dib7000m.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191
  1. /*
  2. * Linux-DVB Driver for DiBcom's DiB7000M and
  3. * first generation DiB7000P-demodulator-family.
  4. *
  5. * Copyright (C) 2005-6 DiBcom (http://www.dibcom.fr/)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License as
  9. * published by the Free Software Foundation, version 2.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/i2c.h>
  13. #include "dvb_frontend.h"
  14. #include "dib7000m.h"
  15. static int debug;
  16. module_param(debug, int, 0644);
  17. MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
  18. #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M:"); printk(args); } } while (0)
  19. struct dib7000m_state {
  20. struct dvb_frontend demod;
  21. struct dib7000m_config cfg;
  22. u8 i2c_addr;
  23. struct i2c_adapter *i2c_adap;
  24. struct dibx000_i2c_master i2c_master;
  25. /* offset is 1 in case of the 7000MC */
  26. u8 reg_offs;
  27. u16 wbd_ref;
  28. u8 current_band;
  29. fe_bandwidth_t current_bandwidth;
  30. struct dibx000_agc_config *current_agc;
  31. u32 timf;
  32. u16 revision;
  33. };
  34. enum dib7000m_power_mode {
  35. DIB7000M_POWER_ALL = 0,
  36. DIB7000M_POWER_NO,
  37. DIB7000M_POWER_INTERF_ANALOG_AGC,
  38. DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
  39. DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD,
  40. DIB7000M_POWER_INTERFACE_ONLY,
  41. };
  42. static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg)
  43. {
  44. u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
  45. u8 rb[2];
  46. struct i2c_msg msg[2] = {
  47. { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 },
  48. { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
  49. };
  50. if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
  51. dprintk("i2c read error on %d\n",reg);
  52. return (rb[0] << 8) | rb[1];
  53. }
  54. static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val)
  55. {
  56. u8 b[4] = {
  57. (reg >> 8) & 0xff, reg & 0xff,
  58. (val >> 8) & 0xff, val & 0xff,
  59. };
  60. struct i2c_msg msg = {
  61. .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
  62. };
  63. return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
  64. }
  65. static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
  66. {
  67. int ret = 0;
  68. u16 outreg, fifo_threshold, smo_mode,
  69. sram = 0x0005; /* by default SRAM output is disabled */
  70. outreg = 0;
  71. fifo_threshold = 1792;
  72. smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1);
  73. dprintk("-I- Setting output mode for demod %p to %d\n",
  74. &state->demod, mode);
  75. switch (mode) {
  76. case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
  77. outreg = (1 << 10); /* 0x0400 */
  78. break;
  79. case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
  80. outreg = (1 << 10) | (1 << 6); /* 0x0440 */
  81. break;
  82. case OUTMODE_MPEG2_SERIAL: // STBs with serial input
  83. outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
  84. break;
  85. case OUTMODE_DIVERSITY:
  86. if (state->cfg.hostbus_diversity)
  87. outreg = (1 << 10) | (4 << 6); /* 0x0500 */
  88. else
  89. sram |= 0x0c00;
  90. break;
  91. case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
  92. smo_mode |= (3 << 1);
  93. fifo_threshold = 512;
  94. outreg = (1 << 10) | (5 << 6);
  95. break;
  96. case OUTMODE_HIGH_Z: // disable
  97. outreg = 0;
  98. break;
  99. default:
  100. dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod);
  101. break;
  102. }
  103. if (state->cfg.output_mpeg2_in_188_bytes)
  104. smo_mode |= (1 << 5) ;
  105. ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode);
  106. ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold); /* synchronous fread */
  107. ret |= dib7000m_write_word(state, 1795, outreg);
  108. ret |= dib7000m_write_word(state, 1805, sram);
  109. return ret;
  110. }
  111. static int dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode)
  112. {
  113. /* by default everything is going to be powered off */
  114. u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff;
  115. /* now, depending on the requested mode, we power on */
  116. switch (mode) {
  117. /* power up everything in the demod */
  118. case DIB7000M_POWER_ALL:
  119. reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000;
  120. break;
  121. /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */
  122. case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */
  123. reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
  124. break;
  125. case DIB7000M_POWER_INTERF_ANALOG_AGC:
  126. reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
  127. reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
  128. reg_906 &= ~((1 << 0));
  129. break;
  130. case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
