ep93xx_eth.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. /*
  2. * EP93xx ethernet network device driver
  3. * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
  4. * Dedicated to Marija Kulikova.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. */
  11. #include <linux/dma-mapping.h>
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/mii.h>
  16. #include <linux/etherdevice.h>
  17. #include <linux/ethtool.h>
  18. #include <linux/init.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/delay.h>
  22. #include <asm/arch/ep93xx-regs.h>
  23. #include <asm/arch/platform.h>
  24. #include <asm/io.h>
  25. #define DRV_MODULE_NAME "ep93xx-eth"
  26. #define DRV_MODULE_VERSION "0.1"
  27. #define RX_QUEUE_ENTRIES 64
  28. #define TX_QUEUE_ENTRIES 8
  29. #define MAX_PKT_SIZE 2044
  30. #define PKT_BUF_SIZE 2048
  31. #define REG_RXCTL 0x0000
  32. #define REG_RXCTL_DEFAULT 0x00073800
  33. #define REG_TXCTL 0x0004
  34. #define REG_TXCTL_ENABLE 0x00000001
  35. #define REG_MIICMD 0x0010
  36. #define REG_MIICMD_READ 0x00008000
  37. #define REG_MIICMD_WRITE 0x00004000
  38. #define REG_MIIDATA 0x0014
  39. #define REG_MIISTS 0x0018
  40. #define REG_MIISTS_BUSY 0x00000001
  41. #define REG_SELFCTL 0x0020
  42. #define REG_SELFCTL_RESET 0x00000001
  43. #define REG_INTEN 0x0024
  44. #define REG_INTEN_TX 0x00000008
  45. #define REG_INTEN_RX 0x00000007
  46. #define REG_INTSTSP 0x0028
  47. #define REG_INTSTS_TX 0x00000008
  48. #define REG_INTSTS_RX 0x00000004
  49. #define REG_INTSTSC 0x002c
  50. #define REG_AFP 0x004c
  51. #define REG_INDAD0 0x0050
  52. #define REG_INDAD1 0x0051
  53. #define REG_INDAD2 0x0052
  54. #define REG_INDAD3 0x0053
  55. #define REG_INDAD4 0x0054
  56. #define REG_INDAD5 0x0055
  57. #define REG_GIINTMSK 0x0064
  58. #define REG_GIINTMSK_ENABLE 0x00008000
  59. #define REG_BMCTL 0x0080
  60. #define REG_BMCTL_ENABLE_TX 0x00000100
  61. #define REG_BMCTL_ENABLE_RX 0x00000001
  62. #define REG_BMSTS 0x0084
  63. #define REG_BMSTS_RX_ACTIVE 0x00000008
  64. #define REG_RXDQBADD 0x0090
  65. #define REG_RXDQBLEN 0x0094
  66. #define REG_RXDCURADD 0x0098
  67. #define REG_RXDENQ 0x009c
  68. #define REG_RXSTSQBADD 0x00a0
  69. #define REG_RXSTSQBLEN 0x00a4
  70. #define REG_RXSTSQCURADD 0x00a8
  71. #define REG_RXSTSENQ 0x00ac
  72. #define REG_TXDQBADD 0x00b0
  73. #define REG_TXDQBLEN 0x00b4
  74. #define REG_TXDQCURADD 0x00b8
  75. #define REG_TXDENQ 0x00bc
  76. #define REG_TXSTSQBADD 0x00c0
  77. #define REG_TXSTSQBLEN 0x00c4
  78. #define REG_TXSTSQCURADD 0x00c8
  79. #define REG_MAXFRMLEN 0x00e8
  80. struct ep93xx_rdesc
  81. {
  82. u32 buf_addr;
  83. u32 rdesc1;
  84. };
  85. #define RDESC1_NSOF 0x80000000
  86. #define RDESC1_BUFFER_INDEX 0x7fff0000
  87. #define RDESC1_BUFFER_LENGTH 0x0000ffff
  88. struct ep93xx_rstat
  89. {
  90. u32 rstat0;
  91. u32 rstat1;
  92. };
