cafe_nand.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849
  1. /*
  2. * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
  3. *
  4. * Copyright © 2006 Red Hat, Inc.
  5. * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
  6. */
  7. #define DEBUG
  8. #include <linux/device.h>
  9. #undef DEBUG
  10. #include <linux/mtd/mtd.h>
  11. #include <linux/mtd/nand.h>
  12. #include <linux/rslib.h>
  13. #include <linux/pci.h>
  14. #include <linux/delay.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/dma-mapping.h>
  17. #include <asm/io.h>
  18. #define CAFE_NAND_CTRL1 0x00
  19. #define CAFE_NAND_CTRL2 0x04
  20. #define CAFE_NAND_CTRL3 0x08
  21. #define CAFE_NAND_STATUS 0x0c
  22. #define CAFE_NAND_IRQ 0x10
  23. #define CAFE_NAND_IRQ_MASK 0x14
  24. #define CAFE_NAND_DATA_LEN 0x18
  25. #define CAFE_NAND_ADDR1 0x1c
  26. #define CAFE_NAND_ADDR2 0x20
  27. #define CAFE_NAND_TIMING1 0x24
  28. #define CAFE_NAND_TIMING2 0x28
  29. #define CAFE_NAND_TIMING3 0x2c
  30. #define CAFE_NAND_NONMEM 0x30
  31. #define CAFE_NAND_ECC_RESULT 0x3C
  32. #define CAFE_NAND_DMA_CTRL 0x40
  33. #define CAFE_NAND_DMA_ADDR0 0x44
  34. #define CAFE_NAND_DMA_ADDR1 0x48
  35. #define CAFE_NAND_ECC_SYN01 0x50
  36. #define CAFE_NAND_ECC_SYN23 0x54
  37. #define CAFE_NAND_ECC_SYN45 0x58
  38. #define CAFE_NAND_ECC_SYN67 0x5c
  39. #define CAFE_NAND_READ_DATA 0x1000
  40. #define CAFE_NAND_WRITE_DATA 0x2000
  41. #define CAFE_GLOBAL_CTRL 0x3004
  42. #define CAFE_GLOBAL_IRQ 0x3008
  43. #define CAFE_GLOBAL_IRQ_MASK 0x300c
  44. #define CAFE_NAND_RESET 0x3034
  45. /* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
  46. #define CTRL1_CHIPSELECT (1<<19)
  47. struct cafe_priv {
  48. struct nand_chip nand;
  49. struct pci_dev *pdev;
  50. void __iomem *mmio;
  51. struct rs_control *rs;
  52. uint32_t ctl1;
  53. uint32_t ctl2;
  54. int datalen;
  55. int nr_data;
  56. int data_pos;
  57. int page_addr;
  58. dma_addr_t dmaaddr;
  59. unsigned char *dmabuf;
  60. };
  61. static int usedma = 1;
  62. module_param(usedma, int, 0644);
  63. static int skipbbt = 0;
  64. module_param(skipbbt, int, 0644);
  65. static int debug = 0;
  66. module_param(debug, int, 0644);
  67. static int regdebug = 0;
  68. module_param(regdebug, int, 0644);
  69. static int checkecc = 1;
  70. module_param(checkecc, int, 0644);
  71. static int numtimings;
  72. static int timing[3];
  73. module_param_array(timing, int, &numtimings, 0644);
  74. /* Hrm. Why isn't this already conditional on something in the struct device? */
  75. #define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
  76. /* Make it easier to switch to PIO if we need to */
  77. #define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
  78. #define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
  79. static int cafe_device_ready(struct mtd_info *mtd)
  80. {
  81. struct cafe_priv *cafe = mtd->priv;
  82. int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
  83. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  84. cafe_writel(cafe, irqs, NAND_IRQ);
  85. cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
  86. result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
  87. cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  88. return result;
  89. }
  90. static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
  91. {
  92. struct cafe_priv *cafe = mtd->priv;
  93. if (usedma)
  94. memcpy(cafe->dmabuf + cafe->datalen, buf, len);
  95. else
  96. memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
  97. cafe->datalen += len;
  98. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
  99. len, cafe->datalen);
  100. }
  101. static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
  102. {
  103. struct cafe_priv *cafe = mtd->priv;
  104. if (usedma)
  105. memcpy(buf, cafe->dmabuf + cafe->datalen, len);
  106. else
