cxgb3_offload.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248
  1. /*
  2. * Copyright (c) 2006-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/list.h>
  33. #include <net/neighbour.h>
  34. #include <linux/notifier.h>
  35. #include <asm/atomic.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/if_vlan.h>
  38. #include <net/netevent.h>
  39. #include <linux/highmem.h>
  40. #include <linux/vmalloc.h>
  41. #include "common.h"
  42. #include "regs.h"
  43. #include "cxgb3_ioctl.h"
  44. #include "cxgb3_ctl_defs.h"
  45. #include "cxgb3_defs.h"
  46. #include "l2t.h"
  47. #include "firmware_exports.h"
  48. #include "cxgb3_offload.h"
  49. static LIST_HEAD(client_list);
  50. static LIST_HEAD(ofld_dev_list);
  51. static DEFINE_MUTEX(cxgb3_db_lock);
  52. static DEFINE_RWLOCK(adapter_list_lock);
  53. static LIST_HEAD(adapter_list);
  54. static const unsigned int MAX_ATIDS = 64 * 1024;
  55. static const unsigned int ATID_BASE = 0x100000;
  56. static inline int offload_activated(struct t3cdev *tdev)
  57. {
  58. const struct adapter *adapter = tdev2adap(tdev);
  59. return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
  60. }
  61. /**
  62. * cxgb3_register_client - register an offload client
  63. * @client: the client
  64. *
  65. * Add the client to the client list,
  66. * and call backs the client for each activated offload device
  67. */
  68. void cxgb3_register_client(struct cxgb3_client *client)
  69. {
  70. struct t3cdev *tdev;
  71. mutex_lock(&cxgb3_db_lock);
  72. list_add_tail(&client->client_list, &client_list);
  73. if (client->add) {
  74. list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
  75. if (offload_activated(tdev))
  76. client->add(tdev);
  77. }
  78. }
  79. mutex_unlock(&cxgb3_db_lock);
  80. }
  81. EXPORT_SYMBOL(cxgb3_register_client);
  82. /**
  83. * cxgb3_unregister_client - unregister an offload client
  84. * @client: the client
  85. *
  86. * Remove the client to the client list,
  87. * and call backs the client for each activated offload device.
  88. */
  89. void cxgb3_unregister_client(struct cxgb3_client *client)
  90. {
  91. struct t3cdev *tdev;
  92. mutex_lock(&cxgb3_db_lock);
  93. list_del(&client->client_list);
  94. if (client->remove) {
  95. list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
  96. if (offload_activated(tdev))
  97. client->remove(tdev);
  98. }
  99. }
  100. mutex_unlock(&cxgb3_db_lock);
  101. }
  102. EXPORT_SYMBOL(cxgb3_unregister_client);
  103. /**
  104. * cxgb3_add_clients - activate registered clients for an offload device
  105. * @tdev: the offload device
  106. *
  107. * Call backs all registered clients once a offload device is activated
  108. */
  109. void cxgb3_add_clients(struct t3cdev *tdev)
  110. {
  111. struct cxgb3_client *client;
  112. mutex_lock(&cxgb3_db_lock);
  113. list_for_each_entry(client, &client_list, client_list) {
  114. if (client->add)
  115. client->add(tdev);
  116. }
  117. mutex_unlock(&cxgb3_db_lock);
  118. }
  119. /**
  120. * cxgb3_remove_clients - deactivates registered clients
  121. * for an offload device
  122. * @tdev: the offload device
  123. *
  124. * Call backs all registered clients once a offload device is deactivated
  125. */
  126. void cxgb3_remove_clients(struct t3cdev *tdev)
  127. {
  128. struct cxgb3_client *client;
  129. mutex_lock(&cxgb3_db_lock);
  130. list_for_each_entry(client, &client_list, client_list) {
  131. if (client->remove)
  132. client->remove(tdev);
  133. }
  134. mutex_unlock(&cxgb3_db_lock);
  135. }
  136. static struct net_device *get_iff_from_mac(struct adapter *adapter,
  137. const unsigned char *mac,
  138. unsigned int vlan)
  139. {
  140. int i;
  141. for_each_port(adapter, i) {
  142. struct vlan_group *grp;
  143. struct net_device *dev = adapter->port[i];
  144. const struct port_info *p = netdev_priv(dev);
  145. if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
  146. if (vlan && vlan != VLAN_VID_MASK) {
  147. grp = p->vlan_grp;
  148. dev = NULL;
  149. if (grp)
  150. dev = vlan_group_get_device(grp, vlan);
  151. } else
  152. while (dev->master)
  153. dev = dev->master;
  154. return dev;
  155. }
  156. }
  157. return NULL;
  158. }
  159. static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
  160. void *data)
  161. {
  162. int ret = 0;
  163. struct ulp_iscsi_info *uiip = data;
  164. switch (req) {
  165. case ULP_ISCSI_GET_PARAMS:
  166. uiip->pdev = adapter->pdev;
  167. uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
  168. uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
  169. uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
  170. /*
  171. * On tx, the iscsi pdu has to be <= tx page size and has to
  172. * fit into the Tx PM FIFO.
