pmac.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089
  1. /*
  2. * linux/drivers/ide/ppc/pmac.c
  3. *
  4. * Support for IDE interfaces on PowerMacs.
  5. * These IDE interfaces are memory-mapped and have a DBDMA channel
  6. * for doing DMA.
  7. *
  8. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/types.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/ide.h>
  30. #include <linux/notifier.h>
  31. #include <linux/reboot.h>
  32. #include <linux/pci.h>
  33. #include <linux/adb.h>
  34. #include <linux/pmu.h>
  35. #include <linux/scatterlist.h>
  36. #include <asm/prom.h>
  37. #include <asm/io.h>
  38. #include <asm/dbdma.h>
  39. #include <asm/ide.h>
  40. #include <asm/pci-bridge.h>
  41. #include <asm/machdep.h>
  42. #include <asm/pmac_feature.h>
  43. #include <asm/sections.h>
  44. #include <asm/irq.h>
  45. #ifndef CONFIG_PPC64
  46. #include <asm/mediabay.h>
  47. #endif
  48. #include "../ide-timing.h"
  49. #undef IDE_PMAC_DEBUG
  50. #define DMA_WAIT_TIMEOUT 50
  51. typedef struct pmac_ide_hwif {
  52. unsigned long regbase;
  53. int irq;
  54. int kind;
  55. int aapl_bus_id;
  56. unsigned cable_80 : 1;
  57. unsigned mediabay : 1;
  58. unsigned broken_dma : 1;
  59. unsigned broken_dma_warn : 1;
  60. struct device_node* node;
  61. struct macio_dev *mdev;
  62. u32 timings[4];
  63. volatile u32 __iomem * *kauai_fcr;
  64. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  65. /* Those fields are duplicating what is in hwif. We currently
  66. * can't use the hwif ones because of some assumptions that are
  67. * beeing done by the generic code about the kind of dma controller
  68. * and format of the dma table. This will have to be fixed though.
  69. */
  70. volatile struct dbdma_regs __iomem * dma_regs;
  71. struct dbdma_cmd* dma_table_cpu;
  72. #endif
  73. } pmac_ide_hwif_t;
  74. static pmac_ide_hwif_t pmac_ide[MAX_HWIFS];
  75. static int pmac_ide_count;
  76. enum {
  77. controller_ohare, /* OHare based */
  78. controller_heathrow, /* Heathrow/Paddington */
  79. controller_kl_ata3, /* KeyLargo ATA-3 */
  80. controller_kl_ata4, /* KeyLargo ATA-4 */
  81. controller_un_ata6, /* UniNorth2 ATA-6 */
  82. controller_k2_ata6, /* K2 ATA-6 */
  83. controller_sh_ata6, /* Shasta ATA-6 */
  84. };
  85. static const char* model_name[] = {
  86. "OHare ATA", /* OHare based */
  87. "Heathrow ATA", /* Heathrow/Paddington */
  88. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  89. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  90. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  91. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  92. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  93. };
  94. /*
  95. * Extra registers, both 32-bit little-endian
  96. */
  97. #define IDE_TIMING_CONFIG 0x200
  98. #define IDE_INTERRUPT 0x300
  99. /* Kauai (U2) ATA has different register setup */
  100. #define IDE_KAUAI_PIO_CONFIG 0x200
  101. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  102. #define IDE_KAUAI_POLL_CONFIG 0x220
  103. /*
  104. * Timing configuration register definitions
  105. */
  106. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  107. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  108. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  109. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  110. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  111. /* 133Mhz cell, found in shasta.
  112. * See comments about 100 Mhz Uninorth 2...
  113. * Note that PIO_MASK and MDMA_MASK seem to overlap
  114. */
  115. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  116. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  117. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  118. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  119. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  120. * this one yet, it appears as a pci device (106b/0033) on uninorth
  121. * internal PCI bus and it's clock is controlled like gem or fw. It
  122. * appears to be an evolution of keylargo ATA4 with a timing register
  123. * extended to 2 32bits registers and a similar DBDMA channel. Other
  124. * registers seem to exist but I can't tell much about them.
  125. *
  126. * So far, I'm using pre-calculated tables for this extracted from
  127. * the values used by the MacOS X driver.
  128. *
  129. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  130. * register controls the UDMA timings. At least, it seems bit 0
  131. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  132. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  133. * know their meaning yet
  134. */
  135. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  136. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  137. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  138. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  139. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  140. * 40 connector cable and to 4 on 80 connector one.
  141. * Clock unit is 15ns (66Mhz)
  142. *
  143. * 3 Values can be programmed:
  144. * - Write data setup, which appears to match the cycle time. They
  145. * also call it DIOW setup.
  146. * - Ready to pause time (from spec)
  147. * - Address setup. That one is weird. I don't see where exactly
  148. * it fits in UDMA cycles, I got it's name from an obscure piece
  149. * of commented out code in Darwin. They leave it to 0, we do as
  150. * well, despite a comment that would lead to think it has a
  151. * min value of 45ns.
  152. * Apple also add 60ns to the write data setup (or cycle time ?) on
  153. * reads.
  154. */
  155. #define TR_66_UDMA_MASK 0xfff00000
  156. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  157. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  158. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  159. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  160. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  161. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  162. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  163. #define TR_66_MDMA_MASK 0x000ffc00
  164. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  165. #define TR_66_MDMA_RECOVERY_SHIFT 15
  166. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  167. #define TR_66_MDMA_ACCESS_SHIFT 10
  168. #define TR_66_PIO_MASK 0x000003ff
  169. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  170. #define TR_66_PIO_RECOVERY_SHIFT 5
  171. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  172. #define TR_66_PIO_ACCESS_SHIFT 0
  173. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  174. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  175. *
  176. * The access time and recovery time can be programmed. Some older
  177. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  178. * the same here fore safety against broken old hardware ;)
  179. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  180. * time and removes one from recovery. It's not supported on KeyLargo
  181. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  182. * is used to reach long timings used in this mode.
  183. */
  184. #define TR_33_MDMA_MASK 0x003ff800
  185. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  186. #define TR_33_MDMA_RECOVERY_SHIFT 16
  187. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  188. #define TR_33_MDMA_ACCESS_SHIFT 11
  189. #define TR_33_MDMA_HALFTICK 0x00200000
  190. #define TR_33_PIO_MASK 0x000007ff
  191. #define TR_33_PIO_E 0x00000400
  192. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  193. #define TR_33_PIO_RECOVERY_SHIFT 5
  194. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  195. #define TR_33_PIO_ACCESS_SHIFT 0
  196. /*
  197. * Interrupt register definitions
  198. */
  199. #define IDE_INTR_DMA 0x80000000
  200. #define IDE_INTR_DEVICE 0x40000000
  201. /*
  202. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  203. */
  204. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  205. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  206. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  207. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  208. /* Rounded Multiword DMA timings
  209. *
  210. * I gave up finding a generic formula for all controller
  211. * types and instead, built tables based on timing values
  212. * used by Apple in Darwin's implementation.