  107. memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
  108. cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
  109. len, cafe->datalen);
  110. cafe->datalen += len;
  111. }
  112. static uint8_t cafe_read_byte(struct mtd_info *mtd)
  113. {
  114. struct cafe_priv *cafe = mtd->priv;
  115. uint8_t d;
  116. cafe_read_buf(mtd, &d, 1);
  117. cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
  118. return d;
  119. }
  120. static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
  121. int column, int page_addr)
  122. {
  123. struct cafe_priv *cafe = mtd->priv;
  124. int adrbytes = 0;
  125. uint32_t ctl1;
  126. uint32_t doneint = 0x80000000;
  127. cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
  128. command, column, page_addr);
  129. if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
  130. /* Second half of a command we already calculated */
  131. cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
  132. ctl1 = cafe->ctl1;
  133. cafe->ctl2 &= ~(1<<30);
  134. cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
  135. cafe->ctl1, cafe->nr_data);
  136. goto do_command;
  137. }
  138. /* Reset ECC engine */
  139. cafe_writel(cafe, 0, NAND_CTRL2);
  140. /* Emulate NAND_CMD_READOOB on large-page chips */
  141. if (mtd->writesize > 512 &&
  142. command == NAND_CMD_READOOB) {
  143. column += mtd->writesize;
  144. command = NAND_CMD_READ0;
  145. }
  146. /* FIXME: Do we need to send read command before sending data
  147. for small-page chips, to position the buffer correctly? */
  148. if (column != -1) {
  149. cafe_writel(cafe, column, NAND_ADDR1);
  150. adrbytes = 2;
  151. if (page_addr != -1)
  152. goto write_adr2;
  153. } else if (page_addr != -1) {
  154. cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
  155. page_addr >>= 16;
  156. write_adr2:
  157. cafe_writel(cafe, page_addr, NAND_ADDR2);
  158. adrbytes += 2;
  159. if (mtd->size > mtd->writesize << 16)
  160. adrbytes++;
  161. }
  162. cafe->data_pos = cafe->datalen = 0;
  163. /* Set command valid bit, mask in the chip select bit */
  164. ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
  165. /* Set RD or WR bits as appropriate */
  166. if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
  167. ctl1 |= (1<<26); /* rd */
  168. /* Always 5 bytes, for now */
  169. cafe->datalen = 4;
  170. /* And one address cycle -- even for STATUS, since the controller doesn't work without */
  171. adrbytes = 1;
  172. } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  173. command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
  174. ctl1 |= 1<<26; /* rd */
  175. /* For now, assume just read to end of page */
  176. cafe->datalen = mtd->writesize + mtd->oobsize - column;
  177. } else if (command == NAND_CMD_SEQIN)
  178. ctl1 |= 1<<25; /* wr */
  179. /* Set number of address bytes */
  180. if (adrbytes)
  181. ctl1 |= ((adrbytes-1)|8) << 27;
  182. if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
  183. /* Ignore the first command of a pair; the hardware
  184. deals with them both at once, later */
  185. cafe->ctl1 = ctl1;
  186. cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
  187. cafe->ctl1, cafe->datalen);
  188. return;
  189. }
  190. /* RNDOUT and READ0 commands need a following byte */
  191. if (command == NAND_CMD_RNDOUT)
  192. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
  193. else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
  194. cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
  195. do_command:
  196. cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
  197. cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
  198. /* NB: The datasheet lies -- we really should be subtracting 1 here */
  199. cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
  200. cafe_writel(cafe, 0x90000000, NAND_IRQ);
  201. if (usedma && (ctl1 & (3<<25))) {
