mtdpart.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
  9. *
  10. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  11. * added support for read_oob, write_oob
  12. */
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/kernel.h>
  16. #include <linux/slab.h>
  17. #include <linux/list.h>
  18. #include <linux/kmod.h>
  19. #include <linux/mtd/mtd.h>
  20. #include <linux/mtd/partitions.h>
  21. #include <linux/mtd/compatmac.h>
  22. /* Our partition linked list */
  23. static LIST_HEAD(mtd_partitions);
  24. /* Our partition node structure */
  25. struct mtd_part {
  26. struct mtd_info mtd;
  27. struct mtd_info *master;
  28. u_int32_t offset;
  29. int index;
  30. struct list_head list;
  31. int registered;
  32. };
  33. /*
  34. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  35. * the pointer to that structure with this macro.
  36. */
  37. #define PART(x) ((struct mtd_part *)(x))
  38. /*
  39. * MTD methods which simply translate the effective address and pass through
  40. * to the _real_ device.
  41. */
  42. static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
  43. size_t *retlen, u_char *buf)
  44. {
  45. struct mtd_part *part = PART(mtd);
  46. int res;
  47. if (from >= mtd->size)
  48. len = 0;
  49. else if (from + len > mtd->size)
  50. len = mtd->size - from;
  51. res = part->master->read (part->master, from + part->offset,
  52. len, retlen, buf);
  53. if (unlikely(res)) {
  54. if (res == -EUCLEAN)
  55. mtd->ecc_stats.corrected++;
  56. if (res == -EBADMSG)
  57. mtd->ecc_stats.failed++;
  58. }
  59. return res;
  60. }
  61. static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
  62. size_t *retlen, u_char **buf)
  63. {
  64. struct mtd_part *part = PART(mtd);
  65. if (from >= mtd->size)
  66. len = 0;
  67. else if (from + len > mtd->size)
  68. len = mtd->size - from;
  69. return part->master->point (part->master, from + part->offset,
  70. len, retlen, buf);
  71. }
  72. static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
  73. {
  74. struct mtd_part *part = PART(mtd);
  75. part->master->unpoint (part->master, addr, from + part->offset, len);
  76. }
  77. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  78. struct mtd_oob_ops *ops)
  79. {
  80. struct mtd_part *part = PART(mtd);
  81. int res;
  82. if (from >= mtd->size)
  83. return -EINVAL;
  84. if (ops->datbuf && from + ops->len > mtd->size)
  85. return -EINVAL;
  86. res = part->master->read_oob(part->master, from + part->offset, ops);
  87. if (unlikely(res)) {
  88. if (res == -EUCLEAN)
  89. mtd->ecc_stats.corrected++;
  90. if (res == -EBADMSG)
  91. mtd->ecc_stats.failed++;
  92. }
  93. return res;
  94. }
  95. static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  96. size_t *retlen, u_char *buf)
  97. {
  98. struct mtd_part *part = PART(mtd);
  99. return part->master->read_user_prot_reg (part->master, from,
  100. len, retlen, buf);
  101. }
  102. static int part_get_user_prot_info (struct mtd_info *mtd,
  103. struct otp_info *buf, size_t len)
  104. {
  105. struct mtd_part *part = PART(mtd);
  106. return part->master->get_user_prot_info (part->master, buf, len);
  107. }
  108. static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  109. size_t *retlen, u_char *buf)
  110. {
  111. struct mtd_part *part = PART(mtd);
  112. return part->master->read_fact_prot_reg (part->master, from,
  113. len, retlen, buf);
  114. }
  115. static int part_get_fact_prot_info (struct mtd_info *mtd,
  116. struct otp_info *buf, size_t len)
  117. {
  118. struct mtd_part *part = PART(mtd);
  119. return part->master->get_fact_prot_info (part->master, buf, len);
  120. }
  121. static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
  122. size_t *retlen, const u_char *buf)
  123. {
  124. struct mtd_part *part = PART(mtd);
  125. if (!(mtd->flags & MTD_WRITEABLE))
  126. return -EROFS;
  127. if (to >= mtd->size)
  128. len = 0;
  129. else if (to + len > mtd->size)
  130. len = mtd->size - to;