  213. */
  214. struct mdma_timings_t {
  215. int accessTime;
  216. int recoveryTime;
  217. int cycleTime;
  218. };
  219. struct mdma_timings_t mdma_timings_33[] =
  220. {
  221. { 240, 240, 480 },
  222. { 180, 180, 360 },
  223. { 135, 135, 270 },
  224. { 120, 120, 240 },
  225. { 105, 105, 210 },
  226. { 90, 90, 180 },
  227. { 75, 75, 150 },
  228. { 75, 45, 120 },
  229. { 0, 0, 0 }
  230. };
  231. struct mdma_timings_t mdma_timings_33k[] =
  232. {
  233. { 240, 240, 480 },
  234. { 180, 180, 360 },
  235. { 150, 150, 300 },
  236. { 120, 120, 240 },
  237. { 90, 120, 210 },
  238. { 90, 90, 180 },
  239. { 90, 60, 150 },
  240. { 90, 30, 120 },
  241. { 0, 0, 0 }
  242. };
  243. struct mdma_timings_t mdma_timings_66[] =
  244. {
  245. { 240, 240, 480 },
  246. { 180, 180, 360 },
  247. { 135, 135, 270 },
  248. { 120, 120, 240 },
  249. { 105, 105, 210 },
  250. { 90, 90, 180 },
  251. { 90, 75, 165 },
  252. { 75, 45, 120 },
  253. { 0, 0, 0 }
  254. };
  255. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  256. struct {
  257. int addrSetup; /* ??? */
  258. int rdy2pause;
  259. int wrDataSetup;
  260. } kl66_udma_timings[] =
  261. {
  262. { 0, 180, 120 }, /* Mode 0 */
  263. { 0, 150, 90 }, /* 1 */
  264. { 0, 120, 60 }, /* 2 */
  265. { 0, 90, 45 }, /* 3 */
  266. { 0, 90, 30 } /* 4 */
  267. };
  268. /* UniNorth 2 ATA/100 timings */
  269. struct kauai_timing {
  270. int cycle_time;
  271. u32 timing_reg;
  272. };
  273. static struct kauai_timing kauai_pio_timings[] =
  274. {
  275. { 930 , 0x08000fff },
  276. { 600 , 0x08000a92 },
  277. { 383 , 0x0800060f },
  278. { 360 , 0x08000492 },
  279. { 330 , 0x0800048f },
  280. { 300 , 0x080003cf },
  281. { 270 , 0x080003cc },
  282. { 240 , 0x0800038b },
  283. { 239 , 0x0800030c },
  284. { 180 , 0x05000249 },
  285. { 120 , 0x04000148 }
  286. };
  287. static struct kauai_timing kauai_mdma_timings[] =
  288. {
  289. { 1260 , 0x00fff000 },
  290. { 480 , 0x00618000 },
  291. { 360 , 0x00492000 },
  292. { 270 , 0x0038e000 },
  293. { 240 , 0x0030c000 },
  294. { 210 , 0x002cb000 },
  295. { 180 , 0x00249000 },
  296. { 150 , 0x00209000 },
  297. { 120 , 0x00148000 },
  298. { 0 , 0 },
  299. };
  300. static struct kauai_timing kauai_udma_timings[] =
  301. {
  302. { 120 , 0x000070c0 },
  303. { 90 , 0x00005d80 },
  304. { 60 , 0x00004a60 },
  305. { 45 , 0x00003a50 },
  306. { 30 , 0x00002a30 },
  307. { 20 , 0x00002921 },
  308. { 0 , 0 },
  309. };
  310. static struct kauai_timing shasta_pio_timings[] =
  311. {
  312. { 930 , 0x08000fff },
  313. { 600 , 0x0A000c97 },
  314. { 383 , 0x07000712 },
  315. { 360 , 0x040003cd },
  316. { 330 , 0x040003cd },
  317. { 300 , 0x040003cd },
  318. { 270 , 0x040003cd },
  319. { 240 , 0x040003cd },
  320. { 239 , 0x040003cd },
  321. { 180 , 0x0400028b },
  322. { 120 , 0x0400010a }
  323. };
  324. static struct kauai_timing shasta_mdma_timings[] =
  325. {
  326. { 1260 , 0x00fff000 },
  327. { 480 , 0x00820800 },
  328. { 360 , 0x00820800 },
  329. { 270 , 0x00820800 },
  330. { 240 , 0x00820800 },
  331. { 210 , 0x00820800 },
  332. { 180 , 0x00820800 },
  333. { 150 , 0x0028b000 },
  334. { 120 , 0x001ca000 },
  335. { 0 , 0 },
  336. };
  337. static struct kauai_timing shasta_udma133_timings[] =
  338. {
  339. { 120 , 0x00035901, },
  340. { 90 , 0x000348b1, },
  341. { 60 , 0x00033881, },
  342. { 45 , 0x00033861, },
  343. { 30 , 0x00033841, },
  344. { 20 , 0x00033031, },
  345. { 15 , 0x00033021, },
  346. { 0 , 0 },
  347. };
  348. static inline u32
  349. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  350. {
  351. int i;
  352. for (i=0; table[i].cycle_time; i++)
  353. if (cycle_time > table[i+1].cycle_time)
  354. return table[i].timing_reg;
  355. return 0;
  356. }
  357. /* allow up to 256 DBDMA commands per xfer */
  358. #define MAX_DCMDS 256
  359. /*
  360. * Wait 1s for disk to answer on IDE bus after a hard reset
  361. * of the device (via GPIO/FCR).
  362. *
  363. * Some devices seem to "pollute" the bus even after dropping
  364. * the BSY bit (typically some combo drives slave on the UDMA
  365. * bus) after a hard reset. Since we hard reset all drives on
  366. * KeyLargo ATA66, we have to keep that delay around. I may end
  367. * up not hard resetting anymore on these and keep the delay only
  368. * for older interfaces instead (we have to reset when coming
  369. * from MacOS...) --BenH.
  370. */
  371. #define IDE_WAKEUP_DELAY (1*HZ)
  372. static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
  373. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  374. static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
  375. static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
  376. static void pmac_ide_selectproc(ide_drive_t *drive);
  377. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  378. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  379. /*
  380. * N.B. this can't be an initfunc, because the media-bay task can
  381. * call ide_[un]register at any time.
  382. */
  383. void
  384. pmac_ide_init_hwif_ports(hw_regs_t *hw,
  385. unsigned long data_port, unsigned long ctrl_port,
  386. int *irq)
  387. {
  388. int i, ix;
  389. if (data_port == 0)
  390. return;
  391. for (ix = 0; ix < MAX_HWIFS; ++ix)
  392. if (data_port == pmac_ide[ix].regbase)
  393. break;
  394. if (ix >= MAX_HWIFS) {
  395. /* Probably a PCI interface... */
  396. for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i)
  397. hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET;
  398. hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port;
  399. return;
  400. }
  401. for (i = 0; i < 8; ++i)
  402. hw->io_ports[i] = data_port + i * 0x10;
  403. hw->io_ports[8] = data_port + 0x160;
  404. if (irq != NULL)
  405. *irq = pmac_ide[ix].irq;
  406. hw->dev = &pmac_ide[ix].mdev->ofdev.dev;
  407. }
  408. #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
  409. /*
  410. * Apply the timings of the proper unit (master/slave) to the shared
  411. * timing register when selecting that unit. This version is for
  412. * ASICs with a single timing register
  413. */
  414. static void
  415. pmac_ide_selectproc(ide_drive_t *drive)
  416. {
  417. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  418. if (pmif == NULL)
  419. return;
  420. if (drive->select.b.unit & 0x01)
  421. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  422. else
  423. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  424. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  425. }
  426. /*
  427. * Apply the timings of the proper unit (master/slave) to the shared
  428. * timing register when selecting that unit. This version is for
  429. * ASICs with a dual timing register (Kauai)
  430. */
  431. static void
  432. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  433. {
  434. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  435. if (pmif == NULL)
  436. return;
  437. if (drive->select.b.unit & 0x01) {
  438. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  439. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  440. } else {
  441. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  442. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  443. }
  444. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  445. }
  446. /*
  447. * Force an update of controller timing values for a given drive
  448. */
  449. static void
  450. pmac_ide_do_update_timings(ide_drive_t *drive)
  451. {
  452. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  453. if (pmif == NULL)
  454. return;
  455. if (pmif->kind == controller_sh_ata6 ||
  456. pmif->kind == controller_un_ata6 ||
  457. pmif->kind == controller_k2_ata6)
  458. pmac_ide_kauai_selectproc(drive);
  459. else
  460. pmac_ide_selectproc(drive);
  461. }
  462. static void
  463. pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
  464. {
  465. u32 tmp;
  466. writeb(value, (void __iomem *) port);
  467. tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  468. }
  469. /*
  470. * Send the SET_FEATURE IDE command to the drive and update drive->id with
  471. * the new state. We currently don't use the generic routine as it used to
  472. * cause various trouble, especially with older mediabays.
