vmx.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <asm/io.h>
  25. #include <asm/desc.h>
  26. #include "segment_descriptor.h"
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  30. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  31. #ifdef CONFIG_X86_64
  32. #define HOST_IS_64 1
  33. #else
  34. #define HOST_IS_64 0
  35. #endif
  36. static struct vmcs_descriptor {
  37. int size;
  38. int order;
  39. u32 revision_id;
  40. } vmcs_descriptor;
  41. #define VMX_SEGMENT_FIELD(seg) \
  42. [VCPU_SREG_##seg] = { \
  43. .selector = GUEST_##seg##_SELECTOR, \
  44. .base = GUEST_##seg##_BASE, \
  45. .limit = GUEST_##seg##_LIMIT, \
  46. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  47. }
  48. static struct kvm_vmx_segment_field {
  49. unsigned selector;
  50. unsigned base;
  51. unsigned limit;
  52. unsigned ar_bytes;
  53. } kvm_vmx_segment_fields[] = {
  54. VMX_SEGMENT_FIELD(CS),
  55. VMX_SEGMENT_FIELD(DS),
  56. VMX_SEGMENT_FIELD(ES),
  57. VMX_SEGMENT_FIELD(FS),
  58. VMX_SEGMENT_FIELD(GS),
  59. VMX_SEGMENT_FIELD(SS),
  60. VMX_SEGMENT_FIELD(TR),
  61. VMX_SEGMENT_FIELD(LDTR),
  62. };
  63. /*
  64. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  65. * away by decrementing the array size.
  66. */
  67. static const u32 vmx_msr_index[] = {
  68. #ifdef CONFIG_X86_64
  69. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  70. #endif
  71. MSR_EFER, MSR_K6_STAR,
  72. };
  73. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  74. #ifdef CONFIG_X86_64
  75. static unsigned msr_offset_kernel_gs_base;
  76. #define NR_64BIT_MSRS 4
  77. /*
  78. * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
  79. * mechanism (cpu bug AA24)
  80. */
  81. #define NR_BAD_MSRS 2
  82. #else
  83. #define NR_64BIT_MSRS 0
  84. #define NR_BAD_MSRS 0
  85. #endif
  86. static inline int is_page_fault(u32 intr_info)
  87. {
  88. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  89. INTR_INFO_VALID_MASK)) ==
  90. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  91. }
  92. static inline int is_no_device(u32 intr_info)
  93. {
  94. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  95. INTR_INFO_VALID_MASK)) ==
  96. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  97. }
  98. static inline int is_external_interrupt(u32 intr_info)
  99. {
  100. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  101. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  102. }
  103. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  104. {
  105. int i;
  106. for (i = 0; i < vcpu->nmsrs; ++i)
  107. if (vcpu->guest_msrs[i].index == msr)
  108. return &vcpu->guest_msrs[i];
  109. return NULL;
  110. }
  111. static void vmcs_clear(struct vmcs *vmcs)
  112. {
  113. u64 phys_addr = __pa(vmcs);
  114. u8 error;
  115. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  116. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  117. : "cc", "memory");
  118. if (error)
  119. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  120. vmcs, phys_addr);
  121. }
  122. static void __vcpu_clear(void *arg)
  123. {
  124. struct kvm_vcpu *vcpu = arg;
  125. int cpu = raw_smp_processor_id();
  126. if (vcpu->cpu == cpu)
  127. vmcs_clear(vcpu->vmcs);
  128. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  129. per_cpu(current_vmcs, cpu) = NULL;
  130. }
  131. static void vcpu_clear(struct kvm_vcpu *vcpu)
  132. {
  133. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  134. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  135. else
  136. __vcpu_clear(vcpu);
  137. vcpu->launched = 0;
  138. }
  139. static unsigned long vmcs_readl(unsigned long field)
  140. {
  141. unsigned long value;
  142. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  143. : "=a"(value) : "d"(field) : "cc");
  144. return value;
  145. }
  146. static u16 vmcs_read16(unsigned long field)
  147. {
  148. return vmcs_readl(field);
  149. }
  150. static u32 vmcs_read32(unsigned long field)
  151. {
  152. return vmcs_readl(field);
  153. }
  154. static u64 vmcs_read64(unsigned long field)
  155. {
  156. #ifdef CONFIG_X86_64
  157. return vmcs_readl(field);
  158. #else
  159. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  160. #endif
  161. }
  162. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  163. {
  164. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  165. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  166. dump_stack();
  167. }
  168. static void vmcs_writel(unsigned long field, unsigned long value)
  169. {
  170. u8 error;
  171. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  172. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  173. if (unlikely(error))
  174. vmwrite_error(field, value);
  175. }
  176. static void vmcs_write16(unsigned long field, u16 value)
  177. {
  178. vmcs_writel(field, value);
  179. }
  180. static void vmcs_write32(unsigned long field, u32 value)
  181. {
  182. vmcs_writel(field, value);
  183. }
  184. static void vmcs_write64(unsigned long field, u64 value)
  185. {
  186. #ifdef CONFIG_X86_64
  187. vmcs_writel(field, value);
  188. #else
  189. vmcs_writel(field, value);
  190. asm volatile ("");
  191. vmcs_writel(field+1, value >> 32);
  192. #endif
  193. }
  194. static void vmcs_clear_bits(unsigned long field, u32 mask)
  195. {
  196. vmcs_writel(field, vmcs_readl(field) & ~mask);
  197. }
  198. static void vmcs_set_bits(unsigned long field, u32 mask)
  199. {
  200. vmcs_writel(field, vmcs_readl(field) | mask);
  201. }
  202. /*
  203. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  204. * vcpu mutex is already taken.
  205. */
  206. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  207. {
  208. u64 phys_addr = __pa(vcpu->vmcs);
  209. int cpu;
  210. cpu = get_cpu();
  211. if (vcpu->cpu != cpu)
  212. vcpu_clear(vcpu);
  213. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  214. u8 error;
  215. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  216. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  217. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  218. : "cc");
  219. if (error)
  220. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  221. vcpu->vmcs, phys_addr);
  222. }
  223. if (vcpu->cpu != cpu) {
  224. struct descriptor_table dt;
  225. unsigned long sysenter_esp;
  226. vcpu->cpu = cpu;
  227. /*
  228. * Linux uses per-cpu TSS and GDT, so set these when switching
  229. * processors.
  230. */
  231. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  232. get_gdt(&dt);
  233. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  234. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  235. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  236. }
  237. }
  238. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  239. {
  240. put_cpu();
  241. }
  242. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  243. {
  244. vcpu_clear(vcpu);
  245. }
  246. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  247. {
  248. return vmcs_readl(GUEST_RFLAGS);
  249. }
  250. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  251. {
  252. vmcs_writel(GUEST_RFLAGS, rflags);
  253. }
  254. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  255. {
  256. unsigned long rip;
  257. u32 interruptibility;
  258. rip = vmcs_readl(GUEST_RIP);
  259. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  260. vmcs_writel(GUEST_RIP, rip);
  261. /*
  262. * We emulated an instruction, so temporary interrupt blocking
  263. * should be removed, if set.
  264. */
  265. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  266. if (interruptibility & 3)
  267. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  268. interruptibility & ~3);
  269. vcpu->interrupt_window_open = 1;
  270. }
  271. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  272. {
  273. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  274. vmcs_readl(GUEST_RIP));
  275. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  276. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  277. GP_VECTOR |
  278. INTR_TYPE_EXCEPTION |
  279. INTR_INFO_DELIEVER_CODE_MASK |
  280. INTR_INFO_VALID_MASK);
  281. }
  282. /*
  283. * Set up the vmcs to automatically save and restore system
  284. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  285. * mode, as fiddling with msrs is very expensive.