  93. #define RSTAT0_RFP 0x80000000
  94. #define RSTAT0_RWE 0x40000000
  95. #define RSTAT0_EOF 0x20000000
  96. #define RSTAT0_EOB 0x10000000
  97. #define RSTAT0_AM 0x00c00000
  98. #define RSTAT0_RX_ERR 0x00200000
  99. #define RSTAT0_OE 0x00100000
  100. #define RSTAT0_FE 0x00080000
  101. #define RSTAT0_RUNT 0x00040000
  102. #define RSTAT0_EDATA 0x00020000
  103. #define RSTAT0_CRCE 0x00010000
  104. #define RSTAT0_CRCI 0x00008000
  105. #define RSTAT0_HTI 0x00003f00
  106. #define RSTAT1_RFP 0x80000000
  107. #define RSTAT1_BUFFER_INDEX 0x7fff0000
  108. #define RSTAT1_FRAME_LENGTH 0x0000ffff
  109. struct ep93xx_tdesc
  110. {
  111. u32 buf_addr;
  112. u32 tdesc1;
  113. };
  114. #define TDESC1_EOF 0x80000000
  115. #define TDESC1_BUFFER_INDEX 0x7fff0000
  116. #define TDESC1_BUFFER_ABORT 0x00008000
  117. #define TDESC1_BUFFER_LENGTH 0x00000fff
  118. struct ep93xx_tstat
  119. {
  120. u32 tstat0;
  121. };
  122. #define TSTAT0_TXFP 0x80000000
  123. #define TSTAT0_TXWE 0x40000000
  124. #define TSTAT0_FA 0x20000000
  125. #define TSTAT0_LCRS 0x10000000
  126. #define TSTAT0_OW 0x04000000
  127. #define TSTAT0_TXU 0x02000000
  128. #define TSTAT0_ECOLL 0x01000000
  129. #define TSTAT0_NCOLL 0x001f0000
  130. #define TSTAT0_BUFFER_INDEX 0x00007fff
  131. struct ep93xx_descs
  132. {
  133. struct ep93xx_rdesc rdesc[RX_QUEUE_ENTRIES];
  134. struct ep93xx_tdesc tdesc[TX_QUEUE_ENTRIES];
  135. struct ep93xx_rstat rstat[RX_QUEUE_ENTRIES];
  136. struct ep93xx_tstat tstat[TX_QUEUE_ENTRIES];
  137. };
  138. struct ep93xx_priv
  139. {
  140. struct resource *res;
  141. void *base_addr;
  142. int irq;
  143. struct ep93xx_descs *descs;
  144. dma_addr_t descs_dma_addr;
  145. void *rx_buf[RX_QUEUE_ENTRIES];
  146. void *tx_buf[TX_QUEUE_ENTRIES];
  147. spinlock_t rx_lock;
  148. unsigned int rx_pointer;
  149. unsigned int tx_clean_pointer;
  150. unsigned int tx_pointer;
  151. spinlock_t tx_pending_lock;
  152. unsigned int tx_pending;
  153. struct net_device_stats stats;
  154. struct mii_if_info mii;
  155. u8 mdc_divisor;
  156. };
  157. #define rdb(ep, off) __raw_readb((ep)->base_addr + (off))
  158. #define rdw(ep, off) __raw_readw((ep)->base_addr + (off))
  159. #define rdl(ep, off) __raw_readl((ep)->base_addr + (off))
  160. #define wrb(ep, off, val) __raw_writeb((val), (ep)->base_addr + (off))
  161. #define wrw(ep, off, val) __raw_writew((val), (ep)->base_addr + (off))
  162. #define wrl(ep, off, val) __raw_writel((val), (ep)->base_addr + (off))
  163. static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg);
  164. static struct net_device_stats *ep93xx_get_stats(struct net_device *dev)
  165. {
  166. struct ep93xx_priv *ep = netdev_priv(dev);
  167. return &(ep->stats);
  168. }
  169. static int ep93xx_rx(struct net_device *dev, int *budget)
  170. {
  171. struct ep93xx_priv *ep = netdev_priv(dev);