  473. * This code is sometimes triggering a spurrious interrupt though, I need
  474. * to sort that out sooner or later and see if I can finally get the
  475. * common version to work properly in all cases
  476. */
  477. static int
  478. pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
  479. {
  480. ide_hwif_t *hwif = HWIF(drive);
  481. int result = 1;
  482. disable_irq_nosync(hwif->irq);
  483. udelay(1);
  484. SELECT_DRIVE(drive);
  485. SELECT_MASK(drive, 0);
  486. udelay(1);
  487. /* Get rid of pending error state */
  488. (void) hwif->INB(IDE_STATUS_REG);
  489. /* Timeout bumped for some powerbooks */
  490. if (wait_for_ready(drive, 2000)) {
  491. /* Timeout bumped for some powerbooks */
  492. printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
  493. "before SET_FEATURE!\n", drive->name);
  494. goto out;
  495. }
  496. udelay(10);
  497. hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
  498. hwif->OUTB(command, IDE_NSECTOR_REG);
  499. hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
  500. hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
  501. udelay(1);
  502. /* Timeout bumped for some powerbooks */
  503. result = wait_for_ready(drive, 2000);
  504. hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
  505. if (result)
  506. printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
  507. "after SET_FEATURE !\n", drive->name);
  508. out:
  509. SELECT_MASK(drive, 0);
  510. if (result == 0) {
  511. drive->id->dma_ultra &= ~0xFF00;
  512. drive->id->dma_mword &= ~0x0F00;
  513. drive->id->dma_1word &= ~0x0F00;
  514. switch(command) {
  515. case XFER_UDMA_7:
  516. drive->id->dma_ultra |= 0x8080; break;
  517. case XFER_UDMA_6:
  518. drive->id->dma_ultra |= 0x4040; break;
  519. case XFER_UDMA_5:
  520. drive->id->dma_ultra |= 0x2020; break;
  521. case XFER_UDMA_4:
  522. drive->id->dma_ultra |= 0x1010; break;
  523. case XFER_UDMA_3:
  524. drive->id->dma_ultra |= 0x0808; break;
  525. case XFER_UDMA_2:
  526. drive->id->dma_ultra |= 0x0404; break;
  527. case XFER_UDMA_1:
  528. drive->id->dma_ultra |= 0x0202; break;
  529. case XFER_UDMA_0:
  530. drive->id->dma_ultra |= 0x0101; break;
  531. case XFER_MW_DMA_2:
  532. drive->id->dma_mword |= 0x0404; break;
  533. case XFER_MW_DMA_1:
  534. drive->id->dma_mword |= 0x0202; break;
  535. case XFER_MW_DMA_0:
  536. drive->id->dma_mword |= 0x0101; break;
  537. case XFER_SW_DMA_2:
  538. drive->id->dma_1word |= 0x0404; break;
  539. case XFER_SW_DMA_1:
  540. drive->id->dma_1word |= 0x0202; break;
  541. case XFER_SW_DMA_0:
  542. drive->id->dma_1word |= 0x0101; break;
  543. default: break;
  544. }
  545. }
  546. enable_irq(hwif->irq);
  547. return result;
  548. }
  549. /*
  550. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  551. */
  552. static void
  553. pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
  554. {
  555. ide_pio_data_t d;
  556. u32 *timings;
  557. unsigned accessTicks, recTicks;
  558. unsigned accessTime, recTime;
  559. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  560. if (pmif == NULL)
  561. return;
  562. /* which drive is it ? */
  563. timings = &pmif->timings[drive->select.b.unit & 0x01];
  564. pio = ide_get_best_pio_mode(drive, pio, 4, &d);
  565. switch (pmif->kind) {
  566. case controller_sh_ata6: {
  567. /* 133Mhz cell */
  568. u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time);
  569. if (tr == 0)
  570. return;
  571. *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr;
  572. break;
  573. }
  574. case controller_un_ata6:
  575. case controller_k2_ata6: {
  576. /* 100Mhz cell */
  577. u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
  578. if (tr == 0)
  579. return;
  580. *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
  581. break;
  582. }
  583. case controller_kl_ata4:
  584. /* 66Mhz cell */
  585. recTime = d.cycle_time - ide_pio_timings[pio].active_time
  586. - ide_pio_timings[pio].setup_time;
  587. recTime = max(recTime, 150U);
  588. accessTime = ide_pio_timings[pio].active_time;
  589. accessTime = max(accessTime, 150U);
  590. accessTicks = SYSCLK_TICKS_66(accessTime);
  591. accessTicks = min(accessTicks, 0x1fU);
  592. recTicks = SYSCLK_TICKS_66(recTime);
  593. recTicks = min(recTicks, 0x1fU);
  594. *timings = ((*timings) & ~TR_66_PIO_MASK) |
  595. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  596. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  597. break;
  598. default: {
  599. /* 33Mhz cell */
  600. int ebit = 0;
  601. recTime = d.cycle_time - ide_pio_timings[pio].active_time
  602. - ide_pio_timings[pio].setup_time;
  603. recTime = max(recTime, 150U);
  604. accessTime = ide_pio_timings[pio].active_time;
  605. accessTime = max(accessTime, 150U);
  606. accessTicks = SYSCLK_TICKS(accessTime);
  607. accessTicks = min(accessTicks, 0x1fU);
  608. accessTicks = max(accessTicks, 4U);
  609. recTicks = SYSCLK_TICKS(recTime);
  610. recTicks = min(recTicks, 0x1fU);
  611. recTicks = max(recTicks, 5U) - 4;
  612. if (recTicks > 9) {
  613. recTicks--; /* guess, but it's only for PIO0, so... */
  614. ebit = 1;
  615. }
  616. *timings = ((*timings) & ~TR_33_PIO_MASK) |
  617. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  618. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  619. if (ebit)
  620. *timings |= TR_33_PIO_E;
  621. break;
  622. }
  623. }
  624. #ifdef IDE_PMAC_DEBUG
  625. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  626. drive->name, pio, *timings);
  627. #endif
  628. if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
  629. pmac_ide_do_update_timings(drive);
  630. }
  631. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  632. /*
  633. * Calculate KeyLargo ATA/66 UDMA timings
  634. */
  635. static int
  636. set_timings_udma_ata4(u32 *timings, u8 speed)
  637. {
  638. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  639. if (speed > XFER_UDMA_4)
  640. return 1;
  641. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  642. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  643. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  644. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  645. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  646. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  647. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  648. TR_66_UDMA_EN;
  649. #ifdef IDE_PMAC_DEBUG
  650. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  651. speed & 0xf, *timings);
  652. #endif
  653. return 0;
  654. }
  655. /*
  656. * Calculate Kauai ATA/100 UDMA timings
  657. */
  658. static int
  659. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  660. {
  661. struct ide_timing *t = ide_timing_find_mode(speed);
  662. u32 tr;
  663. if (speed > XFER_UDMA_5 || t == NULL)
  664. return 1;
  665. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  666. if (tr == 0)
  667. return 1;
  668. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  669. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  670. return 0;
  671. }
  672. /*
  673. * Calculate Shasta ATA/133 UDMA timings
  674. */
  675. static int
  676. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  677. {
  678. struct ide_timing *t = ide_timing_find_mode(speed);
  679. u32 tr;
  680. if (speed > XFER_UDMA_6 || t == NULL)
  681. return 1;
  682. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  683. if (tr == 0)
  684. return 1;
  685. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  686. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  687. return 0;
  688. }
  689. /*
  690. * Calculate MDMA timings for all cells
  691. */
  692. static int
  693. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  694. u8 speed, int drive_cycle_time)
  695. {
  696. int cycleTime, accessTime = 0, recTime = 0;
  697. unsigned accessTicks, recTicks;
  698. struct mdma_timings_t* tm = NULL;
  699. int i;
  700. /* Get default cycle time for mode */
  701. switch(speed & 0xf) {
  702. case 0: cycleTime = 480; break;
  703. case 1: cycleTime = 150; break;
  704. case 2: cycleTime = 120; break;
  705. default:
  706. return 1;
  707. }
  708. /* Adjust for drive */
  709. if (drive_cycle_time && drive_cycle_time > cycleTime)
