925. else
  1926. ep->fec_hash_table_low |= 1 << hash;
  1927. }
  1928. }
  1929. }
  1930. }
  1931. /* Set a MAC change in hardware.
  1932. */
  1933. static void
  1934. fec_set_mac_address(struct net_device *dev)
  1935. {
  1936. volatile fec_t *fecp;
  1937. fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
  1938. /* Set station address. */
  1939. fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
  1940. (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
  1941. fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
  1942. (dev->dev_addr[4] << 24);
  1943. }
  1944. /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
  1945. */
  1946. /*
  1947. * XXX: We need to clean up on failure exits here.
  1948. */
  1949. int __init fec_enet_init(struct net_device *dev)
  1950. {
  1951. struct fec_enet_private *fep = netdev_priv(dev);
  1952. unsigned long mem_addr;
  1953. volatile cbd_t *bdp;
  1954. cbd_t *cbd_base;
  1955. volatile fec_t *fecp;
  1956. int i, j;
  1957. static int index = 0;
  1958. /* Only allow us to be probed once. */
  1959. if (index >= FEC_MAX_PORTS)
  1960. return -ENXIO;
  1961. /* Allocate memory for buffer descriptors.
  1962. */
  1963. mem_addr = __get_free_page(GFP_KERNEL);
  1964. if (mem_addr == 0) {
  1965. printk("FEC: allocate descriptor memory failed?\n");
  1966. return -ENOMEM;
  1967. }
  1968. /* Create an Ethernet device instance.
  1969. */
  1970. fecp = (volatile fec_t *) fec_hw[index];
  1971. fep->index = index;
  1972. fep->hwp = fecp;
  1973. /* Whack a reset. We should wait for this.
  1974. */
  1975. fecp->fec_ecntrl = 1;
  1976. udelay(10);
  1977. /* Set the Ethernet address. If using multiple Enets on the 8xx,
  1978. * this needs some work to get unique addresses.
  1979. *
  1980. * This is our default MAC address unless the user changes
  1981. * it via eth_mac_addr (our dev->set_mac_addr handler).
  1982. */
  1983. fec_get_mac(dev);
  1984. cbd_base = (cbd_t *)mem_addr;
  1985. /* XXX: missing check for allocation failure */
  1986. fec_uncache(mem_addr);
  1987. /* Set receive and transmit descriptor base.
  1988. */
  1989. fep->rx_bd_base = cbd_base;
  1990. fep->tx_bd_base = cbd_base + RX_RING_SIZE;
  1991. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  1992. fep->cur_rx = fep->rx_bd_base;
  1993. fep->skb_cur = fep->skb_dirty = 0;
  1994. /* Initialize the receive buffer descriptors.
  1995. */
  1996. bdp = fep->rx_bd_base;
  1997. for (i=0; i<FEC_ENET_RX_PAGES; i++) {
  1998. /* Allocate a page.
  1999. */
  2000. mem_addr = __get_free_page(GFP_KERNEL);
  2001. /* XXX: missing check for allocation failure */
  2002. fec_uncache(mem_addr);
  2003. /* Initialize the BD for every fragment in the page.
  2004. */
  2005. for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
  2006. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  2007. bdp->cbd_bufaddr = __pa(mem_addr);
  2008. mem_addr += FEC_ENET_RX_FRSIZE;
  2009. bdp++;
  2010. }
  2011. }
  2012. /* Set the last buffer to wrap.
  2013. */
  2014. bdp--;
  2015. bdp->cbd_sc |= BD_SC_WRAP;
  2016. /* ...and the same for transmmit.
  2017. */
  2018. bdp = fep->tx_bd_base;
  2019. for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
  2020. if (j >= FEC_ENET_TX_FRPPG) {
  2021. mem_addr = __get_free_page(GFP_KERNEL);
  2022. j = 1;
  2023. } else {
  2024. mem_addr += FEC_ENET_TX_FRSIZE;
  2025. j++;
  2026. }
  2027. fep->tx_bounce[i] = (unsigned char *) mem_addr;
  2028. /* Initialize the BD for every fragment in the page.