  131. reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000;
  132. break;
  133. case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD:
  134. reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000;
  135. break;
  136. case DIB7000M_POWER_NO:
  137. break;
  138. }
  139. /* always power down unused parts */
  140. if (!state->cfg.mobile_mode)
  141. reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
  142. /* P_sdio_select_clk = 0 on MC */
  143. if (state->revision != 0x4000)
  144. reg_906 <<= 1;
  145. dib7000m_write_word(state, 903, reg_903);
  146. dib7000m_write_word(state, 904, reg_904);
  147. dib7000m_write_word(state, 905, reg_905);
  148. dib7000m_write_word(state, 906, reg_906);
  149. return 0;
  150. }
  151. static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no)
  152. {
  153. int ret = 0;
  154. u16 reg_913 = dib7000m_read_word(state, 913),
  155. reg_914 = dib7000m_read_word(state, 914);
  156. switch (no) {
  157. case DIBX000_SLOW_ADC_ON:
  158. reg_914 |= (1 << 1) | (1 << 0);
  159. ret |= dib7000m_write_word(state, 914, reg_914);
  160. reg_914 &= ~(1 << 1);
  161. break;
  162. case DIBX000_SLOW_ADC_OFF:
  163. reg_914 |= (1 << 1) | (1 << 0);
  164. break;
  165. case DIBX000_ADC_ON:
  166. if (state->revision == 0x4000) { // workaround for PA/MA
  167. // power-up ADC
  168. dib7000m_write_word(state, 913, 0);
  169. dib7000m_write_word(state, 914, reg_914 & 0x3);
  170. // power-down bandgag
  171. dib7000m_write_word(state, 913, (1 << 15));
  172. dib7000m_write_word(state, 914, reg_914 & 0x3);
  173. }
  174. reg_913 &= 0x0fff;
  175. reg_914 &= 0x0003;
  176. break;
  177. case DIBX000_ADC_OFF: // leave the VBG voltage on
  178. reg_913 |= (1 << 14) | (1 << 13) | (1 << 12);
  179. reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
  180. break;
  181. case DIBX000_VBG_ENABLE:
  182. reg_913 &= ~(1 << 15);
  183. break;
  184. case DIBX000_VBG_DISABLE:
  185. reg_913 |= (1 << 15);
  186. break;
  187. default:
  188. break;
  189. }
  190. // dprintk("-D- 913: %x, 914: %x\n", reg_913, reg_914);
  191. ret |= dib7000m_write_word(state, 913, reg_913);
  192. ret |= dib7000m_write_word(state, 914, reg_914);
  193. return ret;
  194. }
  195. static int dib7000m_set_bandwidth(struct dvb_frontend *demod, u8 bw_idx)
  196. {
  197. struct dib7000m_state *state = demod->demodulator_priv;
  198. u32 timf;
  199. // store the current bandwidth for later use
  200. state->current_bandwidth = bw_idx;
  201. if (state->timf == 0) {
  202. dprintk("-D- Using default timf\n");
  203. timf = state->cfg.bw->timf;
  204. } else {
  205. dprintk("-D- Using updated timf\n");
  206. timf = state->timf;
  207. }
  208. timf = timf * (BW_INDEX_TO_KHZ(bw_idx) / 100) / 80;
  209. dib7000m_write_word(state, 23, (timf >> 16) & 0xffff);
  210. dib7000m_write_word(state, 24, (timf ) & 0xffff);
  211. return 0;
  212. }
  213. static int dib7000m_sad_calib(struct dib7000m_state *state)
  214. {
  215. /* internal */
  216. // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is written in set_bandwidth
  217. dib7000m_write_word(state, 929, (0 << 1) | (0 << 0));
  218. dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096
  219. /* do the calibration */
  220. dib7000m_write_word(state, 929, (1 << 0));
  221. dib7000m_write_word(state, 929, (0 << 0));
  222. msleep(1);
  223. return 0;
  224. }
  225. static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw)
  226. {
  227. dib7000m_write_word(state, 18, ((bw->internal*1000) >> 16) & 0xffff);
  228. dib7000m_write_word(state, 19, (bw->internal*1000) & 0xffff);
  229. dib7000m_write_word(state, 21, (bw->ifreq >> 16) & 0xffff);
  230. dib7000m_write_word(state, 22, bw->ifreq & 0xffff);
  231. dib7000m_write_word(state, 928, bw->sad_cfg);
  232. }
  233. static void dib7000m_reset_pll(struct dib7000m_state *state)
  234. {
  235. const struct dibx000_bandwidth_config *bw = state->cfg.bw;
  236. u16 reg_907,reg_910;
  237. /* default */
  238. reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) |
  239. (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) |
  240. (bw->enable_refdiv << 1) | (0 << 0);
  241. reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset;
  242. // for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value)
  243. // this is only working only for 30 MHz crystals
  244. if (!state->cfg.quartz_direct) {
  245. reg_910 |= (1 << 5); // forcing the predivider to 1
  246. // if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2)
  247. if(state->cfg.input_clk_is_div_2)
  248. reg_907 |= (16 << 9);
  249. else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary
  250. reg_907 |= (8 << 9);
  251. } else {
  252. reg_907 |= (bw->pll_ratio & 0x3f) << 9;
  253. reg_910 |= (bw->pll_prediv << 5);
  254. }
  255. dib7000m_write_word(state, 910, reg_910); // pll cfg
  256. dib7000m_write_word(state, 907, reg_907); // clk cfg0