  710. cycleTime = drive_cycle_time;
  711. /* OHare limits according to some old Apple sources */
  712. if ((intf_type == controller_ohare) && (cycleTime < 150))
  713. cycleTime = 150;
  714. /* Get the proper timing array for this controller */
  715. switch(intf_type) {
  716. case controller_sh_ata6:
  717. case controller_un_ata6:
  718. case controller_k2_ata6:
  719. break;
  720. case controller_kl_ata4:
  721. tm = mdma_timings_66;
  722. break;
  723. case controller_kl_ata3:
  724. tm = mdma_timings_33k;
  725. break;
  726. default:
  727. tm = mdma_timings_33;
  728. break;
  729. }
  730. if (tm != NULL) {
  731. /* Lookup matching access & recovery times */
  732. i = -1;
  733. for (;;) {
  734. if (tm[i+1].cycleTime < cycleTime)
  735. break;
  736. i++;
  737. }
  738. if (i < 0)
  739. return 1;
  740. cycleTime = tm[i].cycleTime;
  741. accessTime = tm[i].accessTime;
  742. recTime = tm[i].recoveryTime;
  743. #ifdef IDE_PMAC_DEBUG
  744. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  745. drive->name, cycleTime, accessTime, recTime);
  746. #endif
  747. }
  748. switch(intf_type) {
  749. case controller_sh_ata6: {
  750. /* 133Mhz cell */
  751. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  752. if (tr == 0)
  753. return 1;
  754. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  755. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  756. }
  757. case controller_un_ata6:
  758. case controller_k2_ata6: {
  759. /* 100Mhz cell */
  760. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  761. if (tr == 0)
  762. return 1;
  763. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  764. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  765. }
  766. break;
  767. case controller_kl_ata4:
  768. /* 66Mhz cell */
  769. accessTicks = SYSCLK_TICKS_66(accessTime);
  770. accessTicks = min(accessTicks, 0x1fU);
  771. accessTicks = max(accessTicks, 0x1U);
  772. recTicks = SYSCLK_TICKS_66(recTime);
  773. recTicks = min(recTicks, 0x1fU);
  774. recTicks = max(recTicks, 0x3U);
  775. /* Clear out mdma bits and disable udma */
  776. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  777. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  778. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  779. break;
  780. case controller_kl_ata3:
  781. /* 33Mhz cell on KeyLargo */
  782. accessTicks = SYSCLK_TICKS(accessTime);
  783. accessTicks = max(accessTicks, 1U);
  784. accessTicks = min(accessTicks, 0x1fU);
  785. accessTime = accessTicks * IDE_SYSCLK_NS;
  786. recTicks = SYSCLK_TICKS(recTime);
  787. recTicks = max(recTicks, 1U);
  788. recTicks = min(recTicks, 0x1fU);
  789. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  790. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  791. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  792. break;
  793. default: {
  794. /* 33Mhz cell on others */
  795. int halfTick = 0;
  796. int origAccessTime = accessTime;
  797. int origRecTime = recTime;
  798. accessTicks = SYSCLK_TICKS(accessTime);
  799. accessTicks = max(accessTicks, 1U);
  800. accessTicks = min(accessTicks, 0x1fU);
  801. accessTime = accessTicks * IDE_SYSCLK_NS;
  802. recTicks = SYSCLK_TICKS(recTime);
  803. recTicks = max(recTicks, 2U) - 1;
  804. recTicks = min(recTicks, 0x1fU);
  805. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  806. if ((accessTicks > 1) &&
  807. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  808. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  809. halfTick = 1;
  810. accessTicks--;
  811. }
  812. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  813. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  814. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  815. if (halfTick)
  816. *timings |= TR_33_MDMA_HALFTICK;
  817. }
  818. }
  819. #ifdef IDE_PMAC_DEBUG
  820. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  821. drive->name, speed & 0xf, *timings);
  822. #endif
  823. return 0;
  824. }
  825. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  826. /*
  827. * Speedproc. This function is called by the core to set any of the standard
  828. * timing (PIO, MDMA or UDMA) to both the drive and the controller.
  829. * You may notice we don't use this function on normal "dma check" operation,
  830. * our dedicated function is more precise as it uses the drive provided
  831. * cycle time value. We should probably fix this one to deal with that too...
  832. */
  833. static int
  834. pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
  835. {
  836. int unit = (drive->select.b.unit & 0x01);
  837. int ret = 0;
  838. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  839. u32 *timings, *timings2;
  840. if (pmif == NULL)
  841. return 1;
  842. timings = &pmif->timings[unit];
  843. timings2 = &pmif->timings[unit+2];
  844. switch(speed) {
  845. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  846. case XFER_UDMA_6:
  847. if (pmif->kind != controller_sh_ata6)
  848. return 1;
  849. case XFER_UDMA_5:
  850. if (pmif->kind != controller_un_ata6 &&
  851. pmif->kind != controller_k2_ata6 &&
  852. pmif->kind != controller_sh_ata6)
  853. return 1;
  854. case XFER_UDMA_4:
  855. case XFER_UDMA_3:
  856. if (HWIF(drive)->udma_four == 0)
  857. return 1;
  858. case XFER_UDMA_2:
  859. case XFER_UDMA_1:
  860. case XFER_UDMA_0:
  861. if (pmif->kind == controller_kl_ata4)
  862. ret = set_timings_udma_ata4(timings, speed);
  863. else if (pmif->kind == controller_un_ata6
  864. || pmif->kind == controller_k2_ata6)
  865. ret = set_timings_udma_ata6(timings, timings2, speed);
  866. else if (pmif->kind == controller_sh_ata6)
  867. ret = set_timings_udma_shasta(timings, timings2, speed);
  868. else
  869. ret = 1;
  870. break;
  871. case XFER_MW_DMA_2:
  872. case XFER_MW_DMA_1:
  873. case XFER_MW_DMA_0:
  874. ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
  875. break;
  876. case XFER_SW_DMA_2:
  877. case XFER_SW_DMA_1:
  878. case XFER_SW_DMA_0:
  879. return 1;
  880. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  881. case XFER_PIO_4:
  882. case XFER_PIO_3:
  883. case XFER_PIO_2:
  884. case XFER_PIO_1:
  885. case XFER_PIO_0:
  886. pmac_ide_tuneproc(drive, speed & 0x07);
  887. break;
  888. default:
  889. ret = 1;
  890. }
  891. if (ret)
  892. return ret;
  893. ret = pmac_ide_do_setfeature(drive, speed);
  894. if (ret)
  895. return ret;
  896. pmac_ide_do_update_timings(drive);
  897. drive->current_speed = speed;
  898. return 0;
  899. }
  900. /*
  901. * Blast some well known "safe" values to the timing registers at init or
  902. * wakeup from sleep time, before we do real calculation
  903. */
  904. static void
  905. sanitize_timings(pmac_ide_hwif_t *pmif)
  906. {
  907. unsigned int value, value2 = 0;
  908. switch(pmif->kind) {
  909. case controller_sh_ata6:
  910. value = 0x0a820c97;
  911. value2 = 0x00033031;
  912. break;
  913. case controller_un_ata6:
  914. case controller_k2_ata6:
  915. value = 0x08618a92;
  916. value2 = 0x00002921;
  917. break;
  918. case controller_kl_ata4:
  919. value = 0x0008438c;
  920. break;
  921. case controller_kl_ata3:
  922. value = 0x00084526;
  923. break;
  924. case controller_heathrow:
  925. case controller_ohare:
  926. default:
  927. value = 0x00074526;
  928. break;
  929. }
  930. pmif->timings[0] = pmif->timings[1] = value;
  931. pmif->timings[2] = pmif->timings[3] = value2;
  932. }
  933. unsigned long
  934. pmac_ide_get_base(int index)
  935. {
  936. return pmac_ide[index].regbase;
  937. }
  938. int
  939. pmac_ide_check_base(unsigned long base)
  940. {
  941. int ix;
  942. for (ix = 0; ix < MAX_HWIFS; ++ix)
  943. if (base == pmac_ide[ix].regbase)
  944. return ix;
  945. return -1;
  946. }
  947. int
  948. pmac_ide_get_irq(unsigned long base)
  949. {
  950. int ix;
  951. for (ix = 0; ix < MAX_HWIFS; ++ix)
  952. if (base == pmac_ide[ix].regbase)
  953. return pmac_ide[ix].irq;
  954. return 0;
  955. }
  956. static int ide_majors[] = { 3, 22, 33, 34, 56, 57 };
  957. dev_t __init
  958. pmac_find_ide_boot(char *bootdevice, int n)
  959. {
  960. int i;
  961. /*
  962. * Look through the list of IDE interfaces for this one.