  286. */
  287. static void setup_msrs(struct kvm_vcpu *vcpu)
  288. {
  289. int nr_skip, nr_good_msrs;
  290. if (is_long_mode(vcpu))
  291. nr_skip = NR_BAD_MSRS;
  292. else
  293. nr_skip = NR_64BIT_MSRS;
  294. nr_good_msrs = vcpu->nmsrs - nr_skip;
  295. /*
  296. * MSR_K6_STAR is only needed on long mode guests, and only
  297. * if efer.sce is enabled.
  298. */
  299. if (find_msr_entry(vcpu, MSR_K6_STAR)) {
  300. --nr_good_msrs;
  301. #ifdef CONFIG_X86_64
  302. if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
  303. ++nr_good_msrs;
  304. #endif
  305. }
  306. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  307. virt_to_phys(vcpu->guest_msrs + nr_skip));
  308. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  309. virt_to_phys(vcpu->guest_msrs + nr_skip));
  310. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  311. virt_to_phys(vcpu->host_msrs + nr_skip));
  312. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  313. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  314. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  315. }
  316. /*
  317. * reads and returns guest's timestamp counter "register"
  318. * guest_tsc = host_tsc + tsc_offset -- 21.3
  319. */
  320. static u64 guest_read_tsc(void)
  321. {
  322. u64 host_tsc, tsc_offset;
  323. rdtscll(host_tsc);
  324. tsc_offset = vmcs_read64(TSC_OFFSET);
  325. return host_tsc + tsc_offset;
  326. }
  327. /*
  328. * writes 'guest_tsc' into guest's timestamp counter "register"
  329. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  330. */
  331. static void guest_write_tsc(u64 guest_tsc)
  332. {
  333. u64 host_tsc;
  334. rdtscll(host_tsc);
  335. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  336. }
  337. static void reload_tss(void)
  338. {
  339. #ifndef CONFIG_X86_64
  340. /*
  341. * VT restores TR but not its size. Useless.
  342. */
  343. struct descriptor_table gdt;
  344. struct segment_descriptor *descs;
  345. get_gdt(&gdt);
  346. descs = (void *)gdt.base;
  347. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  348. load_TR_desc();
  349. #endif
  350. }
  351. /*
  352. * Reads an msr value (of 'msr_index') into 'pdata'.
  353. * Returns 0 on success, non-0 otherwise.
  354. * Assumes vcpu_load() was already called.
  355. */
  356. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  357. {
  358. u64 data;
  359. struct vmx_msr_entry *msr;
  360. if (!pdata) {
  361. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  362. return -EINVAL;
  363. }
  364. switch (msr_index) {
  365. #ifdef CONFIG_X86_64
  366. case MSR_FS_BASE:
  367. data = vmcs_readl(GUEST_FS_BASE);
  368. break;
  369. case MSR_GS_BASE:
  370. data = vmcs_readl(GUEST_GS_BASE);
  371. break;
  372. case MSR_EFER:
  373. return kvm_get_msr_common(vcpu, msr_index, pdata);
  374. #endif
  375. case MSR_IA32_TIME_STAMP_COUNTER:
  376. data = guest_read_tsc();
  377. break;
  378. case MSR_IA32_SYSENTER_CS:
  379. data = vmcs_read32(GUEST_SYSENTER_CS);
  380. break;
  381. case MSR_IA32_SYSENTER_EIP:
  382. data = vmcs_readl(GUEST_SYSENTER_EIP);
  383. break;
  384. case MSR_IA32_SYSENTER_ESP:
  385. data = vmcs_readl(GUEST_SYSENTER_ESP);
  386. break;
  387. default:
  388. msr = find_msr_entry(vcpu, msr_index);
  389. if (msr) {
  390. data = msr->data;
  391. break;
  392. }
  393. return kvm_get_msr_common(vcpu, msr_index, pdata);
  394. }
  395. *pdata = data;
  396. return 0;
  397. }
  398. /*
  399. * Writes msr value into into the appropriate "register".
  400. * Returns 0 on success, non-0 otherwise.
  401. * Assumes vcpu_load() was already called.
  402. */
  403. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  404. {
  405. struct vmx_msr_entry *msr;
  406. switch (msr_index) {
  407. #ifdef CONFIG_X86_64
  408. case MSR_EFER:
  409. return kvm_set_msr_common(vcpu, msr_index, data);
  410. case MSR_FS_BASE:
  411. vmcs_writel(GUEST_FS_BASE, data);
  412. break;
  413. case MSR_GS_BASE:
  414. vmcs_writel(GUEST_GS_BASE, data);
  415. break;
  416. #endif
  417. case MSR_IA32_SYSENTER_CS:
  418. vmcs_write32(GUEST_SYSENTER_CS, data);
  419. break;
  420. case MSR_IA32_SYSENTER_EIP:
  421. vmcs_writel(GUEST_SYSENTER_EIP, data);
  422. break;
  423. case MSR_IA32_SYSENTER_ESP:
  424. vmcs_writel(GUEST_SYSENTER_ESP, data);
  425. break;
  426. case MSR_IA32_TIME_STAMP_COUNTER:
  427. guest_write_tsc(data);
  428. break;
  429. default:
  430. msr = find_msr_entry(vcpu, msr_index);
  431. if (msr) {
  432. msr->data = data;
  433. break;
  434. }
  435. return kvm_set_msr_common(vcpu, msr_index, data);
  436. msr->data = data;
  437. break;
  438. }
  439. return 0;
  440. }
  441. /*
  442. * Sync the rsp and rip registers into the vcpu structure. This allows
  443. * registers to be accessed by indexing vcpu->regs.
  444. */
  445. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  446. {
  447. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  448. vcpu->rip = vmcs_readl(GUEST_RIP);
  449. }
  450. /*
  451. * Syncs rsp and rip back into the vmcs. Should be called after possible
  452. * modification.
  453. */
  454. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  455. {
  456. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  457. vmcs_writel(GUEST_RIP, vcpu->rip);
  458. }
  459. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  460. {
  461. unsigned long dr7 = 0x400;
  462. u32 exception_bitmap;
  463. int old_singlestep;
  464. exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
  465. old_singlestep = vcpu->guest_debug.singlestep;
  466. vcpu->guest_debug.enabled = dbg->enabled;
  467. if (vcpu->guest_debug.enabled) {
  468. int i;
  469. dr7 |= 0x200; /* exact */
  470. for (i = 0; i < 4; ++i) {
  471. if (!dbg->breakpoints[i].enabled)
  472. continue;
  473. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  474. dr7 |= 2 << (i*2); /* global enable */
  475. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  476. }
  477. exception_bitmap |= (1u << 1); /* Trap debug exceptions */
  478. vcpu->guest_debug.singlestep = dbg->singlestep;
  479. } else {
  480. exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
  481. vcpu->guest_debug.singlestep = 0;
  482. }
  483. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  484. unsigned long flags;
  485. flags = vmcs_readl(GUEST_RFLAGS);
  486. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  487. vmcs_writel(GUEST_RFLAGS, flags);
  488. }
  489. vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
  490. vmcs_writel(GUEST_DR7, dr7);
  491. return 0;
  492. }
  493. static __init int cpu_has_kvm_support(void)
  494. {
  495. unsigned long ecx = cpuid_ecx(1);
  496. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  497. }
  498. static __init int vmx_disabled_by_bios(void)
  499. {
  500. u64 msr;
  501. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  502. return (msr & 5) == 1; /* locked but not enabled */
  503. }
  504. static void hardware_enable(void *garbage)
  505. {
  506. int cpu = raw_smp_processor_id();
  507. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  508. u64 old;
  509. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  510. if ((old & 5) != 5)
  511. /* enable and lock */
  512. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  513. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  514. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  515. : "memory", "cc");
  516. }
  517. static void hardware_disable(void *garbage)
  518. {
  519. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  520. }
  521. static __init void setup_vmcs_descriptor(void)
  522. {
  523. u32 vmx_msr_low, vmx_msr_high;
  524. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  525. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  526. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  527. vmcs_descriptor.revision_id = vmx_msr_low;
  528. }
  529. static struct vmcs *alloc_vmcs_cpu(int cpu)
  530. {
  531. int node = cpu_to_node(cpu);
  532. struct page *pages;
  533. struct vmcs *vmcs;
  534. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  535. if (!pages)
  536. return NULL;
  537. vmcs = page_address(pages);
  538. memset(vmcs, 0, vmcs_descriptor.size);
  539. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  540. return vmcs;
  541. }
  542. static struct vmcs *alloc_vmcs(void)
  543. {
  544. return alloc_vmcs_cpu(raw_smp_processor_id());
  545. }
  546. static void free_vmcs(struct vmcs *vmcs)
  547. {
  548. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  549. }
  550. static __exit void free_kvm_area(void)
  551. {
  552. int cpu;
  553. for_each_online_cpu(cpu)
  554. free_vmcs(per_cpu(vmxarea, cpu));
  555. }
  556. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  557. static __init int alloc_kvm_area(void)
  558. {
  559. int cpu;
  560. for_each_online_cpu(cpu) {
  561. struct vmcs *vmcs;
  562. vmcs = alloc_vmcs_cpu(cpu);
  563. if (!vmcs) {
  564. free_kvm_area();
  565. return -ENOMEM;
  566. }
  567. per_cpu(vmxarea, cpu) = vmcs;
  568. }
  569. return 0;
  570. }
  571. static __init int hardware_setup(void)
  572. {
  573. setup_vmcs_descriptor();
  574. return alloc_kvm_area();
  575. }
  576. static __exit void hardware_unsetup(void)
  577. {
  578. free_kvm_area();
  579. }
  580. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  581. {
  582. if (vcpu->rmode.active)
  583. vmcs_write32(EXCEPTION_BITMAP, ~0);
  584. else
  585. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  586. }
  587. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  588. {
  589. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  590. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  591. vmcs_write16(sf->selector, save->selector);
  592. vmcs_writel(sf->base, save->base);
  593. vmcs_write32(sf->limit, save->limit);
  594. vmcs_write32(sf->ar_bytes, save->ar);
  595. } else {
  596. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  597. << AR_DPL_SHIFT;
  598. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  599. }
  600. }
  601. static void enter_pmode(struct kvm_vcpu *vcpu)
  602. {
  603. unsigned long flags;
  604. vcpu->rmode.active = 0;
  605. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  606. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  607. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  608. flags = vmcs_readl(GUEST_RFLAGS);
  609. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  610. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  611. vmcs_writel(GUEST_RFLAGS, flags);
  612. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  613. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  614. update_exception_bitmap(vcpu);
  615. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  616. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  617. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  618. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  619. vmcs_write16(GUEST_SS_SELECTOR, 0);
  620. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  621. vmcs_write16(GUEST_CS_SELECTOR,
  622. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  623. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  624. }
  625. static int rmode_tss_base(struct kvm* kvm)
  626. {
  627. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  628. return base_gfn << PAGE_SHIFT;
  629. }
  630. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  631. {
  632. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  633. save->selector = vmcs_read16(sf->selector);
  634. save->base = vmcs_readl(sf->base);
  635. save->limit = vmcs_read32(sf->limit);
  636. save->ar = vmcs_read32(sf->ar_bytes);
  637. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  638. vmcs_write32(sf->limit, 0xffff);
  639. vmcs_write32(sf->ar_bytes, 0xf3);
  640. }
  641. static void enter_rmode(struct kvm_vcpu *vcpu)
  642. {
  643. unsigned long flags;
  644. vcpu->rmode.active = 1;
  645. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  646. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  647. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  648. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  649. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  650. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  651. flags = vmcs_readl(GUEST_RFLAGS);
  652. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  653. flags |= IOPL_MASK | X86_EFLAGS_VM;
  654. vmcs_writel(GUEST_RFLAGS, flags);
  655. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  656. update_exception_bitmap(vcpu);
  657. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  658. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  659. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  660. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  661. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  662. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  663. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  664. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  665. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  666. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  667. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  668. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  669. }
  670. #ifdef CONFIG_X86_64
  671. static void enter_lmode(struct kvm_vcpu *vcpu)
  672. {
  673. u32 guest_tr_ar;
  674. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  675. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  676. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  677. __FUNCTION__);
  678. vmcs_write32(GUEST_TR_AR_BYTES,
  679. (guest_tr_ar & ~AR_TYPE_MASK)
  680. | AR_TYPE_BUSY_64_TSS);
  681. }
  682. vcpu->shadow_efer |= EFER_LMA;
  683. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  684. vmcs_write32(VM_ENTRY_CONTROLS,
  685. vmcs_read32(VM_ENTRY_CONTROLS)
  686. | VM_ENTRY_CONTROLS_IA32E_MASK);
  687. }
  688. static void exit_lmode(struct kvm_vcpu *vcpu)
  689. {
  690. vcpu->shadow_efer &= ~EFER_LMA;
  691. vmcs_write32(VM_ENTRY_CONTROLS,
  692. vmcs_read32(VM_ENTRY_CONTROLS)
  693. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  694. }
  695. #endif
  696. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  697. {
  698. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  699. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  700. }
  701. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  702. {
  703. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  704. enter_pmode(vcpu);
  705. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  706. enter_rmode(vcpu);
  707. #ifdef CONFIG_X86_64
  708. if (vcpu->shadow_efer & EFER_LME) {
  709. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  710. enter_lmode(vcpu);
  711. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  712. exit_lmode(vcpu);
  713. }
  714. #endif
  715. if (!(cr0 & CR0_TS_MASK)) {
  716. vcpu->fpu_active = 1;
  717. vmcs_clear_bits(EXCEPTION_BITMAP, CR0_TS_MASK);
  718. }
  719. vmcs_writel(CR0_READ_SHADOW, cr0);
  720. vmcs_writel(GUEST_CR0,
  721. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  722. vcpu->cr0 = cr0;
  723. }
  724. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  725. {
  726. vmcs_writel(GUEST_CR3, cr3);
  727. if (!(vcpu->cr0 & CR0_TS_MASK)) {
  728. vcpu->fpu_active = 0;
  729. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  730. vmcs_set_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  731. }
  732. }
  733. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  734. {
  735. vmcs_writel(CR4_READ_SHADOW, cr4);
  736. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  737. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  738. vcpu->cr4 = cr4;
  739. }
  740. #ifdef CONFIG_X86_64
  741. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  742. {
  743. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  744. vcpu->shadow_efer = efer;
  745. if (efer & EFER_LMA) {
  746. vmcs_write32(VM_ENTRY_CONTROLS,
  747. vmcs_read32(VM_ENTRY_CONTROLS) |
  748. VM_ENTRY_CONTROLS_IA32E_MASK);
  749. msr->data = efer;
  750. } else {
  751. vmcs_write32(VM_ENTRY_CONTROLS,
  752. vmcs_read32(VM_ENTRY_CONTROLS) &
  753. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  754. msr->data = efer & ~EFER_LME;
  755. }
  756. setup_msrs(vcpu);
  757. }
  758. #endif
  759. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  760. {
  761. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  762. return vmcs_readl(sf->base);
  763. }
  764. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  765. struct kvm_segment *var, int seg)
  766. {
  767. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  768. u32 ar;
  769. var->base = vmcs_readl(sf->base);
  770. var->limit = vmcs_read32(sf->limit);
  771. var->selector = vmcs_read16(sf->selector);
  772. ar = vmcs_read32(sf->ar_bytes);
  773. if (ar & AR_UNUSABLE_MASK)
  774. ar = 0;
  775. var->type = ar & 15;
  776. var->s = (ar >> 4) & 1;
  777. var->dpl = (ar >> 5) & 3;
  778. var->present = (ar >> 7) & 1;
  779. var->avl = (ar >> 12) & 1;
  780. var->l = (ar >> 13) & 1;
  781. var->db = (ar >> 14) & 1;
  782. var->g = (ar >> 15) & 1;
  783. var->unusable = (ar >> 16) & 1;
  784. }
  785. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  786. struct kvm_segment *var, int seg)
  787. {
  788. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  789. u32 ar;
  790. vmcs_writel(sf->base, var->base);
  791. vmcs_write32(sf->limit, var->limit);
  792. vmcs_write16(sf->selector, var->selector);
  793. if (vcpu->rmode.active && var->s) {
  794. /*
  795. * Hack real-mode segments into vm86 compatibility.
  796. */
  797. if (var->base == 0xffff0000 && var->selector == 0xf000)
  798. vmcs_writel(sf->base, 0xf0000);
  799. ar = 0xf3;
  800. } else if (var->unusable)
  801. ar = 1 << 16;
  802. else {
  803. ar = var->type & 15;
  804. ar |= (var->s & 1) << 4;
  805. ar |= (var->dpl & 3) << 5;
  806. ar |= (var->present & 1) << 7;
  807. ar |= (var->avl & 1) << 12;
  808. ar |= (var->l & 1) << 13;
  809. ar |= (var->db & 1) << 14;
  810. ar |= (var->g & 1) << 15;
  811. }
  812. if (ar == 0) /* a 0 value means unusable */
  813. ar = AR_UNUSABLE_MASK;
  814. vmcs_write32(sf->ar_bytes, ar);
  815. }
  816. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  817. {
  818. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  819. *db = (ar >> 14) & 1;
  820. *l = (ar >> 13) & 1;
  821. }
  822. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  823. {
  824. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  825. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  826. }
  827. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  828. {
  829. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  830. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  831. }
  832. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  833. {
  834. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  835. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  836. }
  837. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  838. {
  839. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  840. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  841. }
  842. static int init_rmode_tss(struct kvm* kvm)
  843. {
  844. struct page *p1, *p2, *p3;
  845. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  846. char *page;
  847. p1 = gfn_to_page(kvm, fn++);
  848. p2 = gfn_to_page(kvm, fn++);
  849. p3 = gfn_to_page(kvm, fn);
  850. if (!p1 || !p2 || !p3) {
  851. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  852. return 0;
  853. }
  854. page = kmap_atomic(p1, KM_USER0);
  855. memset(page, 0, PAGE_SIZE);
  856. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  857. kunmap_atomic(page, KM_USER0);
  858. page = kmap_atomic(p2, KM_USER0);
  859. memset(page, 0, PAGE_SIZE);
  860. kunmap_atomic(page, KM_USER0);
  861. page = kmap_atomic(p3, KM_USER0);
  862. memset(page, 0, PAGE_SIZE);
  863. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  864. kunmap_atomic(page, KM_USER0);
  865. return 1;
  866. }
  867. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  868. {
  869. u32 msr_high, msr_low;
  870. rdmsr(msr, msr_low, msr_high);
  871. val &= msr_high;
  872. val |= msr_low;
  873. vmcs_write32(vmcs_field, val);
  874. }
  875. static void seg_setup(int seg)
  876. {
  877. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  878. vmcs_write16(sf->selector, 0);
  879. vmcs_writel(sf->base, 0);
  880. vmcs_write32(sf->limit, 0xffff);
  881. vmcs_write32(sf->ar_bytes, 0x93);
  882. }
  883. /*
  884. * Sets up the vmcs for emulated real mode.
  885. */
  886. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  887. {
  888. u32 host_sysenter_cs;
  889. u32 junk;
  890. unsigned long a;
  891. struct descriptor_table dt;
  892. int i;
  893. int ret = 0;
  894. extern asmlinkage void kvm_vmx_return(void);
  895. if (!init_rmode_tss(vcpu->kvm)) {
  896. ret = -ENOMEM;
  897. goto out;
  898. }
  899. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  900. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  901. vcpu->cr8 = 0;
  902. vcpu->apic_base = 0xfee00000 |
  903. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  904. MSR_IA32_APICBASE_ENABLE;
  905. fx_init(vcpu);
  906. /*
  907. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  908. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  909. */
  910. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  911. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  912. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  913. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  914. seg_setup(VCPU_SREG_DS);
  915. seg_setup(VCPU_SREG_ES);
  916. seg_setup(VCPU_SREG_FS);
  917. seg_setup(VCPU_SREG_GS);
  918. seg_setup(VCPU_SREG_SS);
  919. vmcs_write16(GUEST_TR_SELECTOR, 0);
  920. vmcs_writel(GUEST_TR_BASE, 0);
  921. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  922. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  923. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  924. vmcs_writel(GUEST_LDTR_BASE, 0);
  925. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  926. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  927. vmcs_write32(GUEST_SYSENTER_CS, 0);
  928. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  929. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  930. vmcs_writel(GUEST_RFLAGS, 0x02);
  931. vmcs_writel(GUEST_RIP, 0xfff0);
  932. vmcs_writel(GUEST_RSP, 0);
  933. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  934. vmcs_writel(GUEST_DR7, 0x400);
  935. vmcs_writel(GUEST_GDTR_BASE, 0);
  936. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  937. vmcs_writel(GUEST_IDTR_BASE, 0);
  938. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  939. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  940. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  941. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  942. /* I/O */
  943. vmcs_write64(IO_BITMAP_A, 0);
  944. vmcs_write64(IO_BITMAP_B, 0);
  945. guest_write_tsc(0);
  946. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  947. /* Special registers */
  948. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  949. /* Control */
  950. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  951. PIN_BASED_VM_EXEC_CONTROL,
  952. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  953. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  954. );
  955. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  956. CPU_BASED_VM_EXEC_CONTROL,
  957. CPU_BASED_HLT_EXITING /* 20.6.2 */
  958. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  959. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  960. | CPU_BASED_UNCOND_IO_EXITING /* 20.6.2 */
  961. | CPU_BASED_MOV_DR_EXITING
  962. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  963. );
  964. vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
  965. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  966. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  967. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  968. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  969. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  970. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  971. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  972. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  973. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  974. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  975. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  976. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  977. #ifdef CONFIG_X86_64
  978. rdmsrl(MSR_FS_BASE, a);
  979. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  980. rdmsrl(MSR_GS_BASE, a);
  981. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  982. #else
  983. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  984. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  985. #endif
  986. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  987. get_idt(&dt);
  988. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  989. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  990. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  991. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  992. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  993. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  994. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  995. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  996. for (i = 0; i < NR_VMX_MSR; ++i) {
  997. u32 index = vmx_msr_index[i];
  998. u32 data_low, data_high;
  999. u64 data;
  1000. int j = vcpu->nmsrs;
  1001. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1002. continue;
  1003. if (wrmsr_safe(index, data_low, data_high) < 0)
  1004. continue;
  1005. data = data_low | ((u64)data_high << 32);
  1006. vcpu->host_msrs[j].index = index;
  1007. vcpu->host_msrs[j].reserved = 0;
  1008. vcpu->host_msrs[j].data = data;
  1009. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1010. #ifdef CONFIG_X86_64
  1011. if (index == MSR_KERNEL_GS_BASE)
  1012. msr_offset_kernel_gs_base = j;
  1013. #endif
  1014. ++vcpu->nmsrs;
  1015. }
  1016. setup_msrs(vcpu);
  1017. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1018. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1019. /* 22.2.1, 20.8.1 */
  1020. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1021. VM_ENTRY_CONTROLS, 0);
  1022. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1023. #ifdef CONFIG_X86_64
  1024. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1025. vmcs_writel(TPR_THRESHOLD, 0);
  1026. #endif
  1027. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1028. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1029. vcpu->cr0 = 0x60000010;
  1030. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1031. vmx_set_cr4(vcpu, 0);
  1032. #ifdef CONFIG_X86_64
  1033. vmx_set_efer(vcpu, 0);
  1034. #endif
  1035. return 0;
  1036. out:
  1037. return ret;
  1038. }
  1039. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1040. {
  1041. u16 ent[2];
  1042. u16 cs;
  1043. u16 ip;
  1044. unsigned long flags;
  1045. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1046. u16 sp = vmcs_readl(GUEST_RSP);
  1047. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1048. if (sp > ss_limit || sp < 6 ) {
  1049. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1050. __FUNCTION__,
  1051. vmcs_readl(GUEST_RSP),
  1052. vmcs_readl(GUEST_SS_BASE),
  1053. vmcs_read32(GUEST_SS_LIMIT));
  1054. return;
  1055. }
  1056. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1057. sizeof(ent)) {
  1058. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1059. return;
  1060. }
  1061. flags = vmcs_readl(GUEST_RFLAGS);
  1062. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1063. ip = vmcs_readl(GUEST_RIP);
  1064. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1065. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1066. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1067. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1068. return;
  1069. }
  1070. vmcs_writel(GUEST_RFLAGS, flags &
  1071. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1072. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1073. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1074. vmcs_writel(GUEST_RIP, ent[0]);
  1075. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1076. }
  1077. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1078. {
  1079. int word_index = __ffs(vcpu->irq_summary);
  1080. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1081. int irq = word_index * BITS_PER_LONG + bit_index;
  1082. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1083. if (!vcpu->irq_pending[word_index])
  1084. clear_bit(word_index, &vcpu->irq_summary);
  1085. if (vcpu->rmode.active) {
  1086. inject_rmode_irq(vcpu, irq);
  1087. return;
  1088. }
  1089. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1090. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1091. }
  1092. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1093. struct kvm_run *kvm_run)
  1094. {
  1095. u32 cpu_based_vm_exec_control;
  1096. vcpu->interrupt_window_open =
  1097. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1098. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1099. if (vcpu->interrupt_window_open &&
  1100. vcpu->irq_summary &&
  1101. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1102. /*
  1103. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1104. */
  1105. kvm_do_inject_irq(vcpu);
  1106. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1107. if (!vcpu->interrupt_window_open &&
  1108. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1109. /*
  1110. * Interrupts blocked. Wait for unblock.
  1111. */
  1112. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1113. else
  1114. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1115. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1116. }
  1117. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1118. {
  1119. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1120. set_debugreg(dbg->bp[0], 0);
  1121. set_debugreg(dbg->bp[1], 1);
  1122. set_debugreg(dbg->bp[2], 2);
  1123. set_debugreg(dbg->bp[3], 3);
  1124. if (dbg->singlestep) {
  1125. unsigned long flags;
  1126. flags = vmcs_readl(GUEST_RFLAGS);
  1127. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1128. vmcs_writel(GUEST_RFLAGS, flags);
  1129. }
  1130. }
  1131. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1132. int vec, u32 err_code)
  1133. {
  1134. if (!vcpu->rmode.active)
  1135. return 0;
  1136. if (vec == GP_VECTOR && err_code == 0)
  1137. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1138. return 1;
  1139. return 0;
  1140. }
  1141. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1142. {
  1143. u32 intr_info, error_code;
  1144. unsigned long cr2, rip;
  1145. u32 vect_info;
  1146. enum emulation_result er;
  1147. int r;
  1148. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1149. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1150. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1151. !is_page_fault(intr_info)) {
  1152. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1153. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1154. }
  1155. if (is_external_interrupt(vect_info)) {
  1156. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1157. set_bit(irq, vcpu->irq_pending);
  1158. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1159. }
  1160. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1161. asm ("int $2");
  1162. return 1;
  1163. }
  1164. if (is_no_device(intr_info)) {
  1165. vcpu->fpu_active = 1;
  1166. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1167. if (!(vcpu->cr0 & CR0_TS_MASK))
  1168. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1169. return 1;
  1170. }
  1171. error_code = 0;
  1172. rip = vmcs_readl(GUEST_RIP);
  1173. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1174. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1175. if (is_page_fault(intr_info)) {
  1176. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1177. spin_lock(&vcpu->kvm->lock);
  1178. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1179. if (r < 0) {
  1180. spin_unlock(&vcpu->kvm->lock);
  1181. return r;
  1182. }
  1183. if (!r) {
  1184. spin_unlock(&vcpu->kvm->lock);
  1185. return 1;
  1186. }
  1187. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1188. spin_unlock(&vcpu->kvm->lock);
  1189. switch (er) {
  1190. case EMULATE_DONE:
  1191. return 1;
  1192. case EMULATE_DO_MMIO:
  1193. ++vcpu->stat.mmio_exits;
  1194. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1195. return 0;
  1196. case EMULATE_FAIL:
  1197. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1198. break;
  1199. default:
  1200. BUG();
  1201. }
  1202. }
  1203. if (vcpu->rmode.active &&
  1204. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1205. error_code))
  1206. return 1;
  1207. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1208. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1209. return 0;
  1210. }
  1211. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1212. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1213. kvm_run->ex.error_code = error_code;
  1214. return 0;
  1215. }
  1216. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1217. struct kvm_run *kvm_run)
  1218. {
  1219. ++vcpu->stat.irq_exits;
  1220. return 1;
  1221. }
  1222. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1223. {
  1224. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1225. return 0;
  1226. }
  1227. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1228. {
  1229. u64 inst;
  1230. gva_t rip;
  1231. int countr_size;
  1232. int i, n;
  1233. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1234. countr_size = 2;
  1235. } else {
  1236. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1237. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1238. (cs_ar & AR_DB_MASK) ? 4: 2;
  1239. }
  1240. rip = vmcs_readl(GUEST_RIP);
  1241. if (countr_size != 8)