  257. dib7000m_write_word(state, 908, 0x0006); // clk_cfg1
  258. dib7000m_reset_pll_common(state, bw);
  259. }
  260. static void dib7000mc_reset_pll(struct dib7000m_state *state)
  261. {
  262. const struct dibx000_bandwidth_config *bw = state->cfg.bw;
  263. // clk_cfg0
  264. dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0));
  265. // clk_cfg1
  266. //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) |
  267. dib7000m_write_word(state, 908, (0 << 14) | (3 << 12) |(0 << 11) |
  268. (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) |
  269. (bw->pll_bypass << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0));
  270. // smpl_cfg
  271. dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7));
  272. dib7000m_reset_pll_common(state, bw);
  273. }
  274. static int dib7000m_reset_gpio(struct dib7000m_state *st)
  275. {
  276. /* reset the GPIOs */
  277. dprintk("-D- gpio dir: %x: gpio val: %x, gpio pwm pos: %x\n",
  278. st->cfg.gpio_dir, st->cfg.gpio_val,st->cfg.gpio_pwm_pos);
  279. dib7000m_write_word(st, 773, st->cfg.gpio_dir);
  280. dib7000m_write_word(st, 774, st->cfg.gpio_val);
  281. /* TODO 782 is P_gpio_od */
  282. dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos);
  283. dib7000m_write_word(st, 780, st->cfg.pwm_freq_div);
  284. return 0;
  285. }
  286. static int dib7000m_demod_reset(struct dib7000m_state *state)
  287. {
  288. dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
  289. /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
  290. dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE);
  291. /* restart all parts */
  292. dib7000m_write_word(state, 898, 0xffff);
  293. dib7000m_write_word(state, 899, 0xffff);
  294. dib7000m_write_word(state, 900, 0xff0f);
  295. dib7000m_write_word(state, 901, 0xfffc);
  296. dib7000m_write_word(state, 898, 0);
  297. dib7000m_write_word(state, 899, 0);
  298. dib7000m_write_word(state, 900, 0);
  299. dib7000m_write_word(state, 901, 0);
  300. if (state->revision == 0x4000)
  301. dib7000m_reset_pll(state);
  302. else
  303. dib7000mc_reset_pll(state);
  304. if (dib7000m_reset_gpio(state) != 0)
  305. dprintk("-E- GPIO reset was not successful.\n");
  306. if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
  307. dprintk("-E- OUTPUT_MODE could not be resetted.\n");
  308. /* unforce divstr regardless whether i2c enumeration was done or not */
  309. dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) );
  310. dib7000m_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ);
  311. dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON);
  312. dib7000m_sad_calib(state);
  313. dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
  314. dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY);
  315. return 0;
  316. }
  317. static void dib7000m_restart_agc(struct dib7000m_state *state)
  318. {
  319. // P_restart_iqc & P_restart_agc
  320. dib7000m_write_word(state, 898, 0x0c00);
  321. dib7000m_write_word(state, 898, 0x0000);
  322. }
  323. static int dib7000m_agc_soft_split(struct dib7000m_state *state)
  324. {
  325. u16 agc,split_offset;
  326. if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
  327. return 0;
  328. // n_agc_global
  329. agc = dib7000m_read_word(state, 390);
  330. if (agc > state->current_agc->split.min_thres)
  331. split_offset = state->current_agc->split.min;
  332. else if (agc < state->current_agc->split.max_thres)
  333. split_offset = state->current_agc->split.max;
  334. else
  335. split_offset = state->current_agc->split.max *
  336. (agc - state->current_agc->split.min_thres) /
  337. (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
  338. dprintk("AGC split_offset: %d\n",split_offset);
  339. // P_agc_force_split and P_agc_split_offset
  340. return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset);
  341. }
  342. static int dib7000m_update_lna(struct dib7000m_state *state)
  343. {
  344. int i;
  345. u16 dyn_gain;
  346. // when there is no LNA to program return immediatly
  347. if (state->cfg.update_lna == NULL)
  348. return 0;
  349. msleep(60);
  350. for (i = 0; i < 20; i++) {
  351. // read dyn_gain here (because it is demod-dependent and not tuner)
  352. dyn_gain = dib7000m_read_word(state, 390);
  353. dprintk("agc global: %d\n", dyn_gain);
  354. if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
  355. dib7000m_restart_agc(state);
  356. msleep(60);
  357. } else
  358. break;
  359. }
  360. return 0;
  361. }
  362. static void dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
  363. {
  364. struct dibx000_agc_config *agc = NULL;
  365. int i;
  366. if (state->current_band == band)
  367. return;
  368. state->current_band = band;
  369. for (i = 0; i < state->cfg.agc_config_count; i++)
  370. if (state->cfg.agc[i].band_caps & band) {
  371. agc = &state->cfg.agc[i];
  372. break;