  172. int rx_done;
  173. int processed;
  174. rx_done = 0;
  175. processed = 0;
  176. while (*budget > 0) {
  177. int entry;
  178. struct ep93xx_rstat *rstat;
  179. u32 rstat0;
  180. u32 rstat1;
  181. int length;
  182. struct sk_buff *skb;
  183. entry = ep->rx_pointer;
  184. rstat = ep->descs->rstat + entry;
  185. rstat0 = rstat->rstat0;
  186. rstat1 = rstat->rstat1;
  187. if (!(rstat0 & RSTAT0_RFP) || !(rstat1 & RSTAT1_RFP)) {
  188. rx_done = 1;
  189. break;
  190. }
  191. rstat->rstat0 = 0;
  192. rstat->rstat1 = 0;
  193. if (!(rstat0 & RSTAT0_EOF))
  194. printk(KERN_CRIT "ep93xx_rx: not end-of-frame "
  195. " %.8x %.8x\n", rstat0, rstat1);
  196. if (!(rstat0 & RSTAT0_EOB))
  197. printk(KERN_CRIT "ep93xx_rx: not end-of-buffer "
  198. " %.8x %.8x\n", rstat0, rstat1);
  199. if ((rstat1 & RSTAT1_BUFFER_INDEX) >> 16 != entry)
  200. printk(KERN_CRIT "ep93xx_rx: entry mismatch "
  201. " %.8x %.8x\n", rstat0, rstat1);
  202. if (!(rstat0 & RSTAT0_RWE)) {
  203. ep->stats.rx_errors++;
  204. if (rstat0 & RSTAT0_OE)
  205. ep->stats.rx_fifo_errors++;
  206. if (rstat0 & RSTAT0_FE)
  207. ep->stats.rx_frame_errors++;
  208. if (rstat0 & (RSTAT0_RUNT | RSTAT0_EDATA))
  209. ep->stats.rx_length_errors++;
  210. if (rstat0 & RSTAT0_CRCE)
  211. ep->stats.rx_crc_errors++;
  212. goto err;
  213. }
  214. length = rstat1 & RSTAT1_FRAME_LENGTH;
  215. if (length > MAX_PKT_SIZE) {
  216. printk(KERN_NOTICE "ep93xx_rx: invalid length "
  217. " %.8x %.8x\n", rstat0, rstat1);
  218. goto err;
  219. }
  220. /* Strip FCS. */
  221. if (rstat0 & RSTAT0_CRCI)
  222. length -= 4;
  223. skb = dev_alloc_skb(length + 2);
  224. if (likely(skb != NULL)) {
  225. skb_reserve(skb, 2);
  226. dma_sync_single(NULL, ep->descs->rdesc[entry].buf_addr,
  227. length, DMA_FROM_DEVICE);
  228. eth_copy_and_sum(skb, ep->rx_buf[entry], length, 0);
  229. skb_put(skb, length);
  230. skb->protocol = eth_type_trans(skb, dev);
  231. dev->last_rx = jiffies;
  232. netif_receive_skb(skb);
  233. ep->stats.rx_packets++;
  234. ep->stats.rx_bytes += length;
  235. } else {
  236. ep->stats.rx_dropped++;
  237. }
  238. err:
  239. ep->rx_pointer = (entry + 1) & (RX_QUEUE_ENTRIES - 1);
  240. processed++;
  241. dev->quota--;
  242. (*budget)--;
  243. }
  244. if (processed) {
  245. wrw(ep, REG_RXDENQ, processed);
  246. wrw(ep, REG_RXSTSENQ, processed);
  247. }
  248. return !rx_done;
  249. }
  250. static int ep93xx_have_more_rx(struct ep93xx_priv *ep)
  251. {
  252. struct ep93xx_rstat *rstat = ep->descs->rstat + ep->rx_pointer;
  253. return !!((rstat->rstat0 & RSTAT0_RFP) && (rstat->rstat1 & RSTAT1_RFP));
  254. }
  255. static int ep93xx_poll(struct net_device *dev, int *budget)
  256. {
  257. struct ep93xx_priv *ep = netdev_priv(dev);
  258. /*
  259. * @@@ Have to stop polling if device is downed while we
  260. * are polling.