  131. return part->master->write (part->master, to + part->offset,
  132. len, retlen, buf);
  133. }
  134. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  135. struct mtd_oob_ops *ops)
  136. {
  137. struct mtd_part *part = PART(mtd);
  138. if (!(mtd->flags & MTD_WRITEABLE))
  139. return -EROFS;
  140. if (to >= mtd->size)
  141. return -EINVAL;
  142. if (ops->datbuf && to + ops->len > mtd->size)
  143. return -EINVAL;
  144. return part->master->write_oob(part->master, to + part->offset, ops);
  145. }
  146. static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
  147. size_t *retlen, u_char *buf)
  148. {
  149. struct mtd_part *part = PART(mtd);
  150. return part->master->write_user_prot_reg (part->master, from,
  151. len, retlen, buf);
  152. }
  153. static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
  154. {
  155. struct mtd_part *part = PART(mtd);
  156. return part->master->lock_user_prot_reg (part->master, from, len);
  157. }
  158. static int part_writev (struct mtd_info *mtd, const struct kvec *vecs,
  159. unsigned long count, loff_t to, size_t *retlen)
  160. {
  161. struct mtd_part *part = PART(mtd);
  162. if (!(mtd->flags & MTD_WRITEABLE))
  163. return -EROFS;
  164. return part->master->writev (part->master, vecs, count,
  165. to + part->offset, retlen);
  166. }
  167. static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
  168. {
  169. struct mtd_part *part = PART(mtd);
  170. int ret;
  171. if (!(mtd->flags & MTD_WRITEABLE))
  172. return -EROFS;
  173. if (instr->addr >= mtd->size)
  174. return -EINVAL;
  175. instr->addr += part->offset;
  176. ret = part->master->erase(part->master, instr);
  177. if (ret) {
  178. if (instr->fail_addr != 0xffffffff)
  179. instr->fail_addr -= part->offset;
  180. instr->addr -= part->offset;
  181. }
  182. return ret;
  183. }
  184. void mtd_erase_callback(struct erase_info *instr)
  185. {
  186. if (instr->mtd->erase == part_erase) {
  187. struct mtd_part *part = PART(instr->mtd);
  188. if (instr->fail_addr != 0xffffffff)
  189. instr->fail_addr -= part->offset;
  190. instr->addr -= part->offset;
  191. }
  192. if (instr->callback)
  193. instr->callback(instr);
  194. }
  195. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  196. static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
  197. {
  198. struct mtd_part *part = PART(mtd);
  199. if ((len + ofs) > mtd->size)
  200. return -EINVAL;
  201. return part->master->lock(part->master, ofs + part->offset, len);
  202. }
  203. static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
  204. {
  205. struct mtd_part *part = PART(mtd);
  206. if ((len + ofs) > mtd->size)
  207. return -EINVAL;
  208. return part->master->unlock(part->master, ofs + part->offset, len);
  209. }
  210. static void part_sync(struct mtd_info *mtd)
  211. {
  212. struct mtd_part *part = PART(mtd);
  213. part->master->sync(part->master);
  214. }
  215. static int part_suspend(struct mtd_info *mtd)
  216. {
  217. struct mtd_part *part = PART(mtd);
  218. return part->master->suspend(part->master);
  219. }
  220. static void part_resume(struct mtd_info *mtd)
  221. {
  222. struct mtd_part *part = PART(mtd);
  223. part->master->resume(part->master);
  224. }
  225. static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
  226. {
  227. struct mtd_part *part = PART(mtd);
  228. if (ofs >= mtd->size)
  229. return -EINVAL;
  230. ofs += part->offset;
  231. return part->master->block_isbad(part->master, ofs);
  232. }
  233. static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
  234. {
  235. struct mtd_part *part = PART(mtd);
  236. int res;
  237. if (!(mtd->flags & MTD_WRITEABLE))
  238. return -EROFS;
  239. if (ofs >= mtd->size)
  240. return -EINVAL;
  241. ofs += part->offset;
  242. res = part->master->block_markbad(part->master, ofs);
  243. if (!res)
  244. mtd->ecc_stats.badblocks++;
  245. return res;
  246. }
  247. /*
  248. * This function unregisters and destroy all slave MTD objects which are
  249. * attached to the given master MTD object.