  373. }
  374. if (agc == NULL) {
  375. dprintk("-E- No valid AGC configuration found for band 0x%02x\n",band);
  376. return;
  377. }
  378. state->current_agc = agc;
  379. /* AGC */
  380. dib7000m_write_word(state, 72 , agc->setup);
  381. dib7000m_write_word(state, 73 , agc->inv_gain);
  382. dib7000m_write_word(state, 74 , agc->time_stabiliz);
  383. dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock);
  384. // Demod AGC loop configuration
  385. dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp);
  386. dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp);
  387. dprintk("-D- WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
  388. state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
  389. /* AGC continued */
  390. if (state->wbd_ref != 0)
  391. dib7000m_write_word(state, 102, state->wbd_ref);
  392. else // use default
  393. dib7000m_write_word(state, 102, agc->wbd_ref);
  394. dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
  395. dib7000m_write_word(state, 104, agc->agc1_max);
  396. dib7000m_write_word(state, 105, agc->agc1_min);
  397. dib7000m_write_word(state, 106, agc->agc2_max);
  398. dib7000m_write_word(state, 107, agc->agc2_min);
  399. dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
  400. dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
  401. dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
  402. dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
  403. if (state->revision > 0x4000) { // settings for the MC
  404. dib7000m_write_word(state, 71, agc->agc1_pt3);
  405. // dprintk("-D- 929: %x %d %d\n",
  406. // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel);
  407. dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
  408. } else {
  409. // wrong default values
  410. u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 };
  411. for (i = 0; i < 9; i++)
  412. dib7000m_write_word(state, 88 + i, b[i]);
  413. }
  414. }
  415. static void dib7000m_update_timf_freq(struct dib7000m_state *state)
  416. {
  417. u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437);
  418. state->timf = timf * 80 / (BW_INDEX_TO_KHZ(state->current_bandwidth) / 100);
  419. dib7000m_write_word(state, 23, (u16) (timf >> 16));
  420. dib7000m_write_word(state, 24, (u16) (timf & 0xffff));
  421. dprintk("-D- Updated timf_frequency: %d (default: %d)\n",state->timf, state->cfg.bw->timf);
  422. }
  423. static void dib7000m_set_channel(struct dib7000m_state *state, struct dibx000_ofdm_channel *ch, u8 seq)
  424. {
  425. u16 value, est[4];
  426. dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->RF_kHz));
  427. /* nfft, guard, qam, alpha */
  428. dib7000m_write_word(state, 0, (ch->nfft << 7) | (ch->guard << 5) | (ch->nqam << 3) | (ch->vit_alpha));
  429. dib7000m_write_word(state, 5, (seq << 4));
  430. /* P_dintl_native, P_dintlv_inv, P_vit_hrch, P_vit_code_rate, P_vit_select_hp */
  431. value = (ch->intlv_native << 6) | (ch->vit_hrch << 4) | (ch->vit_select_hp & 0x1);
  432. if (ch->vit_hrch == 0 || ch->vit_select_hp == 1)
  433. value |= (ch->vit_code_rate_hp << 1);
  434. else
  435. value |= (ch->vit_code_rate_lp << 1);
  436. dib7000m_write_word(state, 267 + state->reg_offs, value);
  437. /* offset loop parameters */
  438. /* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */
  439. dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80);
  440. /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
  441. dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3));
  442. /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */
  443. dib7000m_write_word(state, 32, (0 << 4) | 0x3);
  444. /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */
  445. dib7000m_write_word(state, 33, (0 << 4) | 0x5);
  446. /* P_dvsy_sync_wait */
  447. switch (ch->nfft) {
  448. case 1: value = 256; break;
  449. case 2: value = 128; break;
  450. case 0:
  451. default: value = 64; break;
  452. }
  453. value *= ((1 << (ch->guard)) * 3 / 2); // add 50% SFN margin
  454. value <<= 4;
  455. /* deactive the possibility of diversity reception if extended interleave - not for 7000MC */
  456. /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
  457. if (ch->intlv_native || state->revision > 0x4000)
  458. value |= (1 << 2) | (2 << 0);
  459. else
  460. value |= 0;
  461. dib7000m_write_word(state, 266 + state->reg_offs, value);
  462. /* channel estimation fine configuration */
  463. switch (ch->nqam) {
  464. case 2:
  465. est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
  466. est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
  467. est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
  468. est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
  469. break;
  470. case 1:
  471. est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
  472. est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