  963. */
  964. for (i = 0; i < pmac_ide_count; ++i) {
  965. char *name;
  966. if (!pmac_ide[i].node || !pmac_ide[i].node->full_name)
  967. continue;
  968. name = pmac_ide[i].node->full_name;
  969. if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) {
  970. /* XXX should cope with the 2nd drive as well... */
  971. return MKDEV(ide_majors[i], 0);
  972. }
  973. }
  974. return 0;
  975. }
  976. /* Suspend call back, should be called after the child devices
  977. * have actually been suspended
  978. */
  979. static int
  980. pmac_ide_do_suspend(ide_hwif_t *hwif)
  981. {
  982. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  983. /* We clear the timings */
  984. pmif->timings[0] = 0;
  985. pmif->timings[1] = 0;
  986. disable_irq(pmif->irq);
  987. /* The media bay will handle itself just fine */
  988. if (pmif->mediabay)
  989. return 0;
  990. /* Kauai has bus control FCRs directly here */
  991. if (pmif->kauai_fcr) {
  992. u32 fcr = readl(pmif->kauai_fcr);
  993. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  994. writel(fcr, pmif->kauai_fcr);
  995. }
  996. /* Disable the bus on older machines and the cell on kauai */
  997. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  998. 0);
  999. return 0;
  1000. }
  1001. /* Resume call back, should be called before the child devices
  1002. * are resumed
  1003. */
  1004. static int
  1005. pmac_ide_do_resume(ide_hwif_t *hwif)
  1006. {
  1007. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1008. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  1009. if (!pmif->mediabay) {
  1010. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  1011. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  1012. msleep(10);
  1013. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  1014. /* Kauai has it different */
  1015. if (pmif->kauai_fcr) {
  1016. u32 fcr = readl(pmif->kauai_fcr);
  1017. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  1018. writel(fcr, pmif->kauai_fcr);
  1019. }
  1020. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  1021. }
  1022. /* Sanitize drive timings */
  1023. sanitize_timings(pmif);
  1024. enable_irq(pmif->irq);
  1025. return 0;
  1026. }
  1027. /*
  1028. * Setup, register & probe an IDE channel driven by this driver, this is
  1029. * called by one of the 2 probe functions (macio or PCI). Note that a channel
  1030. * that ends up beeing free of any device is not kept around by this driver
  1031. * (it is kept in 2.4). This introduce an interface numbering change on some
  1032. * rare machines unfortunately, but it's better this way.
  1033. */
  1034. static int
  1035. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1036. {
  1037. struct device_node *np = pmif->node;
  1038. const int *bidp;
  1039. pmif->cable_80 = 0;
  1040. pmif->broken_dma = pmif->broken_dma_warn = 0;
  1041. if (of_device_is_compatible(np, "shasta-ata"))
  1042. pmif->kind = controller_sh_ata6;
  1043. else if (of_device_is_compatible(np, "kauai-ata"))
  1044. pmif->kind = controller_un_ata6;
  1045. else if (of_device_is_compatible(np, "K2-UATA"))
  1046. pmif->kind = controller_k2_ata6;
  1047. else if (of_device_is_compatible(np, "keylargo-ata")) {
  1048. if (strcmp(np->name, "ata-4") == 0)
  1049. pmif->kind = controller_kl_ata4;
  1050. else
  1051. pmif->kind = controller_kl_ata3;
  1052. } else if (of_device_is_compatible(np, "heathrow-ata"))
  1053. pmif->kind = controller_heathrow;
  1054. else {
  1055. pmif->kind = controller_ohare;
  1056. pmif->broken_dma = 1;
  1057. }
  1058. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  1059. pmif->aapl_bus_id = bidp ? *bidp : 0;
  1060. /* Get cable type from device-tree */
  1061. if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6
  1062. || pmif->kind == controller_k2_ata6
  1063. || pmif->kind == controller_sh_ata6) {
  1064. const char* cable = of_get_property(np, "cable-type", NULL);
  1065. if (cable && !strncmp(cable, "80-", 3))
  1066. pmif->cable_80 = 1;
  1067. }
  1068. /* G5's seem to have incorrect cable type in device-tree. Let's assume
  1069. * they have a 80 conductor cable, this seem to be always the case unless
  1070. * the user mucked around
  1071. */
  1072. if (of_device_is_compatible(np, "K2-UATA") ||
  1073. of_device_is_compatible(np, "shasta-ata"))
  1074. pmif->cable_80 = 1;
  1075. /* On Kauai-type controllers, we make sure the FCR is correct */
  1076. if (pmif->kauai_fcr)
  1077. writel(KAUAI_FCR_UATA_MAGIC |
  1078. KAUAI_FCR_UATA_RESET_N |
  1079. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  1080. pmif->mediabay = 0;
  1081. /* Make sure we have sane timings */
  1082. sanitize_timings(pmif);
  1083. #ifndef CONFIG_PPC64
  1084. /* XXX FIXME: Media bay stuff need re-organizing */
  1085. if (np->parent && np->parent->name
  1086. && strcasecmp(np->parent->name, "media-bay") == 0) {
  1087. #ifdef CONFIG_PMAC_MEDIABAY
  1088. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
  1089. #endif /* CONFIG_PMAC_MEDIABAY */
  1090. pmif->mediabay = 1;
  1091. if (!bidp)
  1092. pmif->aapl_bus_id = 1;
  1093. } else if (pmif->kind == controller_ohare) {
  1094. /* The code below is having trouble on some ohare machines
  1095. * (timing related ?). Until I can put my hand on one of these
  1096. * units, I keep the old way
  1097. */
  1098. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  1099. } else
  1100. #endif
  1101. {
  1102. /* This is necessary to enable IDE when net-booting */
  1103. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  1104. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  1105. msleep(10);
  1106. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  1107. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  1108. }
  1109. /* Setup MMIO ops */
  1110. default_hwif_mmiops(hwif);
  1111. hwif->OUTBSYNC = pmac_outbsync;
  1112. /* Tell common code _not_ to mess with resources */
  1113. hwif->mmio = 1;
  1114. hwif->hwif_data = pmif;
  1115. pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
  1116. memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
  1117. hwif->chipset = ide_pmac;
  1118. hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
  1119. hwif->hold = pmif->mediabay;
  1120. hwif->udma_four = pmif->cable_80;
  1121. hwif->drives[0].unmask = 1;
  1122. hwif->drives[1].unmask = 1;
  1123. hwif->tuneproc = pmac_ide_tuneproc;
  1124. if (pmif->kind == controller_un_ata6
  1125. || pmif->kind == controller_k2_ata6
  1126. || pmif->kind == controller_sh_ata6)
  1127. hwif->selectproc = pmac_ide_kauai_selectproc;
  1128. else
  1129. hwif->selectproc = pmac_ide_selectproc;
  1130. hwif->speedproc = pmac_ide_tune_chipset;
  1131. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  1132. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  1133. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  1134. #ifdef CONFIG_PMAC_MEDIABAY
  1135. if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
  1136. hwif->noprobe = 0;
  1137. #endif /* CONFIG_PMAC_MEDIABAY */
  1138. hwif->sg_max_nents = MAX_DCMDS;
  1139. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1140. /* has a DBDMA controller channel */
  1141. if (pmif->dma_regs)
  1142. pmac_ide_setup_dma(pmif, hwif);
  1143. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1144. /* We probe the hwif now */
  1145. probe_hwif_init(hwif);
  1146. ide_proc_register_port(hwif);
  1147. return 0;
  1148. }
  1149. /*
  1150. * Attach to a macio probed interface
  1151. */
  1152. static int __devinit
  1153. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  1154. {
  1155. void __iomem *base;
  1156. unsigned long regbase;
  1157. int irq;
  1158. ide_hwif_t *hwif;
  1159. pmac_ide_hwif_t *pmif;
  1160. int i, rc;
  1161. i = 0;
  1162. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1163. || pmac_ide[i].node != NULL))
  1164. ++i;
  1165. if (i >= MAX_HWIFS) {
  1166. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  1167. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  1168. return -ENODEV;
  1169. }
  1170. pmif = &pmac_ide[i];
  1171. hwif = &ide_hwifs[i];
  1172. if (macio_resource_count(mdev) == 0) {
  1173. printk(KERN_WARNING "ide%d: no address for %s\n",
  1174. i, mdev->ofdev.node->full_name);
  1175. return -ENXIO;
  1176. }
  1177. /* Request memory resource for IO ports */
  1178. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1179. printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
  1180. return -EBUSY;
  1181. }
  1182. /* XXX This is bogus. Should be fixed in the registry by checking
  1183. * the kind of host interrupt controller, a bit like gatwick
  1184. * fixes in irq.c. That works well enough for the single case
  1185. * where that happens though...