  250. */
  251. int del_mtd_partitions(struct mtd_info *master)
  252. {
  253. struct list_head *node;
  254. struct mtd_part *slave;
  255. for (node = mtd_partitions.next;
  256. node != &mtd_partitions;
  257. node = node->next) {
  258. slave = list_entry(node, struct mtd_part, list);
  259. if (slave->master == master) {
  260. struct list_head *prev = node->prev;
  261. __list_del(prev, node->next);
  262. if(slave->registered)
  263. del_mtd_device(&slave->mtd);
  264. kfree(slave);
  265. node = prev;
  266. }
  267. }
  268. return 0;
  269. }
  270. /*
  271. * This function, given a master MTD object and a partition table, creates
  272. * and registers slave MTD objects which are bound to the master according to
  273. * the partition definitions.
  274. * (Q: should we register the master MTD object as well?)
  275. */
  276. int add_mtd_partitions(struct mtd_info *master,
  277. const struct mtd_partition *parts,
  278. int nbparts)
  279. {
  280. struct mtd_part *slave;
  281. u_int32_t cur_offset = 0;
  282. int i;
  283. printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  284. for (i = 0; i < nbparts; i++) {
  285. /* allocate the partition structure */
  286. slave = kzalloc (sizeof(*slave), GFP_KERNEL);
  287. if (!slave) {
  288. printk ("memory allocation error while creating partitions for \"%s\"\n",
  289. master->name);
  290. del_mtd_partitions(master);
  291. return -ENOMEM;
  292. }
  293. list_add(&slave->list, &mtd_partitions);
  294. /* set up the MTD object for this partition */
  295. slave->mtd.type = master->type;
  296. slave->mtd.flags = master->flags & ~parts[i].mask_flags;
  297. slave->mtd.size = parts[i].size;
  298. slave->mtd.writesize = master->writesize;
  299. slave->mtd.oobsize = master->oobsize;
  300. slave->mtd.oobavail = master->oobavail;
  301. slave->mtd.subpage_sft = master->subpage_sft;
  302. slave->mtd.name = parts[i].name;
  303. slave->mtd.owner = master->owner;
  304. slave->mtd.read = part_read;
  305. slave->mtd.write = part_write;
  306. if(master->point && master->unpoint){
  307. slave->mtd.point = part_point;
  308. slave->mtd.unpoint = part_unpoint;
  309. }
  310. if (master->read_oob)
  311. slave->mtd.read_oob = part_read_oob;
  312. if (master->write_oob)
  313. slave->mtd.write_oob = part_write_oob;
  314. if(master->read_user_prot_reg)
  315. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  316. if(master->read_fact_prot_reg)
  317. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  318. if(master->write_user_prot_reg)
  319. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  320. if(master->lock_user_prot_reg)
  321. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  322. if(master->get_user_prot_info)
  323. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  324. if(master->get_fact_prot_info)
  325. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  326. if (master->sync)
  327. slave->mtd.sync = part_sync;
  328. if (!i && master->suspend && master->resume) {
  329. slave->mtd.suspend = part_suspend;
  330. slave->mtd.resume = part_resume;
  331. }
  332. if (master->writev)
  333. slave->mtd.writev = part_writev;
  334. if (master->lock)
  335. slave->mtd.lock = part_lock;
  336. if (master->unlock)
  337. slave->mtd.unlock = part_unlock;
  338. if (master->block_isbad)
  339. slave->mtd.block_isbad = part_block_isbad;
  340. if (master->block_markbad)
  341. slave->mtd.block_markbad = part_block_markbad;
  342. slave->mtd.erase = part_erase;
  343. slave->master = master;
  344. slave->offset = parts[i].offset;
  345. slave->index = i;
  346. if (slave->offset == MTDPART_OFS_APPEND)
  347. slave->offset = cur_offset;
  348. if (slave->offset == MTDPART_OFS_NXTBLK) {
  349. slave->offset = cur_offset;
  350. if ((cur_offset % master->erasesize) != 0) {
  351. /* Round up to next erasesize */
  352. slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
  353. printk(KERN_NOTICE "Moving partition %d: "
  354. "0x%08x -> 0x%08x\n", i,
  355. cur_offset, slave->offset);
  356. }
  357. }
  358. if (slave->mtd.size == MTDPART_SIZ_FULL)
  359. slave->mtd.size = master->size - slave->offset;
  360. cur_offset = slave->offset + slave->mtd.size;
  361. printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
  362. slave->offset + slave->mtd.size, slave->mtd.name);
  363. /* let's do some sanity checks */
  364. if (slave->offset >= master->size) {
  365. /* let's register it anyway to preserve ordering */
