raid1.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include "dm-bio-list.h"
  34. #include <linux/raid/raid1.h>
  35. #include <linux/raid/bitmap.h>
  36. #define DEBUG 0
  37. #if DEBUG
  38. #define PRINTK(x...) printk(x)
  39. #else
  40. #define PRINTK(x...)
  41. #endif
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. static void unplug_slaves(mddev_t *mddev);
  47. static void allow_barrier(conf_t *conf);
  48. static void lower_barrier(conf_t *conf);
  49. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  50. {
  51. struct pool_info *pi = data;
  52. r1bio_t *r1_bio;
  53. int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  54. /* allocate a r1bio with room for raid_disks entries in the bios array */
  55. r1_bio = kzalloc(size, gfp_flags);
  56. if (!r1_bio)
  57. unplug_slaves(pi->mddev);
  58. return r1_bio;
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. r1bio_t *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio) {
  78. unplug_slaves(pi->mddev);
  79. return NULL;
  80. }
  81. /*
  82. * Allocate bios : 1 for reading, n-1 for writing
  83. */
  84. for (j = pi->raid_disks ; j-- ; ) {
  85. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  86. if (!bio)
  87. goto out_free_bio;
  88. r1_bio->bios[j] = bio;
  89. }
  90. /*
  91. * Allocate RESYNC_PAGES data pages and attach them to
  92. * the first bio.
  93. * If this is a user-requested check/repair, allocate
  94. * RESYNC_PAGES for each bio.
  95. */
  96. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  97. j = pi->raid_disks;
  98. else
  99. j = 1;
  100. while(j--) {
  101. bio = r1_bio->bios[j];
  102. for (i = 0; i < RESYNC_PAGES; i++) {
  103. page = alloc_page(gfp_flags);
  104. if (unlikely(!page))
  105. goto out_free_pages;
  106. bio->bi_io_vec[i].bv_page = page;
  107. }
  108. }
  109. /* If not user-requests, copy the page pointers to all bios */
  110. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  111. for (i=0; i<RESYNC_PAGES ; i++)
  112. for (j=1; j<pi->raid_disks; j++)
  113. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  114. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  115. }
  116. r1_bio->master_bio = NULL;
  117. return r1_bio;
  118. out_free_pages:
  119. for (i=0; i < RESYNC_PAGES ; i++)
  120. for (j=0 ; j < pi->raid_disks; j++)
  121. safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  122. j = -1;
  123. out_free_bio:
  124. while ( ++j < pi->raid_disks )
  125. bio_put(r1_bio->bios[j]);
  126. r1bio_pool_free(r1_bio, data);
  127. return NULL;
  128. }
  129. static void r1buf_pool_free(void *__r1_bio, void *data)
  130. {
  131. struct pool_info *pi = data;
  132. int i,j;
  133. r1bio_t *r1bio = __r1_bio;
  134. for (i = 0; i < RESYNC_PAGES; i++)
  135. for (j = pi->raid_disks; j-- ;) {
  136. if (j == 0 ||
  137. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  138. r1bio->bios[0]->bi_io_vec[i].bv_page)
  139. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  140. }
  141. for (i=0 ; i < pi->raid_disks; i++)
  142. bio_put(r1bio->bios[i]);
  143. r1bio_pool_free(r1bio, data);
  144. }
  145. static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
  146. {
  147. int i;
  148. for (i = 0; i < conf->raid_disks; i++) {
  149. struct bio **bio = r1_bio->bios + i;
  150. if (*bio && *bio != IO_BLOCKED)
  151. bio_put(*bio);
  152. *bio = NULL;
  153. }
  154. }
  155. static void free_r1bio(r1bio_t *r1_bio)
  156. {
  157. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  158. /*
  159. * Wake up any possible resync thread that waits for the device
  160. * to go idle.
  161. */
  162. allow_barrier(conf);
  163. put_all_bios(conf, r1_bio);
  164. mempool_free(r1_bio, conf->r1bio_pool);
  165. }
  166. static void put_buf(r1bio_t *r1_bio)
  167. {
  168. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  169. int i;
  170. for (i=0; i<conf->raid_disks; i++) {
  171. struct bio *bio = r1_bio->bios[i];
  172. if (bio->bi_end_io)
  173. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  174. }
  175. mempool_free(r1_bio, conf->r1buf_pool);
  176. lower_barrier(conf);
  177. }
  178. static void reschedule_retry(r1bio_t *r1_bio)
  179. {
  180. unsigned long flags;
  181. mddev_t *mddev = r1_bio->mddev;
  182. conf_t *conf = mddev_to_conf(mddev);
  183. spin_lock_irqsave(&conf->device_lock, flags);
  184. list_add(&r1_bio->retry_list, &conf->retry_list);
  185. conf->nr_queued ++;
  186. spin_unlock_irqrestore(&conf->device_lock, flags);
  187. wake_up(&conf->wait_barrier);
  188. md_wakeup_thread(mddev->thread);
  189. }
  190. /*
  191. * raid_end_bio_io() is called when we have finished servicing a mirrored
  192. * operation and are ready to return a success/failure code to the buffer
  193. * cache layer.
  194. */
  195. static void raid_end_bio_io(r1bio_t *r1_bio)
  196. {
  197. struct bio *bio = r1_bio->master_bio;
  198. /* if nobody has done the final endio yet, do it now */
  199. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  200. PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
  201. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  202. (unsigned long long) bio->bi_sector,
  203. (unsigned long long) bio->bi_sector +
  204. (bio->bi_size >> 9) - 1);
  205. bio_endio(bio, bio->bi_size,
  206. test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
  207. }
  208. free_r1bio(r1_bio);
  209. }
  210. /*
  211. * Update disk head position estimator based on IRQ completion info.
  212. */
  213. static inline void update_head_pos(int disk, r1bio_t *r1_bio)
  214. {
  215. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  216. conf->mirrors[disk].head_position =
  217. r1_bio->sector + (r1_bio->sectors);
  218. }
  219. static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
  220. {
  221. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  222. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  223. int mirror;
  224. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  225. if (bio->bi_size)
  226. return 1;
  227. mirror = r1_bio->read_disk;
  228. /*
  229. * this branch is our 'one mirror IO has finished' event handler:
  230. */
  231. update_head_pos(mirror, r1_bio);
  232. if (uptodate)
  233. set_bit(R1BIO_Uptodate, &r1_bio->state);
  234. else {
  235. /* If all other devices have failed, we want to return
  236. * the error upwards rather than fail the last device.
  237. * Here we redefine "uptodate" to mean "Don't want to retry"
  238. */
  239. unsigned long flags;
  240. spin_lock_irqsave(&conf->device_lock, flags);
  241. if (r1_bio->mddev->degraded == conf->raid_disks ||
  242. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  243. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  244. uptodate = 1;
  245. spin_unlock_irqrestore(&conf->device_lock, flags);
  246. }
  247. if (uptodate)
  248. raid_end_bio_io(r1_bio);
  249. else {
  250. /*
  251. * oops, read error:
  252. */
  253. char b[BDEVNAME_SIZE];
  254. if (printk_ratelimit())
  255. printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
  256. bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
  257. reschedule_retry(r1_bio);
  258. }
  259. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  260. return 0;
  261. }
  262. static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
  263. {
  264. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  265. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  266. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  267. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  268. struct bio *to_put = NULL;
  269. if (bio->bi_size)
  270. return 1;
  271. for (mirror = 0; mirror < conf->raid_disks; mirror++)
  272. if (r1_bio->bios[mirror] == bio)
  273. break;
  274. if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
  275. set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
  276. set_bit(R1BIO_BarrierRetry, &r1_bio->state);
  277. r1_bio->mddev->barriers_work = 0;
  278. /* Don't rdev_dec_pending in this branch - keep it for the retry */
  279. } else {
  280. /*
  281. * this branch is our 'one mirror IO has finished' event handler:
  282. */
  283. r1_bio->bios[mirror] = NULL;
  284. to_put = bio;
  285. if (!uptodate) {
  286. md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
  287. /* an I/O failed, we can't clear the bitmap */
  288. set_bit(R1BIO_Degraded, &r1_bio->state);
  289. } else
  290. /*
  291. * Set R1BIO_Uptodate in our master bio, so that
  292. * we will return a good error code for to the higher
  293. * levels even if IO on some other mirrored buffer fails.
  294. *
  295. * The 'master' represents the composite IO operation to
  296. * user-side. So if something waits for IO, then it will
  297. * wait for the 'master' bio.