  173. */
  174. uiip->max_txsz = min(adapter->params.tp.tx_pg_size,
  175. t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
  176. /* on rx, the iscsi pdu has to be < rx page size and the
  177. whole pdu + cpl headers has to fit into one sge buffer */
  178. uiip->max_rxsz = min_t(unsigned int,
  179. adapter->params.tp.rx_pg_size,
  180. (adapter->sge.qs[0].fl[1].buf_size -
  181. sizeof(struct cpl_rx_data) * 2 -
  182. sizeof(struct cpl_rx_data_ddp)));
  183. break;
  184. case ULP_ISCSI_SET_PARAMS:
  185. t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
  186. break;
  187. default:
  188. ret = -EOPNOTSUPP;
  189. }
  190. return ret;
  191. }
  192. /* Response queue used for RDMA events. */
  193. #define ASYNC_NOTIF_RSPQ 0
  194. static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
  195. {
  196. int ret = 0;
  197. switch (req) {
  198. case RDMA_GET_PARAMS:{
  199. struct rdma_info *req = data;
  200. struct pci_dev *pdev = adapter->pdev;
  201. req->udbell_physbase = pci_resource_start(pdev, 2);
  202. req->udbell_len = pci_resource_len(pdev, 2);
  203. req->tpt_base =
  204. t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
  205. req->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
  206. req->pbl_base =
  207. t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
  208. req->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
  209. req->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
  210. req->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
  211. req->kdb_addr = adapter->regs + A_SG_KDOORBELL;
  212. req->pdev = pdev;
  213. break;
  214. }
  215. case RDMA_CQ_OP:{
  216. unsigned long flags;
  217. struct rdma_cq_op *req = data;
  218. /* may be called in any context */
  219. spin_lock_irqsave(&adapter->sge.reg_lock, flags);
  220. ret = t3_sge_cqcntxt_op(adapter, req->id, req->op,
  221. req->credits);
  222. spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
  223. break;
  224. }
  225. case RDMA_GET_MEM:{
  226. struct ch_mem_range *t = data;
  227. struct mc7 *mem;
  228. if ((t->addr & 7) || (t->len & 7))
  229. return -EINVAL;
  230. if (t->mem_id == MEM_CM)
  231. mem = &adapter->cm;
  232. else if (t->mem_id == MEM_PMRX)
  233. mem = &adapter->pmrx;
  234. else if (t->mem_id == MEM_PMTX)
  235. mem = &adapter->pmtx;
  236. else
  237. return -EINVAL;
  238. ret =
  239. t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
  240. (u64 *) t->buf);
  241. if (ret)
  242. return ret;
  243. break;
  244. }
  245. case RDMA_CQ_SETUP:{
  246. struct rdma_cq_setup *req = data;
  247. spin_lock_irq(&adapter->sge.reg_lock);
  248. ret =
  249. t3_sge_init_cqcntxt(adapter, req->id,
  250. req->base_addr, req->size,
  251. ASYNC_NOTIF_RSPQ,
  252. req->ovfl_mode, req->credits,
  253. req->credit_thres);
  254. spin_unlock_irq(&adapter->sge.reg_lock);
  255. break;
  256. }
  257. case RDMA_CQ_DISABLE:
  258. spin_lock_irq(&adapter->sge.reg_lock);
  259. ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
  260. spin_unlock_irq(&adapter->sge.reg_lock);
  261. break;
  262. case RDMA_CTRL_QP_SETUP:{
  263. struct rdma_ctrlqp_setup *req = data;
  264. spin_lock_irq(&adapter->sge.reg_lock);
  265. ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
  266. SGE_CNTXT_RDMA,
  267. ASYNC_NOTIF_RSPQ,
  268. req->base_addr, req->size,
  269. FW_RI_TID_START, 1, 0);
  270. spin_unlock_irq(&adapter->sge.reg_lock);
  271. break;
  272. }
  273. default:
  274. ret = -EOPNOTSUPP;
  275. }
  276. return ret;
  277. }
  278. static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
  279. {
  280. struct adapter *adapter = tdev2adap(tdev);
  281. struct tid_range *tid;
  282. struct mtutab *mtup;
  283. struct iff_mac *iffmacp;
  284. struct ddp_params *ddpp;
  285. struct adap_ports *ports;
  286. int i;
  287. switch (req) {
  288. case GET_MAX_OUTSTANDING_WR:
  289. *(unsigned int *)data = FW_WR_NUM;
  290. break;
  291. case GET_WR_LEN:
  292. *(unsigned int *)data = WR_FLITS;
  293. break;