  2029. */
  2030. bdp->cbd_sc = 0;
  2031. bdp->cbd_bufaddr = 0;
  2032. bdp++;
  2033. }
  2034. /* Set the last buffer to wrap.
  2035. */
  2036. bdp--;
  2037. bdp->cbd_sc |= BD_SC_WRAP;
  2038. /* Set receive and transmit descriptor base.
  2039. */
  2040. fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
  2041. fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
  2042. /* Install our interrupt handlers. This varies depending on
  2043. * the architecture.
  2044. */
  2045. fec_request_intrs(dev);
  2046. fecp->fec_hash_table_high = 0;
  2047. fecp->fec_hash_table_low = 0;
  2048. fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
  2049. fecp->fec_ecntrl = 2;
  2050. fecp->fec_r_des_active = 0;
  2051. dev->base_addr = (unsigned long)fecp;
  2052. /* The FEC Ethernet specific entries in the device structure. */
  2053. dev->open = fec_enet_open;
  2054. dev->hard_start_xmit = fec_enet_start_xmit;
  2055. dev->tx_timeout = fec_timeout;
  2056. dev->watchdog_timeo = TX_TIMEOUT;
  2057. dev->stop = fec_enet_close;
  2058. dev->get_stats = fec_enet_get_stats;
  2059. dev->set_multicast_list = set_multicast_list;
  2060. for (i=0; i<NMII-1; i++)
  2061. mii_cmds[i].mii_next = &mii_cmds[i+1];
  2062. mii_free = mii_cmds;
  2063. /* setup MII interface */
  2064. fec_set_mii(dev, fep);
  2065. /* Clear and enable interrupts */
  2066. fecp->fec_ievent = 0xffc00000;
  2067. fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
  2068. FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
  2069. /* Queue up command to detect the PHY and initialize the
  2070. * remainder of the interface.
  2071. */
  2072. fep->phy_id_done = 0;
  2073. fep->phy_addr = 0;
  2074. mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
  2075. index++;
  2076. return 0;
  2077. }
  2078. /* This function is called to start or restart the FEC during a link
  2079. * change. This only happens when switching between half and full
  2080. * duplex.
  2081. */
  2082. static void
  2083. fec_restart(struct net_device *dev, int duplex)
  2084. {
  2085. struct fec_enet_private *fep;
  2086. volatile cbd_t *bdp;
  2087. volatile fec_t *fecp;
  2088. int i;
  2089. fep = netdev_priv(dev);
  2090. fecp = fep->hwp;
  2091. /* Whack a reset. We should wait for this.
  2092. */
  2093. fecp->fec_ecntrl = 1;
  2094. udelay(10);
  2095. /* Clear any outstanding interrupt.
  2096. */
  2097. fecp->fec_ievent = 0xffc00000;
  2098. fec_enable_phy_intr();
  2099. /* Set station address.
  2100. */
  2101. fec_set_mac_address(dev);
  2102. /* Reset all multicast.
  2103. */
  2104. fecp->fec_hash_table_high = 0;
  2105. fecp->fec_hash_table_low = 0;
  2106. /* Set maximum receive buffer size.
  2107. */
  2108. fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
  2109. fec_localhw_setup();
  2110. /* Set receive and transmit descriptor base.
  2111. */
  2112. fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
  2113. fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
  2114. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  2115. fep->cur_rx = fep->rx_bd_base;
  2116. /* Reset SKB transmit buffers.
  2117. */
  2118. fep->skb_cur = fep->skb_dirty = 0;
  2119. for (i=0; i<=TX_RING_MOD_MASK; i++) {
  2120. if (fep->tx_skbuff[i] != NULL) {
  2121. dev_kfree_skb_any(fep->tx_skbuff[i]);
  2122. fep->tx_skbuff[i] = NULL;
  2123. }
  2124. }
  2125. /* Initialize the receive buffer descriptors.