  298. */
  299. set_bit(R1BIO_Uptodate, &r1_bio->state);
  300. update_head_pos(mirror, r1_bio);
  301. if (behind) {
  302. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  303. atomic_dec(&r1_bio->behind_remaining);
  304. /* In behind mode, we ACK the master bio once the I/O has safely
  305. * reached all non-writemostly disks. Setting the Returned bit
  306. * ensures that this gets done only once -- we don't ever want to
  307. * return -EIO here, instead we'll wait */
  308. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  309. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  310. /* Maybe we can return now */
  311. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  312. struct bio *mbio = r1_bio->master_bio;
  313. PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
  314. (unsigned long long) mbio->bi_sector,
  315. (unsigned long long) mbio->bi_sector +
  316. (mbio->bi_size >> 9) - 1);
  317. bio_endio(mbio, mbio->bi_size, 0);
  318. }
  319. }
  320. }
  321. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  322. }
  323. /*
  324. *
  325. * Let's see if all mirrored write operations have finished
  326. * already.
  327. */
  328. if (atomic_dec_and_test(&r1_bio->remaining)) {
  329. if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
  330. reschedule_retry(r1_bio);
  331. else {
  332. /* it really is the end of this request */
  333. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  334. /* free extra copy of the data pages */
  335. int i = bio->bi_vcnt;
  336. while (i--)
  337. safe_put_page(bio->bi_io_vec[i].bv_page);
  338. }
  339. /* clear the bitmap if all writes complete successfully */
  340. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  341. r1_bio->sectors,
  342. !test_bit(R1BIO_Degraded, &r1_bio->state),
  343. behind);
  344. md_write_end(r1_bio->mddev);
  345. raid_end_bio_io(r1_bio);
  346. }
  347. }
  348. if (to_put)
  349. bio_put(to_put);
  350. return 0;
  351. }
  352. /*
  353. * This routine returns the disk from which the requested read should
  354. * be done. There is a per-array 'next expected sequential IO' sector
  355. * number - if this matches on the next IO then we use the last disk.
  356. * There is also a per-disk 'last know head position' sector that is
  357. * maintained from IRQ contexts, both the normal and the resync IO
  358. * completion handlers update this position correctly. If there is no
  359. * perfect sequential match then we pick the disk whose head is closest.
  360. *
  361. * If there are 2 mirrors in the same 2 devices, performance degrades
  362. * because position is mirror, not device based.
  363. *
  364. * The rdev for the device selected will have nr_pending incremented.
  365. */
  366. static int read_balance(conf_t *conf, r1bio_t *r1_bio)
  367. {
  368. const unsigned long this_sector = r1_bio->sector;
  369. int new_disk = conf->last_used, disk = new_disk;
  370. int wonly_disk = -1;
  371. const int sectors = r1_bio->sectors;
  372. sector_t new_distance, current_distance;
  373. mdk_rdev_t *rdev;
  374. rcu_read_lock();
  375. /*
  376. * Check if we can balance. We can balance on the whole
  377. * device if no resync is going on, or below the resync window.
  378. * We take the first readable disk when above the resync window.
  379. */
  380. retry:
  381. if (conf->mddev->recovery_cp < MaxSector &&
  382. (this_sector + sectors >= conf->next_resync)) {
  383. /* Choose the first operation device, for consistancy */
  384. new_disk = 0;
  385. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  386. r1_bio->bios[new_disk] == IO_BLOCKED ||
  387. !rdev || !test_bit(In_sync, &rdev->flags)
  388. || test_bit(WriteMostly, &rdev->flags);
  389. rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
  390. if (rdev && test_bit(In_sync, &rdev->flags) &&
  391. r1_bio->bios[new_disk] != IO_BLOCKED)
  392. wonly_disk = new_disk;
  393. if (new_disk == conf->raid_disks - 1) {
  394. new_disk = wonly_disk;
  395. break;
  396. }
  397. }
  398. goto rb_out;
  399. }
  400. /* make sure the disk is operational */
  401. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  402. r1_bio->bios[new_disk] == IO_BLOCKED ||
  403. !rdev || !test_bit(In_sync, &rdev->flags) ||
  404. test_bit(WriteMostly, &rdev->flags);
  405. rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
  406. if (rdev && test_bit(In_sync, &rdev->flags) &&
  407. r1_bio->bios[new_disk] != IO_BLOCKED)
  408. wonly_disk = new_disk;
  409. if (new_disk <= 0)
  410. new_disk = conf->raid_disks;
  411. new_disk--;
  412. if (new_disk == disk) {
  413. new_disk = wonly_disk;
  414. break;
  415. }
  416. }
  417. if (new_disk < 0)
  418. goto rb_out;
  419. disk = new_disk;
  420. /* now disk == new_disk == starting point for search */
  421. /*
  422. * Don't change to another disk for sequential reads:
  423. */
  424. if (conf->next_seq_sect == this_sector)
  425. goto rb_out;
  426. if (this_sector == conf->mirrors[new_disk].head_position)
  427. goto rb_out;
  428. current_distance = abs(this_sector - conf->mirrors[disk].head_position);
  429. /* Find the disk whose head is closest */
  430. do {
  431. if (disk <= 0)
  432. disk = conf->raid_disks;
  433. disk--;
  434. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  435. if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
  436. !test_bit(In_sync, &rdev->flags) ||
  437. test_bit(WriteMostly, &rdev->flags))
  438. continue;
  439. if (!atomic_read(&rdev->nr_pending)) {
  440. new_disk = disk;
  441. break;
  442. }
  443. new_distance = abs(this_sector - conf->mirrors[disk].head_position);
  444. if (new_distance < current_distance) {
  445. current_distance = new_distance;
  446. new_disk = disk;
  447. }
  448. } while (disk != conf->last_used);
  449. rb_out:
  450. if (new_disk >= 0) {
  451. rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  452. if (!rdev)
  453. goto retry;
  454. atomic_inc(&rdev->nr_pending);
  455. if (!test_bit(In_sync, &rdev->flags)) {
  456. /* cannot risk returning a device that failed
  457. * before we inc'ed nr_pending
  458. */
  459. rdev_dec_pending(rdev, conf->mddev);
  460. goto retry;
  461. }
  462. conf->next_seq_sect = this_sector + sectors;
  463. conf->last_used = new_disk;
  464. }
  465. rcu_read_unlock();
  466. return new_disk;
  467. }
  468. static void unplug_slaves(mddev_t *mddev)
  469. {
  470. conf_t *conf = mddev_to_conf(mddev);
  471. int i;
  472. rcu_read_lock();
  473. for (i=0; i<mddev->raid_disks; i++) {
  474. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  475. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  476. request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
  477. atomic_inc(&rdev->nr_pending);
  478. rcu_read_unlock();
  479. if (r_queue->unplug_fn)
  480. r_queue->unplug_fn(r_queue);
  481. rdev_dec_pending(rdev, mddev);
  482. rcu_read_lock();
  483. }
  484. }
  485. rcu_read_unlock();
  486. }
  487. static void raid1_unplug(request_queue_t *q)
  488. {
  489. mddev_t *mddev = q->queuedata;
  490. unplug_slaves(mddev);
  491. md_wakeup_thread(mddev->thread);
  492. }
  493. static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
  494. sector_t *error_sector)
  495. {
  496. mddev_t *mddev = q->queuedata;
  497. conf_t *conf = mddev_to_conf(mddev);
  498. int i, ret = 0;
  499. rcu_read_lock();
  500. for (i=0; i<mddev->raid_disks && ret == 0; i++) {
  501. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  502. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  503. struct block_device *bdev = rdev->bdev;
  504. request_queue_t *r_queue = bdev_get_queue(bdev);
  505. if (!r_queue->issue_flush_fn)
  506. ret = -EOPNOTSUPP;
  507. else {
  508. atomic_inc(&rdev->nr_pending);
  509. rcu_read_unlock();
  510. ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
  511. error_sector);
  512. rdev_dec_pending(rdev, mddev);
  513. rcu_read_lock();
  514. }
  515. }
  516. }
  517. rcu_read_unlock();
  518. return ret;
  519. }
  520. static int raid1_congested(void *data, int bits)
  521. {
  522. mddev_t *mddev = data;
  523. conf_t *conf = mddev_to_conf(mddev);
  524. int i, ret = 0;
  525. rcu_read_lock();
  526. for (i = 0; i < mddev->raid_disks; i++) {
  527. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  528. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  529. request_queue_t *q = bdev_get_queue(rdev->bdev);
  530. /* Note the '|| 1' - when read_balance prefers
  531. * non-congested targets, it can be removed
  532. */
  533. if ((bits & (1<<BDI_write_congested)) || 1)
  534. ret |= bdi_congested(&q->backing_dev_info, bits);
  535. else
  536. ret &= bdi_congested(&q->backing_dev_info, bits);
  537. }
  538. }
  539. rcu_read_unlock();
  540. return ret;
  541. }
  542. /* Barriers....
  543. * Sometimes we need to suspend IO while we do something else,
  544. * either some resync/recovery, or reconfigure the array.
  545. * To do this we raise a 'barrier'.
  546. * The 'barrier' is a counter that can be raised multiple times
  547. * to count how many activities are happening which preclude
  548. * normal IO.
  549. * We can only raise the barrier if there is no pending IO.
  550. * i.e. if nr_pending == 0.