  294. case GET_TX_MAX_CHUNK:
  295. *(unsigned int *)data = 1 << 20; /* 1MB */
  296. break;
  297. case GET_TID_RANGE:
  298. tid = data;
  299. tid->num = t3_mc5_size(&adapter->mc5) -
  300. adapter->params.mc5.nroutes -
  301. adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
  302. tid->base = 0;
  303. break;
  304. case GET_STID_RANGE:
  305. tid = data;
  306. tid->num = adapter->params.mc5.nservers;
  307. tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
  308. adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
  309. break;
  310. case GET_L2T_CAPACITY:
  311. *(unsigned int *)data = 2048;
  312. break;
  313. case GET_MTUS:
  314. mtup = data;
  315. mtup->size = NMTUS;
  316. mtup->mtus = adapter->params.mtus;
  317. break;
  318. case GET_IFF_FROM_MAC:
  319. iffmacp = data;
  320. iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
  321. iffmacp->vlan_tag &
  322. VLAN_VID_MASK);
  323. break;
  324. case GET_DDP_PARAMS:
  325. ddpp = data;
  326. ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
  327. ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
  328. ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
  329. break;
  330. case GET_PORTS:
  331. ports = data;
  332. ports->nports = adapter->params.nports;
  333. for_each_port(adapter, i)
  334. ports->lldevs[i] = adapter->port[i];
  335. break;
  336. case ULP_ISCSI_GET_PARAMS:
  337. case ULP_ISCSI_SET_PARAMS:
  338. if (!offload_running(adapter))
  339. return -EAGAIN;
  340. return cxgb_ulp_iscsi_ctl(adapter, req, data);
  341. case RDMA_GET_PARAMS:
  342. case RDMA_CQ_OP:
  343. case RDMA_CQ_SETUP:
  344. case RDMA_CQ_DISABLE:
  345. case RDMA_CTRL_QP_SETUP:
  346. case RDMA_GET_MEM:
  347. if (!offload_running(adapter))
  348. return -EAGAIN;
  349. return cxgb_rdma_ctl(adapter, req, data);
  350. default:
  351. return -EOPNOTSUPP;
  352. }
  353. return 0;
  354. }
  355. /*
  356. * Dummy handler for Rx offload packets in case we get an offload packet before
  357. * proper processing is setup. This complains and drops the packet as it isn't
  358. * normal to get offload packets at this stage.
  359. */
  360. static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
  361. int n)
  362. {
  363. CH_ERR(tdev2adap(dev), "%d unexpected offload packets, first data %u\n",
  364. n, ntohl(*(__be32 *)skbs[0]->data));
  365. while (n--)
  366. dev_kfree_skb_any(skbs[n]);
  367. return 0;
  368. }
  369. static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
  370. {
  371. }
  372. void cxgb3_set_dummy_ops(struct t3cdev *dev)
  373. {
  374. dev->recv = rx_offload_blackhole;
  375. dev->neigh_update = dummy_neigh_update;
  376. }
  377. /*
  378. * Free an active-open TID.
  379. */
  380. void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
  381. {
  382. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  383. union active_open_entry *p = atid2entry(t, atid);
  384. void *ctx = p->t3c_tid.ctx;
  385. spin_lock_bh(&t->atid_lock);
  386. p->next = t->afree;
  387. t->afree = p;
  388. t->atids_in_use--;
  389. spin_unlock_bh(&t->atid_lock);
  390. return ctx;
  391. }
  392. EXPORT_SYMBOL(cxgb3_free_atid);
  393. /*
  394. * Free a server TID and return it to the free pool.
  395. */
  396. void cxgb3_free_stid(struct t3cdev *tdev, int stid)
  397. {
  398. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  399. union listen_entry *p = stid2entry(t, stid);
  400. spin_lock_bh(&t->stid_lock);
  401. p->next = t->sfree;
  402. t->sfree = p;
  403. t->stids_in_use--;
  404. spin_unlock_bh(&t->stid_lock);
  405. }
  406. EXPORT_SYMBOL(cxgb3_free_stid);
  407. void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
  408. void *ctx, unsigned int tid)
  409. {
  410. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  411. t->tid_tab[tid].client = client;
  412. t->tid_tab[tid].ctx = ctx;
  413. atomic_inc(&t->tids_in_use);
  414. }
  415. EXPORT_SYMBOL(cxgb3_insert_tid);
  416. /*
  417. * Populate a TID_RELEASE WR. The skb must be already propely sized.