  2126. */
  2127. bdp = fep->rx_bd_base;
  2128. for (i=0; i<RX_RING_SIZE; i++) {
  2129. /* Initialize the BD for every fragment in the page.
  2130. */
  2131. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  2132. bdp++;
  2133. }
  2134. /* Set the last buffer to wrap.
  2135. */
  2136. bdp--;
  2137. bdp->cbd_sc |= BD_SC_WRAP;
  2138. /* ...and the same for transmmit.
  2139. */
  2140. bdp = fep->tx_bd_base;
  2141. for (i=0; i<TX_RING_SIZE; i++) {
  2142. /* Initialize the BD for every fragment in the page.
  2143. */
  2144. bdp->cbd_sc = 0;
  2145. bdp->cbd_bufaddr = 0;
  2146. bdp++;
  2147. }
  2148. /* Set the last buffer to wrap.
  2149. */
  2150. bdp--;
  2151. bdp->cbd_sc |= BD_SC_WRAP;
  2152. /* Enable MII mode.
  2153. */
  2154. if (duplex) {
  2155. fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
  2156. fecp->fec_x_cntrl = 0x04; /* FD enable */
  2157. }
  2158. else {
  2159. /* MII enable|No Rcv on Xmit */
  2160. fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
  2161. fecp->fec_x_cntrl = 0x00;
  2162. }
  2163. fep->full_duplex = duplex;
  2164. /* Set MII speed.
  2165. */
  2166. fecp->fec_mii_speed = fep->phy_speed;
  2167. /* And last, enable the transmit and receive processing.
  2168. */
  2169. fecp->fec_ecntrl = 2;
  2170. fecp->fec_r_des_active = 0;
  2171. /* Enable interrupts we wish to service.
  2172. */
  2173. fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
  2174. FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
  2175. }
  2176. static void
  2177. fec_stop(struct net_device *dev)
  2178. {
  2179. volatile fec_t *fecp;
  2180. struct fec_enet_private *fep;
  2181. fep = netdev_priv(dev);
  2182. fecp = fep->hwp;
  2183. /*
  2184. ** We cannot expect a graceful transmit stop without link !!!
  2185. */
  2186. if (fep->link)
  2187. {
  2188. fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
  2189. udelay(10);
  2190. if (!(fecp->fec_ievent & FEC_ENET_GRA))
  2191. printk("fec_stop : Graceful transmit stop did not complete !\n");
  2192. }
  2193. /* Whack a reset. We should wait for this.
  2194. */
  2195. fecp->fec_ecntrl = 1;
  2196. udelay(10);
  2197. /* Clear outstanding MII command interrupts.
  2198. */
  2199. fecp->fec_ievent = FEC_ENET_MII;
  2200. fec_enable_phy_intr();
  2201. fecp->fec_imask = FEC_ENET_MII;
  2202. fecp->fec_mii_speed = fep->phy_speed;
  2203. }
  2204. static int __init fec_enet_module_init(void)
  2205. {
  2206. struct net_device *dev;
  2207. int i, j, err;
  2208. printk("FEC ENET Version 0.2\n");
  2209. for (i = 0; (i < FEC_MAX_PORTS); i++) {
  2210. dev = alloc_etherdev(sizeof(struct fec_enet_private));
  2211. if (!dev)
  2212. return -ENOMEM;
  2213. err = fec_enet_init(dev);
  2214. if (err) {
  2215. free_netdev(dev);
  2216. continue;
  2217. }
  2218. if (register_netdev(dev) != 0) {
  2219. /* XXX: missing cleanup here */
  2220. free_netdev(dev);
  2221. return -EIO;
  2222. }
  2223. printk("%s: ethernet ", dev->name);
  2224. for (j = 0; (j < 5); j++)
  2225. printk("%02x:", dev->dev_addr[j]);
  2226. printk("%02x\n", dev->dev_addr[5]);
  2227. }
  2228. return 0;
  2229. }
  2230. module_init(fec_enet_module_init);
  2231. MODULE_LICENSE("GPL");