  202. uint32_t dmactl = 0xc0000000 + cafe->datalen;
  203. /* If WR or RD bits set, set up DMA */
  204. if (ctl1 & (1<<26)) {
  205. /* It's a read */
  206. dmactl |= (1<<29);
  207. /* ... so it's done when the DMA is done, not just
  208. the command. */
  209. doneint = 0x10000000;
  210. }
  211. cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
  212. }
  213. cafe->datalen = 0;
  214. if (unlikely(regdebug)) {
  215. int i;
  216. printk("About to write command %08x to register 0\n", ctl1);
  217. for (i=4; i< 0x5c; i+=4)
  218. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  219. }
  220. cafe_writel(cafe, ctl1, NAND_CTRL1);
  221. /* Apply this short delay always to ensure that we do wait tWB in
  222. * any case on any machine. */
  223. ndelay(100);
  224. if (1) {
  225. int c;
  226. uint32_t irqs;
  227. for (c = 500000; c != 0; c--) {
  228. irqs = cafe_readl(cafe, NAND_IRQ);
  229. if (irqs & doneint)
  230. break;
  231. udelay(1);
  232. if (!(c % 100000))
  233. cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
  234. cpu_relax();
  235. }
  236. cafe_writel(cafe, doneint, NAND_IRQ);
  237. cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
  238. command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
  239. }
  240. WARN_ON(cafe->ctl2 & (1<<30));
  241. switch (command) {
  242. case NAND_CMD_CACHEDPROG:
  243. case NAND_CMD_PAGEPROG:
  244. case NAND_CMD_ERASE1:
  245. case NAND_CMD_ERASE2:
  246. case NAND_CMD_SEQIN:
  247. case NAND_CMD_RNDIN:
  248. case NAND_CMD_STATUS:
  249. case NAND_CMD_DEPLETE1:
  250. case NAND_CMD_RNDOUT:
  251. case NAND_CMD_STATUS_ERROR:
  252. case NAND_CMD_STATUS_ERROR0:
  253. case NAND_CMD_STATUS_ERROR1:
  254. case NAND_CMD_STATUS_ERROR2:
  255. case NAND_CMD_STATUS_ERROR3:
  256. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  257. return;
  258. }
  259. nand_wait_ready(mtd);
  260. cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
  261. }
  262. static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
  263. {
  264. struct cafe_priv *cafe = mtd->priv;
  265. cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
  266. /* Mask the appropriate bit into the stored value of ctl1
  267. which will be used by cafe_nand_cmdfunc() */
  268. if (chipnr)
  269. cafe->ctl1 |= CTRL1_CHIPSELECT;
  270. else
  271. cafe->ctl1 &= ~CTRL1_CHIPSELECT;
  272. }
  273. static int cafe_nand_interrupt(int irq, void *id)
  274. {
  275. struct mtd_info *mtd = id;
  276. struct cafe_priv *cafe = mtd->priv;
  277. uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
  278. cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
  279. if (!irqs)
  280. return IRQ_NONE;
  281. cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
  282. return IRQ_HANDLED;
  283. }
  284. static void cafe_nand_bug(struct mtd_info *mtd)
  285. {
  286. BUG();
  287. }
  288. static int cafe_nand_write_oob(struct mtd_info *mtd,
  289. struct nand_chip *chip, int page)
  290. {
  291. int status = 0;
  292. chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
  293. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  294. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  295. status = chip->waitfunc(mtd, chip);
  296. return status & NAND_STATUS_FAIL ? -EIO : 0;
  297. }
  298. /* Don't use -- use nand_read_oob_std for now */
  299. static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
  300. int page, int sndcmd)
  301. {
  302. chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
  303. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  304. return 1;
  305. }
  306. /**
  307. * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
  308. * @mtd: mtd info structure
  309. * @chip: nand chip info structure
  310. * @buf: buffer to store read data
  311. *
  312. * The hw generator calculates the error syndrome automatically. Therefor
  313. * we need a special oob layout and handling.