  366. slave->offset = 0;
  367. slave->mtd.size = 0;
  368. printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
  369. parts[i].name);
  370. }
  371. if (slave->offset + slave->mtd.size > master->size) {
  372. slave->mtd.size = master->size - slave->offset;
  373. printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
  374. parts[i].name, master->name, slave->mtd.size);
  375. }
  376. if (master->numeraseregions>1) {
  377. /* Deal with variable erase size stuff */
  378. int i;
  379. struct mtd_erase_region_info *regions = master->eraseregions;
  380. /* Find the first erase regions which is part of this partition. */
  381. for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
  382. ;
  383. for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
  384. if (slave->mtd.erasesize < regions[i].erasesize) {
  385. slave->mtd.erasesize = regions[i].erasesize;
  386. }
  387. }
  388. } else {
  389. /* Single erase size */
  390. slave->mtd.erasesize = master->erasesize;
  391. }
  392. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  393. (slave->offset % slave->mtd.erasesize)) {
  394. /* Doesn't start on a boundary of major erase size */
  395. /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
  396. slave->mtd.flags &= ~MTD_WRITEABLE;
  397. printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  398. parts[i].name);
  399. }
  400. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  401. (slave->mtd.size % slave->mtd.erasesize)) {
  402. slave->mtd.flags &= ~MTD_WRITEABLE;
  403. printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  404. parts[i].name);
  405. }
  406. slave->mtd.ecclayout = master->ecclayout;
  407. if (master->block_isbad) {
  408. uint32_t offs = 0;
  409. while(offs < slave->mtd.size) {
  410. if (master->block_isbad(master,
  411. offs + slave->offset))
  412. slave->mtd.ecc_stats.badblocks++;
  413. offs += slave->mtd.erasesize;
  414. }
  415. }
  416. if(parts[i].mtdp)
  417. { /* store the object pointer (caller may or may not register it */
  418. *parts[i].mtdp = &slave->mtd;
  419. slave->registered = 0;
  420. }
  421. else
  422. {
  423. /* register our partition */
  424. add_mtd_device(&slave->mtd);
  425. slave->registered = 1;
  426. }
  427. }
  428. return 0;
  429. }
  430. EXPORT_SYMBOL(add_mtd_partitions);
  431. EXPORT_SYMBOL(del_mtd_partitions);
  432. static DEFINE_SPINLOCK(part_parser_lock);
  433. static LIST_HEAD(part_parsers);
  434. static struct mtd_part_parser *get_partition_parser(const char *name)
  435. {
  436. struct list_head *this;
  437. void *ret = NULL;
  438. spin_lock(&part_parser_lock);
  439. list_for_each(this, &part_parsers) {
  440. struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
  441. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  442. ret = p;
  443. break;
  444. }
  445. }
  446. spin_unlock(&part_parser_lock);
  447. return ret;
  448. }
  449. int register_mtd_parser(struct mtd_part_parser *p)
  450. {
  451. spin_lock(&part_parser_lock);
  452. list_add(&p->list, &part_parsers);
  453. spin_unlock(&part_parser_lock);
  454. return 0;
  455. }
  456. int deregister_mtd_parser(struct mtd_part_parser *p)
  457. {
  458. spin_lock(&part_parser_lock);
  459. list_del(&p->list);
  460. spin_unlock(&part_parser_lock);
  461. return 0;
  462. }
  463. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  464. struct mtd_partition **pparts, unsigned long origin)
  465. {
  466. struct mtd_part_parser *parser;
  467. int ret = 0;
  468. for ( ; ret <= 0 && *types; types++) {
  469. parser = get_partition_parser(*types);
  470. #ifdef CONFIG_KMOD
  471. if (!parser && !request_module("%s", *types))
  472. parser = get_partition_parser(*types);
  473. #endif
  474. if (!parser) {
  475. printk(KERN_NOTICE "%s partition parsing not available\n",
  476. *types);
  477. continue;
  478. }
  479. ret = (*parser->parse_fn)(master, pparts, origin);
  480. if (ret > 0) {
  481. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  482. ret, parser->name, master->name);
  483. }
  484. put_partition_parser(parser);
  485. }
  486. return ret;
  487. }
  488. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  489. EXPORT_SYMBOL_GPL(register_mtd_parser);
  490. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  491. MODULE_LICENSE("GPL");
  492. MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
  493. MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");