  1186. */
  1187. if (macio_irq_count(mdev) == 0) {
  1188. printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
  1189. i, mdev->ofdev.node->full_name);
  1190. irq = irq_create_mapping(NULL, 13);
  1191. } else
  1192. irq = macio_irq(mdev, 0);
  1193. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1194. regbase = (unsigned long) base;
  1195. hwif->pci_dev = mdev->bus->pdev;
  1196. hwif->gendev.parent = &mdev->ofdev.dev;
  1197. pmif->mdev = mdev;
  1198. pmif->node = mdev->ofdev.node;
  1199. pmif->regbase = regbase;
  1200. pmif->irq = irq;
  1201. pmif->kauai_fcr = NULL;
  1202. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1203. if (macio_resource_count(mdev) >= 2) {
  1204. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1205. printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i);
  1206. else
  1207. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1208. } else
  1209. pmif->dma_regs = NULL;
  1210. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1211. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1212. rc = pmac_ide_setup_device(pmif, hwif);
  1213. if (rc != 0) {
  1214. /* The inteface is released to the common IDE layer */
  1215. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1216. iounmap(base);
  1217. if (pmif->dma_regs)
  1218. iounmap(pmif->dma_regs);
  1219. memset(pmif, 0, sizeof(*pmif));
  1220. macio_release_resource(mdev, 0);
  1221. if (pmif->dma_regs)
  1222. macio_release_resource(mdev, 1);
  1223. }
  1224. return rc;
  1225. }
  1226. static int
  1227. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1228. {
  1229. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1230. int rc = 0;
  1231. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1232. && mesg.event == PM_EVENT_SUSPEND) {
  1233. rc = pmac_ide_do_suspend(hwif);
  1234. if (rc == 0)
  1235. mdev->ofdev.dev.power.power_state = mesg;
  1236. }
  1237. return rc;
  1238. }
  1239. static int
  1240. pmac_ide_macio_resume(struct macio_dev *mdev)
  1241. {
  1242. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1243. int rc = 0;
  1244. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1245. rc = pmac_ide_do_resume(hwif);
  1246. if (rc == 0)
  1247. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1248. }
  1249. return rc;
  1250. }
  1251. /*
  1252. * Attach to a PCI probed interface
  1253. */
  1254. static int __devinit
  1255. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1256. {
  1257. ide_hwif_t *hwif;
  1258. struct device_node *np;
  1259. pmac_ide_hwif_t *pmif;
  1260. void __iomem *base;
  1261. unsigned long rbase, rlen;
  1262. int i, rc;
  1263. np = pci_device_to_OF_node(pdev);
  1264. if (np == NULL) {
  1265. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1266. return -ENODEV;
  1267. }
  1268. i = 0;
  1269. while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
  1270. || pmac_ide[i].node != NULL))
  1271. ++i;
  1272. if (i >= MAX_HWIFS) {
  1273. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1274. printk(KERN_ERR " %s\n", np->full_name);
  1275. return -ENODEV;
  1276. }
  1277. pmif = &pmac_ide[i];
  1278. hwif = &ide_hwifs[i];
  1279. if (pci_enable_device(pdev)) {
  1280. printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
  1281. i, np->full_name);
  1282. return -ENXIO;
  1283. }
  1284. pci_set_master(pdev);
  1285. if (pci_request_regions(pdev, "Kauai ATA")) {
  1286. printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
  1287. i, np->full_name);
  1288. return -ENXIO;
  1289. }
  1290. hwif->pci_dev = pdev;
  1291. hwif->gendev.parent = &pdev->dev;
  1292. pmif->mdev = NULL;
  1293. pmif->node = np;
  1294. rbase = pci_resource_start(pdev, 0);
  1295. rlen = pci_resource_len(pdev, 0);
  1296. base = ioremap(rbase, rlen);
  1297. pmif->regbase = (unsigned long) base + 0x2000;
  1298. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1299. pmif->dma_regs = base + 0x1000;
  1300. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1301. pmif->kauai_fcr = base;
  1302. pmif->irq = pdev->irq;
  1303. pci_set_drvdata(pdev, hwif);
  1304. rc = pmac_ide_setup_device(pmif, hwif);
  1305. if (rc != 0) {
  1306. /* The inteface is released to the common IDE layer */
  1307. pci_set_drvdata(pdev, NULL);
  1308. iounmap(base);
  1309. memset(pmif, 0, sizeof(*pmif));
  1310. pci_release_regions(pdev);
  1311. }
  1312. return rc;
  1313. }
  1314. static int
  1315. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1316. {
  1317. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1318. int rc = 0;
  1319. if (mesg.event != pdev->dev.power.power_state.event
  1320. && mesg.event == PM_EVENT_SUSPEND) {
  1321. rc = pmac_ide_do_suspend(hwif);
  1322. if (rc == 0)
  1323. pdev->dev.power.power_state = mesg;
  1324. }
  1325. return rc;
  1326. }
  1327. static int
  1328. pmac_ide_pci_resume(struct pci_dev *pdev)
  1329. {
  1330. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1331. int rc = 0;
  1332. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1333. rc = pmac_ide_do_resume(hwif);
  1334. if (rc == 0)
  1335. pdev->dev.power.power_state = PMSG_ON;
  1336. }
  1337. return rc;
  1338. }
  1339. static struct of_device_id pmac_ide_macio_match[] =
  1340. {
  1341. {
  1342. .name = "IDE",
  1343. },
  1344. {
  1345. .name = "ATA",
  1346. },
  1347. {
  1348. .type = "ide",
  1349. },
  1350. {
  1351. .type = "ata",
  1352. },
  1353. {},
  1354. };
  1355. static struct macio_driver pmac_ide_macio_driver =
  1356. {
  1357. .name = "ide-pmac",
  1358. .match_table = pmac_ide_macio_match,
  1359. .probe = pmac_ide_macio_attach,
  1360. .suspend = pmac_ide_macio_suspend,
  1361. .resume = pmac_ide_macio_resume,
  1362. };
  1363. static struct pci_device_id pmac_ide_pci_match[] = {
  1364. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA,
  1365. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1366. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100,
  1367. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1368. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100,
  1369. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1370. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA,
  1371. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1372. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA,
  1373. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
  1374. };
  1375. static struct pci_driver pmac_ide_pci_driver = {
  1376. .name = "ide-pmac",
  1377. .id_table = pmac_ide_pci_match,
  1378. .probe = pmac_ide_pci_attach,
  1379. .suspend = pmac_ide_pci_suspend,
  1380. .resume = pmac_ide_pci_resume,
  1381. };
  1382. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1383. int __init pmac_ide_probe(void)
  1384. {
  1385. int error;
  1386. if (!machine_is(powermac))
  1387. return -ENODEV;
  1388. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1389. error = pci_register_driver(&pmac_ide_pci_driver);
  1390. if (error)
  1391. goto out;
  1392. error = macio_register_driver(&pmac_ide_macio_driver);
  1393. if (error) {
  1394. pci_unregister_driver(&pmac_ide_pci_driver);
  1395. goto out;
  1396. }
  1397. #else
  1398. error = macio_register_driver(&pmac_ide_macio_driver);
  1399. if (error)
  1400. goto out;
  1401. error = pci_register_driver(&pmac_ide_pci_driver);
  1402. if (error) {
  1403. macio_unregister_driver(&pmac_ide_macio_driver);
  1404. goto out;
  1405. }
  1406. #endif
  1407. out:
  1408. return error;
  1409. }
  1410. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1411. /*
  1412. * pmac_ide_build_dmatable builds the DBDMA command list
  1413. * for a transfer and sets the DBDMA channel to point to it.