  1242. rip += vmcs_readl(GUEST_CS_BASE);
  1243. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1244. for (i = 0; i < n; i++) {
  1245. switch (((u8*)&inst)[i]) {
  1246. case 0xf0:
  1247. case 0xf2:
  1248. case 0xf3:
  1249. case 0x2e:
  1250. case 0x36:
  1251. case 0x3e:
  1252. case 0x26:
  1253. case 0x64:
  1254. case 0x65:
  1255. case 0x66:
  1256. break;
  1257. case 0x67:
  1258. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1259. default:
  1260. goto done;
  1261. }
  1262. }
  1263. return 0;
  1264. done:
  1265. countr_size *= 8;
  1266. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1267. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1268. return 1;
  1269. }
  1270. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1271. {
  1272. u64 exit_qualification;
  1273. int size, down, in, string, rep;
  1274. unsigned port;
  1275. unsigned long count;
  1276. gva_t address;
  1277. ++vcpu->stat.io_exits;
  1278. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1279. in = (exit_qualification & 8) != 0;
  1280. size = (exit_qualification & 7) + 1;
  1281. string = (exit_qualification & 16) != 0;
  1282. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1283. count = 1;
  1284. rep = (exit_qualification & 32) != 0;
  1285. port = exit_qualification >> 16;
  1286. address = 0;
  1287. if (string) {
  1288. if (rep && !get_io_count(vcpu, &count))
  1289. return 1;
  1290. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1291. }
  1292. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1293. address, rep, port);
  1294. }
  1295. static void
  1296. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1297. {
  1298. /*
  1299. * Patch in the VMCALL instruction:
  1300. */
  1301. hypercall[0] = 0x0f;
  1302. hypercall[1] = 0x01;
  1303. hypercall[2] = 0xc1;
  1304. hypercall[3] = 0xc3;
  1305. }
  1306. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1307. {
  1308. u64 exit_qualification;
  1309. int cr;
  1310. int reg;
  1311. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1312. cr = exit_qualification & 15;
  1313. reg = (exit_qualification >> 8) & 15;
  1314. switch ((exit_qualification >> 4) & 3) {
  1315. case 0: /* mov to cr */
  1316. switch (cr) {
  1317. case 0:
  1318. vcpu_load_rsp_rip(vcpu);
  1319. set_cr0(vcpu, vcpu->regs[reg]);
  1320. skip_emulated_instruction(vcpu);
  1321. return 1;
  1322. case 3:
  1323. vcpu_load_rsp_rip(vcpu);
  1324. set_cr3(vcpu, vcpu->regs[reg]);
  1325. skip_emulated_instruction(vcpu);
  1326. return 1;
  1327. case 4:
  1328. vcpu_load_rsp_rip(vcpu);
  1329. set_cr4(vcpu, vcpu->regs[reg]);
  1330. skip_emulated_instruction(vcpu);
  1331. return 1;
  1332. case 8:
  1333. vcpu_load_rsp_rip(vcpu);
  1334. set_cr8(vcpu, vcpu->regs[reg]);
  1335. skip_emulated_instruction(vcpu);
  1336. return 1;
  1337. };
  1338. break;
  1339. case 2: /* clts */
  1340. vcpu_load_rsp_rip(vcpu);
  1341. vcpu->fpu_active = 1;
  1342. vmcs_clear_bits(EXCEPTION_BITMAP, 1 << NM_VECTOR);
  1343. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  1344. vcpu->cr0 &= ~CR0_TS_MASK;
  1345. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1346. skip_emulated_instruction(vcpu);
  1347. return 1;
  1348. case 1: /*mov from cr*/
  1349. switch (cr) {
  1350. case 3:
  1351. vcpu_load_rsp_rip(vcpu);
  1352. vcpu->regs[reg] = vcpu->cr3;
  1353. vcpu_put_rsp_rip(vcpu);
  1354. skip_emulated_instruction(vcpu);
  1355. return 1;
  1356. case 8:
  1357. vcpu_load_rsp_rip(vcpu);
  1358. vcpu->regs[reg] = vcpu->cr8;
  1359. vcpu_put_rsp_rip(vcpu);
  1360. skip_emulated_instruction(vcpu);
  1361. return 1;
  1362. }
  1363. break;
  1364. case 3: /* lmsw */
  1365. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1366. skip_emulated_instruction(vcpu);
  1367. return 1;
  1368. default:
  1369. break;
  1370. }
  1371. kvm_run->exit_reason = 0;
  1372. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1373. (int)(exit_qualification >> 4) & 3, cr);
  1374. return 0;
  1375. }
  1376. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1377. {
  1378. u64 exit_qualification;
  1379. unsigned long val;
  1380. int dr, reg;
  1381. /*
  1382. * FIXME: this code assumes the host is debugging the guest.
  1383. * need to deal with guest debugging itself too.
  1384. */
  1385. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1386. dr = exit_qualification & 7;
  1387. reg = (exit_qualification >> 8) & 15;
  1388. vcpu_load_rsp_rip(vcpu);
  1389. if (exit_qualification & 16) {
  1390. /* mov from dr */
  1391. switch (dr) {
  1392. case 6:
  1393. val = 0xffff0ff0;
  1394. break;
  1395. case 7:
  1396. val = 0x400;
  1397. break;
  1398. default:
  1399. val = 0;
  1400. }
  1401. vcpu->regs[reg] = val;
  1402. } else {
  1403. /* mov to dr */
  1404. }
  1405. vcpu_put_rsp_rip(vcpu);
  1406. skip_emulated_instruction(vcpu);
  1407. return 1;
  1408. }
  1409. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1410. {
  1411. kvm_emulate_cpuid(vcpu);
  1412. return 1;
  1413. }
  1414. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1415. {
  1416. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1417. u64 data;
  1418. if (vmx_get_msr(vcpu, ecx, &data)) {
  1419. vmx_inject_gp(vcpu, 0);
  1420. return 1;
  1421. }
  1422. /* FIXME: handling of bits 32:63 of rax, rdx */
  1423. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1424. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1425. skip_emulated_instruction(vcpu);
  1426. return 1;
  1427. }
  1428. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1429. {
  1430. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1431. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1432. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1433. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1434. vmx_inject_gp(vcpu, 0);
  1435. return 1;
  1436. }
  1437. skip_emulated_instruction(vcpu);
  1438. return 1;
  1439. }
  1440. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1441. struct kvm_run *kvm_run)
  1442. {
  1443. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1444. kvm_run->cr8 = vcpu->cr8;
  1445. kvm_run->apic_base = vcpu->apic_base;
  1446. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1447. vcpu->irq_summary == 0);
  1448. }
  1449. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1450. struct kvm_run *kvm_run)
  1451. {
  1452. /*
  1453. * If the user space waits to inject interrupts, exit as soon as
  1454. * possible
  1455. */
  1456. if (kvm_run->request_interrupt_window &&
  1457. !vcpu->irq_summary) {
  1458. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1459. ++vcpu->stat.irq_window_exits;
  1460. return 0;
  1461. }
  1462. return 1;
  1463. }
  1464. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1465. {
  1466. skip_emulated_instruction(vcpu);
  1467. if (vcpu->irq_summary)
  1468. return 1;
  1469. kvm_run->exit_reason = KVM_EXIT_HLT;
  1470. ++vcpu->stat.halt_exits;
  1471. return 0;
  1472. }
  1473. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1474. {
  1475. skip_emulated_instruction(vcpu);
  1476. return kvm_hypercall(vcpu, kvm_run);
  1477. }
  1478. /*
  1479. * The exit handlers return 1 if the exit was handled fully and guest execution
  1480. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1481. * to be done to userspace and return 0.
  1482. */
  1483. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1484. struct kvm_run *kvm_run) = {
  1485. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1486. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1487. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1488. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1489. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1490. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1491. [EXIT_REASON_CPUID] = handle_cpuid,
  1492. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1493. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1494. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1495. [EXIT_REASON_HLT] = handle_halt,
  1496. [EXIT_REASON_VMCALL] = handle_vmcall,
  1497. };
  1498. static const int kvm_vmx_max_exit_handlers =
  1499. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1500. /*
  1501. * The guest has exited. See if we can fix it or if we need userspace
  1502. * assistance.
  1503. */
  1504. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1505. {
  1506. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1507. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1508. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1509. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1510. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1511. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1512. if (exit_reason < kvm_vmx_max_exit_handlers
  1513. && kvm_vmx_exit_handlers[exit_reason])
  1514. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1515. else {
  1516. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1517. kvm_run->hw.hardware_exit_reason = exit_reason;
  1518. }
  1519. return 0;
  1520. }
  1521. /*
  1522. * Check if userspace requested an interrupt window, and that the
  1523. * interrupt window is open.
  1524. *
  1525. * No need to exit to userspace if we already have an interrupt queued.
  1526. */
  1527. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1528. struct kvm_run *kvm_run)
  1529. {
  1530. return (!vcpu->irq_summary &&
  1531. kvm_run->request_interrupt_window &&
  1532. vcpu->interrupt_window_open &&
  1533. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1534. }
  1535. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1536. {
  1537. u8 fail;
  1538. u16 fs_sel, gs_sel, ldt_sel;
  1539. int fs_gs_ldt_reload_needed;
  1540. int r;
  1541. again:
  1542. /*
  1543. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1544. * allow segment selectors with cpl > 0 or ti == 1.
  1545. */
  1546. fs_sel = read_fs();
  1547. gs_sel = read_gs();
  1548. ldt_sel = read_ldt();
  1549. fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
  1550. if (!fs_gs_ldt_reload_needed) {
  1551. vmcs_write16(HOST_FS_SELECTOR, fs_sel);
  1552. vmcs_write16(HOST_GS_SELECTOR, gs_sel);
  1553. } else {
  1554. vmcs_write16(HOST_FS_SELECTOR, 0);
  1555. vmcs_write16(HOST_GS_SELECTOR, 0);
  1556. }
  1557. #ifdef CONFIG_X86_64
  1558. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1559. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1560. #else
  1561. vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
  1562. vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
  1563. #endif
  1564. if (!vcpu->mmio_read_completed)
  1565. do_interrupt_requests(vcpu, kvm_run);
  1566. if (vcpu->guest_debug.enabled)
  1567. kvm_guest_debug_pre(vcpu);
  1568. if (vcpu->fpu_active) {
  1569. fx_save(vcpu->host_fx_image);
  1570. fx_restore(vcpu->guest_fx_image);
  1571. }
  1572. /*
  1573. * Loading guest fpu may have cleared host cr0.ts
  1574. */
  1575. vmcs_writel(HOST_CR0, read_cr0());
  1576. #ifdef CONFIG_X86_64
  1577. if (is_long_mode(vcpu)) {
  1578. save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
  1579. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1580. }
  1581. #endif
  1582. asm (
  1583. /* Store host registers */
  1584. "pushf \n\t"
  1585. #ifdef CONFIG_X86_64
  1586. "push %%rax; push %%rbx; push %%rdx;"
  1587. "push %%rsi; push %%rdi; push %%rbp;"
  1588. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1589. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1590. "push %%rcx \n\t"
  1591. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1592. #else
  1593. "pusha; push %%ecx \n\t"
  1594. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1595. #endif
  1596. /* Check if vmlaunch of vmresume is needed */
  1597. "cmp $0, %1 \n\t"
  1598. /* Load guest registers. Don't clobber flags. */
  1599. #ifdef CONFIG_X86_64
  1600. "mov %c[cr2](%3), %%rax \n\t"
  1601. "mov %%rax, %%cr2 \n\t"
  1602. "mov %c[rax](%3), %%rax \n\t"
  1603. "mov %c[rbx](%3), %%rbx \n\t"
  1604. "mov %c[rdx](%3), %%rdx \n\t"
  1605. "mov %c[rsi](%3), %%rsi \n\t"
  1606. "mov %c[rdi](%3), %%rdi \n\t"
  1607. "mov %c[rbp](%3), %%rbp \n\t"
  1608. "mov %c[r8](%3), %%r8 \n\t"
  1609. "mov %c[r9](%3), %%r9 \n\t"
  1610. "mov %c[r10](%3), %%r10 \n\t"
  1611. "mov %c[r11](%3), %%r11 \n\t"
  1612. "mov %c[r12](%3), %%r12 \n\t"
  1613. "mov %c[r13](%3), %%r13 \n\t"
  1614. "mov %c[r14](%3), %%r14 \n\t"
  1615. "mov %c[r15](%3), %%r15 \n\t"
  1616. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1617. #else
  1618. "mov %c[cr2](%3), %%eax \n\t"
  1619. "mov %%eax, %%cr2 \n\t"
  1620. "mov %c[rax](%3), %%eax \n\t"
  1621. "mov %c[rbx](%3), %%ebx \n\t"
  1622. "mov %c[rdx](%3), %%edx \n\t"
  1623. "mov %c[rsi](%3), %%esi \n\t"
  1624. "mov %c[rdi](%3), %%edi \n\t"
  1625. "mov %c[rbp](%3), %%ebp \n\t"
  1626. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1627. #endif
  1628. /* Enter guest mode */
  1629. "jne launched \n\t"
  1630. ASM_VMX_VMLAUNCH "\n\t"
  1631. "jmp kvm_vmx_return \n\t"
  1632. "launched: " ASM_VMX_VMRESUME "\n\t"
  1633. ".globl kvm_vmx_return \n\t"
  1634. "kvm_vmx_return: "
  1635. /* Save guest registers, load host registers, keep flags */
  1636. #ifdef CONFIG_X86_64
  1637. "xchg %3, (%%rsp) \n\t"
  1638. "mov %%rax, %c[rax](%3) \n\t"
  1639. "mov %%rbx, %c[rbx](%3) \n\t"
  1640. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1641. "mov %%rdx, %c[rdx](%3) \n\t"
  1642. "mov %%rsi, %c[rsi](%3) \n\t"
  1643. "mov %%rdi, %c[rdi](%3) \n\t"
  1644. "mov %%rbp, %c[rbp](%3) \n\t"
  1645. "mov %%r8, %c[r8](%3) \n\t"
  1646. "mov %%r9, %c[r9](%3) \n\t"
  1647. "mov %%r10, %c[r10](%3) \n\t"
  1648. "mov %%r11, %c[r11](%3) \n\t"
  1649. "mov %%r12, %c[r12](%3) \n\t"
  1650. "mov %%r13, %c[r13](%3) \n\t"
  1651. "mov %%r14, %c[r14](%3) \n\t"
  1652. "mov %%r15, %c[r15](%3) \n\t"
  1653. "mov %%cr2, %%rax \n\t"
  1654. "mov %%rax, %c[cr2](%3) \n\t"
  1655. "mov (%%rsp), %3 \n\t"
  1656. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1657. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1658. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1659. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1660. #else
  1661. "xchg %3, (%%esp) \n\t"
  1662. "mov %%eax, %c[rax](%3) \n\t"
  1663. "mov %%ebx, %c[rbx](%3) \n\t"
  1664. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1665. "mov %%edx, %c[rdx](%3) \n\t"
  1666. "mov %%esi, %c[rsi](%3) \n\t"
  1667. "mov %%edi, %c[rdi](%3) \n\t"
  1668. "mov %%ebp, %c[rbp](%3) \n\t"
  1669. "mov %%cr2, %%eax \n\t"
  1670. "mov %%eax, %c[cr2](%3) \n\t"
  1671. "mov (%%esp), %3 \n\t"
  1672. "pop %%ecx; popa \n\t"
  1673. #endif
  1674. "setbe %0 \n\t"
  1675. "popf \n\t"
  1676. : "=q" (fail)
  1677. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1678. "c"(vcpu),
  1679. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1680. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1681. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1682. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1683. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1684. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1685. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1686. #ifdef CONFIG_X86_64
  1687. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1688. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1689. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1690. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1691. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1692. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1693. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1694. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1695. #endif
  1696. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1697. : "cc", "memory" );
  1698. /*
  1699. * Reload segment selectors ASAP. (it's needed for a functional
  1700. * kernel: x86 relies on having __KERNEL_PDA in %fs and x86_64
  1701. * relies on having 0 in %gs for the CPU PDA to work.)