  314. */
  315. static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
  316. uint8_t *buf)
  317. {
  318. struct cafe_priv *cafe = mtd->priv;
  319. cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
  320. cafe_readl(cafe, NAND_ECC_RESULT),
  321. cafe_readl(cafe, NAND_ECC_SYN01));
  322. chip->read_buf(mtd, buf, mtd->writesize);
  323. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  324. if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
  325. unsigned short syn[8], pat[4];
  326. int pos[4];
  327. u8 *oob = chip->oob_poi;
  328. int i, n;
  329. for (i=0; i<8; i+=2) {
  330. uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
  331. syn[i] = cafe->rs->index_of[tmp & 0xfff];
  332. syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
  333. }
  334. n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
  335. pat);
  336. for (i = 0; i < n; i++) {
  337. int p = pos[i];
  338. /* The 12-bit symbols are mapped to bytes here */
  339. if (p > 1374) {
  340. /* out of range */
  341. n = -1374;
  342. } else if (p == 0) {
  343. /* high four bits do not correspond to data */
  344. if (pat[i] > 0xff)
  345. n = -2048;
  346. else
  347. buf[0] ^= pat[i];
  348. } else if (p == 1365) {
  349. buf[2047] ^= pat[i] >> 4;
  350. oob[0] ^= pat[i] << 4;
  351. } else if (p > 1365) {
  352. if ((p & 1) == 1) {
  353. oob[3*p/2 - 2048] ^= pat[i] >> 4;
  354. oob[3*p/2 - 2047] ^= pat[i] << 4;
  355. } else {
  356. oob[3*p/2 - 2049] ^= pat[i] >> 8;
  357. oob[3*p/2 - 2048] ^= pat[i];
  358. }
  359. } else if ((p & 1) == 1) {
  360. buf[3*p/2] ^= pat[i] >> 4;
  361. buf[3*p/2 + 1] ^= pat[i] << 4;
  362. } else {
  363. buf[3*p/2 - 1] ^= pat[i] >> 8;
  364. buf[3*p/2] ^= pat[i];
  365. }
  366. }
  367. if (n < 0) {
  368. dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
  369. cafe_readl(cafe, NAND_ADDR2) * 2048);
  370. for (i = 0; i < 0x5c; i += 4)
  371. printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
  372. mtd->ecc_stats.failed++;
  373. } else {
  374. dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
  375. mtd->ecc_stats.corrected += n;
  376. }
  377. }
  378. return 0;
  379. }
  380. static struct nand_ecclayout cafe_oobinfo_2048 = {
  381. .eccbytes = 14,
  382. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  383. .oobfree = {{14, 50}}
  384. };
  385. /* Ick. The BBT code really ought to be able to work this bit out
  386. for itself from the above, at least for the 2KiB case */
  387. static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
  388. static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
  389. static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
  390. static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
  391. static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
  392. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  393. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  394. .offs = 14,
  395. .len = 4,
  396. .veroffs = 18,
  397. .maxblocks = 4,
  398. .pattern = cafe_bbt_pattern_2048
  399. };
  400. static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
  401. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  402. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  403. .offs = 14,
  404. .len = 4,
  405. .veroffs = 18,
  406. .maxblocks = 4,
  407. .pattern = cafe_mirror_pattern_2048
  408. };
  409. static struct nand_ecclayout cafe_oobinfo_512 = {
  410. .eccbytes = 14,
  411. .eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
  412. .oobfree = {{14, 2}}
  413. };
  414. static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
  415. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  416. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  417. .offs = 14,
  418. .len = 1,
  419. .veroffs = 15,
  420. .maxblocks = 4,
  421. .pattern = cafe_bbt_pattern_512
  422. };
  423. static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
  424. .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
  425. | NAND_BBT_2BIT | NAND_BBT_VERSION,
  426. .offs = 14,
  427. .len = 1,
  428. .veroffs = 15,
  429. .maxblocks = 4,
  430. .pattern = cafe_mirror_pattern_512
  431. };
  432. static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
  433. struct nand_chip *chip, const uint8_t *buf)
  434. {
  435. struct cafe_priv *cafe = mtd->priv;
  436. chip->write_buf(mtd, buf, mtd->writesize);
  437. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  438. /* Set up ECC autogeneration */
  439. cafe->ctl2 |= (1<<30);
  440. }
  441. static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
  442. const uint8_t *buf, int page, int cached, int raw)
  443. {
  444. int status;
  445. chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
  446. if (unlikely(raw))
  447. chip->ecc.write_page_raw(mtd, chip, buf);
  448. else
  449. chip->ecc.write_page(mtd, chip, buf);