  1414. */
  1415. static int
  1416. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1417. {
  1418. struct dbdma_cmd *table;
  1419. int i, count = 0;
  1420. ide_hwif_t *hwif = HWIF(drive);
  1421. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1422. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1423. struct scatterlist *sg;
  1424. int wr = (rq_data_dir(rq) == WRITE);
  1425. /* DMA table is already aligned */
  1426. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1427. /* Make sure DMA controller is stopped (necessary ?) */
  1428. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1429. while (readl(&dma->status) & RUN)
  1430. udelay(1);
  1431. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1432. if (!i)
  1433. return 0;
  1434. /* Build DBDMA commands list */
  1435. sg = hwif->sg_table;
  1436. while (i && sg_dma_len(sg)) {
  1437. u32 cur_addr;
  1438. u32 cur_len;
  1439. cur_addr = sg_dma_address(sg);
  1440. cur_len = sg_dma_len(sg);
  1441. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1442. if (pmif->broken_dma_warn == 0) {
  1443. printk(KERN_WARNING "%s: DMA on non aligned address,"
  1444. "switching to PIO on Ohare chipset\n", drive->name);
  1445. pmif->broken_dma_warn = 1;
  1446. }
  1447. goto use_pio_instead;
  1448. }
  1449. while (cur_len) {
  1450. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1451. if (count++ >= MAX_DCMDS) {
  1452. printk(KERN_WARNING "%s: DMA table too small\n",
  1453. drive->name);
  1454. goto use_pio_instead;
  1455. }
  1456. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1457. st_le16(&table->req_count, tc);
  1458. st_le32(&table->phy_addr, cur_addr);
  1459. table->cmd_dep = 0;
  1460. table->xfer_status = 0;
  1461. table->res_count = 0;
  1462. cur_addr += tc;
  1463. cur_len -= tc;
  1464. ++table;
  1465. }
  1466. sg++;
  1467. i--;
  1468. }
  1469. /* convert the last command to an input/output last command */
  1470. if (count) {
  1471. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1472. /* add the stop command to the end of the list */
  1473. memset(table, 0, sizeof(struct dbdma_cmd));
  1474. st_le16(&table->command, DBDMA_STOP);
  1475. mb();
  1476. writel(hwif->dmatable_dma, &dma->cmdptr);
  1477. return 1;
  1478. }
  1479. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1480. use_pio_instead:
  1481. pci_unmap_sg(hwif->pci_dev,
  1482. hwif->sg_table,
  1483. hwif->sg_nents,
  1484. hwif->sg_dma_direction);
  1485. return 0; /* revert to PIO for this request */
  1486. }
  1487. /* Teardown mappings after DMA has completed. */
  1488. static void
  1489. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1490. {
  1491. ide_hwif_t *hwif = drive->hwif;
  1492. struct pci_dev *dev = HWIF(drive)->pci_dev;
  1493. struct scatterlist *sg = hwif->sg_table;
  1494. int nents = hwif->sg_nents;
  1495. if (nents) {
  1496. pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction);
  1497. hwif->sg_nents = 0;
  1498. }
  1499. }
  1500. /*
  1501. * Pick up best MDMA timing for the drive and apply it
  1502. */
  1503. static int
  1504. pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
  1505. {
  1506. ide_hwif_t *hwif = HWIF(drive);
  1507. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1508. int drive_cycle_time;
  1509. struct hd_driveid *id = drive->id;
  1510. u32 *timings, *timings2;
  1511. u32 timing_local[2];
  1512. int ret;
  1513. /* which drive is it ? */
  1514. timings = &pmif->timings[drive->select.b.unit & 0x01];
  1515. timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
  1516. /* Check if drive provide explicit cycle time */
  1517. if ((id->field_valid & 2) && (id->eide_dma_time))
  1518. drive_cycle_time = id->eide_dma_time;
  1519. else
  1520. drive_cycle_time = 0;
  1521. /* Copy timings to local image */
  1522. timing_local[0] = *timings;
  1523. timing_local[1] = *timings2;
  1524. /* Calculate controller timings */
  1525. ret = set_timings_mdma( drive, pmif->kind,
  1526. &timing_local[0],
  1527. &timing_local[1],
  1528. mode,
  1529. drive_cycle_time);
  1530. if (ret)
  1531. return 0;
  1532. /* Set feature on drive */
  1533. printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
  1534. ret = pmac_ide_do_setfeature(drive, mode);
  1535. if (ret) {
  1536. printk(KERN_WARNING "%s: Failed !\n", drive->name);
  1537. return 0;
  1538. }
  1539. /* Apply timings to controller */
  1540. *timings = timing_local[0];
  1541. *timings2 = timing_local[1];
  1542. /* Set speed info in drive */
  1543. drive->current_speed = mode;
  1544. if (!drive->init_speed)
  1545. drive->init_speed = mode;
  1546. return 1;
  1547. }
  1548. /*
  1549. * Pick up best UDMA timing for the drive and apply it
  1550. */
  1551. static int
  1552. pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
  1553. {
  1554. ide_hwif_t *hwif = HWIF(drive);
  1555. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1556. u32 *timings, *timings2;
  1557. u32 timing_local[2];
  1558. int ret;
  1559. /* which drive is it ? */
  1560. timings = &pmif->timings[drive->select.b.unit & 0x01];
  1561. timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
  1562. /* Copy timings to local image */
  1563. timing_local[0] = *timings;
  1564. timing_local[1] = *timings2;
  1565. /* Calculate timings for interface */
  1566. if (pmif->kind == controller_un_ata6
  1567. || pmif->kind == controller_k2_ata6)
  1568. ret = set_timings_udma_ata6( &timing_local[0],
  1569. &timing_local[1],
  1570. mode);
  1571. else if (pmif->kind == controller_sh_ata6)
  1572. ret = set_timings_udma_shasta( &timing_local[0],
  1573. &timing_local[1],
  1574. mode);
  1575. else
  1576. ret = set_timings_udma_ata4(&timing_local[0], mode);
  1577. if (ret)
  1578. return 0;
  1579. /* Set feature on drive */
  1580. printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
  1581. ret = pmac_ide_do_setfeature(drive, mode);
  1582. if (ret) {
  1583. printk(KERN_WARNING "%s: Failed !\n", drive->name);
  1584. return 0;
  1585. }
  1586. /* Apply timings to controller */
  1587. *timings = timing_local[0];
  1588. *timings2 = timing_local[1];
  1589. /* Set speed info in drive */
  1590. drive->current_speed = mode;
  1591. if (!drive->init_speed)
  1592. drive->init_speed = mode;
  1593. return 1;
  1594. }
  1595. /*
  1596. * Check what is the best DMA timing setting for the drive and
  1597. * call appropriate functions to apply it.