  473. est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
  474. est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
  475. break;
  476. default:
  477. est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
  478. est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
  479. est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
  480. est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
  481. break;
  482. }
  483. for (value = 0; value < 4; value++)
  484. dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]);
  485. // set power-up level: interf+analog+AGC
  486. dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
  487. dib7000m_set_adc_state(state, DIBX000_ADC_ON);
  488. msleep(7);
  489. //AGC initialization
  490. if (state->cfg.agc_control)
  491. state->cfg.agc_control(&state->demod, 1);
  492. dib7000m_restart_agc(state);
  493. // wait AGC rough lock time
  494. msleep(5);
  495. dib7000m_update_lna(state);
  496. dib7000m_agc_soft_split(state);
  497. // wait AGC accurate lock time
  498. msleep(7);
  499. if (state->cfg.agc_control)
  500. state->cfg.agc_control(&state->demod, 0);
  501. // set power-up level: autosearch
  502. dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD);
  503. }
  504. static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch)
  505. {
  506. struct dib7000m_state *state = demod->demodulator_priv;
  507. struct dibx000_ofdm_channel auto_ch;
  508. int ret = 0;
  509. u32 value;
  510. INIT_OFDM_CHANNEL(&auto_ch);
  511. auto_ch.RF_kHz = ch->RF_kHz;
  512. auto_ch.Bw = ch->Bw;
  513. auto_ch.nqam = 2;
  514. auto_ch.guard = 0;
  515. auto_ch.nfft = 1;
  516. auto_ch.vit_alpha = 1;
  517. auto_ch.vit_select_hp = 1;
  518. auto_ch.vit_code_rate_hp = 2;
  519. auto_ch.vit_code_rate_lp = 3;
  520. auto_ch.vit_hrch = 0;
  521. auto_ch.intlv_native = 1;
  522. dib7000m_set_channel(state, &auto_ch, 7);
  523. // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
  524. value = 30 * state->cfg.bw->internal;
  525. ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
  526. ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
  527. value = 100 * state->cfg.bw->internal;
  528. ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
  529. ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
  530. value = 500 * state->cfg.bw->internal;
  531. ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
  532. ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
  533. // start search
  534. value = dib7000m_read_word(state, 0);
  535. ret |= dib7000m_write_word(state, 0, value | (1 << 9));
  536. /* clear n_irq_pending */
  537. if (state->revision == 0x4000)
  538. dib7000m_write_word(state, 1793, 0);
  539. else
  540. dib7000m_read_word(state, 537);
  541. ret |= dib7000m_write_word(state, 0, (u16) value);
  542. return ret;
  543. }
  544. static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg)
  545. {
  546. u16 irq_pending = dib7000m_read_word(state, reg);
  547. if (irq_pending & 0x1) { // failed
  548. dprintk("#\n");
  549. return 1;
  550. }
  551. if (irq_pending & 0x2) { // succeeded
  552. dprintk("!\n");
  553. return 2;
  554. }
  555. return 0; // still pending
  556. }
  557. static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod)
  558. {
  559. struct dib7000m_state *state = demod->demodulator_priv;
  560. if (state->revision == 0x4000)
  561. return dib7000m_autosearch_irq(state, 1793);
  562. else
  563. return dib7000m_autosearch_irq(state, 537);
  564. }
  565. static int dib7000m_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch)
  566. {
  567. struct dib7000m_state *state = demod->demodulator_priv;
  568. int ret = 0;
  569. u16 value;
  570. // we are already tuned - just resuming from suspend
  571. if (ch != NULL)
  572. dib7000m_set_channel(state, ch, 0);
  573. else
  574. return -EINVAL;
  575. // restart demod
  576. ret |= dib7000m_write_word(state, 898, 0x4000);
  577. ret |= dib7000m_write_word(state, 898, 0x0000);
  578. msleep(45);
  579. ret |= dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD);
  580. /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
  581. ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
  582. // never achieved a lock with that bandwidth so far - wait for timfreq to update
  583. if (state->timf == 0)
  584. msleep(200);
  585. //dump_reg(state);
  586. /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
  587. value = (6 << 8) | 0x80;
  588. switch (ch->nfft) {
  589. case 0: value |= (7 << 12); break;
  590. case 1: value |= (9 << 12); break;
  591. case 2: value |= (8 << 12); break;
  592. }
  593. ret |= dib7000m_write_word(state, 26, value);
  594. /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
  595. value = (0 << 4);
  596. switch (ch->nfft) {
  597. case 0: value |= 0x6; break;
  598. case 1: value |= 0x8; break;
  599. case 2: value |= 0x7; break;