  1702. */
  1703. if (fs_gs_ldt_reload_needed) {
  1704. load_ldt(ldt_sel);
  1705. load_fs(fs_sel);
  1706. /*
  1707. * If we have to reload gs, we must take care to
  1708. * preserve our gs base.
  1709. */
  1710. local_irq_disable();
  1711. load_gs(gs_sel);
  1712. #ifdef CONFIG_X86_64
  1713. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  1714. #endif
  1715. local_irq_enable();
  1716. reload_tss();
  1717. }
  1718. ++vcpu->stat.exits;
  1719. #ifdef CONFIG_X86_64
  1720. if (is_long_mode(vcpu)) {
  1721. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  1722. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  1723. }
  1724. #endif
  1725. if (vcpu->fpu_active) {
  1726. fx_save(vcpu->guest_fx_image);
  1727. fx_restore(vcpu->host_fx_image);
  1728. }
  1729. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1730. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1731. if (fail) {
  1732. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1733. kvm_run->fail_entry.hardware_entry_failure_reason
  1734. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1735. r = 0;
  1736. } else {
  1737. /*
  1738. * Profile KVM exit RIPs:
  1739. */
  1740. if (unlikely(prof_on == KVM_PROFILING))
  1741. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1742. vcpu->launched = 1;
  1743. r = kvm_handle_exit(kvm_run, vcpu);
  1744. if (r > 0) {
  1745. /* Give scheduler a change to reschedule. */
  1746. if (signal_pending(current)) {
  1747. ++vcpu->stat.signal_exits;
  1748. post_kvm_run_save(vcpu, kvm_run);
  1749. kvm_run->exit_reason = KVM_EXIT_INTR;
  1750. return -EINTR;
  1751. }
  1752. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1753. ++vcpu->stat.request_irq_exits;
  1754. post_kvm_run_save(vcpu, kvm_run);
  1755. kvm_run->exit_reason = KVM_EXIT_INTR;
  1756. return -EINTR;
  1757. }
  1758. kvm_resched(vcpu);
  1759. goto again;
  1760. }
  1761. }
  1762. post_kvm_run_save(vcpu, kvm_run);
  1763. return r;
  1764. }
  1765. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1766. {
  1767. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1768. }
  1769. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1770. unsigned long addr,
  1771. u32 err_code)
  1772. {
  1773. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1774. ++vcpu->stat.pf_guest;
  1775. if (is_page_fault(vect_info)) {
  1776. printk(KERN_DEBUG "inject_page_fault: "
  1777. "double fault 0x%lx @ 0x%lx\n",
  1778. addr, vmcs_readl(GUEST_RIP));
  1779. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1780. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1781. DF_VECTOR |
  1782. INTR_TYPE_EXCEPTION |
  1783. INTR_INFO_DELIEVER_CODE_MASK |
  1784. INTR_INFO_VALID_MASK);
  1785. return;
  1786. }
  1787. vcpu->cr2 = addr;
  1788. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1789. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1790. PF_VECTOR |
  1791. INTR_TYPE_EXCEPTION |
  1792. INTR_INFO_DELIEVER_CODE_MASK |
  1793. INTR_INFO_VALID_MASK);
  1794. }
  1795. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1796. {
  1797. if (vcpu->vmcs) {
  1798. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1799. free_vmcs(vcpu->vmcs);
  1800. vcpu->vmcs = NULL;
  1801. }
  1802. }
  1803. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1804. {
  1805. vmx_free_vmcs(vcpu);
  1806. }
  1807. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1808. {
  1809. struct vmcs *vmcs;
  1810. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1811. if (!vcpu->guest_msrs)
  1812. return -ENOMEM;
  1813. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1814. if (!vcpu->host_msrs)
  1815. goto out_free_guest_msrs;
  1816. vmcs = alloc_vmcs();
  1817. if (!vmcs)
  1818. goto out_free_msrs;
  1819. vmcs_clear(vmcs);
  1820. vcpu->vmcs = vmcs;
  1821. vcpu->launched = 0;
  1822. vcpu->fpu_active = 1;
  1823. return 0;
  1824. out_free_msrs:
  1825. kfree(vcpu->host_msrs);
  1826. vcpu->host_msrs = NULL;
  1827. out_free_guest_msrs:
  1828. kfree(vcpu->guest_msrs);
  1829. vcpu->guest_msrs = NULL;
  1830. return -ENOMEM;
  1831. }
  1832. static struct kvm_arch_ops vmx_arch_ops = {
  1833. .cpu_has_kvm_support = cpu_has_kvm_support,
  1834. .disabled_by_bios = vmx_disabled_by_bios,
  1835. .hardware_setup = hardware_setup,
  1836. .hardware_unsetup = hardware_unsetup,
  1837. .hardware_enable = hardware_enable,
  1838. .hardware_disable = hardware_disable,
  1839. .vcpu_create = vmx_create_vcpu,
  1840. .vcpu_free = vmx_free_vcpu,
  1841. .vcpu_load = vmx_vcpu_load,
  1842. .vcpu_put = vmx_vcpu_put,
  1843. .vcpu_decache = vmx_vcpu_decache,
  1844. .set_guest_debug = set_guest_debug,
  1845. .get_msr = vmx_get_msr,
  1846. .set_msr = vmx_set_msr,
  1847. .get_segment_base = vmx_get_segment_base,
  1848. .get_segment = vmx_get_segment,
  1849. .set_segment = vmx_set_segment,
  1850. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1851. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1852. .set_cr0 = vmx_set_cr0,
  1853. .set_cr3 = vmx_set_cr3,
  1854. .set_cr4 = vmx_set_cr4,
  1855. #ifdef CONFIG_X86_64
  1856. .set_efer = vmx_set_efer,
  1857. #endif
  1858. .get_idt = vmx_get_idt,
  1859. .set_idt = vmx_set_idt,
  1860. .get_gdt = vmx_get_gdt,
  1861. .set_gdt = vmx_set_gdt,
  1862. .cache_regs = vcpu_load_rsp_rip,
  1863. .decache_regs = vcpu_put_rsp_rip,
  1864. .get_rflags = vmx_get_rflags,
  1865. .set_rflags = vmx_set_rflags,
  1866. .tlb_flush = vmx_flush_tlb,
  1867. .inject_page_fault = vmx_inject_page_fault,
  1868. .inject_gp = vmx_inject_gp,
  1869. .run = vmx_vcpu_run,
  1870. .skip_emulated_instruction = skip_emulated_instruction,
  1871. .vcpu_setup = vmx_vcpu_setup,
  1872. .patch_hypercall = vmx_patch_hypercall,
  1873. };
  1874. static int __init vmx_init(void)
  1875. {
  1876. return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1877. }
  1878. static void __exit vmx_exit(void)
  1879. {
  1880. kvm_exit_arch();
  1881. }
  1882. module_init(vmx_init)
  1883. module_exit(vmx_exit)