  261. */
  262. poll_some_more:
  263. if (ep93xx_rx(dev, budget))
  264. return 1;
  265. netif_rx_complete(dev);
  266. spin_lock_irq(&ep->rx_lock);
  267. wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
  268. if (ep93xx_have_more_rx(ep)) {
  269. wrl(ep, REG_INTEN, REG_INTEN_TX);
  270. wrl(ep, REG_INTSTSP, REG_INTSTS_RX);
  271. spin_unlock_irq(&ep->rx_lock);
  272. if (netif_rx_reschedule(dev, 0))
  273. goto poll_some_more;
  274. return 0;
  275. }
  276. spin_unlock_irq(&ep->rx_lock);
  277. return 0;
  278. }
  279. static int ep93xx_xmit(struct sk_buff *skb, struct net_device *dev)
  280. {
  281. struct ep93xx_priv *ep = netdev_priv(dev);
  282. int entry;
  283. if (unlikely(skb->len > MAX_PKT_SIZE)) {
  284. ep->stats.tx_dropped++;
  285. dev_kfree_skb(skb);
  286. return NETDEV_TX_OK;
  287. }
  288. entry = ep->tx_pointer;
  289. ep->tx_pointer = (ep->tx_pointer + 1) & (TX_QUEUE_ENTRIES - 1);
  290. ep->descs->tdesc[entry].tdesc1 =
  291. TDESC1_EOF | (entry << 16) | (skb->len & 0xfff);
  292. skb_copy_and_csum_dev(skb, ep->tx_buf[entry]);
  293. dma_sync_single(NULL, ep->descs->tdesc[entry].buf_addr,
  294. skb->len, DMA_TO_DEVICE);
  295. dev_kfree_skb(skb);
  296. dev->trans_start = jiffies;
  297. spin_lock_irq(&ep->tx_pending_lock);
  298. ep->tx_pending++;
  299. if (ep->tx_pending == TX_QUEUE_ENTRIES)
  300. netif_stop_queue(dev);
  301. spin_unlock_irq(&ep->tx_pending_lock);
  302. wrl(ep, REG_TXDENQ, 1);
  303. return NETDEV_TX_OK;
  304. }
  305. static void ep93xx_tx_complete(struct net_device *dev)
  306. {
  307. struct ep93xx_priv *ep = netdev_priv(dev);
  308. int wake;
  309. wake = 0;
  310. spin_lock(&ep->tx_pending_lock);
  311. while (1) {
  312. int entry;
  313. struct ep93xx_tstat *tstat;
  314. u32 tstat0;
  315. entry = ep->tx_clean_pointer;
  316. tstat = ep->descs->tstat + entry;
  317. tstat0 = tstat->tstat0;
  318. if (!(tstat0 & TSTAT0_TXFP))
  319. break;
  320. tstat->tstat0 = 0;
  321. if (tstat0 & TSTAT0_FA)
  322. printk(KERN_CRIT "ep93xx_tx_complete: frame aborted "
  323. " %.8x\n", tstat0);
  324. if ((tstat0 & TSTAT0_BUFFER_INDEX) != entry)
  325. printk(KERN_CRIT "ep93xx_tx_complete: entry mismatch "
  326. " %.8x\n", tstat0);
  327. if (tstat0 & TSTAT0_TXWE) {
  328. int length = ep->descs->tdesc[entry].tdesc1 & 0xfff;
  329. ep->stats.tx_packets++;
  330. ep->stats.tx_bytes += length;
  331. } else {
  332. ep->stats.tx_errors++;
  333. }
  334. if (tstat0 & TSTAT0_OW)
  335. ep->stats.tx_window_errors++;
  336. if (tstat0 & TSTAT0_TXU)
  337. ep->stats.tx_fifo_errors++;
  338. ep->stats.collisions += (tstat0 >> 16) & 0x1f;
  339. ep->tx_clean_pointer = (entry + 1) & (TX_QUEUE_ENTRIES - 1);
  340. if (ep->tx_pending == TX_QUEUE_ENTRIES)
  341. wake = 1;
  342. ep->tx_pending--;
  343. }
  344. spin_unlock(&ep->tx_pending_lock);
  345. if (wake)
  346. netif_wake_queue(dev);
  347. }
  348. static irqreturn_t ep93xx_irq(int irq, void *dev_id)
  349. {
  350. struct net_device *dev = dev_id;
  351. struct ep93xx_priv *ep = netdev_priv(dev);
  352. u32 status;
  353. status = rdl(ep, REG_INTSTSC);
  354. if (status == 0)
  355. return IRQ_NONE;
  356. if (status & REG_INTSTS_RX) {
  357. spin_lock(&ep->rx_lock);
  358. if (likely(__netif_rx_schedule_prep(dev))) {
  359. wrl(ep, REG_INTEN, REG_INTEN_TX);
  360. __netif_rx_schedule(dev);
  361. }
  362. spin_unlock(&ep->rx_lock);