  600. }
  601. ret |= dib7000m_write_word(state, 32, value);
  602. /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
  603. value = (0 << 4);
  604. switch (ch->nfft) {
  605. case 0: value |= 0x6; break;
  606. case 1: value |= 0x8; break;
  607. case 2: value |= 0x7; break;
  608. }
  609. ret |= dib7000m_write_word(state, 33, value);
  610. // we achieved a lock - it's time to update the osc freq
  611. if ((dib7000m_read_word(state, 535) >> 6) & 0x1)
  612. dib7000m_update_timf_freq(state);
  613. return ret;
  614. }
  615. static int dib7000m_init(struct dvb_frontend *demod)
  616. {
  617. struct dib7000m_state *state = demod->demodulator_priv;
  618. int ret = 0;
  619. u8 o = state->reg_offs;
  620. dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
  621. if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
  622. dprintk("-E- could not start Slow ADC\n");
  623. if (state->cfg.dvbt_mode)
  624. dib7000m_write_word(state, 1796, 0x0); // select DVB-T output
  625. if (state->cfg.mobile_mode)
  626. ret |= dib7000m_write_word(state, 261 + o, 2);
  627. else
  628. ret |= dib7000m_write_word(state, 224 + o, 1);
  629. ret |= dib7000m_write_word(state, 173 + o, 0);
  630. ret |= dib7000m_write_word(state, 174 + o, 0);
  631. ret |= dib7000m_write_word(state, 175 + o, 0);
  632. ret |= dib7000m_write_word(state, 176 + o, 0);
  633. ret |= dib7000m_write_word(state, 177 + o, 0);
  634. ret |= dib7000m_write_word(state, 178 + o, 0);
  635. ret |= dib7000m_write_word(state, 179 + o, 0);
  636. ret |= dib7000m_write_word(state, 180 + o, 0);
  637. // P_corm_thres Lock algorithms configuration
  638. ret |= dib7000m_write_word(state, 26, 0x6680);
  639. // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on
  640. ret |= dib7000m_write_word(state, 170 + o, 0x0410);
  641. // P_fft_nb_to_cut
  642. ret |= dib7000m_write_word(state, 182 + o, 8192);
  643. // P_pha3_thres
  644. ret |= dib7000m_write_word(state, 195 + o, 0x0ccd);
  645. // P_cti_use_cpe, P_cti_use_prog
  646. ret |= dib7000m_write_word(state, 196 + o, 0);
  647. // P_cspu_regul, P_cspu_win_cut
  648. ret |= dib7000m_write_word(state, 205 + o, 0x200f);
  649. // P_adp_regul_cnt
  650. ret |= dib7000m_write_word(state, 214 + o, 0x023d);
  651. // P_adp_noise_cnt
  652. ret |= dib7000m_write_word(state, 215 + o, 0x00a4);
  653. // P_adp_regul_ext
  654. ret |= dib7000m_write_word(state, 216 + o, 0x00a4);
  655. // P_adp_noise_ext
  656. ret |= dib7000m_write_word(state, 217 + o, 0x7ff0);
  657. // P_adp_fil
  658. ret |= dib7000m_write_word(state, 218 + o, 0x3ccc);
  659. // P_2d_byp_ti_num
  660. ret |= dib7000m_write_word(state, 226 + o, 0);
  661. // P_fec_*
  662. ret |= dib7000m_write_word(state, 281 + o, 0x0010);
  663. // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
  664. ret |= dib7000m_write_word(state, 294 + o,0x0062);
  665. // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
  666. if(state->cfg.tuner_is_baseband)
  667. ret |= dib7000m_write_word(state, 36, 0x0755);
  668. else
  669. ret |= dib7000m_write_word(state, 36, 0x1f55);
  670. // auto search configuration
  671. ret |= dib7000m_write_word(state, 2, 0x0004);
  672. ret |= dib7000m_write_word(state, 3, 0x1000);
  673. ret |= dib7000m_write_word(state, 4, 0x0814);
  674. ret |= dib7000m_write_word(state, 6, 0x001b);
  675. ret |= dib7000m_write_word(state, 7, 0x7740);
  676. ret |= dib7000m_write_word(state, 8, 0x005b);
  677. ret |= dib7000m_write_word(state, 9, 0x8d80);
  678. ret |= dib7000m_write_word(state, 10, 0x01c9);
  679. ret |= dib7000m_write_word(state, 11, 0xc380);
  680. ret |= dib7000m_write_word(state, 12, 0x0000);
  681. ret |= dib7000m_write_word(state, 13, 0x0080);
  682. ret |= dib7000m_write_word(state, 14, 0x0000);
  683. ret |= dib7000m_write_word(state, 15, 0x0090);
  684. ret |= dib7000m_write_word(state, 16, 0x0001);
  685. ret |= dib7000m_write_word(state, 17, 0xd4c0);
  686. ret |= dib7000m_write_word(state, 263 + o,0x0001);
  687. // P_divclksel=3 P_divbitsel=1
  688. if (state->revision == 0x4000)
  689. dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
  690. else
  691. dib7000m_write_word(state, 909, (3 << 4) | 1);
  692. // Tuner IO bank: max drive (14mA)
  693. ret |= dib7000m_write_word(state, 912 ,0x2c8a);
  694. ret |= dib7000m_write_word(state, 1817, 1);
  695. return ret;
  696. }
  697. static int dib7000m_sleep(struct dvb_frontend *demod)
  698. {
  699. struct dib7000m_state *st = demod->demodulator_priv;
  700. dib7000m_set_output_mode(st, OUTMODE_HIGH_Z);
  701. return dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY) |
  702. dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) |
  703. dib7000m_set_adc_state(st, DIBX000_ADC_OFF);
  704. }
  705. static int dib7000m_identify(struct dib7000m_state *state)
  706. {
  707. u16 value;
  708. if ((value = dib7000m_read_word(state, 896)) != 0x01b3) {
  709. dprintk("-E- DiB7000M: wrong Vendor ID (read=0x%x)\n",value);
  710. return -EREMOTEIO;
  711. }
  712. state->revision = dib7000m_read_word(state, 897);
  713. if (state->revision != 0x4000 &&
  714. state->revision != 0x4001 &&
  715. state->revision != 0x4002) {
  716. dprintk("-E- DiB7000M: wrong Device ID (%x)\n",value);
  717. return -EREMOTEIO;
  718. }
  719. /* protect this driver to be used with 7000PC */
  720. if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) {
  721. dprintk("-E- DiB7000M: this driver does not work with DiB7000PC\n");
  722. return -EREMOTEIO;
  723. }
  724. switch (state->revision) {
  725. case 0x4000: dprintk("-I- found DiB7000MA/PA/MB/PB\n"); break;
  726. case 0x4001: state->reg_offs = 1; dprintk("-I- found DiB7000HC\n"); break;
  727. case 0x4002: state->reg_offs = 1; dprintk("-I- found DiB7000MC\n"); break;
  728. }
  729. return 0;
  730. }
  731. static int dib7000m_get_frontend(struct dvb_frontend* fe,
  732. struct dvb_frontend_parameters *fep)
  733. {
  734. struct dib7000m_state *state = fe->demodulator_priv;
  735. u16 tps = dib7000m_read_word(state,480);
  736. fep->inversion = INVERSION_AUTO;
  737. fep->u.ofdm.bandwidth = state->current_bandwidth;
  738. switch ((tps >> 8) & 0x3) {
  739. case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
  740. case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
  741. /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
  742. }
  743. switch (tps & 0x3) {
  744. case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
  745. case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
  746. case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
  747. case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
  748. }
  749. switch ((tps >> 14) & 0x3) {
  750. case 0: fep->u.ofdm.constellation = QPSK; break;
  751. case 1: fep->u.ofdm.constellation = QAM_16; break;
  752. case 2:
  753. default: fep->u.ofdm.constellation = QAM_64; break;
  754. }
  755. /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
  756. /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
  757. fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
  758. switch ((tps >> 5) & 0x7) {
  759. case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
  760. case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
  761. case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
  762. case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
  763. case 7:
  764. default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
  765. }
  766. switch ((tps >> 2) & 0x7) {
  767. case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
  768. case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
  769. case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
  770. case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
  771. case 7:
  772. default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
  773. }
  774. /* native interleaver: (dib7000m_read_word(state, 481) >> 5) & 0x1 */
  775. return 0;
  776. }
  777. static int dib7000m_set_frontend(struct dvb_frontend* fe,
  778. struct dvb_frontend_parameters *fep)
  779. {
  780. struct dib7000m_state *state = fe->demodulator_priv;
  781. struct dibx000_ofdm_channel ch;
  782. INIT_OFDM_CHANNEL(&ch);
  783. FEP2DIB(fep,&ch);
  784. state->current_bandwidth = fep->u.ofdm.bandwidth;
  785. dib7000m_set_bandwidth(fe, fep->u.ofdm.bandwidth);
  786. if (fe->ops.tuner_ops.set_params)
  787. fe->ops.tuner_ops.set_params(fe, fep);
  788. if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
  789. fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO ||
  790. fep->u.ofdm.constellation == QAM_AUTO ||
  791. fep->u.ofdm.code_rate_HP == FEC_AUTO) {
  792. int i = 800, found;
  793. dib7000m_autosearch_start(fe, &ch);
  794. do {
  795. msleep(1);
  796. found = dib7000m_autosearch_is_irq(fe);
  797. } while (found == 0 && i--);
  798. dprintk("autosearch returns: %d\n",found);
  799. if (found == 0 || found == 1)
  800. return 0; // no channel found
  801. dib7000m_get_frontend(fe, fep);
  802. FEP2DIB(fep, &ch);
  803. }
  804. /* make this a config parameter */
  805. dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO);
  806. return dib7000m_tune(fe, &ch);
  807. }
  808. static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat)
  809. {
  810. struct dib7000m_state *state = fe->demodulator_priv;
  811. u16 lock = dib7000m_read_word(state, 535);
  812. *stat = 0;
  813. if (lock & 0x8000)
  814. *stat |= FE_HAS_SIGNAL;
  815. if (lock & 0x3000)
  816. *stat |= FE_HAS_CARRIER;
  817. if (lock & 0x0100)
  818. *stat |= FE_HAS_VITERBI;
  819. if (lock & 0x0010)
  820. *stat |= FE_HAS_SYNC;
  821. if (lock & 0x0008)
  822. *stat |= FE_HAS_LOCK;
  823. return 0;
  824. }
  825. static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber)
  826. {
  827. struct dib7000m_state *state = fe->demodulator_priv;
  828. *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527);
  829. return 0;
  830. }
  831. static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
  832. {
  833. struct dib7000m_state *state = fe->demodulator_priv;
  834. *unc = dib7000m_read_word(state, 534);
  835. return 0;
  836. }
  837. static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  838. {
  839. struct dib7000m_state *state = fe->demodulator_priv;
  840. u16 val = dib7000m_read_word(state, 390);
  841. *strength = 65535 - val;
  842. return 0;
  843. }
  844. static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr)
  845. {
  846. *snr = 0x0000;
  847. return 0;
  848. }
  849. static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
  850. {
  851. tune->min_delay_ms = 1000;
  852. return 0;
  853. }
  854. static void dib7000m_release(struct dvb_frontend *demod)
  855. {
  856. struct dib7000m_state *st = demod->demodulator_priv;
  857. dibx000_exit_i2c_master(&st->i2c_master);
  858. kfree(st);
  859. }
  860. struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
  861. {
  862. struct dib7000m_state *st = demod->demodulator_priv;
  863. return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
  864. }
  865. EXPORT_SYMBOL(dib7000m_get_i2c_master);
  866. int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000m_config cfg[])
  867. {
  868. struct dib7000m_state st = { .i2c_adap = i2c };
  869. int k = 0;
  870. u8 new_addr = 0;
  871. for (k = no_of_demods-1; k >= 0; k--) {
  872. st.cfg = cfg[k];
  873. /* designated i2c address */
  874. new_addr = (0x40 + k) << 1;
  875. st.i2c_addr = new_addr;
  876. if (dib7000m_identify(&st) != 0) {
  877. st.i2c_addr = default_addr;
  878. if (dib7000m_identify(&st) != 0) {
  879. dprintk("DiB7000M #%d: not identified\n", k);
  880. return -EIO;
  881. }
  882. }
  883. /* start diversity to pull_down div_str - just for i2c-enumeration */
  884. dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY);
  885. dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output
  886. /* set new i2c address and force divstart */
  887. dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2);
  888. dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
  889. }
  890. for (k = 0; k < no_of_demods; k++) {
  891. st.cfg = cfg[k];
  892. st.i2c_addr = (0x40 + k) << 1;
  893. // unforce divstr
  894. dib7000m_write_word(&st,1794, st.i2c_addr << 2);
  895. /* deactivate div - it was just for i2c-enumeration */
  896. dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z);
  897. }
  898. return 0;
  899. }
  900. EXPORT_SYMBOL(dib7000m_i2c_enumeration);
  901. static struct dvb_frontend_ops dib7000m_ops;
  902. struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg)
  903. {
  904. struct dvb_frontend *demod;
  905. struct dib7000m_state *st;
  906. st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL);
  907. if (st == NULL)
  908. return NULL;
  909. memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config));
  910. st->i2c_adap = i2c_adap;
  911. st->i2c_addr = i2c_addr;
  912. demod = &st->demod;
  913. demod->demodulator_priv = st;
  914. memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops));
  915. if (dib7000m_identify(st) != 0)
  916. goto error;
  917. if (st->revision == 0x4000)
  918. dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr);
  919. else
  920. dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr);
  921. dib7000m_demod_reset(st);
  922. return demod;
  923. error:
  924. kfree(st);
  925. return NULL;
  926. }
  927. EXPORT_SYMBOL(dib7000m_attach);
  928. static struct dvb_frontend_ops dib7000m_ops = {
  929. .info = {
  930. .name = "DiBcom 7000MA/MB/PA/PB/MC",
  931. .type = FE_OFDM,
  932. .frequency_min = 44250000,
  933. .frequency_max = 867250000,
  934. .frequency_stepsize = 62500,
  935. .caps = FE_CAN_INVERSION_AUTO |
  936. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  937. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  938. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  939. FE_CAN_TRANSMISSION_MODE_AUTO |
  940. FE_CAN_GUARD_INTERVAL_AUTO |
  941. FE_CAN_RECOVER |
  942. FE_CAN_HIERARCHY_AUTO,
  943. },
  944. .release = dib7000m_release,
  945. .init = dib7000m_init,
  946. .sleep = dib7000m_sleep,
  947. .set_frontend = dib7000m_set_frontend,
  948. .get_tune_settings = dib7000m_fe_get_tune_settings,
  949. .get_frontend = dib7000m_get_frontend,
  950. .read_status = dib7000m_read_status,
  951. .read_ber = dib7000m_read_ber,
  952. .read_signal_strength = dib7000m_read_signal_strength,
  953. .read_snr = dib7000m_read_snr,
  954. .read_ucblocks = dib7000m_read_unc_blocks,
  955. };
  956. MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
  957. MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator");
  958. MODULE_LICENSE("GPL");