  450. /*
  451. * Cached progamming disabled for now, Not sure if its worth the
  452. * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
  453. */
  454. cached = 0;
  455. if (!cached || !(chip->options & NAND_CACHEPRG)) {
  456. chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
  457. status = chip->waitfunc(mtd, chip);
  458. /*
  459. * See if operation failed and additional status checks are
  460. * available
  461. */
  462. if ((status & NAND_STATUS_FAIL) && (chip->errstat))
  463. status = chip->errstat(mtd, chip, FL_WRITING, status,
  464. page);
  465. if (status & NAND_STATUS_FAIL)
  466. return -EIO;
  467. } else {
  468. chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
  469. status = chip->waitfunc(mtd, chip);
  470. }
  471. #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
  472. /* Send command to read back the data */
  473. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  474. if (chip->verify_buf(mtd, buf, mtd->writesize))
  475. return -EIO;
  476. #endif
  477. return 0;
  478. }
  479. static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  480. {
  481. return 0;
  482. }
  483. /* F_2[X]/(X**6+X+1) */
  484. static unsigned short __devinit gf64_mul(u8 a, u8 b)
  485. {
  486. u8 c;
  487. unsigned int i;
  488. c = 0;
  489. for (i = 0; i < 6; i++) {
  490. if (a & 1)
  491. c ^= b;
  492. a >>= 1;
  493. b <<= 1;
  494. if ((b & 0x40) != 0)
  495. b ^= 0x43;
  496. }
  497. return c;
  498. }
  499. /* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
  500. static u16 __devinit gf4096_mul(u16 a, u16 b)
  501. {
  502. u8 ah, al, bh, bl, ch, cl;
  503. ah = a >> 6;
  504. al = a & 0x3f;
  505. bh = b >> 6;
  506. bl = b & 0x3f;
  507. ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
  508. cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
  509. return (ch << 6) ^ cl;
  510. }
  511. static int __devinit cafe_mul(int x)
  512. {
  513. if (x == 0)
  514. return 1;
  515. return gf4096_mul(x, 0xe01);
  516. }
  517. static int __devinit cafe_nand_probe(struct pci_dev *pdev,
  518. const struct pci_device_id *ent)
  519. {
  520. struct mtd_info *mtd;
  521. struct cafe_priv *cafe;
  522. uint32_t ctrl;
  523. int err = 0;
  524. err = pci_enable_device(pdev);
  525. if (err)
  526. return err;
  527. pci_set_master(pdev);
  528. mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
  529. if (!mtd) {
  530. dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
  531. return -ENOMEM;
  532. }
  533. cafe = (void *)(&mtd[1]);
  534. mtd->priv = cafe;
  535. mtd->owner = THIS_MODULE;
  536. cafe->pdev = pdev;
  537. cafe->mmio = pci_iomap(pdev, 0, 0);
  538. if (!cafe->mmio) {
  539. dev_warn(&pdev->dev, "failed to iomap\n");
  540. err = -ENOMEM;
  541. goto out_free_mtd;
  542. }
  543. cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
  544. &cafe->dmaaddr, GFP_KERNEL);
  545. if (!cafe->dmabuf) {
  546. err = -ENOMEM;
  547. goto out_ior;
  548. }
  549. cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
  550. cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
  551. if (!cafe->rs) {
  552. err = -ENOMEM;
  553. goto out_ior;
  554. }
  555. cafe->nand.cmdfunc = cafe_nand_cmdfunc;
  556. cafe->nand.dev_ready = cafe_device_ready;
  557. cafe->nand.read_byte = cafe_read_byte;
  558. cafe->nand.read_buf = cafe_read_buf;
  559. cafe->nand.write_buf = cafe_write_buf;
  560. cafe->nand.select_chip = cafe_select_chip;
  561. cafe->nand.chip_delay = 0;
  562. /* Enable the following for a flash based bad block table */
  563. cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
  564. if (skipbbt) {
  565. cafe->nand.options |= NAND_SKIP_BBTSCAN;
  566. cafe->nand.block_bad = cafe_nand_block_bad;
  567. }
  568. if (numtimings && numtimings != 3) {
  569. dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
  570. }
  571. if (numtimings == 3) {
  572. cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
  573. timing[0], timing[1], timing[2]);
  574. } else {
  575. timing[0] = cafe_readl(cafe, NAND_TIMING1);
  576. timing[1] = cafe_readl(cafe, NAND_TIMING2);
  577. timing[2] = cafe_readl(cafe, NAND_TIMING3);
  578. if (timing[0] | timing[1] | timing[2]) {
  579. cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
  580. timing[0], timing[1], timing[2]);
  581. } else {
  582. dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
  583. timing[0] = timing[1] = timing[2] = 0xffffffff;
  584. }
  585. }
  586. /* Start off by resetting the NAND controller completely */
  587. cafe_writel(cafe, 1, NAND_RESET);
  588. cafe_writel(cafe, 0, NAND_RESET);
  589. cafe_writel(cafe, timing[0], NAND_TIMING1);
  590. cafe_writel(cafe, timing[1], NAND_TIMING2);
  591. cafe_writel(cafe, timing[2], NAND_TIMING3);
  592. cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
  593. err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
  594. "CAFE NAND", mtd);
  595. if (err) {
  596. dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
  597. goto out_free_dma;
  598. }
  599. /* Disable master reset, enable NAND clock */
  600. ctrl = cafe_readl(cafe, GLOBAL_CTRL);
  601. ctrl &= 0xffffeff0;
  602. ctrl |= 0x00007000;
  603. cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
  604. cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
  605. cafe_writel(cafe, 0, NAND_DMA_CTRL);
  606. cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
  607. cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
  608. /* Set up DMA address */
  609. cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
  610. if (sizeof(cafe->dmaaddr) > 4)
  611. /* Shift in two parts to shut the compiler up */
  612. cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
  613. else
  614. cafe_writel(cafe, 0, NAND_DMA_ADDR1);
  615. cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
  616. cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
  617. /* Enable NAND IRQ in global IRQ mask register */
  618. cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
  619. cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
  620. cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
  621. /* Scan to find existence of the device */
  622. if (nand_scan_ident(mtd, 2)) {
  623. err = -ENXIO;
  624. goto out_irq;
  625. }
  626. cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
  627. if (mtd->writesize == 2048)
  628. cafe->ctl2 |= 1<<29; /* 2KiB page size */
  629. /* Set up ECC according to the type of chip we found */
  630. if (mtd->writesize == 2048) {
  631. cafe->nand.ecc.layout = &cafe_oobinfo_2048;
  632. cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
  633. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
  634. } else if (mtd->writesize == 512) {
  635. cafe->nand.ecc.layout = &cafe_oobinfo_512;
  636. cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
  637. cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
  638. } else {
  639. printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
  640. mtd->writesize);
  641. goto out_irq;
  642. }
  643. cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
  644. cafe->nand.ecc.size = mtd->writesize;
  645. cafe->nand.ecc.bytes = 14;
  646. cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
  647. cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
  648. cafe->nand.ecc.correct = (void *)cafe_nand_bug;
  649. cafe->nand.write_page = cafe_nand_write_page;
  650. cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
  651. cafe->nand.ecc.write_oob = cafe_nand_write_oob;
  652. cafe->nand.ecc.read_page = cafe_nand_read_page;
  653. cafe->nand.ecc.read_oob = cafe_nand_read_oob;
  654. err = nand_scan_tail(mtd);
  655. if (err)
  656. goto out_irq;
  657. pci_set_drvdata(pdev, mtd);
  658. add_mtd_device(mtd);
  659. goto out;
  660. out_irq:
  661. /* Disable NAND IRQ in global IRQ mask register */
  662. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  663. free_irq(pdev->irq, mtd);
  664. out_free_dma:
  665. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  666. out_ior:
  667. pci_iounmap(pdev, cafe->mmio);
  668. out_free_mtd:
  669. kfree(mtd);
  670. out:
  671. return err;
  672. }
  673. static void __devexit cafe_nand_remove(struct pci_dev *pdev)
  674. {
  675. struct mtd_info *mtd = pci_get_drvdata(pdev);
  676. struct cafe_priv *cafe = mtd->priv;
  677. del_mtd_device(mtd);
  678. /* Disable NAND IRQ in global IRQ mask register */
  679. cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
  680. free_irq(pdev->irq, mtd);
  681. nand_release(mtd);
  682. free_rs(cafe->rs);
  683. pci_iounmap(pdev, cafe->mmio);
  684. dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
  685. kfree(mtd);
  686. }
  687. static struct pci_device_id cafe_nand_tbl[] = {
  688. { 0x11ab, 0x4100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MEMORY_FLASH << 8, 0xFFFF0 }
  689. };
  690. MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
  691. static struct pci_driver cafe_nand_pci_driver = {
  692. .name = "CAFÉ NAND",
  693. .id_table = cafe_nand_tbl,
  694. .probe = cafe_nand_probe,
  695. .remove = __devexit_p(cafe_nand_remove),
  696. #ifdef CONFIG_PMx
  697. .suspend = cafe_nand_suspend,
  698. .resume = cafe_nand_resume,
  699. #endif
  700. };
  701. static int cafe_nand_init(void)
  702. {
  703. return pci_register_driver(&cafe_nand_pci_driver);
  704. }
  705. static void cafe_nand_exit(void)
  706. {
  707. pci_unregister_driver(&cafe_nand_pci_driver);
  708. }
  709. module_init(cafe_nand_init);
  710. module_exit(cafe_nand_exit);
  711. MODULE_LICENSE("GPL");
  712. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  713. MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");