  363. }
  364. if (status & REG_INTSTS_TX)
  365. ep93xx_tx_complete(dev);
  366. return IRQ_HANDLED;
  367. }
  368. static void ep93xx_free_buffers(struct ep93xx_priv *ep)
  369. {
  370. int i;
  371. for (i = 0; i < RX_QUEUE_ENTRIES; i += 2) {
  372. dma_addr_t d;
  373. d = ep->descs->rdesc[i].buf_addr;
  374. if (d)
  375. dma_unmap_single(NULL, d, PAGE_SIZE, DMA_FROM_DEVICE);
  376. if (ep->rx_buf[i] != NULL)
  377. free_page((unsigned long)ep->rx_buf[i]);
  378. }
  379. for (i = 0; i < TX_QUEUE_ENTRIES; i += 2) {
  380. dma_addr_t d;
  381. d = ep->descs->tdesc[i].buf_addr;
  382. if (d)
  383. dma_unmap_single(NULL, d, PAGE_SIZE, DMA_TO_DEVICE);
  384. if (ep->tx_buf[i] != NULL)
  385. free_page((unsigned long)ep->tx_buf[i]);
  386. }
  387. dma_free_coherent(NULL, sizeof(struct ep93xx_descs), ep->descs,
  388. ep->descs_dma_addr);
  389. }
  390. /*
  391. * The hardware enforces a sub-2K maximum packet size, so we put
  392. * two buffers on every hardware page.
  393. */
  394. static int ep93xx_alloc_buffers(struct ep93xx_priv *ep)
  395. {
  396. int i;
  397. ep->descs = dma_alloc_coherent(NULL, sizeof(struct ep93xx_descs),
  398. &ep->descs_dma_addr, GFP_KERNEL | GFP_DMA);
  399. if (ep->descs == NULL)
  400. return 1;
  401. for (i = 0; i < RX_QUEUE_ENTRIES; i += 2) {
  402. void *page;
  403. dma_addr_t d;
  404. page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  405. if (page == NULL)
  406. goto err;
  407. d = dma_map_single(NULL, page, PAGE_SIZE, DMA_FROM_DEVICE);
  408. if (dma_mapping_error(d)) {
  409. free_page((unsigned long)page);
  410. goto err;
  411. }
  412. ep->rx_buf[i] = page;
  413. ep->descs->rdesc[i].buf_addr = d;
  414. ep->descs->rdesc[i].rdesc1 = (i << 16) | PKT_BUF_SIZE;
  415. ep->rx_buf[i + 1] = page + PKT_BUF_SIZE;
  416. ep->descs->rdesc[i + 1].buf_addr = d + PKT_BUF_SIZE;
  417. ep->descs->rdesc[i + 1].rdesc1 = ((i + 1) << 16) | PKT_BUF_SIZE;
  418. }
  419. for (i = 0; i < TX_QUEUE_ENTRIES; i += 2) {
  420. void *page;
  421. dma_addr_t d;
  422. page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
  423. if (page == NULL)
  424. goto err;
  425. d = dma_map_single(NULL, page, PAGE_SIZE, DMA_TO_DEVICE);
  426. if (dma_mapping_error(d)) {
  427. free_page((unsigned long)page);
  428. goto err;
  429. }
  430. ep->tx_buf[i] = page;
  431. ep->descs->tdesc[i].buf_addr = d;
  432. ep->tx_buf[i + 1] = page + PKT_BUF_SIZE;
  433. ep->descs->tdesc[i + 1].buf_addr = d + PKT_BUF_SIZE;
  434. }
  435. return 0;
  436. err:
  437. ep93xx_free_buffers(ep);
  438. return 1;
  439. }
  440. static int ep93xx_start_hw(struct net_device *dev)
  441. {
  442. struct ep93xx_priv *ep = netdev_priv(dev);
  443. unsigned long addr;
  444. int i;
  445. wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
  446. for (i = 0; i < 10; i++) {
  447. if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
  448. break;
  449. msleep(1);
  450. }
  451. if (i == 10) {
  452. printk(KERN_CRIT DRV_MODULE_NAME ": hw failed to reset\n");
  453. return 1;
  454. }
  455. wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9));
  456. /* Does the PHY support preamble suppress? */
  457. if ((ep93xx_mdio_read(dev, ep->mii.phy_id, MII_BMSR) & 0x0040) != 0)
  458. wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9) | (1 << 8));
  459. /* Receive descriptor ring. */