  418. */
  419. static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
  420. {
  421. struct cpl_tid_release *req;
  422. skb->priority = CPL_PRIORITY_SETUP;
  423. req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
  424. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  425. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
  426. }
  427. static void t3_process_tid_release_list(struct work_struct *work)
  428. {
  429. struct t3c_data *td = container_of(work, struct t3c_data,
  430. tid_release_task);
  431. struct sk_buff *skb;
  432. struct t3cdev *tdev = td->dev;
  433. spin_lock_bh(&td->tid_release_lock);
  434. while (td->tid_release_list) {
  435. struct t3c_tid_entry *p = td->tid_release_list;
  436. td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
  437. spin_unlock_bh(&td->tid_release_lock);
  438. skb = alloc_skb(sizeof(struct cpl_tid_release),
  439. GFP_KERNEL | __GFP_NOFAIL);
  440. mk_tid_release(skb, p - td->tid_maps.tid_tab);
  441. cxgb3_ofld_send(tdev, skb);
  442. p->ctx = NULL;
  443. spin_lock_bh(&td->tid_release_lock);
  444. }
  445. spin_unlock_bh(&td->tid_release_lock);
  446. }
  447. /* use ctx as a next pointer in the tid release list */
  448. void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
  449. {
  450. struct t3c_data *td = T3C_DATA(tdev);
  451. struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
  452. spin_lock_bh(&td->tid_release_lock);
  453. p->ctx = (void *)td->tid_release_list;
  454. p->client = NULL;
  455. td->tid_release_list = p;
  456. if (!p->ctx)
  457. schedule_work(&td->tid_release_task);
  458. spin_unlock_bh(&td->tid_release_lock);
  459. }
  460. EXPORT_SYMBOL(cxgb3_queue_tid_release);
  461. /*
  462. * Remove a tid from the TID table. A client may defer processing its last
  463. * CPL message if it is locked at the time it arrives, and while the message
  464. * sits in the client's backlog the TID may be reused for another connection.
  465. * To handle this we atomically switch the TID association if it still points
  466. * to the original client context.
  467. */
  468. void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
  469. {
  470. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  471. BUG_ON(tid >= t->ntids);
  472. if (tdev->type == T3A)
  473. (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
  474. else {
  475. struct sk_buff *skb;
  476. skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
  477. if (likely(skb)) {
  478. mk_tid_release(skb, tid);
  479. cxgb3_ofld_send(tdev, skb);
  480. t->tid_tab[tid].ctx = NULL;
  481. } else
  482. cxgb3_queue_tid_release(tdev, tid);
  483. }
  484. atomic_dec(&t->tids_in_use);
  485. }
  486. EXPORT_SYMBOL(cxgb3_remove_tid);
  487. int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
  488. void *ctx)
  489. {
  490. int atid = -1;
  491. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  492. spin_lock_bh(&t->atid_lock);
  493. if (t->afree &&
  494. t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
  495. t->ntids) {
  496. union active_open_entry *p = t->afree;
  497. atid = (p - t->atid_tab) + t->atid_base;
  498. t->afree = p->next;
  499. p->t3c_tid.ctx = ctx;
  500. p->t3c_tid.client = client;
  501. t->atids_in_use++;
  502. }
  503. spin_unlock_bh(&t->atid_lock);
  504. return atid;
  505. }
  506. EXPORT_SYMBOL(cxgb3_alloc_atid);
  507. int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
  508. void *ctx)
  509. {
  510. int stid = -1;
  511. struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
  512. spin_lock_bh(&t->stid_lock);
  513. if (t->sfree) {
  514. union listen_entry *p = t->sfree;
  515. stid = (p - t->stid_tab) + t->stid_base;
  516. t->sfree = p->next;
  517. p->t3c_tid.ctx = ctx;
  518. p->t3c_tid.client = client;
  519. t->stids_in_use++;
  520. }
  521. spin_unlock_bh(&t->stid_lock);
  522. return stid;
  523. }
  524. EXPORT_SYMBOL(cxgb3_alloc_stid);
  525. static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  526. {
  527. struct cpl_smt_write_rpl *rpl = cplhdr(skb);
  528. if (rpl->status != CPL_ERR_NONE)
  529. printk(KERN_ERR
  530. "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
  531. rpl->status, GET_TID(rpl));
  532. return CPL_RET_BUF_DONE;
  533. }
  534. static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
  535. {
  536. struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
  537. if (rpl->status != CPL_ERR_NONE)
  538. printk(KERN_ERR
  539. "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
  540. rpl->status, GET_TID(rpl));
  541. return CPL_RET_BUF_DONE;