  551. * We choose only to raise the barrier if no-one is waiting for the
  552. * barrier to go down. This means that as soon as an IO request
  553. * is ready, no other operations which require a barrier will start
  554. * until the IO request has had a chance.
  555. *
  556. * So: regular IO calls 'wait_barrier'. When that returns there
  557. * is no backgroup IO happening, It must arrange to call
  558. * allow_barrier when it has finished its IO.
  559. * backgroup IO calls must call raise_barrier. Once that returns
  560. * there is no normal IO happeing. It must arrange to call
  561. * lower_barrier when the particular background IO completes.
  562. */
  563. #define RESYNC_DEPTH 32
  564. static void raise_barrier(conf_t *conf)
  565. {
  566. spin_lock_irq(&conf->resync_lock);
  567. /* Wait until no block IO is waiting */
  568. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  569. conf->resync_lock,
  570. raid1_unplug(conf->mddev->queue));
  571. /* block any new IO from starting */
  572. conf->barrier++;
  573. /* No wait for all pending IO to complete */
  574. wait_event_lock_irq(conf->wait_barrier,
  575. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  576. conf->resync_lock,
  577. raid1_unplug(conf->mddev->queue));
  578. spin_unlock_irq(&conf->resync_lock);
  579. }
  580. static void lower_barrier(conf_t *conf)
  581. {
  582. unsigned long flags;
  583. spin_lock_irqsave(&conf->resync_lock, flags);
  584. conf->barrier--;
  585. spin_unlock_irqrestore(&conf->resync_lock, flags);
  586. wake_up(&conf->wait_barrier);
  587. }
  588. static void wait_barrier(conf_t *conf)
  589. {
  590. spin_lock_irq(&conf->resync_lock);
  591. if (conf->barrier) {
  592. conf->nr_waiting++;
  593. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  594. conf->resync_lock,
  595. raid1_unplug(conf->mddev->queue));
  596. conf->nr_waiting--;
  597. }
  598. conf->nr_pending++;
  599. spin_unlock_irq(&conf->resync_lock);
  600. }
  601. static void allow_barrier(conf_t *conf)
  602. {
  603. unsigned long flags;
  604. spin_lock_irqsave(&conf->resync_lock, flags);
  605. conf->nr_pending--;
  606. spin_unlock_irqrestore(&conf->resync_lock, flags);
  607. wake_up(&conf->wait_barrier);
  608. }
  609. static void freeze_array(conf_t *conf)
  610. {
  611. /* stop syncio and normal IO and wait for everything to
  612. * go quite.
  613. * We increment barrier and nr_waiting, and then
  614. * wait until barrier+nr_pending match nr_queued+2
  615. */
  616. spin_lock_irq(&conf->resync_lock);
  617. conf->barrier++;
  618. conf->nr_waiting++;
  619. wait_event_lock_irq(conf->wait_barrier,
  620. conf->barrier+conf->nr_pending == conf->nr_queued+2,
  621. conf->resync_lock,
  622. raid1_unplug(conf->mddev->queue));
  623. spin_unlock_irq(&conf->resync_lock);
  624. }
  625. static void unfreeze_array(conf_t *conf)
  626. {
  627. /* reverse the effect of the freeze */
  628. spin_lock_irq(&conf->resync_lock);
  629. conf->barrier--;
  630. conf->nr_waiting--;
  631. wake_up(&conf->wait_barrier);
  632. spin_unlock_irq(&conf->resync_lock);
  633. }
  634. /* duplicate the data pages for behind I/O */
  635. static struct page **alloc_behind_pages(struct bio *bio)
  636. {
  637. int i;
  638. struct bio_vec *bvec;
  639. struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
  640. GFP_NOIO);
  641. if (unlikely(!pages))
  642. goto do_sync_io;
  643. bio_for_each_segment(bvec, bio, i) {
  644. pages[i] = alloc_page(GFP_NOIO);
  645. if (unlikely(!pages[i]))
  646. goto do_sync_io;
  647. memcpy(kmap(pages[i]) + bvec->bv_offset,
  648. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  649. kunmap(pages[i]);
  650. kunmap(bvec->bv_page);
  651. }
  652. return pages;
  653. do_sync_io:
  654. if (pages)
  655. for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
  656. put_page(pages[i]);
  657. kfree(pages);
  658. PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  659. return NULL;
  660. }
  661. static int make_request(request_queue_t *q, struct bio * bio)
  662. {
  663. mddev_t *mddev = q->queuedata;
  664. conf_t *conf = mddev_to_conf(mddev);
  665. mirror_info_t *mirror;
  666. r1bio_t *r1_bio;
  667. struct bio *read_bio;
  668. int i, targets = 0, disks;
  669. mdk_rdev_t *rdev;
  670. struct bitmap *bitmap = mddev->bitmap;
  671. unsigned long flags;
  672. struct bio_list bl;
  673. struct page **behind_pages = NULL;
  674. const int rw = bio_data_dir(bio);
  675. const int do_sync = bio_sync(bio);
  676. int do_barriers;
  677. /*
  678. * Register the new request and wait if the reconstruction
  679. * thread has put up a bar for new requests.
  680. * Continue immediately if no resync is active currently.
  681. * We test barriers_work *after* md_write_start as md_write_start
  682. * may cause the first superblock write, and that will check out
  683. * if barriers work.
  684. */
  685. md_write_start(mddev, bio); /* wait on superblock update early */
  686. if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
  687. if (rw == WRITE)
  688. md_write_end(mddev);
  689. bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
  690. return 0;
  691. }
  692. wait_barrier(conf);
  693. disk_stat_inc(mddev->gendisk, ios[rw]);
  694. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  695. /*
  696. * make_request() can abort the operation when READA is being
  697. * used and no empty request is available.
  698. *
  699. */
  700. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  701. r1_bio->master_bio = bio;
  702. r1_bio->sectors = bio->bi_size >> 9;
  703. r1_bio->state = 0;
  704. r1_bio->mddev = mddev;
  705. r1_bio->sector = bio->bi_sector;
  706. if (rw == READ) {
  707. /*
  708. * read balancing logic:
  709. */
  710. int rdisk = read_balance(conf, r1_bio);
  711. if (rdisk < 0) {
  712. /* couldn't find anywhere to read from */
  713. raid_end_bio_io(r1_bio);
  714. return 0;
  715. }
  716. mirror = conf->mirrors + rdisk;
  717. r1_bio->read_disk = rdisk;
  718. read_bio = bio_clone(bio, GFP_NOIO);
  719. r1_bio->bios[rdisk] = read_bio;
  720. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  721. read_bio->bi_bdev = mirror->rdev->bdev;
  722. read_bio->bi_end_io = raid1_end_read_request;
  723. read_bio->bi_rw = READ | do_sync;
  724. read_bio->bi_private = r1_bio;
  725. generic_make_request(read_bio);
  726. return 0;
  727. }
  728. /*
  729. * WRITE:
  730. */
  731. /* first select target devices under spinlock and
  732. * inc refcount on their rdev. Record them by setting
  733. * bios[x] to bio
  734. */
  735. disks = conf->raid_disks;
  736. #if 0
  737. { static int first=1;
  738. if (first) printk("First Write sector %llu disks %d\n",
  739. (unsigned long long)r1_bio->sector, disks);
  740. first = 0;
  741. }
  742. #endif
  743. rcu_read_lock();
  744. for (i = 0; i < disks; i++) {
  745. if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
  746. !test_bit(Faulty, &rdev->flags)) {
  747. atomic_inc(&rdev->nr_pending);
  748. if (test_bit(Faulty, &rdev->flags)) {
  749. rdev_dec_pending(rdev, mddev);
  750. r1_bio->bios[i] = NULL;
  751. } else
  752. r1_bio->bios[i] = bio;
  753. targets++;
  754. } else
  755. r1_bio->bios[i] = NULL;
  756. }
  757. rcu_read_unlock();
  758. BUG_ON(targets == 0); /* we never fail the last device */
  759. if (targets < conf->raid_disks) {
  760. /* array is degraded, we will not clear the bitmap
  761. * on I/O completion (see raid1_end_write_request) */
  762. set_bit(R1BIO_Degraded, &r1_bio->state);
  763. }
  764. /* do behind I/O ? */
  765. if (bitmap &&
  766. atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
  767. (behind_pages = alloc_behind_pages(bio)) != NULL)
  768. set_bit(R1BIO_BehindIO, &r1_bio->state);
  769. atomic_set(&r1_bio->remaining, 0);
  770. atomic_set(&r1_bio->behind_remaining, 0);
  771. do_barriers = bio_barrier(bio);
  772. if (do_barriers)
  773. set_bit(R1BIO_Barrier, &r1_bio->state);
  774. bio_list_init(&bl);
  775. for (i = 0; i < disks; i++) {
  776. struct bio *mbio;
  777. if (!r1_bio->bios[i])
  778. continue;
  779. mbio = bio_clone(bio, GFP_NOIO);
  780. r1_bio->bios[i] = mbio;
  781. mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
  782. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  783. mbio->bi_end_io = raid1_end_write_request;
  784. mbio->bi_rw = WRITE | do_barriers | do_sync;
  785. mbio->bi_private = r1_bio;
  786. if (behind_pages) {
  787. struct bio_vec *bvec;
  788. int j;
  789. /* Yes, I really want the '__' version so that
  790. * we clear any unused pointer in the io_vec, rather
  791. * than leave them unchanged. This is important
  792. * because when we come to free the pages, we won't
  793. * know the originial bi_idx, so we just free
  794. * them all
  795. */
  796. __bio_for_each_segment(bvec, mbio, j, 0)
  797. bvec->bv_page = behind_pages[j];
  798. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  799. atomic_inc(&r1_bio->behind_remaining);
  800. }
  801. atomic_inc(&r1_bio->remaining);
  802. bio_list_add(&bl, mbio);
  803. }
  804. kfree(behind_pages); /* the behind pages are attached to the bios now */
  805. bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
  806. test_bit(R1BIO_BehindIO, &r1_bio->state));
  807. spin_lock_irqsave(&conf->device_lock, flags);
  808. bio_list_merge(&conf->pending_bio_list, &bl);
  809. bio_list_init(&bl);
  810. blk_plug_device(mddev->queue);
  811. spin_unlock_irqrestore(&conf->device_lock, flags);
  812. if (do_sync)
  813. md_wakeup_thread(mddev->thread);
  814. #if 0
  815. while ((bio = bio_list_pop(&bl)) != NULL)
  816. generic_make_request(bio);
  817. #endif
  818. return 0;
  819. }
  820. static void status(struct seq_file *seq, mddev_t *mddev)
  821. {
  822. conf_t *conf = mddev_to_conf(mddev);
  823. int i;
  824. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  825. conf->raid_disks - mddev->degraded);
  826. rcu_read_lock();
  827. for (i = 0; i < conf->raid_disks; i++) {
  828. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  829. seq_printf(seq, "%s",
  830. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  831. }
  832. rcu_read_unlock();
  833. seq_printf(seq, "]");
  834. }
  835. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  836. {
  837. char b[BDEVNAME_SIZE];
  838. conf_t *conf = mddev_to_conf(mddev);
  839. /*
  840. * If it is not operational, then we have already marked it as dead
  841. * else if it is the last working disks, ignore the error, let the
  842. * next level up know.