  460. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rdesc);
  461. wrl(ep, REG_RXDQBADD, addr);
  462. wrl(ep, REG_RXDCURADD, addr);
  463. wrw(ep, REG_RXDQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rdesc));
  464. /* Receive status ring. */
  465. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rstat);
  466. wrl(ep, REG_RXSTSQBADD, addr);
  467. wrl(ep, REG_RXSTSQCURADD, addr);
  468. wrw(ep, REG_RXSTSQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rstat));
  469. /* Transmit descriptor ring. */
  470. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tdesc);
  471. wrl(ep, REG_TXDQBADD, addr);
  472. wrl(ep, REG_TXDQCURADD, addr);
  473. wrw(ep, REG_TXDQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tdesc));
  474. /* Transmit status ring. */
  475. addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tstat);
  476. wrl(ep, REG_TXSTSQBADD, addr);
  477. wrl(ep, REG_TXSTSQCURADD, addr);
  478. wrw(ep, REG_TXSTSQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tstat));
  479. wrl(ep, REG_BMCTL, REG_BMCTL_ENABLE_TX | REG_BMCTL_ENABLE_RX);
  480. wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX);
  481. wrl(ep, REG_GIINTMSK, 0);
  482. for (i = 0; i < 10; i++) {
  483. if ((rdl(ep, REG_BMSTS) & REG_BMSTS_RX_ACTIVE) != 0)
  484. break;
  485. msleep(1);
  486. }
  487. if (i == 10) {
  488. printk(KERN_CRIT DRV_MODULE_NAME ": hw failed to start\n");
  489. return 1;
  490. }
  491. wrl(ep, REG_RXDENQ, RX_QUEUE_ENTRIES);
  492. wrl(ep, REG_RXSTSENQ, RX_QUEUE_ENTRIES);
  493. wrb(ep, REG_INDAD0, dev->dev_addr[0]);
  494. wrb(ep, REG_INDAD1, dev->dev_addr[1]);
  495. wrb(ep, REG_INDAD2, dev->dev_addr[2]);
  496. wrb(ep, REG_INDAD3, dev->dev_addr[3]);
  497. wrb(ep, REG_INDAD4, dev->dev_addr[4]);
  498. wrb(ep, REG_INDAD5, dev->dev_addr[5]);
  499. wrl(ep, REG_AFP, 0);
  500. wrl(ep, REG_MAXFRMLEN, (MAX_PKT_SIZE << 16) | MAX_PKT_SIZE);
  501. wrl(ep, REG_RXCTL, REG_RXCTL_DEFAULT);
  502. wrl(ep, REG_TXCTL, REG_TXCTL_ENABLE);
  503. return 0;
  504. }
  505. static void ep93xx_stop_hw(struct net_device *dev)
  506. {
  507. struct ep93xx_priv *ep = netdev_priv(dev);
  508. int i;
  509. wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET);
  510. for (i = 0; i < 10; i++) {
  511. if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0)
  512. break;
  513. msleep(1);
  514. }
  515. if (i == 10)
  516. printk(KERN_CRIT DRV_MODULE_NAME ": hw failed to reset\n");
  517. }
  518. static int ep93xx_open(struct net_device *dev)
  519. {
  520. struct ep93xx_priv *ep = netdev_priv(dev);
  521. int err;
  522. if (ep93xx_alloc_buffers(ep))
  523. return -ENOMEM;
  524. if (is_zero_ether_addr(dev->dev_addr)) {
  525. random_ether_addr(dev->dev_addr);
  526. printk(KERN_INFO "%s: generated random MAC address "
  527. "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x.\n", dev->name,
  528. dev->dev_addr[0], dev->dev_addr[1],
  529. dev->dev_addr[2], dev->dev_addr[3],
  530. dev->dev_addr[4], dev->dev_addr[5]);
  531. }
  532. if (ep93xx_start_hw(dev)) {
  533. ep93xx_free_buffers(ep);
  534. return -EIO;
  535. }
  536. spin_lock_init(&ep->rx_lock);
  537. ep->rx_pointer = 0;
  538. ep->tx_clean_pointer = 0;
  539. ep->tx_pointer = 0;
  540. spin_lock_init(&ep->tx_pending_lock);
  541. ep->tx_pending = 0;
  542. err = request_irq(ep->irq, ep93xx_irq, IRQF_SHARED, dev->name, dev);
  543. if (err) {