  542. }
  543. static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
  544. {
  545. struct cpl_act_open_rpl *rpl = cplhdr(skb);
  546. unsigned int atid = G_TID(ntohl(rpl->atid));
  547. struct t3c_tid_entry *t3c_tid;
  548. t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
  549. if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
  550. t3c_tid->client->handlers &&
  551. t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
  552. return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
  553. t3c_tid->
  554. ctx);
  555. } else {
  556. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  557. dev->name, CPL_ACT_OPEN_RPL);
  558. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  559. }
  560. }
  561. static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
  562. {
  563. union opcode_tid *p = cplhdr(skb);
  564. unsigned int stid = G_TID(ntohl(p->opcode_tid));
  565. struct t3c_tid_entry *t3c_tid;
  566. t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
  567. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  568. t3c_tid->client->handlers[p->opcode]) {
  569. return t3c_tid->client->handlers[p->opcode] (dev, skb,
  570. t3c_tid->ctx);
  571. } else {
  572. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  573. dev->name, p->opcode);
  574. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  575. }
  576. }
  577. static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
  578. {
  579. union opcode_tid *p = cplhdr(skb);
  580. unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
  581. struct t3c_tid_entry *t3c_tid;
  582. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  583. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  584. t3c_tid->client->handlers[p->opcode]) {
  585. return t3c_tid->client->handlers[p->opcode]
  586. (dev, skb, t3c_tid->ctx);
  587. } else {
  588. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  589. dev->name, p->opcode);
  590. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  591. }
  592. }
  593. static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
  594. {
  595. struct cpl_pass_accept_req *req = cplhdr(skb);
  596. unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
  597. struct t3c_tid_entry *t3c_tid;
  598. t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
  599. if (t3c_tid->ctx && t3c_tid->client->handlers &&
  600. t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
  601. return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
  602. (dev, skb, t3c_tid->ctx);
  603. } else {
  604. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  605. dev->name, CPL_PASS_ACCEPT_REQ);
  606. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  607. }
  608. }
  609. /*
  610. * Returns an sk_buff for a reply CPL message of size len. If the input
  611. * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
  612. * is allocated. The input skb must be of size at least len. Note that this
  613. * operation does not destroy the original skb data even if it decides to reuse
  614. * the buffer.
  615. */
  616. static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
  617. int gfp)
  618. {
  619. if (likely(!skb_cloned(skb))) {
  620. BUG_ON(skb->len < len);
  621. __skb_trim(skb, len);
  622. skb_get(skb);
  623. } else {
  624. skb = alloc_skb(len, gfp);
  625. if (skb)
  626. __skb_put(skb, len);
  627. }
  628. return skb;
  629. }
  630. static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
  631. {
  632. union opcode_tid *p = cplhdr(skb);
  633. unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
  634. struct t3c_tid_entry *t3c_tid;
  635. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  636. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  637. t3c_tid->client->handlers[p->opcode]) {
  638. return t3c_tid->client->handlers[p->opcode]
  639. (dev, skb, t3c_tid->ctx);
  640. } else {
  641. struct cpl_abort_req_rss *req = cplhdr(skb);
  642. struct cpl_abort_rpl *rpl;
  643. struct sk_buff *reply_skb;
  644. unsigned int tid = GET_TID(req);
  645. u8 cmd = req->status;
  646. if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
  647. req->status == CPL_ERR_PERSIST_NEG_ADVICE)
  648. goto out;
  649. reply_skb = cxgb3_get_cpl_reply_skb(skb,
  650. sizeof(struct
  651. cpl_abort_rpl),
  652. GFP_ATOMIC);
  653. if (!reply_skb) {
  654. printk("do_abort_req_rss: couldn't get skb!\n");
  655. goto out;
  656. }
  657. reply_skb->priority = CPL_PRIORITY_DATA;
  658. __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
  659. rpl = cplhdr(reply_skb);
  660. rpl->wr.wr_hi =
  661. htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
  662. rpl->wr.wr_lo = htonl(V_WR_TID(tid));
  663. OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
  664. rpl->cmd = cmd;
  665. cxgb3_ofld_send(dev, reply_skb);
  666. out:
  667. return CPL_RET_BUF_DONE;
  668. }
  669. }
  670. static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
  671. {
  672. struct cpl_act_establish *req = cplhdr(skb);
  673. unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
  674. struct t3c_tid_entry *t3c_tid;
  675. t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
  676. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  677. t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
  678. return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
  679. (dev, skb, t3c_tid->ctx);
  680. } else {
  681. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  682. dev->name, CPL_PASS_ACCEPT_REQ);
  683. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  684. }
  685. }
  686. static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
  687. {
  688. struct cpl_trace_pkt *p = cplhdr(skb);
  689. skb->protocol = htons(0xffff);
  690. skb->dev = dev->lldev;
  691. skb_pull(skb, sizeof(*p));
  692. skb_reset_mac_header(skb);
  693. netif_receive_skb(skb);
  694. return 0;
  695. }
  696. static int do_term(struct t3cdev *dev, struct sk_buff *skb)
  697. {
  698. unsigned int hwtid = ntohl(skb->priority) >> 8 & 0xfffff;
  699. unsigned int opcode = G_OPCODE(ntohl(skb->csum));
  700. struct t3c_tid_entry *t3c_tid;
  701. t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
  702. if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
  703. t3c_tid->client->handlers[opcode]) {
  704. return t3c_tid->client->handlers[opcode] (dev, skb,
  705. t3c_tid->ctx);
  706. } else {
  707. printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
  708. dev->name, opcode);
  709. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  710. }
  711. }
  712. static int nb_callback(struct notifier_block *self, unsigned long event,
  713. void *ctx)
  714. {
  715. switch (event) {
  716. case (NETEVENT_NEIGH_UPDATE):{
  717. cxgb_neigh_update((struct neighbour *)ctx);
  718. break;
  719. }
  720. case (NETEVENT_PMTU_UPDATE):
  721. break;
  722. case (NETEVENT_REDIRECT):{
  723. struct netevent_redirect *nr = ctx;
  724. cxgb_redirect(nr->old, nr->new);
  725. cxgb_neigh_update(nr->new->neighbour);
  726. break;
  727. }
  728. default:
  729. break;
  730. }
  731. return 0;
  732. }
  733. static struct notifier_block nb = {
  734. .notifier_call = nb_callback
  735. };
  736. /*
  737. * Process a received packet with an unknown/unexpected CPL opcode.
  738. */
  739. static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
  740. {
  741. printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
  742. *skb->data);
  743. return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
  744. }
  745. /*
  746. * Handlers for each CPL opcode
  747. */
  748. static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
  749. /*
  750. * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
  751. * to unregister an existing handler.
  752. */
  753. void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
  754. {
  755. if (opcode < NUM_CPL_CMDS)
  756. cpl_handlers[opcode] = h ? h : do_bad_cpl;
  757. else
  758. printk(KERN_ERR "T3C: handler registration for "
  759. "opcode %x failed\n", opcode);
  760. }
  761. EXPORT_SYMBOL(t3_register_cpl_handler);
  762. /*
  763. * T3CDEV's receive method.
  764. */
  765. int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
  766. {
  767. while (n--) {
  768. struct sk_buff *skb = *skbs++;
  769. unsigned int opcode = G_OPCODE(ntohl(skb->csum));
  770. int ret = cpl_handlers[opcode] (dev, skb);
  771. #if VALIDATE_TID
  772. if (ret & CPL_RET_UNKNOWN_TID) {
  773. union opcode_tid *p = cplhdr(skb);
  774. printk(KERN_ERR "%s: CPL message (opcode %u) had "
  775. "unknown TID %u\n", dev->name, opcode,
  776. G_TID(ntohl(p->opcode_tid)));
  777. }
  778. #endif
  779. if (ret & CPL_RET_BUF_DONE)
  780. kfree_skb(skb);
  781. }
  782. return 0;
  783. }
  784. /*
  785. * Sends an sk_buff to a T3C driver after dealing with any active network taps.
  786. */
  787. int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
  788. {
  789. int r;
  790. local_bh_disable();
  791. r = dev->send(dev, skb);
  792. local_bh_enable();
  793. return r;
  794. }
  795. EXPORT_SYMBOL(cxgb3_ofld_send);
  796. static int is_offloading(struct net_device *dev)
  797. {
  798. struct adapter *adapter;
  799. int i;
  800. read_lock_bh(&adapter_list_lock);
  801. list_for_each_entry(adapter, &adapter_list, adapter_list) {
  802. for_each_port(adapter, i) {
  803. if (dev == adapter->port[i]) {
  804. read_unlock_bh(&adapter_list_lock);
  805. return 1;
  806. }
  807. }
  808. }
  809. read_unlock_bh(&adapter_list_lock);
  810. return 0;
  811. }
  812. void cxgb_neigh_update(struct neighbour *neigh)
  813. {
  814. struct net_device *dev = neigh->dev;
  815. if (dev && (is_offloading(dev))) {
  816. struct t3cdev *tdev = T3CDEV(dev);
  817. BUG_ON(!tdev);
  818. t3_l2t_update(tdev, neigh);
  819. }
  820. }
  821. static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
  822. {
  823. struct sk_buff *skb;
  824. struct cpl_set_tcb_field *req;
  825. skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
  826. if (!skb) {
  827. printk(KERN_ERR "%s: cannot allocate skb!\n", __FUNCTION__);
  828. return;
  829. }
  830. skb->priority = CPL_PRIORITY_CONTROL;
  831. req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
  832. req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
  833. OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
  834. req->reply = 0;
  835. req->cpu_idx = 0;
  836. req->word = htons(W_TCB_L2T_IX);
  837. req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
  838. req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
  839. tdev->send(tdev, skb);
  840. }
  841. void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
  842. {
  843. struct net_device *olddev, *newdev;
  844. struct tid_info *ti;
  845. struct t3cdev *tdev;
  846. u32 tid;
  847. int update_tcb;
  848. struct l2t_entry *e;
  849. struct t3c_tid_entry *te;
  850. olddev = old->neighbour->dev;
  851. newdev = new->neighbour->dev;
  852. if (!is_offloading(olddev))
  853. return;
  854. if (!is_offloading(newdev)) {
  855. printk(KERN_WARNING "%s: Redirect to non-offload"
  856. "device ignored.\n", __FUNCTION__);
  857. return;
  858. }
  859. tdev = T3CDEV(olddev);
  860. BUG_ON(!tdev);
  861. if (tdev != T3CDEV(newdev)) {
  862. printk(KERN_WARNING "%s: Redirect to different "
  863. "offload device ignored.\n", __FUNCTION__);
  864. return;
  865. }
  866. /* Add new L2T entry */
  867. e = t3_l2t_get(tdev, new->neighbour, newdev);
  868. if (!e) {
  869. printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
  870. __FUNCTION__);
  871. return;
  872. }
  873. /* Walk tid table and notify clients of dst change. */
  874. ti = &(T3C_DATA(tdev))->tid_maps;
  875. for (tid = 0; tid < ti->ntids; tid++) {
  876. te = lookup_tid(ti, tid);
  877. BUG_ON(!te);
  878. if (te && te->ctx && te->client && te->client->redirect) {
  879. update_tcb = te->client->redirect(te->ctx, old, new, e);
  880. if (update_tcb) {
  881. l2t_hold(L2DATA(tdev), e);
  882. set_l2t_ix(tdev, tid, e);
  883. }
  884. }
  885. }
  886. l2t_release(L2DATA(tdev), e);
  887. }
  888. /*
  889. * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
  890. * The allocated memory is cleared.
  891. */
  892. void *cxgb_alloc_mem(unsigned long size)
  893. {
  894. void *p = kmalloc(size, GFP_KERNEL);
  895. if (!p)
  896. p = vmalloc(size);
  897. if (p)
  898. memset(p, 0, size);
  899. return p;
  900. }
  901. /*
  902. * Free memory allocated through t3_alloc_mem().
  903. */
  904. void cxgb_free_mem(void *addr)
  905. {
  906. unsigned long p = (unsigned long)addr;
  907. if (p >= VMALLOC_START && p < VMALLOC_END)
  908. vfree(addr);
  909. else
  910. kfree(addr);
  911. }
  912. /*
  913. * Allocate and initialize the TID tables. Returns 0 on success.
  914. */
  915. static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
  916. unsigned int natids, unsigned int nstids,
  917. unsigned int atid_base, unsigned int stid_base)
  918. {
  919. unsigned long size = ntids * sizeof(*t->tid_tab) +
  920. natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
  921. t->tid_tab = cxgb_alloc_mem(size);
  922. if (!t->tid_tab)
  923. return -ENOMEM;
  924. t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
  925. t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
  926. t->ntids = ntids;
  927. t->nstids = nstids;
  928. t->stid_base = stid_base;
  929. t->sfree = NULL;
  930. t->natids = natids;
  931. t->atid_base = atid_base;
  932. t->afree = NULL;
  933. t->stids_in_use = t->atids_in_use = 0;
  934. atomic_set(&t->tids_in_use, 0);
  935. spin_lock_init(&t->stid_lock);
  936. spin_lock_init(&t->atid_lock);
  937. /*
  938. * Setup the free lists for stid_tab and atid_tab.