  843. * else mark the drive as failed
  844. */
  845. if (test_bit(In_sync, &rdev->flags)
  846. && (conf->raid_disks - mddev->degraded) == 1)
  847. /*
  848. * Don't fail the drive, act as though we were just a
  849. * normal single drive
  850. */
  851. return;
  852. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  853. unsigned long flags;
  854. spin_lock_irqsave(&conf->device_lock, flags);
  855. mddev->degraded++;
  856. set_bit(Faulty, &rdev->flags);
  857. spin_unlock_irqrestore(&conf->device_lock, flags);
  858. /*
  859. * if recovery is running, make sure it aborts.
  860. */
  861. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  862. } else
  863. set_bit(Faulty, &rdev->flags);
  864. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  865. printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
  866. " Operation continuing on %d devices\n",
  867. bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
  868. }
  869. static void print_conf(conf_t *conf)
  870. {
  871. int i;
  872. printk("RAID1 conf printout:\n");
  873. if (!conf) {
  874. printk("(!conf)\n");
  875. return;
  876. }
  877. printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  878. conf->raid_disks);
  879. rcu_read_lock();
  880. for (i = 0; i < conf->raid_disks; i++) {
  881. char b[BDEVNAME_SIZE];
  882. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  883. if (rdev)
  884. printk(" disk %d, wo:%d, o:%d, dev:%s\n",
  885. i, !test_bit(In_sync, &rdev->flags),
  886. !test_bit(Faulty, &rdev->flags),
  887. bdevname(rdev->bdev,b));
  888. }
  889. rcu_read_unlock();
  890. }
  891. static void close_sync(conf_t *conf)
  892. {
  893. wait_barrier(conf);
  894. allow_barrier(conf);
  895. mempool_destroy(conf->r1buf_pool);
  896. conf->r1buf_pool = NULL;
  897. }
  898. static int raid1_spare_active(mddev_t *mddev)
  899. {
  900. int i;
  901. conf_t *conf = mddev->private;
  902. /*
  903. * Find all failed disks within the RAID1 configuration
  904. * and mark them readable.
  905. * Called under mddev lock, so rcu protection not needed.
  906. */
  907. for (i = 0; i < conf->raid_disks; i++) {
  908. mdk_rdev_t *rdev = conf->mirrors[i].rdev;
  909. if (rdev
  910. && !test_bit(Faulty, &rdev->flags)
  911. && !test_and_set_bit(In_sync, &rdev->flags)) {
  912. unsigned long flags;
  913. spin_lock_irqsave(&conf->device_lock, flags);
  914. mddev->degraded--;
  915. spin_unlock_irqrestore(&conf->device_lock, flags);
  916. }
  917. }
  918. print_conf(conf);
  919. return 0;
  920. }
  921. static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  922. {
  923. conf_t *conf = mddev->private;
  924. int found = 0;
  925. int mirror = 0;
  926. mirror_info_t *p;
  927. for (mirror=0; mirror < mddev->raid_disks; mirror++)
  928. if ( !(p=conf->mirrors+mirror)->rdev) {
  929. blk_queue_stack_limits(mddev->queue,
  930. rdev->bdev->bd_disk->queue);
  931. /* as we don't honour merge_bvec_fn, we must never risk
  932. * violating it, so limit ->max_sector to one PAGE, as
  933. * a one page request is never in violation.
  934. */
  935. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  936. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  937. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  938. p->head_position = 0;
  939. rdev->raid_disk = mirror;
  940. found = 1;
  941. /* As all devices are equivalent, we don't need a full recovery
  942. * if this was recently any drive of the array
  943. */
  944. if (rdev->saved_raid_disk < 0)
  945. conf->fullsync = 1;
  946. rcu_assign_pointer(p->rdev, rdev);
  947. break;
  948. }
  949. print_conf(conf);
  950. return found;
  951. }
  952. static int raid1_remove_disk(mddev_t *mddev, int number)
  953. {
  954. conf_t *conf = mddev->private;
  955. int err = 0;
  956. mdk_rdev_t *rdev;
  957. mirror_info_t *p = conf->mirrors+ number;
  958. print_conf(conf);
  959. rdev = p->rdev;
  960. if (rdev) {
  961. if (test_bit(In_sync, &rdev->flags) ||
  962. atomic_read(&rdev->nr_pending)) {
  963. err = -EBUSY;
  964. goto abort;
  965. }
  966. p->rdev = NULL;
  967. synchronize_rcu();
  968. if (atomic_read(&rdev->nr_pending)) {
  969. /* lost the race, try later */
  970. err = -EBUSY;
  971. p->rdev = rdev;
  972. }
  973. }
  974. abort:
  975. print_conf(conf);
  976. return err;
  977. }
  978. static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
  979. {
  980. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  981. int i;
  982. if (bio->bi_size)
  983. return 1;
  984. for (i=r1_bio->mddev->raid_disks; i--; )
  985. if (r1_bio->bios[i] == bio)
  986. break;
  987. BUG_ON(i < 0);
  988. update_head_pos(i, r1_bio);
  989. /*
  990. * we have read a block, now it needs to be re-written,
  991. * or re-read if the read failed.
  992. * We don't do much here, just schedule handling by raid1d
  993. */
  994. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  995. set_bit(R1BIO_Uptodate, &r1_bio->state);
  996. if (atomic_dec_and_test(&r1_bio->remaining))
  997. reschedule_retry(r1_bio);
  998. return 0;
  999. }
  1000. static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
  1001. {
  1002. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1003. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  1004. mddev_t *mddev = r1_bio->mddev;
  1005. conf_t *conf = mddev_to_conf(mddev);
  1006. int i;
  1007. int mirror=0;
  1008. if (bio->bi_size)
  1009. return 1;
  1010. for (i = 0; i < conf->raid_disks; i++)
  1011. if (r1_bio->bios[i] == bio) {
  1012. mirror = i;
  1013. break;
  1014. }
  1015. if (!uptodate) {
  1016. int sync_blocks = 0;
  1017. sector_t s = r1_bio->sector;
  1018. long sectors_to_go = r1_bio->sectors;
  1019. /* make sure these bits doesn't get cleared. */
  1020. do {
  1021. bitmap_end_sync(mddev->bitmap, s,
  1022. &sync_blocks, 1);
  1023. s += sync_blocks;
  1024. sectors_to_go -= sync_blocks;
  1025. } while (sectors_to_go > 0);
  1026. md_error(mddev, conf->mirrors[mirror].rdev);
  1027. }
  1028. update_head_pos(mirror, r1_bio);
  1029. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1030. md_done_sync(mddev, r1_bio->sectors, uptodate);
  1031. put_buf(r1_bio);
  1032. }
  1033. return 0;
  1034. }
  1035. static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
  1036. {
  1037. conf_t *conf = mddev_to_conf(mddev);
  1038. int i;
  1039. int disks = conf->raid_disks;
  1040. struct bio *bio, *wbio;
  1041. bio = r1_bio->bios[r1_bio->read_disk];
  1042. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1043. /* We have read all readable devices. If we haven't
  1044. * got the block, then there is no hope left.
  1045. * If we have, then we want to do a comparison
  1046. * and skip the write if everything is the same.
  1047. * If any blocks failed to read, then we need to
  1048. * attempt an over-write
  1049. */
  1050. int primary;
  1051. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1052. for (i=0; i<mddev->raid_disks; i++)
  1053. if (r1_bio->bios[i]->bi_end_io == end_sync_read)
  1054. md_error(mddev, conf->mirrors[i].rdev);
  1055. md_done_sync(mddev, r1_bio->sectors, 1);
  1056. put_buf(r1_bio);
  1057. return;
  1058. }
  1059. for (primary=0; primary<mddev->raid_disks; primary++)
  1060. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1061. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1062. r1_bio->bios[primary]->bi_end_io = NULL;
  1063. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1064. break;
  1065. }
  1066. r1_bio->read_disk = primary;
  1067. for (i=0; i<mddev->raid_disks; i++)
  1068. if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
  1069. test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
  1070. int j;
  1071. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1072. struct bio *pbio = r1_bio->bios[primary];
  1073. struct bio *sbio = r1_bio->bios[i];
  1074. for (j = vcnt; j-- ; )
  1075. if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
  1076. page_address(sbio->bi_io_vec[j].bv_page),
  1077. PAGE_SIZE))
  1078. break;
  1079. if (j >= 0)
  1080. mddev->resync_mismatches += r1_bio->sectors;
  1081. if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  1082. sbio->bi_end_io = NULL;
  1083. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1084. } else {
  1085. /* fixup the bio for reuse */
  1086. sbio->bi_vcnt = vcnt;
  1087. sbio->bi_size = r1_bio->sectors << 9;
  1088. sbio->bi_idx = 0;
  1089. sbio->bi_phys_segments = 0;
  1090. sbio->bi_hw_segments = 0;
  1091. sbio->bi_hw_front_size = 0;
  1092. sbio->bi_hw_back_size = 0;
  1093. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1094. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1095. sbio->bi_next = NULL;
  1096. sbio->bi_sector = r1_bio->sector +
  1097. conf->mirrors[i].rdev->data_offset;
  1098. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1099. for (j = 0; j < vcnt ; j++)
  1100. memcpy(page_address(sbio->bi_io_vec[j].bv_page),
  1101. page_address(pbio->bi_io_vec[j].bv_page),
  1102. PAGE_SIZE);
  1103. }
  1104. }
  1105. }
  1106. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1107. /* ouch - failed to read all of that.
  1108. * Try some synchronous reads of other devices to get
  1109. * good data, much like with normal read errors. Only
  1110. * read into the pages we already have so we don't
  1111. * need to re-issue the read request.
  1112. * We don't need to freeze the array, because being in an
  1113. * active sync request, there is no normal IO, and
  1114. * no overlapping syncs.
  1115. */
  1116. sector_t sect = r1_bio->sector;
  1117. int sectors = r1_bio->sectors;
  1118. int idx = 0;
  1119. while(sectors) {
  1120. int s = sectors;
  1121. int d = r1_bio->read_disk;
  1122. int success = 0;
  1123. mdk_rdev_t *rdev;
  1124. if (s > (PAGE_SIZE>>9))
  1125. s = PAGE_SIZE >> 9;
  1126. do {
  1127. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1128. /* No rcu protection needed here devices
  1129. * can only be removed when no resync is
  1130. * active, and resync is currently active
  1131. */
  1132. rdev = conf->mirrors[d].rdev;
  1133. if (sync_page_io(rdev->bdev,
  1134. sect + rdev->data_offset,
  1135. s<<9,
  1136. bio->bi_io_vec[idx].bv_page,
  1137. READ)) {
  1138. success = 1;
  1139. break;
  1140. }
  1141. }
  1142. d++;
  1143. if (d == conf->raid_disks)
  1144. d = 0;
  1145. } while (!success && d != r1_bio->read_disk);
  1146. if (success) {
  1147. int start = d;
  1148. /* write it back and re-read */
  1149. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1150. while (d != r1_bio->read_disk) {
  1151. if (d == 0)
  1152. d = conf->raid_disks;
  1153. d--;
  1154. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1155. continue;
  1156. rdev = conf->mirrors[d].rdev;
  1157. atomic_add(s, &rdev->corrected_errors);
  1158. if (sync_page_io(rdev->bdev,
  1159. sect + rdev->data_offset,
  1160. s<<9,
  1161. bio->bi_io_vec[idx].bv_page,
  1162. WRITE) == 0)
  1163. md_error(mddev, rdev);
  1164. }
  1165. d = start;
  1166. while (d != r1_bio->read_disk) {
  1167. if (d == 0)
  1168. d = conf->raid_disks;
  1169. d--;
  1170. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1171. continue;
  1172. rdev = conf->mirrors[d].rdev;
  1173. if (sync_page_io(rdev->bdev,
  1174. sect + rdev->data_offset,
  1175. s<<9,
  1176. bio->bi_io_vec[idx].bv_page,
  1177. READ) == 0)
  1178. md_error(mddev, rdev);
  1179. }
  1180. } else {
  1181. char b[BDEVNAME_SIZE];
  1182. /* Cannot read from anywhere, array is toast */
  1183. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1184. printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
  1185. " for block %llu\n",
  1186. bdevname(bio->bi_bdev,b),
  1187. (unsigned long long)r1_bio->sector);
  1188. md_done_sync(mddev, r1_bio->sectors, 0);
  1189. put_buf(r1_bio);
  1190. return;
  1191. }
  1192. sectors -= s;
  1193. sect += s;
  1194. idx ++;
  1195. }
  1196. }
  1197. /*
  1198. * schedule writes
  1199. */
  1200. atomic_set(&r1_bio->remaining, 1);
  1201. for (i = 0; i < disks ; i++) {
  1202. wbio = r1_bio->bios[i];
  1203. if (wbio->bi_end_io == NULL ||
  1204. (wbio->bi_end_io == end_sync_read &&
  1205. (i == r1_bio->read_disk ||
  1206. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1207. continue;
  1208. wbio->bi_rw = WRITE;
  1209. wbio->bi_end_io = end_sync_write;
  1210. atomic_inc(&r1_bio->remaining);
  1211. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1212. generic_make_request(wbio);
  1213. }
  1214. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1215. /* if we're here, all write(s) have completed, so clean up */
  1216. md_done_sync(mddev, r1_bio->sectors, 1);
  1217. put_buf(r1_bio);
  1218. }
  1219. }
  1220. /*
  1221. * This is a kernel thread which:
  1222. *
  1223. * 1. Retries failed read operations on working mirrors.
  1224. * 2. Updates the raid superblock when problems encounter.
  1225. * 3. Performs writes following reads for array syncronising.
  1226. */
  1227. static void fix_read_error(conf_t *conf, int read_disk,
  1228. sector_t sect, int sectors)
  1229. {
  1230. mddev_t *mddev = conf->mddev;
  1231. while(sectors) {
  1232. int s = sectors;
  1233. int d = read_disk;
  1234. int success = 0;
  1235. int start;
  1236. mdk_rdev_t *rdev;
  1237. if (s > (PAGE_SIZE>>9))
  1238. s = PAGE_SIZE >> 9;
  1239. do {
  1240. /* Note: no rcu protection needed here
  1241. * as this is synchronous in the raid1d thread
  1242. * which is the thread that might remove
  1243. * a device. If raid1d ever becomes multi-threaded....
  1244. */
  1245. rdev = conf->mirrors[d].rdev;
  1246. if (rdev &&
  1247. test_bit(In_sync, &rdev->flags) &&
  1248. sync_page_io(rdev->bdev,
  1249. sect + rdev->data_offset,
  1250. s<<9,
  1251. conf->tmppage, READ))
  1252. success = 1;
  1253. else {
  1254. d++;
  1255. if (d == conf->raid_disks)
  1256. d = 0;
  1257. }
  1258. } while (!success && d != read_disk);
  1259. if (!success) {
  1260. /* Cannot read from anywhere -- bye bye array */
  1261. md_error(mddev, conf->mirrors[read_disk].rdev);
  1262. break;
  1263. }
  1264. /* write it back and re-read */
  1265. start = d;
  1266. while (d != read_disk) {
  1267. if (d==0)
  1268. d = conf->raid_disks;
  1269. d--;
  1270. rdev = conf->mirrors[d].rdev;
  1271. if (rdev &&
  1272. test_bit(In_sync, &rdev->flags)) {
  1273. if (sync_page_io(rdev->bdev,
  1274. sect + rdev->data_offset,
  1275. s<<9, conf->tmppage, WRITE)
  1276. == 0)
  1277. /* Well, this device is dead */
  1278. md_error(mddev, rdev);
  1279. }
  1280. }
  1281. d = start;
  1282. while (d != read_disk) {
  1283. char b[BDEVNAME_SIZE];
  1284. if (d==0)
  1285. d = conf->raid_disks;
  1286. d--;
  1287. rdev = conf->mirrors[d].rdev;
  1288. if (rdev &&
  1289. test_bit(In_sync, &rdev->flags)) {
  1290. if (sync_page_io(rdev->bdev,
  1291. sect + rdev->data_offset,
  1292. s<<9, conf->tmppage, READ)
  1293. == 0)
  1294. /* Well, this device is dead */
  1295. md_error(mddev, rdev);
  1296. else {
  1297. atomic_add(s, &rdev->corrected_errors);
  1298. printk(KERN_INFO
  1299. "raid1:%s: read error corrected "
  1300. "(%d sectors at %llu on %s)\n",
  1301. mdname(mddev), s,
  1302. (unsigned long long)(sect +
  1303. rdev->data_offset),
  1304. bdevname(rdev->bdev, b));
  1305. }
  1306. }
  1307. }
  1308. sectors -= s;
  1309. sect += s;
  1310. }
  1311. }
  1312. static void raid1d(mddev_t *mddev)
  1313. {
  1314. r1bio_t *r1_bio;
  1315. struct bio *bio;
  1316. unsigned long flags;
  1317. conf_t *conf = mddev_to_conf(mddev);
  1318. struct list_head *head = &conf->retry_list;
  1319. int unplug=0;
  1320. mdk_rdev_t *rdev;
  1321. md_check_recovery(mddev);
  1322. for (;;) {
  1323. char b[BDEVNAME_SIZE];
  1324. spin_lock_irqsave(&conf->device_lock, flags);
  1325. if (conf->pending_bio_list.head) {
  1326. bio = bio_list_get(&conf->pending_bio_list);
  1327. blk_remove_plug(mddev->queue);
  1328. spin_unlock_irqrestore(&conf->device_lock, flags);
  1329. /* flush any pending bitmap writes to disk before proceeding w/ I/O */
  1330. if (bitmap_unplug(mddev->bitmap) != 0)
  1331. printk("%s: bitmap file write failed!\n", mdname(mddev));
  1332. while (bio) { /* submit pending writes */
  1333. struct bio *next = bio->bi_next;
  1334. bio->bi_next = NULL;
  1335. generic_make_request(bio);
  1336. bio = next;
  1337. }
  1338. unplug = 1;
  1339. continue;
  1340. }
  1341. if (list_empty(head))
  1342. break;
  1343. r1_bio = list_entry(head->prev, r1bio_t, retry_list);
  1344. list_del(head->prev);
  1345. conf->nr_queued--;
  1346. spin_unlock_irqrestore(&conf->device_lock, flags);
  1347. mddev = r1_bio->mddev;
  1348. conf = mddev_to_conf(mddev);
  1349. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1350. sync_request_write(mddev, r1_bio);
  1351. unplug = 1;
  1352. } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
  1353. /* some requests in the r1bio were BIO_RW_BARRIER
  1354. * requests which failed with -EOPNOTSUPP. Hohumm..
  1355. * Better resubmit without the barrier.
  1356. * We know which devices to resubmit for, because
  1357. * all others have had their bios[] entry cleared.
  1358. * We already have a nr_pending reference on these rdevs.
  1359. */
  1360. int i;
  1361. const int do_sync = bio_sync(r1_bio->master_bio);
  1362. clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
  1363. clear_bit(R1BIO_Barrier, &r1_bio->state);
  1364. for (i=0; i < conf->raid_disks; i++)
  1365. if (r1_bio->bios[i])
  1366. atomic_inc(&r1_bio->remaining);
  1367. for (i=0; i < conf->raid_disks; i++)
  1368. if (r1_bio->bios[i]) {
  1369. struct bio_vec *bvec;
  1370. int j;
  1371. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1372. /* copy pages from the failed bio, as
  1373. * this might be a write-behind device */
  1374. __bio_for_each_segment(bvec, bio, j, 0)
  1375. bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
  1376. bio_put(r1_bio->bios[i]);
  1377. bio->bi_sector = r1_bio->sector +
  1378. conf->mirrors[i].rdev->data_offset;
  1379. bio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1380. bio->bi_end_io = raid1_end_write_request;
  1381. bio->bi_rw = WRITE | do_sync;
  1382. bio->bi_private = r1_bio;
  1383. r1_bio->bios[i] = bio;
  1384. generic_make_request(bio);
  1385. }
  1386. } else {
  1387. int disk;
  1388. /* we got a read error. Maybe the drive is bad. Maybe just
  1389. * the block and we can fix it.
  1390. * We freeze all other IO, and try reading the block from
  1391. * other devices. When we find one, we re-write
  1392. * and check it that fixes the read error.
  1393. * This is all done synchronously while the array is
  1394. * frozen
  1395. */
  1396. if (mddev->ro == 0) {
  1397. freeze_array(conf);
  1398. fix_read_error(conf, r1_bio->read_disk,
  1399. r1_bio->sector,
  1400. r1_bio->sectors);
  1401. unfreeze_array(conf);
  1402. }
  1403. bio = r1_bio->bios[r1_bio->read_disk];
  1404. if ((disk=read_balance(conf, r1_bio)) == -1) {
  1405. printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
  1406. " read error for block %llu\n",
  1407. bdevname(bio->bi_bdev,b),
  1408. (unsigned long long)r1_bio->sector);
  1409. raid_end_bio_io(r1_bio);
  1410. } else {
  1411. const int do_sync = bio_sync(r1_bio->master_bio);
  1412. r1_bio->bios[r1_bio->read_disk] =
  1413. mddev->ro ? IO_BLOCKED : NULL;
  1414. r1_bio->read_disk = disk;
  1415. bio_put(bio);
  1416. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1417. r1_bio->bios[r1_bio->read_disk] = bio;
  1418. rdev = conf->mirrors[disk].rdev;
  1419. if (printk_ratelimit())
  1420. printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
  1421. " another mirror\n",
  1422. bdevname(rdev->bdev,b),
  1423. (unsigned long long)r1_bio->sector);
  1424. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1425. bio->bi_bdev = rdev->bdev;
  1426. bio->bi_end_io = raid1_end_read_request;
  1427. bio->bi_rw = READ | do_sync;
  1428. bio->bi_private = r1_bio;
  1429. unplug = 1;
  1430. generic_make_request(bio);
  1431. }
  1432. }
  1433. }
  1434. spin_unlock_irqrestore(&conf->device_lock, flags);
  1435. if (unplug)
  1436. unplug_slaves(mddev);
  1437. }
  1438. static int init_resync(conf_t *conf)
  1439. {
  1440. int buffs;
  1441. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1442. BUG_ON(conf->r1buf_pool);
  1443. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1444. conf->poolinfo);
  1445. if (!conf->r1buf_pool)
  1446. return -ENOMEM;
  1447. conf->next_resync = 0;
  1448. return 0;
  1449. }
  1450. /*
  1451. * perform a "sync" on one "block"
  1452. *
  1453. * We need to make sure that no normal I/O request - particularly write
  1454. * requests - conflict with active sync requests.
  1455. *
  1456. * This is achieved by tracking pending requests and a 'barrier' concept
  1457. * that can be installed to exclude normal IO requests.
  1458. */
  1459. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1460. {
  1461. conf_t *conf = mddev_to_conf(mddev);
  1462. r1bio_t *r1_bio;
  1463. struct bio *bio;
  1464. sector_t max_sector, nr_sectors;
  1465. int disk = -1;
  1466. int i;
  1467. int wonly = -1;
  1468. int write_targets = 0, read_targets = 0;
  1469. int sync_blocks;
  1470. int still_degraded = 0;
  1471. if (!conf->r1buf_pool)
  1472. {
  1473. /*
  1474. printk("sync start - bitmap %p\n", mddev->bitmap);
  1475. */
  1476. if (init_resync(conf))
  1477. return 0;
  1478. }
  1479. max_sector = mddev->size << 1;
  1480. if (sector_nr >= max_sector) {
  1481. /* If we aborted, we need to abort the
  1482. * sync on the 'current' bitmap chunk (there will
  1483. * only be one in raid1 resync.
  1484. * We can find the current addess in mddev->curr_resync
  1485. */
  1486. if (mddev->curr_resync < max_sector) /* aborted */
  1487. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1488. &sync_blocks, 1);
  1489. else /* completed sync */
  1490. conf->fullsync = 0;
  1491. bitmap_close_sync(mddev->bitmap);
  1492. close_sync(conf);
  1493. return 0;
  1494. }
  1495. if (mddev->bitmap == NULL &&
  1496. mddev->recovery_cp == MaxSector &&
  1497. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1498. conf->fullsync == 0) {
  1499. *skipped = 1;
  1500. return max_sector - sector_nr;
  1501. }
  1502. /* before building a request, check if we can skip these blocks..
  1503. * This call the bitmap_start_sync doesn't actually record anything
  1504. */
  1505. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1506. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1507. /* We can skip this block, and probably several more */
  1508. *skipped = 1;
  1509. return sync_blocks;
  1510. }
  1511. /*
  1512. * If there is non-resync activity waiting for a turn,
  1513. * and resync is going fast enough,
  1514. * then let it though before starting on this new sync request.
  1515. */
  1516. if (!go_faster && conf->nr_waiting)
  1517. msleep_interruptible(1000);
  1518. raise_barrier(conf);
  1519. conf->next_resync = sector_nr;
  1520. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1521. rcu_read_lock();
  1522. /*
  1523. * If we get a correctably read error during resync or recovery,
  1524. * we might want to read from a different device. So we
  1525. * flag all drives that could conceivably be read from for READ,
  1526. * and any others (which will be non-In_sync devices) for WRITE.
  1527. * If a read fails, we try reading from something else for which READ
  1528. * is OK.
  1529. */
  1530. r1_bio->mddev = mddev;
  1531. r1_bio->sector = sector_nr;
  1532. r1_bio->state = 0;
  1533. set_bit(R1BIO_IsSync, &r1_bio->state);
  1534. for (i=0; i < conf->raid_disks; i++) {
  1535. mdk_rdev_t *rdev;
  1536. bio = r1_bio->bios[i];
  1537. /* take from bio_init */
  1538. bio->bi_next = NULL;
  1539. bio->bi_flags |= 1 << BIO_UPTODATE;
  1540. bio->bi_rw = READ;
  1541. bio->bi_vcnt = 0;
  1542. bio->bi_idx = 0;
  1543. bio->bi_phys_segments = 0;
  1544. bio->bi_hw_segments = 0;
  1545. bio->bi_size = 0;
  1546. bio->bi_end_io = NULL;
  1547. bio->bi_private = NULL;
  1548. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1549. if (rdev == NULL ||
  1550. test_bit(Faulty, &rdev->flags)) {
  1551. still_degraded = 1;
  1552. continue;
  1553. } else if (!test_bit(In_sync, &rdev->flags)) {
  1554. bio->bi_rw = WRITE;
  1555. bio->bi_end_io = end_sync_write;
  1556. write_targets ++;
  1557. } else {
  1558. /* may need to read from here */
  1559. bio->bi_rw = READ;
  1560. bio->bi_end_io = end_sync_read;
  1561. if (test_bit(WriteMostly, &rdev->flags)) {
  1562. if (wonly < 0)
  1563. wonly = i;
  1564. } else {
  1565. if (disk < 0)
  1566. disk = i;
  1567. }
  1568. read_targets++;
  1569. }
  1570. atomic_inc(&rdev->nr_pending);
  1571. bio->bi_sector = sector_nr + rdev->data_offset;
  1572. bio->bi_bdev = rdev->bdev;
  1573. bio->bi_private = r1_bio;
  1574. }
  1575. rcu_read_unlock();
  1576. if (disk < 0)
  1577. disk = wonly;
  1578. r1_bio->read_disk = disk;
  1579. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  1580. /* extra read targets are also write targets */
  1581. write_targets += read_targets-1;
  1582. if (write_targets == 0 || read_targets == 0) {
  1583. /* There is nowhere to write, so all non-sync
  1584. * drives must be failed - so we are finished
  1585. */
  1586. sector_t rv = max_sector - sector_nr;
  1587. *skipped = 1;
  1588. put_buf(r1_bio);
  1589. return rv;
  1590. }
  1591. nr_sectors = 0;
  1592. sync_blocks = 0;
  1593. do {
  1594. struct page *page;
  1595. int len = PAGE_SIZE;
  1596. if (sector_nr + (len>>9) > max_sector)
  1597. len = (max_sector - sector_nr) << 9;
  1598. if (len == 0)
  1599. break;
  1600. if (sync_blocks == 0) {
  1601. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1602. &sync_blocks, still_degraded) &&
  1603. !conf->fullsync &&
  1604. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1605. break;
  1606. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  1607. if (len > (sync_blocks<<9))
  1608. len = sync_blocks<<9;
  1609. }
  1610. for (i=0 ; i < conf->raid_disks; i++) {
  1611. bio = r1_bio->bios[i];
  1612. if (bio->bi_end_io) {
  1613. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1614. if (bio_add_page(bio, page, len, 0) == 0) {
  1615. /* stop here */
  1616. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1617. while (i > 0) {
  1618. i--;
  1619. bio = r1_bio->bios[i];
  1620. if (bio->bi_end_io==NULL)
  1621. continue;
  1622. /* remove last page from this bio */
  1623. bio->bi_vcnt--;
  1624. bio->bi_size -= len;
  1625. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  1626. }
  1627. goto bio_full;
  1628. }
  1629. }
  1630. }
  1631. nr_sectors += len>>9;
  1632. sector_nr += len>>9;
  1633. sync_blocks -= (len>>9);
  1634. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  1635. bio_full:
  1636. r1_bio->sectors = nr_sectors;
  1637. /* For a user-requested sync, we read all readable devices and do a
  1638. * compare
  1639. */
  1640. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1641. atomic_set(&r1_bio->remaining, read_targets);
  1642. for (i=0; i<conf->raid_disks; i++) {
  1643. bio = r1_bio->bios[i];
  1644. if (bio->bi_end_io == end_sync_read) {
  1645. md_sync_acct(bio->bi_bdev, nr_sectors);
  1646. generic_make_request(bio);
  1647. }
  1648. }
  1649. } else {
  1650. atomic_set(&r1_bio->remaining, 1);
  1651. bio = r1_bio->bios[r1_bio->read_disk];
  1652. md_sync_acct(bio->bi_bdev, nr_sectors);
  1653. generic_make_request(bio);
  1654. }
  1655. return nr_sectors;
  1656. }
  1657. static int run(mddev_t *mddev)
  1658. {
  1659. conf_t *conf;
  1660. int i, j, disk_idx;
  1661. mirror_info_t *disk;
  1662. mdk_rdev_t *rdev;
  1663. struct list_head *tmp;
  1664. if (mddev->level != 1) {
  1665. printk("raid1: %s: raid level not set to mirroring (%d)\n",
  1666. mdname(mddev), mddev->level);
  1667. goto out;
  1668. }
  1669. if (mddev->reshape_position != MaxSector) {
  1670. printk("raid1: %s: reshape_position set but not supported\n",
  1671. mdname(mddev));
  1672. goto out;
  1673. }
  1674. /*
  1675. * copy the already verified devices into our private RAID1
  1676. * bookkeeping area. [whatever we allocate in run(),
  1677. * should be freed in stop()]
  1678. */
  1679. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1680. mddev->private = conf;
  1681. if (!conf)
  1682. goto out_no_mem;
  1683. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1684. GFP_KERNEL);
  1685. if (!conf->mirrors)
  1686. goto out_no_mem;
  1687. conf->tmppage = alloc_page(GFP_KERNEL);
  1688. if (!conf->tmppage)
  1689. goto out_no_mem;
  1690. conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  1691. if (!conf->poolinfo)
  1692. goto out_no_mem;
  1693. conf->poolinfo->mddev = mddev;
  1694. conf->poolinfo->raid_disks = mddev->raid_disks;
  1695. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1696. r1bio_pool_free,
  1697. conf->poolinfo);
  1698. if (!conf->r1bio_pool)
  1699. goto out_no_mem;
  1700. ITERATE_RDEV(mddev, rdev, tmp) {
  1701. disk_idx = rdev->raid_disk;
  1702. if (disk_idx >= mddev->raid_disks
  1703. || disk_idx < 0)
  1704. continue;
  1705. disk = conf->mirrors + disk_idx;
  1706. disk->rdev = rdev;
  1707. blk_queue_stack_limits(mddev->queue,
  1708. rdev->bdev->bd_disk->queue);
  1709. /* as we don't honour merge_bvec_fn, we must never risk
  1710. * violating it, so limit ->max_sector to one PAGE, as
  1711. * a one page request is never in violation.
  1712. */
  1713. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  1714. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  1715. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  1716. disk->head_position = 0;
  1717. }
  1718. conf->raid_disks = mddev->raid_disks;
  1719. conf->mddev = mddev;
  1720. spin_lock_init(&conf->device_lock);
  1721. INIT_LIST_HEAD(&conf->retry_list);
  1722. spin_lock_init(&conf->resync_lock);
  1723. init_waitqueue_head(&conf->wait_barrier);
  1724. bio_list_init(&conf->pending_bio_list);
  1725. bio_list_init(&conf->flushing_bio_list);
  1726. mddev->degraded = 0;
  1727. for (i = 0; i < conf->raid_disks; i++) {
  1728. disk = conf->mirrors + i;
  1729. if (!disk->rdev ||
  1730. !test_bit(In_sync, &disk->rdev->flags)) {
  1731. disk->head_position = 0;
  1732. mddev->degraded++;
  1733. conf->fullsync = 1;
  1734. }
  1735. }
  1736. if (mddev->degraded == conf->raid_disks) {
  1737. printk(KERN_ERR "raid1: no operational mirrors for %s\n",
  1738. mdname(mddev));
  1739. goto out_free_conf;
  1740. }
  1741. if (conf->raid_disks - mddev->degraded == 1)
  1742. mddev->recovery_cp = MaxSector;
  1743. /*
  1744. * find the first working one and use it as a starting point
  1745. * to read balancing.
  1746. */
  1747. for (j = 0; j < conf->raid_disks &&
  1748. (!conf->mirrors[j].rdev ||
  1749. !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
  1750. /* nothing */;
  1751. conf->last_used = j;
  1752. mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
  1753. if (!mddev->thread) {
  1754. printk(KERN_ERR
  1755. "raid1: couldn't allocate thread for %s\n",
  1756. mdname(mddev));
  1757. goto out_free_conf;
  1758. }
  1759. printk(KERN_INFO
  1760. "raid1: raid set %s active with %d out of %d mirrors\n",
  1761. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1762. mddev->raid_disks);
  1763. /*
  1764. * Ok, everything is just fine now
  1765. */
  1766. mddev->array_size = mddev->size;
  1767. mddev->queue->unplug_fn = raid1_unplug;
  1768. mddev->queue->issue_flush_fn = raid1_issue_flush;
  1769. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  1770. mddev->queue->backing_dev_info.congested_data = mddev;
  1771. return 0;
  1772. out_no_mem:
  1773. printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
  1774. mdname(mddev));
  1775. out_free_conf:
  1776. if (conf) {
  1777. if (conf->r1bio_pool)
  1778. mempool_destroy(conf->r1bio_pool);
  1779. kfree(conf->mirrors);
  1780. safe_put_page(conf->tmppage);
  1781. kfree(conf->poolinfo);
  1782. kfree(conf);
  1783. mddev->private = NULL;
  1784. }
  1785. out:
  1786. return -EIO;
  1787. }
  1788. static int stop(mddev_t *mddev)
  1789. {
  1790. conf_t *conf = mddev_to_conf(mddev);
  1791. struct bitmap *bitmap = mddev->bitmap;
  1792. int behind_wait = 0;
  1793. /* wait for behind writes to complete */
  1794. while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  1795. behind_wait++;
  1796. printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
  1797. set_current_state(TASK_UNINTERRUPTIBLE);
  1798. schedule_timeout(HZ); /* wait a second */
  1799. /* need to kick something here to make sure I/O goes? */
  1800. }
  1801. md_unregister_thread(mddev->thread);
  1802. mddev->thread = NULL;
  1803. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1804. if (conf->r1bio_pool)
  1805. mempool_destroy(conf->r1bio_pool);
  1806. kfree(conf->mirrors);
  1807. kfree(conf->poolinfo);
  1808. kfree(conf);
  1809. mddev->private = NULL;
  1810. return 0;
  1811. }
  1812. static int raid1_resize(mddev_t *mddev, sector_t sectors)
  1813. {
  1814. /* no resync is happening, and there is enough space
  1815. * on all devices, so we can resize.
  1816. * We need to make sure resync covers any new space.
  1817. * If the array is shrinking we should possibly wait until
  1818. * any io in the removed space completes, but it hardly seems
  1819. * worth it.
  1820. */
  1821. mddev->array_size = sectors>>1;
  1822. set_capacity(mddev->gendisk, mddev->array_size << 1);
  1823. mddev->changed = 1;
  1824. if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
  1825. mddev->recovery_cp = mddev->size << 1;
  1826. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1827. }
  1828. mddev->size = mddev->array_size;
  1829. mddev->resync_max_sectors = sectors;
  1830. return 0;
  1831. }
  1832. static int raid1_reshape(mddev_t *mddev)
  1833. {
  1834. /* We need to:
  1835. * 1/ resize the r1bio_pool
  1836. * 2/ resize conf->mirrors
  1837. *
  1838. * We allocate a new r1bio_pool if we can.
  1839. * Then raise a device barrier and wait until all IO stops.
  1840. * Then resize conf->mirrors and swap in the new r1bio pool.
  1841. *
  1842. * At the same time, we "pack" the devices so that all the missing
  1843. * devices have the higher raid_disk numbers.
  1844. */
  1845. mempool_t *newpool, *oldpool;
  1846. struct pool_info *newpoolinfo;
  1847. mirror_info_t *newmirrors;
  1848. conf_t *conf = mddev_to_conf(mddev);
  1849. int cnt, raid_disks;
  1850. unsigned long flags;
  1851. int d, d2;
  1852. /* Cannot change chunk_size, layout, or level */
  1853. if (mddev->chunk_size != mddev->new_chunk ||
  1854. mddev->layout != mddev->new_layout ||
  1855. mddev->level != mddev->new_level) {
  1856. mddev->new_chunk = mddev->chunk_size;
  1857. mddev->new_layout = mddev->layout;
  1858. mddev->new_level = mddev->level;
  1859. return -EINVAL;
  1860. }
  1861. md_allow_write(mddev);
  1862. raid_disks = mddev->raid_disks + mddev->delta_disks;
  1863. if (raid_disks < conf->raid_disks) {
  1864. cnt=0;
  1865. for (d= 0; d < conf->raid_disks; d++)
  1866. if (conf->mirrors[d].rdev)
  1867. cnt++;
  1868. if (cnt > raid_disks)
  1869. return -EBUSY;
  1870. }
  1871. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  1872. if (!newpoolinfo)
  1873. return -ENOMEM;
  1874. newpoolinfo->mddev = mddev;
  1875. newpoolinfo->raid_disks = raid_disks;
  1876. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1877. r1bio_pool_free, newpoolinfo);
  1878. if (!newpool) {
  1879. kfree(newpoolinfo);
  1880. return -ENOMEM;
  1881. }
  1882. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  1883. if (!newmirrors) {
  1884. kfree(newpoolinfo);
  1885. mempool_destroy(newpool);
  1886. return -ENOMEM;
  1887. }
  1888. raise_barrier(conf);
  1889. /* ok, everything is stopped */
  1890. oldpool = conf->r1bio_pool;
  1891. conf->r1bio_pool = newpool;
  1892. for (d=d2=0; d < conf->raid_disks; d++)
  1893. if (conf->mirrors[d].rdev) {
  1894. conf->mirrors[d].rdev->raid_disk = d2;
  1895. newmirrors[d2++].rdev = conf->mirrors[d].rdev;
  1896. }
  1897. kfree(conf->mirrors);
  1898. conf->mirrors = newmirrors;
  1899. kfree(conf->poolinfo);
  1900. conf->poolinfo = newpoolinfo;
  1901. spin_lock_irqsave(&conf->device_lock, flags);
  1902. mddev->degraded += (raid_disks - conf->raid_disks);
  1903. spin_unlock_irqrestore(&conf->device_lock, flags);
  1904. conf->raid_disks = mddev->raid_disks = raid_disks;
  1905. mddev->delta_disks = 0;
  1906. conf->last_used = 0; /* just make sure it is in-range */
  1907. lower_barrier(conf);
  1908. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1909. md_wakeup_thread(mddev->thread);
  1910. mempool_destroy(oldpool);
  1911. return 0;
  1912. }
  1913. static void raid1_quiesce(mddev_t *mddev, int state)
  1914. {
  1915. conf_t *conf = mddev_to_conf(mddev);
  1916. switch(state) {
  1917. case 1:
  1918. raise_barrier(conf);
  1919. break;
  1920. case 0:
  1921. lower_barrier(conf);
  1922. break;
  1923. }
  1924. }
  1925. static struct mdk_personality raid1_personality =
  1926. {
  1927. .name = "raid1",
  1928. .level = 1,
  1929. .owner = THIS_MODULE,
  1930. .make_request = make_request,
  1931. .run = run,
  1932. .stop = stop,
  1933. .status = status,
  1934. .error_handler = error,
  1935. .hot_add_disk = raid1_add_disk,
  1936. .hot_remove_disk= raid1_remove_disk,
  1937. .spare_active = raid1_spare_active,
  1938. .sync_request = sync_request,
  1939. .resize = raid1_resize,
  1940. .check_reshape = raid1_reshape,
  1941. .quiesce = raid1_quiesce,
  1942. };
  1943. static int __init raid_init(void)
  1944. {
  1945. return register_md_personality(&raid1_personality);
  1946. }
  1947. static void raid_exit(void)
  1948. {
  1949. unregister_md_personality(&raid1_personality);
  1950. }
  1951. module_init(raid_init);
  1952. module_exit(raid_exit);
  1953. MODULE_LICENSE("GPL");
  1954. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  1955. MODULE_ALIAS("md-raid1");
  1956. MODULE_ALIAS("md-level-1");