  544. ep93xx_stop_hw(dev);
  545. ep93xx_free_buffers(ep);
  546. return err;
  547. }
  548. wrl(ep, REG_GIINTMSK, REG_GIINTMSK_ENABLE);
  549. netif_start_queue(dev);
  550. return 0;
  551. }
  552. static int ep93xx_close(struct net_device *dev)
  553. {
  554. struct ep93xx_priv *ep = netdev_priv(dev);
  555. netif_stop_queue(dev);
  556. wrl(ep, REG_GIINTMSK, 0);
  557. free_irq(ep->irq, dev);
  558. ep93xx_stop_hw(dev);
  559. ep93xx_free_buffers(ep);
  560. return 0;
  561. }
  562. static int ep93xx_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  563. {
  564. struct ep93xx_priv *ep = netdev_priv(dev);
  565. struct mii_ioctl_data *data = if_mii(ifr);
  566. return generic_mii_ioctl(&ep->mii, data, cmd, NULL);
  567. }
  568. static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg)
  569. {
  570. struct ep93xx_priv *ep = netdev_priv(dev);
  571. int data;
  572. int i;
  573. wrl(ep, REG_MIICMD, REG_MIICMD_READ | (phy_id << 5) | reg);
  574. for (i = 0; i < 10; i++) {
  575. if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
  576. break;
  577. msleep(1);
  578. }
  579. if (i == 10) {
  580. printk(KERN_INFO DRV_MODULE_NAME ": mdio read timed out\n");
  581. data = 0xffff;
  582. } else {
  583. data = rdl(ep, REG_MIIDATA);
  584. }
  585. return data;
  586. }
  587. static void ep93xx_mdio_write(struct net_device *dev, int phy_id, int reg, int data)
  588. {
  589. struct ep93xx_priv *ep = netdev_priv(dev);
  590. int i;
  591. wrl(ep, REG_MIIDATA, data);
  592. wrl(ep, REG_MIICMD, REG_MIICMD_WRITE | (phy_id << 5) | reg);
  593. for (i = 0; i < 10; i++) {
  594. if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0)
  595. break;
  596. msleep(1);
  597. }
  598. if (i == 10)
  599. printk(KERN_INFO DRV_MODULE_NAME ": mdio write timed out\n");
  600. }
  601. static void ep93xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  602. {
  603. strcpy(info->driver, DRV_MODULE_NAME);
  604. strcpy(info->version, DRV_MODULE_VERSION);
  605. }
  606. static int ep93xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  607. {
  608. struct ep93xx_priv *ep = netdev_priv(dev);
  609. return mii_ethtool_gset(&ep->mii, cmd);
  610. }
  611. static int ep93xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  612. {
  613. struct ep93xx_priv *ep = netdev_priv(dev);
  614. return mii_ethtool_sset(&ep->mii, cmd);
  615. }
  616. static int ep93xx_nway_reset(struct net_device *dev)
  617. {
  618. struct ep93xx_priv *ep = netdev_priv(dev);
  619. return mii_nway_restart(&ep->mii);
  620. }
  621. static u32 ep93xx_get_link(struct net_device *dev)
  622. {
  623. struct ep93xx_priv *ep = netdev_priv(dev);
  624. return mii_link_ok(&ep->mii);
  625. }
  626. static struct ethtool_ops ep93xx_ethtool_ops = {
  627. .get_drvinfo = ep93xx_get_drvinfo,
  628. .get_settings = ep93xx_get_settings,
  629. .set_settings = ep93xx_set_settings,
  630. .nway_reset = ep93xx_nway_reset,
  631. .get_link = ep93xx_get_link,
  632. };
  633. struct net_device *ep93xx_dev_alloc(struct ep93xx_eth_data *data)
  634. {
  635. struct net_device *dev;
  636. dev = alloc_etherdev(sizeof(struct ep93xx_priv));
  637. if (dev == NULL)
  638. return NULL;
  639. memcpy(dev->dev_addr, data->dev_addr, ETH_ALEN);
  640. dev->get_stats = ep93xx_get_stats;
  641. dev->ethtool_ops = &ep93xx_ethtool_ops;
  642. dev->poll = ep93xx_poll;
  643. dev->hard_start_xmit = ep93xx_xmit;
  644. dev->open = ep93xx_open;
  645. dev->stop = ep93xx_close;
  646. dev->do_ioctl = ep93xx_ioctl;
  647. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM;
  648. dev->weight = 64;
  649. return dev;
  650. }
  651. static int ep93xx_eth_remove(struct platform_device *pdev)
  652. {
  653. struct net_device *dev;
  654. struct ep93xx_priv *ep;
  655. dev = platform_get_drvdata(pdev);
  656. if (dev == NULL)
  657. return 0;
  658. platform_set_drvdata(pdev, NULL);
  659. ep = netdev_priv(dev);
  660. /* @@@ Force down. */
  661. unregister_netdev(dev);
  662. ep93xx_free_buffers(ep);
  663. if (ep->base_addr != NULL)
  664. iounmap(ep->base_addr);
  665. if (ep->res != NULL) {
  666. release_resource(ep->res);
  667. kfree(ep->res);
  668. }
  669. free_netdev(dev);
  670. return 0;
  671. }
  672. static int ep93xx_eth_probe(struct platform_device *pdev)
  673. {
  674. struct ep93xx_eth_data *data;
  675. struct net_device *dev;
  676. struct ep93xx_priv *ep;
  677. int err;
  678. if (pdev == NULL)
  679. return -ENODEV;
  680. data = pdev->dev.platform_data;
  681. dev = ep93xx_dev_alloc(data);
  682. if (dev == NULL) {
  683. err = -ENOMEM;
  684. goto err_out;
  685. }
  686. ep = netdev_priv(dev);
  687. platform_set_drvdata(pdev, dev);
  688. ep->res = request_mem_region(pdev->resource[0].start,
  689. pdev->resource[0].end - pdev->resource[0].start + 1,
  690. pdev->dev.bus_id);
  691. if (ep->res == NULL) {
  692. dev_err(&pdev->dev, "Could not reserve memory region\n");
  693. err = -ENOMEM;
  694. goto err_out;
  695. }
  696. ep->base_addr = ioremap(pdev->resource[0].start,
  697. pdev->resource[0].end - pdev->resource[0].start);
  698. if (ep->base_addr == NULL) {
  699. dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
  700. err = -EIO;
  701. goto err_out;
  702. }
  703. ep->irq = pdev->resource[1].start;
  704. ep->mii.phy_id = data->phy_id;
  705. ep->mii.phy_id_mask = 0x1f;
  706. ep->mii.reg_num_mask = 0x1f;
  707. ep->mii.dev = dev;
  708. ep->mii.mdio_read = ep93xx_mdio_read;
  709. ep->mii.mdio_write = ep93xx_mdio_write;
  710. ep->mdc_divisor = 40; /* Max HCLK 100 MHz, min MDIO clk 2.5 MHz. */
  711. err = register_netdev(dev);
  712. if (err) {
  713. dev_err(&pdev->dev, "Failed to register netdev\n");
  714. goto err_out;
  715. }
  716. printk(KERN_INFO "%s: ep93xx on-chip ethernet, IRQ %d, "
  717. "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x.\n", dev->name,
  718. ep->irq, data->dev_addr[0], data->dev_addr[1],
  719. data->dev_addr[2], data->dev_addr[3],
  720. data->dev_addr[4], data->dev_addr[5]);
  721. return 0;
  722. err_out:
  723. ep93xx_eth_remove(pdev);
  724. return err;
  725. }
  726. static struct platform_driver ep93xx_eth_driver = {
  727. .probe = ep93xx_eth_probe,
  728. .remove = ep93xx_eth_remove,
  729. .driver = {
  730. .name = "ep93xx-eth",
  731. },
  732. };
  733. static int __init ep93xx_eth_init_module(void)
  734. {
  735. printk(KERN_INFO DRV_MODULE_NAME " version " DRV_MODULE_VERSION " loading\n");
  736. return platform_driver_register(&ep93xx_eth_driver);
  737. }
  738. static void __exit ep93xx_eth_cleanup_module(void)
  739. {
  740. platform_driver_unregister(&ep93xx_eth_driver);
  741. }
  742. module_init(ep93xx_eth_init_module);
  743. module_exit(ep93xx_eth_cleanup_module);
  744. MODULE_LICENSE("GPL");