  939. */
  940. if (nstids) {
  941. while (--nstids)
  942. t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
  943. t->sfree = t->stid_tab;
  944. }
  945. if (natids) {
  946. while (--natids)
  947. t->atid_tab[natids - 1].next = &t->atid_tab[natids];
  948. t->afree = t->atid_tab;
  949. }
  950. return 0;
  951. }
  952. static void free_tid_maps(struct tid_info *t)
  953. {
  954. cxgb_free_mem(t->tid_tab);
  955. }
  956. static inline void add_adapter(struct adapter *adap)
  957. {
  958. write_lock_bh(&adapter_list_lock);
  959. list_add_tail(&adap->adapter_list, &adapter_list);
  960. write_unlock_bh(&adapter_list_lock);
  961. }
  962. static inline void remove_adapter(struct adapter *adap)
  963. {
  964. write_lock_bh(&adapter_list_lock);
  965. list_del(&adap->adapter_list);
  966. write_unlock_bh(&adapter_list_lock);
  967. }
  968. int cxgb3_offload_activate(struct adapter *adapter)
  969. {
  970. struct t3cdev *dev = &adapter->tdev;
  971. int natids, err;
  972. struct t3c_data *t;
  973. struct tid_range stid_range, tid_range;
  974. struct mtutab mtutab;
  975. unsigned int l2t_capacity;
  976. t = kcalloc(1, sizeof(*t), GFP_KERNEL);
  977. if (!t)
  978. return -ENOMEM;
  979. err = -EOPNOTSUPP;
  980. if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
  981. dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
  982. dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
  983. dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
  984. dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
  985. dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
  986. goto out_free;
  987. err = -ENOMEM;
  988. L2DATA(dev) = t3_init_l2t(l2t_capacity);
  989. if (!L2DATA(dev))
  990. goto out_free;
  991. natids = min(tid_range.num / 2, MAX_ATIDS);
  992. err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
  993. stid_range.num, ATID_BASE, stid_range.base);
  994. if (err)
  995. goto out_free_l2t;
  996. t->mtus = mtutab.mtus;
  997. t->nmtus = mtutab.size;
  998. INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
  999. spin_lock_init(&t->tid_release_lock);
  1000. INIT_LIST_HEAD(&t->list_node);
  1001. t->dev = dev;
  1002. T3C_DATA(dev) = t;
  1003. dev->recv = process_rx;
  1004. dev->neigh_update = t3_l2t_update;
  1005. /* Register netevent handler once */
  1006. if (list_empty(&adapter_list))
  1007. register_netevent_notifier(&nb);
  1008. add_adapter(adapter);
  1009. return 0;
  1010. out_free_l2t:
  1011. t3_free_l2t(L2DATA(dev));
  1012. L2DATA(dev) = NULL;
  1013. out_free:
  1014. kfree(t);
  1015. return err;
  1016. }
  1017. void cxgb3_offload_deactivate(struct adapter *adapter)
  1018. {
  1019. struct t3cdev *tdev = &adapter->tdev;
  1020. struct t3c_data *t = T3C_DATA(tdev);
  1021. remove_adapter(adapter);
  1022. if (list_empty(&adapter_list))
  1023. unregister_netevent_notifier(&nb);
  1024. free_tid_maps(&t->tid_maps);
  1025. T3C_DATA(tdev) = NULL;
  1026. t3_free_l2t(L2DATA(tdev));
  1027. L2DATA(tdev) = NULL;
  1028. kfree(t);
  1029. }
  1030. static inline void register_tdev(struct t3cdev *tdev)
  1031. {
  1032. static int unit;
  1033. mutex_lock(&cxgb3_db_lock);
  1034. snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
  1035. list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
  1036. mutex_unlock(&cxgb3_db_lock);
  1037. }
  1038. static inline void unregister_tdev(struct t3cdev *tdev)
  1039. {
  1040. mutex_lock(&cxgb3_db_lock);
  1041. list_del(&tdev->ofld_dev_list);
  1042. mutex_unlock(&cxgb3_db_lock);
  1043. }
  1044. void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
  1045. {
  1046. struct t3cdev *tdev = &adapter->tdev;
  1047. INIT_LIST_HEAD(&tdev->ofld_dev_list);
  1048. cxgb3_set_dummy_ops(tdev);
  1049. tdev->send = t3_offload_tx;
  1050. tdev->ctl = cxgb_offload_ctl;
  1051. tdev->type = adapter->params.rev == 0 ? T3A : T3B;
  1052. register_tdev(tdev);
  1053. }
  1054. void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
  1055. {
  1056. struct t3cdev *tdev = &adapter->tdev;
  1057. tdev->recv = NULL;
  1058. tdev->neigh_update = NULL;
  1059. unregister_tdev(tdev);
  1060. }
  1061. void __init cxgb3_offload_init(void)
  1062. {
  1063. int i;
  1064. for (i = 0; i < NUM_CPL_CMDS; ++i)
  1065. cpl_handlers[i] = do_bad_cpl;
  1066. t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
  1067. t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
  1068. t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
  1069. t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
  1070. t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
  1071. t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
  1072. t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
  1073. t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
  1074. t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
  1075. t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
  1076. t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
  1077. t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
  1078. t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
  1079. t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
  1080. t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
  1081. t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
  1082. t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
  1083. t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
  1084. t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
  1085. t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
  1086. t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
  1087. t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
  1088. t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
  1089. t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
  1090. t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
  1091. }