  1598. */
  1599. static int
  1600. pmac_ide_dma_check(ide_drive_t *drive)
  1601. {
  1602. struct hd_driveid *id = drive->id;
  1603. ide_hwif_t *hwif = HWIF(drive);
  1604. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1605. int enable = 1;
  1606. int map;
  1607. drive->using_dma = 0;
  1608. if (drive->media == ide_floppy)
  1609. enable = 0;
  1610. if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
  1611. enable = 0;
  1612. if (__ide_dma_bad_drive(drive))
  1613. enable = 0;
  1614. if (enable) {
  1615. short mode;
  1616. map = XFER_MWDMA;
  1617. if (pmif->kind == controller_kl_ata4
  1618. || pmif->kind == controller_un_ata6
  1619. || pmif->kind == controller_k2_ata6
  1620. || pmif->kind == controller_sh_ata6) {
  1621. map |= XFER_UDMA;
  1622. if (pmif->cable_80) {
  1623. map |= XFER_UDMA_66;
  1624. if (pmif->kind == controller_un_ata6 ||
  1625. pmif->kind == controller_k2_ata6 ||
  1626. pmif->kind == controller_sh_ata6)
  1627. map |= XFER_UDMA_100;
  1628. if (pmif->kind == controller_sh_ata6)
  1629. map |= XFER_UDMA_133;
  1630. }
  1631. }
  1632. mode = ide_find_best_mode(drive, map);
  1633. if (mode & XFER_UDMA)
  1634. drive->using_dma = pmac_ide_udma_enable(drive, mode);
  1635. else if (mode & XFER_MWDMA)
  1636. drive->using_dma = pmac_ide_mdma_enable(drive, mode);
  1637. hwif->OUTB(0, IDE_CONTROL_REG);
  1638. /* Apply settings to controller */
  1639. pmac_ide_do_update_timings(drive);
  1640. }
  1641. return 0;
  1642. }
  1643. /*
  1644. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1645. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1646. */
  1647. static int
  1648. pmac_ide_dma_setup(ide_drive_t *drive)
  1649. {
  1650. ide_hwif_t *hwif = HWIF(drive);
  1651. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1652. struct request *rq = HWGROUP(drive)->rq;
  1653. u8 unit = (drive->select.b.unit & 0x01);
  1654. u8 ata4;
  1655. if (pmif == NULL)
  1656. return 1;
  1657. ata4 = (pmif->kind == controller_kl_ata4);
  1658. if (!pmac_ide_build_dmatable(drive, rq)) {
  1659. ide_map_sg(drive, rq);
  1660. return 1;
  1661. }
  1662. /* Apple adds 60ns to wrDataSetup on reads */
  1663. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1664. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1665. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1666. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1667. }
  1668. drive->waiting_for_dma = 1;
  1669. return 0;
  1670. }
  1671. static void
  1672. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1673. {
  1674. /* issue cmd to drive */
  1675. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1676. }
  1677. /*
  1678. * Kick the DMA controller into life after the DMA command has been issued
  1679. * to the drive.
  1680. */
  1681. static void
  1682. pmac_ide_dma_start(ide_drive_t *drive)
  1683. {
  1684. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1685. volatile struct dbdma_regs __iomem *dma;
  1686. dma = pmif->dma_regs;
  1687. writel((RUN << 16) | RUN, &dma->control);
  1688. /* Make sure it gets to the controller right now */
  1689. (void)readl(&dma->control);
  1690. }
  1691. /*
  1692. * After a DMA transfer, make sure the controller is stopped
  1693. */
  1694. static int
  1695. pmac_ide_dma_end (ide_drive_t *drive)
  1696. {
  1697. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1698. volatile struct dbdma_regs __iomem *dma;
  1699. u32 dstat;
  1700. if (pmif == NULL)
  1701. return 0;
  1702. dma = pmif->dma_regs;
  1703. drive->waiting_for_dma = 0;
  1704. dstat = readl(&dma->status);
  1705. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1706. pmac_ide_destroy_dmatable(drive);
  1707. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1708. * in theory, but with ATAPI decices doing buffer underruns, that would
  1709. * cause us to disable DMA, which isn't what we want
  1710. */
  1711. return (dstat & (RUN|DEAD)) != RUN;
  1712. }
  1713. /*
  1714. * Check out that the interrupt we got was for us. We can't always know this
  1715. * for sure with those Apple interfaces (well, we could on the recent ones but
  1716. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1717. * so it's not really a problem
  1718. */
  1719. static int
  1720. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1721. {
  1722. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1723. volatile struct dbdma_regs __iomem *dma;
  1724. unsigned long status, timeout;
  1725. if (pmif == NULL)
  1726. return 0;
  1727. dma = pmif->dma_regs;
  1728. /* We have to things to deal with here:
  1729. *
  1730. * - The dbdma won't stop if the command was started
  1731. * but completed with an error without transferring all
  1732. * datas. This happens when bad blocks are met during
  1733. * a multi-block transfer.
  1734. *
  1735. * - The dbdma fifo hasn't yet finished flushing to
  1736. * to system memory when the disk interrupt occurs.
  1737. *
  1738. */
  1739. /* If ACTIVE is cleared, the STOP command have passed and
  1740. * transfer is complete.
  1741. */
  1742. status = readl(&dma->status);
  1743. if (!(status & ACTIVE))
  1744. return 1;
  1745. if (!drive->waiting_for_dma)
  1746. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1747. called while not waiting\n", HWIF(drive)->index);
  1748. /* If dbdma didn't execute the STOP command yet, the
  1749. * active bit is still set. We consider that we aren't
  1750. * sharing interrupts (which is hopefully the case with
  1751. * those controllers) and so we just try to flush the
  1752. * channel for pending data in the fifo
  1753. */
  1754. udelay(1);
  1755. writel((FLUSH << 16) | FLUSH, &dma->control);
  1756. timeout = 0;
  1757. for (;;) {
  1758. udelay(1);
  1759. status = readl(&dma->status);
  1760. if ((status & FLUSH) == 0)
  1761. break;
  1762. if (++timeout > 100) {
  1763. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1764. timeout flushing channel\n", HWIF(drive)->index);
  1765. break;
  1766. }
  1767. }
  1768. return 1;
  1769. }
  1770. static void pmac_ide_dma_host_off(ide_drive_t *drive)
  1771. {
  1772. }
  1773. static void pmac_ide_dma_host_on(ide_drive_t *drive)
  1774. {
  1775. }
  1776. static int
  1777. pmac_ide_dma_lostirq (ide_drive_t *drive)
  1778. {
  1779. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1780. volatile struct dbdma_regs __iomem *dma;
  1781. unsigned long status;
  1782. if (pmif == NULL)
  1783. return 0;
  1784. dma = pmif->dma_regs;
  1785. status = readl(&dma->status);
  1786. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1787. return 0;
  1788. }
  1789. /*
  1790. * Allocate the data structures needed for using DMA with an interface
  1791. * and fill the proper list of functions pointers
  1792. */
  1793. static void __init
  1794. pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
  1795. {
  1796. /* We won't need pci_dev if we switch to generic consistent
  1797. * DMA routines ...
  1798. */
  1799. if (hwif->pci_dev == NULL)
  1800. return;
  1801. /*
  1802. * Allocate space for the DBDMA commands.
  1803. * The +2 is +1 for the stop command and +1 to allow for
  1804. * aligning the start address to a multiple of 16 bytes.
  1805. */
  1806. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1807. hwif->pci_dev,
  1808. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1809. &hwif->dmatable_dma);
  1810. if (pmif->dma_table_cpu == NULL) {
  1811. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1812. hwif->name);
  1813. return;
  1814. }
  1815. hwif->dma_off_quietly = &ide_dma_off_quietly;
  1816. hwif->ide_dma_on = &__ide_dma_on;
  1817. hwif->ide_dma_check = &pmac_ide_dma_check;
  1818. hwif->dma_setup = &pmac_ide_dma_setup;
  1819. hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd;
  1820. hwif->dma_start = &pmac_ide_dma_start;
  1821. hwif->ide_dma_end = &pmac_ide_dma_end;
  1822. hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
  1823. hwif->dma_host_off = &pmac_ide_dma_host_off;
  1824. hwif->dma_host_on = &pmac_ide_dma_host_on;
  1825. hwif->ide_dma_timeout = &__ide_dma_timeout;
  1826. hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq;
  1827. hwif->atapi_dma = 1;
  1828. switch(pmif->kind) {
  1829. case controller_sh_ata6:
  1830. hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07;
  1831. hwif->mwdma_mask = 0x07;
  1832. hwif->swdma_mask = 0x00;
  1833. break;
  1834. case controller_un_ata6:
  1835. case controller_k2_ata6:
  1836. hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
  1837. hwif->mwdma_mask = 0x07;
  1838. hwif->swdma_mask = 0x00;
  1839. break;
  1840. case controller_kl_ata4:
  1841. hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
  1842. hwif->mwdma_mask = 0x07;
  1843. hwif->swdma_mask = 0x00;
  1844. break;
  1845. default:
  1846. hwif->ultra_mask = 0x00;
  1847. hwif->mwdma_mask = 0x07;
  1848. hwif->swdma_mask = 0x00;
  1849. break;
  1850. }
  1851. }
  1852. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */