ide-io.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/module.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/kernel.h>
  29. #include <linux/timer.h>
  30. #include <linux/mm.h>
  31. #include <linux/interrupt.h>
  32. #include <linux/major.h>
  33. #include <linux/errno.h>
  34. #include <linux/genhd.h>
  35. #include <linux/blkpg.h>
  36. #include <linux/slab.h>
  37. #include <linux/init.h>
  38. #include <linux/pci.h>
  39. #include <linux/delay.h>
  40. #include <linux/ide.h>
  41. #include <linux/completion.h>
  42. #include <linux/reboot.h>
  43. #include <linux/cdrom.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/device.h>
  46. #include <linux/kmod.h>
  47. #include <linux/scatterlist.h>
  48. #include <asm/byteorder.h>
  49. #include <asm/irq.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/io.h>
  52. #include <asm/bitops.h>
  53. static int __ide_end_request(ide_drive_t *drive, struct request *rq,
  54. int uptodate, int nr_sectors)
  55. {
  56. int ret = 1;
  57. /*
  58. * if failfast is set on a request, override number of sectors and
  59. * complete the whole request right now
  60. */
  61. if (blk_noretry_request(rq) && end_io_error(uptodate))
  62. nr_sectors = rq->hard_nr_sectors;
  63. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  64. rq->errors = -EIO;
  65. /*
  66. * decide whether to reenable DMA -- 3 is a random magic for now,
  67. * if we DMA timeout more than 3 times, just stay in PIO
  68. */
  69. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  70. drive->state = 0;
  71. HWGROUP(drive)->hwif->ide_dma_on(drive);
  72. }
  73. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  74. add_disk_randomness(rq->rq_disk);
  75. if (!list_empty(&rq->queuelist))
  76. blkdev_dequeue_request(rq);
  77. HWGROUP(drive)->rq = NULL;
  78. end_that_request_last(rq, uptodate);
  79. ret = 0;
  80. }
  81. return ret;
  82. }
  83. /**
  84. * ide_end_request - complete an IDE I/O
  85. * @drive: IDE device for the I/O
  86. * @uptodate:
  87. * @nr_sectors: number of sectors completed
  88. *
  89. * This is our end_request wrapper function. We complete the I/O
  90. * update random number input and dequeue the request, which if
  91. * it was tagged may be out of order.
  92. */
  93. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  94. {
  95. struct request *rq;
  96. unsigned long flags;
  97. int ret = 1;
  98. /*
  99. * room for locking improvements here, the calls below don't
  100. * need the queue lock held at all
  101. */
  102. spin_lock_irqsave(&ide_lock, flags);
  103. rq = HWGROUP(drive)->rq;
  104. if (!nr_sectors)
  105. nr_sectors = rq->hard_cur_sectors;
  106. ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
  107. spin_unlock_irqrestore(&ide_lock, flags);
  108. return ret;
  109. }
  110. EXPORT_SYMBOL(ide_end_request);
  111. /*
  112. * Power Management state machine. This one is rather trivial for now,
  113. * we should probably add more, like switching back to PIO on suspend
  114. * to help some BIOSes, re-do the door locking on resume, etc...
  115. */
  116. enum {
  117. ide_pm_flush_cache = ide_pm_state_start_suspend,
  118. idedisk_pm_standby,
  119. idedisk_pm_restore_pio = ide_pm_state_start_resume,
  120. idedisk_pm_idle,
  121. ide_pm_restore_dma,
  122. };
  123. static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
  124. {
  125. struct request_pm_state *pm = rq->data;
  126. if (drive->media != ide_disk)
  127. return;
  128. switch (pm->pm_step) {
  129. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
  130. if (pm->pm_state == PM_EVENT_FREEZE)
  131. pm->pm_step = ide_pm_state_completed;
  132. else
  133. pm->pm_step = idedisk_pm_standby;
  134. break;
  135. case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
  136. pm->pm_step = ide_pm_state_completed;
  137. break;
  138. case idedisk_pm_restore_pio: /* Resume step 1 complete */
  139. pm->pm_step = idedisk_pm_idle;
  140. break;
  141. case idedisk_pm_idle: /* Resume step 2 (idle) complete */
  142. pm->pm_step = ide_pm_restore_dma;
  143. break;
  144. }
  145. }
  146. static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
  147. {
  148. struct request_pm_state *pm = rq->data;
  149. ide_task_t *args = rq->special;
  150. memset(args, 0, sizeof(*args));
  151. switch (pm->pm_step) {
  152. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
  153. if (drive->media != ide_disk)
  154. break;
  155. /* Not supported? Switch to next step now. */
  156. if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
  157. ide_complete_power_step(drive, rq, 0, 0);
  158. return ide_stopped;
  159. }
  160. if (ide_id_has_flush_cache_ext(drive->id))
  161. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
  162. else
  163. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
  164. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  165. args->handler = &task_no_data_intr;
  166. return do_rw_taskfile(drive, args);
  167. case idedisk_pm_standby: /* Suspend step 2 (standby) */
  168. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
  169. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  170. args->handler = &task_no_data_intr;
  171. return do_rw_taskfile(drive, args);
  172. case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
  173. if (drive->hwif->tuneproc != NULL)
  174. drive->hwif->tuneproc(drive, 255);
  175. /*
  176. * skip idedisk_pm_idle for ATAPI devices
  177. */
  178. if (drive->media != ide_disk)
  179. pm->pm_step = ide_pm_restore_dma;
  180. else
  181. ide_complete_power_step(drive, rq, 0, 0);
  182. return ide_stopped;
  183. case idedisk_pm_idle: /* Resume step 2 (idle) */
  184. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
  185. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  186. args->handler = task_no_data_intr;
  187. return do_rw_taskfile(drive, args);
  188. case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
  189. /*
  190. * Right now, all we do is call hwif->ide_dma_check(drive),
  191. * we could be smarter and check for current xfer_speed
  192. * in struct drive etc...
  193. */
  194. if ((drive->id->capability & 1) == 0)
  195. break;
  196. if (drive->hwif->ide_dma_check == NULL)
  197. break;
  198. drive->hwif->dma_off_quietly(drive);
  199. ide_set_dma(drive);
  200. break;
  201. }
  202. pm->pm_step = ide_pm_state_completed;
  203. return ide_stopped;
  204. }
  205. /**
  206. * ide_end_dequeued_request - complete an IDE I/O
  207. * @drive: IDE device for the I/O
  208. * @uptodate:
  209. * @nr_sectors: number of sectors completed
  210. *
  211. * Complete an I/O that is no longer on the request queue. This
  212. * typically occurs when we pull the request and issue a REQUEST_SENSE.
  213. * We must still finish the old request but we must not tamper with the
  214. * queue in the meantime.
  215. *
  216. * NOTE: This path does not handle barrier, but barrier is not supported
  217. * on ide-cd anyway.
  218. */
  219. int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
  220. int uptodate, int nr_sectors)
  221. {
  222. unsigned long flags;
  223. int ret = 1;
  224. spin_lock_irqsave(&ide_lock, flags);
  225. BUG_ON(!blk_rq_started(rq));
  226. /*
  227. * if failfast is set on a request, override number of sectors and
  228. * complete the whole request right now
  229. */
  230. if (blk_noretry_request(rq) && end_io_error(uptodate))
  231. nr_sectors = rq->hard_nr_sectors;
  232. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  233. rq->errors = -EIO;
  234. /*
  235. * decide whether to reenable DMA -- 3 is a random magic for now,
  236. * if we DMA timeout more than 3 times, just stay in PIO
  237. */
  238. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  239. drive->state = 0;
  240. HWGROUP(drive)->hwif->ide_dma_on(drive);
  241. }
  242. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  243. add_disk_randomness(rq->rq_disk);
  244. if (blk_rq_tagged(rq))
  245. blk_queue_end_tag(drive->queue, rq);
  246. end_that_request_last(rq, uptodate);
  247. ret = 0;
  248. }
  249. spin_unlock_irqrestore(&ide_lock, flags);
  250. return ret;
  251. }
  252. EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
  253. /**
  254. * ide_complete_pm_request - end the current Power Management request
  255. * @drive: target drive
  256. * @rq: request
  257. *
  258. * This function cleans up the current PM request and stops the queue
  259. * if necessary.
  260. */
  261. static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
  262. {
  263. unsigned long flags;
  264. #ifdef DEBUG_PM
  265. printk("%s: completing PM request, %s\n", drive->name,
  266. blk_pm_suspend_request(rq) ? "suspend" : "resume");
  267. #endif
  268. spin_lock_irqsave(&ide_lock, flags);
  269. if (blk_pm_suspend_request(rq)) {
  270. blk_stop_queue(drive->queue);
  271. } else {
  272. drive->blocked = 0;
  273. blk_start_queue(drive->queue);
  274. }
  275. blkdev_dequeue_request(rq);
  276. HWGROUP(drive)->rq = NULL;
  277. end_that_request_last(rq, 1);
  278. spin_unlock_irqrestore(&ide_lock, flags);
  279. }
  280. /*
  281. * FIXME: probably move this somewhere else, name is bad too :)
  282. */
  283. u64 ide_get_error_location(ide_drive_t *drive, char *args)
  284. {
  285. u32 high, low;
  286. u8 hcyl, lcyl, sect;
  287. u64 sector;
  288. high = 0;
  289. hcyl = args[5];
  290. lcyl = args[4];
  291. sect = args[3];
  292. if (ide_id_has_flush_cache_ext(drive->id)) {
  293. low = (hcyl << 16) | (lcyl << 8) | sect;
  294. HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  295. high = ide_read_24(drive);
  296. } else {
  297. u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
  298. if (cur & 0x40) {
  299. high = cur & 0xf;
  300. low = (hcyl << 16) | (lcyl << 8) | sect;
  301. } else {
  302. low = hcyl * drive->head * drive->sect;
  303. low += lcyl * drive->sect;
  304. low += sect - 1;
  305. }
  306. }
  307. sector = ((u64) high << 24) | low;
  308. return sector;
  309. }
  310. EXPORT_SYMBOL(ide_get_error_location);
  311. /**
  312. * ide_end_drive_cmd - end an explicit drive command
  313. * @drive: command
  314. * @stat: status bits
  315. * @err: error bits
  316. *
  317. * Clean up after success/failure of an explicit drive command.
  318. * These get thrown onto the queue so they are synchronized with
  319. * real I/O operations on the drive.
  320. *
  321. * In LBA48 mode we have to read the register set twice to get
  322. * all the extra information out.
  323. */
  324. void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
  325. {
  326. ide_hwif_t *hwif = HWIF(drive);
  327. unsigned long flags;
  328. struct request *rq;
  329. spin_lock_irqsave(&ide_lock, flags);
  330. rq = HWGROUP(drive)->rq;
  331. spin_unlock_irqrestore(&ide_lock, flags);
  332. if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  333. u8 *args = (u8 *) rq->buffer;
  334. if (rq->errors == 0)
  335. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  336. if (args) {
  337. args[0] = stat;
  338. args[1] = err;
  339. args[2] = hwif->INB(IDE_NSECTOR_REG);
  340. }
  341. } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
  342. u8 *args = (u8 *) rq->buffer;
  343. if (rq->errors == 0)
  344. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  345. if (args) {
  346. args[0] = stat;
  347. args[1] = err;
  348. args[2] = hwif->INB(IDE_NSECTOR_REG);
  349. args[3] = hwif->INB(IDE_SECTOR_REG);
  350. args[4] = hwif->INB(IDE_LCYL_REG);
  351. args[5] = hwif->INB(IDE_HCYL_REG);
  352. args[6] = hwif->INB(IDE_SELECT_REG);
  353. }
  354. } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  355. ide_task_t *args = (ide_task_t *) rq->special;
  356. if (rq->errors == 0)
  357. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  358. if (args) {
  359. if (args->tf_in_flags.b.data) {
  360. u16 data = hwif->INW(IDE_DATA_REG);
  361. args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
  362. args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
  363. }
  364. args->tfRegister[IDE_ERROR_OFFSET] = err;
  365. /* be sure we're looking at the low order bits */
  366. hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
  367. args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  368. args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  369. args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  370. args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  371. args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
  372. args->tfRegister[IDE_STATUS_OFFSET] = stat;
  373. if (drive->addressing == 1) {
  374. hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  375. args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
  376. args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  377. args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  378. args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  379. args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  380. }
  381. }
  382. } else if (blk_pm_request(rq)) {
  383. struct request_pm_state *pm = rq->data;
  384. #ifdef DEBUG_PM
  385. printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
  386. drive->name, rq->pm->pm_step, stat, err);
  387. #endif
  388. ide_complete_power_step(drive, rq, stat, err);
  389. if (pm->pm_step == ide_pm_state_completed)
  390. ide_complete_pm_request(drive, rq);
  391. return;
  392. }
  393. spin_lock_irqsave(&ide_lock, flags);
  394. blkdev_dequeue_request(rq);
  395. HWGROUP(drive)->rq = NULL;
  396. rq->errors = err;
  397. end_that_request_last(rq, !rq->errors);
  398. spin_unlock_irqrestore(&ide_lock, flags);
  399. }
  400. EXPORT_SYMBOL(ide_end_drive_cmd);
  401. /**
  402. * try_to_flush_leftover_data - flush junk
  403. * @drive: drive to flush
  404. *
  405. * try_to_flush_leftover_data() is invoked in response to a drive
  406. * unexpectedly having its DRQ_STAT bit set. As an alternative to
  407. * resetting the drive, this routine tries to clear the condition
  408. * by read a sector's worth of data from the drive. Of course,
  409. * this may not help if the drive is *waiting* for data from *us*.
  410. */
  411. static void try_to_flush_leftover_data (ide_drive_t *drive)
  412. {
  413. int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
  414. if (drive->media != ide_disk)
  415. return;
  416. while (i > 0) {
  417. u32 buffer[16];
  418. u32 wcount = (i > 16) ? 16 : i;
  419. i -= wcount;
  420. HWIF(drive)->ata_input_data(drive, buffer, wcount);
  421. }
  422. }
  423. static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  424. {
  425. if (rq->rq_disk) {
  426. ide_driver_t *drv;
  427. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  428. drv->end_request(drive, 0, 0);
  429. } else
  430. ide_end_request(drive, 0, 0);
  431. }
  432. static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  433. {
  434. ide_hwif_t *hwif = drive->hwif;
  435. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  436. /* other bits are useless when BUSY */
  437. rq->errors |= ERROR_RESET;
  438. } else if (stat & ERR_STAT) {
  439. /* err has different meaning on cdrom and tape */
  440. if (err == ABRT_ERR) {
  441. if (drive->select.b.lba &&
  442. /* some newer drives don't support WIN_SPECIFY */
  443. hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
  444. return ide_stopped;
  445. } else if ((err & BAD_CRC) == BAD_CRC) {
  446. /* UDMA crc error, just retry the operation */
  447. drive->crc_count++;
  448. } else if (err & (BBD_ERR | ECC_ERR)) {
  449. /* retries won't help these */
  450. rq->errors = ERROR_MAX;
  451. } else if (err & TRK0_ERR) {
  452. /* help it find track zero */
  453. rq->errors |= ERROR_RECAL;
  454. }
  455. }
  456. if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
  457. try_to_flush_leftover_data(drive);
  458. if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
  459. ide_kill_rq(drive, rq);
  460. return ide_stopped;
  461. }
  462. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  463. rq->errors |= ERROR_RESET;
  464. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  465. ++rq->errors;
  466. return ide_do_reset(drive);
  467. }
  468. if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
  469. drive->special.b.recalibrate = 1;
  470. ++rq->errors;
  471. return ide_stopped;
  472. }
  473. static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  474. {
  475. ide_hwif_t *hwif = drive->hwif;
  476. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  477. /* other bits are useless when BUSY */
  478. rq->errors |= ERROR_RESET;
  479. } else {
  480. /* add decoding error stuff */
  481. }
  482. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  483. /* force an abort */
  484. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  485. if (rq->errors >= ERROR_MAX) {
  486. ide_kill_rq(drive, rq);
  487. } else {
  488. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  489. ++rq->errors;
  490. return ide_do_reset(drive);
  491. }
  492. ++rq->errors;
  493. }
  494. return ide_stopped;
  495. }
  496. ide_startstop_t
  497. __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  498. {
  499. if (drive->media == ide_disk)
  500. return ide_ata_error(drive, rq, stat, err);
  501. return ide_atapi_error(drive, rq, stat, err);
  502. }
  503. EXPORT_SYMBOL_GPL(__ide_error);
  504. /**
  505. * ide_error - handle an error on the IDE
  506. * @drive: drive the error occurred on
  507. * @msg: message to report
  508. * @stat: status bits
  509. *
  510. * ide_error() takes action based on the error returned by the drive.
  511. * For normal I/O that may well include retries. We deal with
  512. * both new-style (taskfile) and old style command handling here.
  513. * In the case of taskfile command handling there is work left to
  514. * do
  515. */
  516. ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
  517. {
  518. struct request *rq;
  519. u8 err;
  520. err = ide_dump_status(drive, msg, stat);
  521. if ((rq = HWGROUP(drive)->rq) == NULL)
  522. return ide_stopped;
  523. /* retry only "normal" I/O: */
  524. if (!blk_fs_request(rq)) {
  525. rq->errors = 1;
  526. ide_end_drive_cmd(drive, stat, err);
  527. return ide_stopped;
  528. }
  529. if (rq->rq_disk) {
  530. ide_driver_t *drv;
  531. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  532. return drv->error(drive, rq, stat, err);
  533. } else
  534. return __ide_error(drive, rq, stat, err);
  535. }
  536. EXPORT_SYMBOL_GPL(ide_error);
  537. ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
  538. {
  539. if (drive->media != ide_disk)
  540. rq->errors |= ERROR_RESET;
  541. ide_kill_rq(drive, rq);
  542. return ide_stopped;
  543. }
  544. EXPORT_SYMBOL_GPL(__ide_abort);
  545. /**
  546. * ide_abort - abort pending IDE operations
  547. * @drive: drive the error occurred on
  548. * @msg: message to report
  549. *
  550. * ide_abort kills and cleans up when we are about to do a
  551. * host initiated reset on active commands. Longer term we
  552. * want handlers to have sensible abort handling themselves
  553. *
  554. * This differs fundamentally from ide_error because in
  555. * this case the command is doing just fine when we
  556. * blow it away.
  557. */
  558. ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
  559. {
  560. struct request *rq;
  561. if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
  562. return ide_stopped;
  563. /* retry only "normal" I/O: */
  564. if (!blk_fs_request(rq)) {
  565. rq->errors = 1;
  566. ide_end_drive_cmd(drive, BUSY_STAT, 0);
  567. return ide_stopped;
  568. }
  569. if (rq->rq_disk) {
  570. ide_driver_t *drv;
  571. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  572. return drv->abort(drive, rq);
  573. } else
  574. return __ide_abort(drive, rq);
  575. }
  576. /**
  577. * ide_cmd - issue a simple drive command
  578. * @drive: drive the command is for
  579. * @cmd: command byte
  580. * @nsect: sector byte
  581. * @handler: handler for the command completion
  582. *
  583. * Issue a simple drive command with interrupts.
  584. * The drive must be selected beforehand.
  585. */
  586. static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
  587. ide_handler_t *handler)
  588. {
  589. ide_hwif_t *hwif = HWIF(drive);
  590. if (IDE_CONTROL_REG)
  591. hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
  592. SELECT_MASK(drive,0);
  593. hwif->OUTB(nsect,IDE_NSECTOR_REG);
  594. ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
  595. }
  596. /**
  597. * drive_cmd_intr - drive command completion interrupt
  598. * @drive: drive the completion interrupt occurred on
  599. *
  600. * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
  601. * We do any necessary data reading and then wait for the drive to
  602. * go non busy. At that point we may read the error data and complete
  603. * the request
  604. */
  605. static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
  606. {
  607. struct request *rq = HWGROUP(drive)->rq;
  608. ide_hwif_t *hwif = HWIF(drive);
  609. u8 *args = (u8 *) rq->buffer;
  610. u8 stat = hwif->INB(IDE_STATUS_REG);
  611. int retries = 10;
  612. local_irq_enable_in_hardirq();
  613. if ((stat & DRQ_STAT) && args && args[3]) {
  614. u8 io_32bit = drive->io_32bit;
  615. drive->io_32bit = 0;
  616. hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
  617. drive->io_32bit = io_32bit;
  618. while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
  619. udelay(100);
  620. }
  621. if (!OK_STAT(stat, READY_STAT, BAD_STAT))
  622. return ide_error(drive, "drive_cmd", stat);
  623. /* calls ide_end_drive_cmd */
  624. ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
  625. return ide_stopped;
  626. }
  627. static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
  628. {
  629. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  630. task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
  631. task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
  632. task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
  633. task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
  634. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
  635. task->handler = &set_geometry_intr;
  636. }
  637. static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
  638. {
  639. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  640. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
  641. task->handler = &recal_intr;
  642. }
  643. static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
  644. {
  645. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
  646. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
  647. task->handler = &set_multmode_intr;
  648. }
  649. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  650. {
  651. special_t *s = &drive->special;
  652. ide_task_t args;
  653. memset(&args, 0, sizeof(ide_task_t));
  654. args.command_type = IDE_DRIVE_TASK_NO_DATA;
  655. if (s->b.set_geometry) {
  656. s->b.set_geometry = 0;
  657. ide_init_specify_cmd(drive, &args);
  658. } else if (s->b.recalibrate) {
  659. s->b.recalibrate = 0;
  660. ide_init_restore_cmd(drive, &args);
  661. } else if (s->b.set_multmode) {
  662. s->b.set_multmode = 0;
  663. if (drive->mult_req > drive->id->max_multsect)
  664. drive->mult_req = drive->id->max_multsect;
  665. ide_init_setmult_cmd(drive, &args);
  666. } else if (s->all) {
  667. int special = s->all;
  668. s->all = 0;
  669. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  670. return ide_stopped;
  671. }
  672. do_rw_taskfile(drive, &args);
  673. return ide_started;
  674. }
  675. /**
  676. * do_special - issue some special commands
  677. * @drive: drive the command is for
  678. *
  679. * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
  680. * commands to a drive. It used to do much more, but has been scaled
  681. * back.
  682. */
  683. static ide_startstop_t do_special (ide_drive_t *drive)
  684. {
  685. special_t *s = &drive->special;
  686. #ifdef DEBUG
  687. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  688. #endif
  689. if (s->b.set_tune) {
  690. s->b.set_tune = 0;
  691. if (HWIF(drive)->tuneproc != NULL)
  692. HWIF(drive)->tuneproc(drive, drive->tune_req);
  693. return ide_stopped;
  694. } else {
  695. if (drive->media == ide_disk)
  696. return ide_disk_special(drive);
  697. s->all = 0;
  698. drive->mult_req = 0;
  699. return ide_stopped;
  700. }
  701. }
  702. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  703. {
  704. ide_hwif_t *hwif = drive->hwif;
  705. struct scatterlist *sg = hwif->sg_table;
  706. if (hwif->sg_mapped) /* needed by ide-scsi */
  707. return;
  708. if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
  709. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  710. } else {
  711. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  712. hwif->sg_nents = 1;
  713. }
  714. }
  715. EXPORT_SYMBOL_GPL(ide_map_sg);
  716. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  717. {
  718. ide_hwif_t *hwif = drive->hwif;
  719. hwif->nsect = hwif->nleft = rq->nr_sectors;
  720. hwif->cursg = hwif->cursg_ofs = 0;
  721. }
  722. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  723. /**
  724. * execute_drive_command - issue special drive command
  725. * @drive: the drive to issue the command on
  726. * @rq: the request structure holding the command
  727. *
  728. * execute_drive_cmd() issues a special drive command, usually
  729. * initiated by ioctl() from the external hdparm program. The
  730. * command can be a drive command, drive task or taskfile
  731. * operation. Weirdly you can call it with NULL to wait for
  732. * all commands to finish. Don't do this as that is due to change
  733. */
  734. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  735. struct request *rq)
  736. {
  737. ide_hwif_t *hwif = HWIF(drive);
  738. if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
  739. ide_task_t *args = rq->special;
  740. if (!args)
  741. goto done;
  742. hwif->data_phase = args->data_phase;
  743. switch (hwif->data_phase) {
  744. case TASKFILE_MULTI_OUT:
  745. case TASKFILE_OUT:
  746. case TASKFILE_MULTI_IN:
  747. case TASKFILE_IN:
  748. ide_init_sg_cmd(drive, rq);
  749. ide_map_sg(drive, rq);
  750. default:
  751. break;
  752. }
  753. if (args->tf_out_flags.all != 0)
  754. return flagged_taskfile(drive, args);
  755. return do_rw_taskfile(drive, args);
  756. } else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
  757. u8 *args = rq->buffer;
  758. u8 sel;
  759. if (!args)
  760. goto done;
  761. #ifdef DEBUG
  762. printk("%s: DRIVE_TASK_CMD ", drive->name);
  763. printk("cmd=0x%02x ", args[0]);
  764. printk("fr=0x%02x ", args[1]);
  765. printk("ns=0x%02x ", args[2]);
  766. printk("sc=0x%02x ", args[3]);
  767. printk("lcyl=0x%02x ", args[4]);
  768. printk("hcyl=0x%02x ", args[5]);
  769. printk("sel=0x%02x\n", args[6]);
  770. #endif
  771. hwif->OUTB(args[1], IDE_FEATURE_REG);
  772. hwif->OUTB(args[3], IDE_SECTOR_REG);
  773. hwif->OUTB(args[4], IDE_LCYL_REG);
  774. hwif->OUTB(args[5], IDE_HCYL_REG);
  775. sel = (args[6] & ~0x10);
  776. if (drive->select.b.unit)
  777. sel |= 0x10;
  778. hwif->OUTB(sel, IDE_SELECT_REG);
  779. ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
  780. return ide_started;
  781. } else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
  782. u8 *args = rq->buffer;
  783. if (!args)
  784. goto done;
  785. #ifdef DEBUG
  786. printk("%s: DRIVE_CMD ", drive->name);
  787. printk("cmd=0x%02x ", args[0]);
  788. printk("sc=0x%02x ", args[1]);
  789. printk("fr=0x%02x ", args[2]);
  790. printk("xx=0x%02x\n", args[3]);
  791. #endif
  792. if (args[0] == WIN_SMART) {
  793. hwif->OUTB(0x4f, IDE_LCYL_REG);
  794. hwif->OUTB(0xc2, IDE_HCYL_REG);
  795. hwif->OUTB(args[2],IDE_FEATURE_REG);
  796. hwif->OUTB(args[1],IDE_SECTOR_REG);
  797. ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
  798. return ide_started;
  799. }
  800. hwif->OUTB(args[2],IDE_FEATURE_REG);
  801. ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
  802. return ide_started;
  803. }
  804. done:
  805. /*
  806. * NULL is actually a valid way of waiting for
  807. * all current requests to be flushed from the queue.
  808. */
  809. #ifdef DEBUG
  810. printk("%s: DRIVE_CMD (null)\n", drive->name);
  811. #endif
  812. ide_end_drive_cmd(drive,
  813. hwif->INB(IDE_STATUS_REG),
  814. hwif->INB(IDE_ERROR_REG));
  815. return ide_stopped;
  816. }
  817. static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
  818. {
  819. struct request_pm_state *pm = rq->data;
  820. if (blk_pm_suspend_request(rq) &&
  821. pm->pm_step == ide_pm_state_start_suspend)
  822. /* Mark drive blocked when starting the suspend sequence. */
  823. drive->blocked = 1;
  824. else if (blk_pm_resume_request(rq) &&
  825. pm->pm_step == ide_pm_state_start_resume) {
  826. /*
  827. * The first thing we do on wakeup is to wait for BSY bit to
  828. * go away (with a looong timeout) as a drive on this hwif may
  829. * just be POSTing itself.
  830. * We do that before even selecting as the "other" device on
  831. * the bus may be broken enough to walk on our toes at this
  832. * point.
  833. */
  834. int rc;
  835. #ifdef DEBUG_PM
  836. printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
  837. #endif
  838. rc = ide_wait_not_busy(HWIF(drive), 35000);
  839. if (rc)
  840. printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
  841. SELECT_DRIVE(drive);
  842. HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
  843. rc = ide_wait_not_busy(HWIF(drive), 100000);
  844. if (rc)
  845. printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
  846. }
  847. }
  848. /**
  849. * start_request - start of I/O and command issuing for IDE
  850. *
  851. * start_request() initiates handling of a new I/O request. It
  852. * accepts commands and I/O (read/write) requests. It also does
  853. * the final remapping for weird stuff like EZDrive. Once
  854. * device mapper can work sector level the EZDrive stuff can go away
  855. *
  856. * FIXME: this function needs a rename
  857. */
  858. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  859. {
  860. ide_startstop_t startstop;
  861. sector_t block;
  862. BUG_ON(!blk_rq_started(rq));
  863. #ifdef DEBUG
  864. printk("%s: start_request: current=0x%08lx\n",
  865. HWIF(drive)->name, (unsigned long) rq);
  866. #endif
  867. /* bail early if we've exceeded max_failures */
  868. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  869. goto kill_rq;
  870. }
  871. block = rq->sector;
  872. if (blk_fs_request(rq) &&
  873. (drive->media == ide_disk || drive->media == ide_floppy)) {
  874. block += drive->sect0;
  875. }
  876. /* Yecch - this will shift the entire interval,
  877. possibly killing some innocent following sector */
  878. if (block == 0 && drive->remap_0_to_1 == 1)
  879. block = 1; /* redirect MBR access to EZ-Drive partn table */
  880. if (blk_pm_request(rq))
  881. ide_check_pm_state(drive, rq);
  882. SELECT_DRIVE(drive);
  883. if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
  884. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  885. return startstop;
  886. }
  887. if (!drive->special.all) {
  888. ide_driver_t *drv;
  889. /*
  890. * We reset the drive so we need to issue a SETFEATURES.
  891. * Do it _after_ do_special() restored device parameters.
  892. */
  893. if (drive->current_speed == 0xff)
  894. ide_config_drive_speed(drive, drive->desired_speed);
  895. if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
  896. rq->cmd_type == REQ_TYPE_ATA_TASK ||
  897. rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
  898. return execute_drive_cmd(drive, rq);
  899. else if (blk_pm_request(rq)) {
  900. struct request_pm_state *pm = rq->data;
  901. #ifdef DEBUG_PM
  902. printk("%s: start_power_step(step: %d)\n",
  903. drive->name, rq->pm->pm_step);
  904. #endif
  905. startstop = ide_start_power_step(drive, rq);
  906. if (startstop == ide_stopped &&
  907. pm->pm_step == ide_pm_state_completed)
  908. ide_complete_pm_request(drive, rq);
  909. return startstop;
  910. }
  911. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  912. return drv->do_request(drive, rq, block);
  913. }
  914. return do_special(drive);
  915. kill_rq:
  916. ide_kill_rq(drive, rq);
  917. return ide_stopped;
  918. }
  919. /**
  920. * ide_stall_queue - pause an IDE device
  921. * @drive: drive to stall
  922. * @timeout: time to stall for (jiffies)
  923. *
  924. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  925. * to the hwgroup by sleeping for timeout jiffies.
  926. */
  927. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  928. {
  929. if (timeout > WAIT_WORSTCASE)
  930. timeout = WAIT_WORSTCASE;
  931. drive->sleep = timeout + jiffies;
  932. drive->sleeping = 1;
  933. }
  934. EXPORT_SYMBOL(ide_stall_queue);
  935. #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
  936. /**
  937. * choose_drive - select a drive to service
  938. * @hwgroup: hardware group to select on
  939. *
  940. * choose_drive() selects the next drive which will be serviced.
  941. * This is necessary because the IDE layer can't issue commands
  942. * to both drives on the same cable, unlike SCSI.
  943. */
  944. static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
  945. {
  946. ide_drive_t *drive, *best;
  947. repeat:
  948. best = NULL;
  949. drive = hwgroup->drive;
  950. /*
  951. * drive is doing pre-flush, ordered write, post-flush sequence. even
  952. * though that is 3 requests, it must be seen as a single transaction.
  953. * we must not preempt this drive until that is complete
  954. */
  955. if (blk_queue_flushing(drive->queue)) {
  956. /*
  957. * small race where queue could get replugged during
  958. * the 3-request flush cycle, just yank the plug since
  959. * we want it to finish asap
  960. */
  961. blk_remove_plug(drive->queue);
  962. return drive;
  963. }
  964. do {
  965. if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
  966. && !elv_queue_empty(drive->queue)) {
  967. if (!best
  968. || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
  969. || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
  970. {
  971. if (!blk_queue_plugged(drive->queue))
  972. best = drive;
  973. }
  974. }
  975. } while ((drive = drive->next) != hwgroup->drive);
  976. if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
  977. long t = (signed long)(WAKEUP(best) - jiffies);
  978. if (t >= WAIT_MIN_SLEEP) {
  979. /*
  980. * We *may* have some time to spare, but first let's see if
  981. * someone can potentially benefit from our nice mood today..
  982. */
  983. drive = best->next;
  984. do {
  985. if (!drive->sleeping
  986. && time_before(jiffies - best->service_time, WAKEUP(drive))
  987. && time_before(WAKEUP(drive), jiffies + t))
  988. {
  989. ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
  990. goto repeat;
  991. }
  992. } while ((drive = drive->next) != best);
  993. }
  994. }
  995. return best;
  996. }
  997. /*
  998. * Issue a new request to a drive from hwgroup
  999. * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
  1000. *
  1001. * A hwgroup is a serialized group of IDE interfaces. Usually there is
  1002. * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
  1003. * may have both interfaces in a single hwgroup to "serialize" access.
  1004. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
  1005. * together into one hwgroup for serialized access.
  1006. *
  1007. * Note also that several hwgroups can end up sharing a single IRQ,
  1008. * possibly along with many other devices. This is especially common in
  1009. * PCI-based systems with off-board IDE controller cards.
  1010. *
  1011. * The IDE driver uses the single global ide_lock spinlock to protect
  1012. * access to the request queues, and to protect the hwgroup->busy flag.
  1013. *
  1014. * The first thread into the driver for a particular hwgroup sets the
  1015. * hwgroup->busy flag to indicate that this hwgroup is now active,
  1016. * and then initiates processing of the top request from the request queue.
  1017. *
  1018. * Other threads attempting entry notice the busy setting, and will simply
  1019. * queue their new requests and exit immediately. Note that hwgroup->busy
  1020. * remains set even when the driver is merely awaiting the next interrupt.
  1021. * Thus, the meaning is "this hwgroup is busy processing a request".
  1022. *
  1023. * When processing of a request completes, the completing thread or IRQ-handler
  1024. * will start the next request from the queue. If no more work remains,
  1025. * the driver will clear the hwgroup->busy flag and exit.
  1026. *
  1027. * The ide_lock (spinlock) is used to protect all access to the
  1028. * hwgroup->busy flag, but is otherwise not needed for most processing in
  1029. * the driver. This makes the driver much more friendlier to shared IRQs
  1030. * than previous designs, while remaining 100% (?) SMP safe and capable.
  1031. */
  1032. static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
  1033. {
  1034. ide_drive_t *drive;
  1035. ide_hwif_t *hwif;
  1036. struct request *rq;
  1037. ide_startstop_t startstop;
  1038. int loops = 0;
  1039. /* for atari only: POSSIBLY BROKEN HERE(?) */
  1040. ide_get_lock(ide_intr, hwgroup);
  1041. /* caller must own ide_lock */
  1042. BUG_ON(!irqs_disabled());
  1043. while (!hwgroup->busy) {
  1044. hwgroup->busy = 1;
  1045. drive = choose_drive(hwgroup);
  1046. if (drive == NULL) {
  1047. int sleeping = 0;
  1048. unsigned long sleep = 0; /* shut up, gcc */
  1049. hwgroup->rq = NULL;
  1050. drive = hwgroup->drive;
  1051. do {
  1052. if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
  1053. sleeping = 1;
  1054. sleep = drive->sleep;
  1055. }
  1056. } while ((drive = drive->next) != hwgroup->drive);
  1057. if (sleeping) {
  1058. /*
  1059. * Take a short snooze, and then wake up this hwgroup again.
  1060. * This gives other hwgroups on the same a chance to
  1061. * play fairly with us, just in case there are big differences
  1062. * in relative throughputs.. don't want to hog the cpu too much.
  1063. */
  1064. if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
  1065. sleep = jiffies + WAIT_MIN_SLEEP;
  1066. #if 1
  1067. if (timer_pending(&hwgroup->timer))
  1068. printk(KERN_CRIT "ide_set_handler: timer already active\n");
  1069. #endif
  1070. /* so that ide_timer_expiry knows what to do */
  1071. hwgroup->sleeping = 1;
  1072. hwgroup->req_gen_timer = hwgroup->req_gen;
  1073. mod_timer(&hwgroup->timer, sleep);
  1074. /* we purposely leave hwgroup->busy==1
  1075. * while sleeping */
  1076. } else {
  1077. /* Ugly, but how can we sleep for the lock
  1078. * otherwise? perhaps from tq_disk?
  1079. */
  1080. /* for atari only */
  1081. ide_release_lock();
  1082. hwgroup->busy = 0;
  1083. }
  1084. /* no more work for this hwgroup (for now) */
  1085. return;
  1086. }
  1087. again:
  1088. hwif = HWIF(drive);
  1089. if (hwgroup->hwif->sharing_irq &&
  1090. hwif != hwgroup->hwif &&
  1091. hwif->io_ports[IDE_CONTROL_OFFSET]) {
  1092. /* set nIEN for previous hwif */
  1093. SELECT_INTERRUPT(drive);
  1094. }
  1095. hwgroup->hwif = hwif;
  1096. hwgroup->drive = drive;
  1097. drive->sleeping = 0;
  1098. drive->service_start = jiffies;
  1099. if (blk_queue_plugged(drive->queue)) {
  1100. printk(KERN_ERR "ide: huh? queue was plugged!\n");
  1101. break;
  1102. }
  1103. /*
  1104. * we know that the queue isn't empty, but this can happen
  1105. * if the q->prep_rq_fn() decides to kill a request
  1106. */
  1107. rq = elv_next_request(drive->queue);
  1108. if (!rq) {
  1109. hwgroup->busy = 0;
  1110. break;
  1111. }
  1112. /*
  1113. * Sanity: don't accept a request that isn't a PM request
  1114. * if we are currently power managed. This is very important as
  1115. * blk_stop_queue() doesn't prevent the elv_next_request()
  1116. * above to return us whatever is in the queue. Since we call
  1117. * ide_do_request() ourselves, we end up taking requests while
  1118. * the queue is blocked...
  1119. *
  1120. * We let requests forced at head of queue with ide-preempt
  1121. * though. I hope that doesn't happen too much, hopefully not
  1122. * unless the subdriver triggers such a thing in its own PM
  1123. * state machine.
  1124. *
  1125. * We count how many times we loop here to make sure we service
  1126. * all drives in the hwgroup without looping for ever
  1127. */
  1128. if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
  1129. drive = drive->next ? drive->next : hwgroup->drive;
  1130. if (loops++ < 4 && !blk_queue_plugged(drive->queue))
  1131. goto again;
  1132. /* We clear busy, there should be no pending ATA command at this point. */
  1133. hwgroup->busy = 0;
  1134. break;
  1135. }
  1136. hwgroup->rq = rq;
  1137. /*
  1138. * Some systems have trouble with IDE IRQs arriving while
  1139. * the driver is still setting things up. So, here we disable
  1140. * the IRQ used by this interface while the request is being started.
  1141. * This may look bad at first, but pretty much the same thing
  1142. * happens anyway when any interrupt comes in, IDE or otherwise
  1143. * -- the kernel masks the IRQ while it is being handled.
  1144. */
  1145. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1146. disable_irq_nosync(hwif->irq);
  1147. spin_unlock(&ide_lock);
  1148. local_irq_enable_in_hardirq();
  1149. /* allow other IRQs while we start this request */
  1150. startstop = start_request(drive, rq);
  1151. spin_lock_irq(&ide_lock);
  1152. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1153. enable_irq(hwif->irq);
  1154. if (startstop == ide_stopped)
  1155. hwgroup->busy = 0;
  1156. }
  1157. }
  1158. /*
  1159. * Passes the stuff to ide_do_request
  1160. */
  1161. void do_ide_request(request_queue_t *q)
  1162. {
  1163. ide_drive_t *drive = q->queuedata;
  1164. ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
  1165. }
  1166. /*
  1167. * un-busy the hwgroup etc, and clear any pending DMA status. we want to
  1168. * retry the current request in pio mode instead of risking tossing it
  1169. * all away
  1170. */
  1171. static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  1172. {
  1173. ide_hwif_t *hwif = HWIF(drive);
  1174. struct request *rq;
  1175. ide_startstop_t ret = ide_stopped;
  1176. /*
  1177. * end current dma transaction
  1178. */
  1179. if (error < 0) {
  1180. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  1181. (void)HWIF(drive)->ide_dma_end(drive);
  1182. ret = ide_error(drive, "dma timeout error",
  1183. hwif->INB(IDE_STATUS_REG));
  1184. } else {
  1185. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  1186. (void) hwif->ide_dma_timeout(drive);
  1187. }
  1188. /*
  1189. * disable dma for now, but remember that we did so because of
  1190. * a timeout -- we'll reenable after we finish this next request
  1191. * (or rather the first chunk of it) in pio.
  1192. */
  1193. drive->retry_pio++;
  1194. drive->state = DMA_PIO_RETRY;
  1195. hwif->dma_off_quietly(drive);
  1196. /*
  1197. * un-busy drive etc (hwgroup->busy is cleared on return) and
  1198. * make sure request is sane
  1199. */
  1200. rq = HWGROUP(drive)->rq;
  1201. if (!rq)
  1202. goto out;
  1203. HWGROUP(drive)->rq = NULL;
  1204. rq->errors = 0;
  1205. if (!rq->bio)
  1206. goto out;
  1207. rq->sector = rq->bio->bi_sector;
  1208. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  1209. rq->hard_cur_sectors = rq->current_nr_sectors;
  1210. rq->buffer = bio_data(rq->bio);
  1211. out:
  1212. return ret;
  1213. }
  1214. /**
  1215. * ide_timer_expiry - handle lack of an IDE interrupt
  1216. * @data: timer callback magic (hwgroup)
  1217. *
  1218. * An IDE command has timed out before the expected drive return
  1219. * occurred. At this point we attempt to clean up the current
  1220. * mess. If the current handler includes an expiry handler then
  1221. * we invoke the expiry handler, and providing it is happy the
  1222. * work is done. If that fails we apply generic recovery rules
  1223. * invoking the handler and checking the drive DMA status. We
  1224. * have an excessively incestuous relationship with the DMA
  1225. * logic that wants cleaning up.
  1226. */
  1227. void ide_timer_expiry (unsigned long data)
  1228. {
  1229. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
  1230. ide_handler_t *handler;
  1231. ide_expiry_t *expiry;
  1232. unsigned long flags;
  1233. unsigned long wait = -1;
  1234. spin_lock_irqsave(&ide_lock, flags);
  1235. if (((handler = hwgroup->handler) == NULL) ||
  1236. (hwgroup->req_gen != hwgroup->req_gen_timer)) {
  1237. /*
  1238. * Either a marginal timeout occurred
  1239. * (got the interrupt just as timer expired),
  1240. * or we were "sleeping" to give other devices a chance.
  1241. * Either way, we don't really want to complain about anything.
  1242. */
  1243. if (hwgroup->sleeping) {
  1244. hwgroup->sleeping = 0;
  1245. hwgroup->busy = 0;
  1246. }
  1247. } else {
  1248. ide_drive_t *drive = hwgroup->drive;
  1249. if (!drive) {
  1250. printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
  1251. hwgroup->handler = NULL;
  1252. } else {
  1253. ide_hwif_t *hwif;
  1254. ide_startstop_t startstop = ide_stopped;
  1255. if (!hwgroup->busy) {
  1256. hwgroup->busy = 1; /* paranoia */
  1257. printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
  1258. }
  1259. if ((expiry = hwgroup->expiry) != NULL) {
  1260. /* continue */
  1261. if ((wait = expiry(drive)) > 0) {
  1262. /* reset timer */
  1263. hwgroup->timer.expires = jiffies + wait;
  1264. hwgroup->req_gen_timer = hwgroup->req_gen;
  1265. add_timer(&hwgroup->timer);
  1266. spin_unlock_irqrestore(&ide_lock, flags);
  1267. return;
  1268. }
  1269. }
  1270. hwgroup->handler = NULL;
  1271. /*
  1272. * We need to simulate a real interrupt when invoking
  1273. * the handler() function, which means we need to
  1274. * globally mask the specific IRQ:
  1275. */
  1276. spin_unlock(&ide_lock);
  1277. hwif = HWIF(drive);
  1278. #if DISABLE_IRQ_NOSYNC
  1279. disable_irq_nosync(hwif->irq);
  1280. #else
  1281. /* disable_irq_nosync ?? */
  1282. disable_irq(hwif->irq);
  1283. #endif /* DISABLE_IRQ_NOSYNC */
  1284. /* local CPU only,
  1285. * as if we were handling an interrupt */
  1286. local_irq_disable();
  1287. if (hwgroup->polling) {
  1288. startstop = handler(drive);
  1289. } else if (drive_is_ready(drive)) {
  1290. if (drive->waiting_for_dma)
  1291. (void) hwgroup->hwif->ide_dma_lostirq(drive);
  1292. (void)ide_ack_intr(hwif);
  1293. printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
  1294. startstop = handler(drive);
  1295. } else {
  1296. if (drive->waiting_for_dma) {
  1297. startstop = ide_dma_timeout_retry(drive, wait);
  1298. } else
  1299. startstop =
  1300. ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
  1301. }
  1302. drive->service_time = jiffies - drive->service_start;
  1303. spin_lock_irq(&ide_lock);
  1304. enable_irq(hwif->irq);
  1305. if (startstop == ide_stopped)
  1306. hwgroup->busy = 0;
  1307. }
  1308. }
  1309. ide_do_request(hwgroup, IDE_NO_IRQ);
  1310. spin_unlock_irqrestore(&ide_lock, flags);
  1311. }
  1312. /**
  1313. * unexpected_intr - handle an unexpected IDE interrupt
  1314. * @irq: interrupt line
  1315. * @hwgroup: hwgroup being processed
  1316. *
  1317. * There's nothing really useful we can do with an unexpected interrupt,
  1318. * other than reading the status register (to clear it), and logging it.
  1319. * There should be no way that an irq can happen before we're ready for it,
  1320. * so we needn't worry much about losing an "important" interrupt here.
  1321. *
  1322. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  1323. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  1324. * looks "good", we just ignore the interrupt completely.
  1325. *
  1326. * This routine assumes __cli() is in effect when called.
  1327. *
  1328. * If an unexpected interrupt happens on irq15 while we are handling irq14
  1329. * and if the two interfaces are "serialized" (CMD640), then it looks like
  1330. * we could screw up by interfering with a new request being set up for
  1331. * irq15.
  1332. *
  1333. * In reality, this is a non-issue. The new command is not sent unless
  1334. * the drive is ready to accept one, in which case we know the drive is
  1335. * not trying to interrupt us. And ide_set_handler() is always invoked
  1336. * before completing the issuance of any new drive command, so we will not
  1337. * be accidentally invoked as a result of any valid command completion
  1338. * interrupt.
  1339. *
  1340. * Note that we must walk the entire hwgroup here. We know which hwif
  1341. * is doing the current command, but we don't know which hwif burped
  1342. * mysteriously.
  1343. */
  1344. static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
  1345. {
  1346. u8 stat;
  1347. ide_hwif_t *hwif = hwgroup->hwif;
  1348. /*
  1349. * handle the unexpected interrupt
  1350. */
  1351. do {
  1352. if (hwif->irq == irq) {
  1353. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1354. if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
  1355. /* Try to not flood the console with msgs */
  1356. static unsigned long last_msgtime, count;
  1357. ++count;
  1358. if (time_after(jiffies, last_msgtime + HZ)) {
  1359. last_msgtime = jiffies;
  1360. printk(KERN_ERR "%s%s: unexpected interrupt, "
  1361. "status=0x%02x, count=%ld\n",
  1362. hwif->name,
  1363. (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
  1364. }
  1365. }
  1366. }
  1367. } while ((hwif = hwif->next) != hwgroup->hwif);
  1368. }
  1369. /**
  1370. * ide_intr - default IDE interrupt handler
  1371. * @irq: interrupt number
  1372. * @dev_id: hwif group
  1373. * @regs: unused weirdness from the kernel irq layer
  1374. *
  1375. * This is the default IRQ handler for the IDE layer. You should
  1376. * not need to override it. If you do be aware it is subtle in
  1377. * places
  1378. *
  1379. * hwgroup->hwif is the interface in the group currently performing
  1380. * a command. hwgroup->drive is the drive and hwgroup->handler is
  1381. * the IRQ handler to call. As we issue a command the handlers
  1382. * step through multiple states, reassigning the handler to the
  1383. * next step in the process. Unlike a smart SCSI controller IDE
  1384. * expects the main processor to sequence the various transfer
  1385. * stages. We also manage a poll timer to catch up with most
  1386. * timeout situations. There are still a few where the handlers
  1387. * don't ever decide to give up.
  1388. *
  1389. * The handler eventually returns ide_stopped to indicate the
  1390. * request completed. At this point we issue the next request
  1391. * on the hwgroup and the process begins again.
  1392. */
  1393. irqreturn_t ide_intr (int irq, void *dev_id)
  1394. {
  1395. unsigned long flags;
  1396. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
  1397. ide_hwif_t *hwif;
  1398. ide_drive_t *drive;
  1399. ide_handler_t *handler;
  1400. ide_startstop_t startstop;
  1401. spin_lock_irqsave(&ide_lock, flags);
  1402. hwif = hwgroup->hwif;
  1403. if (!ide_ack_intr(hwif)) {
  1404. spin_unlock_irqrestore(&ide_lock, flags);
  1405. return IRQ_NONE;
  1406. }
  1407. if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
  1408. /*
  1409. * Not expecting an interrupt from this drive.
  1410. * That means this could be:
  1411. * (1) an interrupt from another PCI device
  1412. * sharing the same PCI INT# as us.
  1413. * or (2) a drive just entered sleep or standby mode,
  1414. * and is interrupting to let us know.
  1415. * or (3) a spurious interrupt of unknown origin.
  1416. *
  1417. * For PCI, we cannot tell the difference,
  1418. * so in that case we just ignore it and hope it goes away.
  1419. *
  1420. * FIXME: unexpected_intr should be hwif-> then we can
  1421. * remove all the ifdef PCI crap
  1422. */
  1423. #ifdef CONFIG_BLK_DEV_IDEPCI
  1424. if (hwif->pci_dev && !hwif->pci_dev->vendor)
  1425. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1426. {
  1427. /*
  1428. * Probably not a shared PCI interrupt,
  1429. * so we can safely try to do something about it:
  1430. */
  1431. unexpected_intr(irq, hwgroup);
  1432. #ifdef CONFIG_BLK_DEV_IDEPCI
  1433. } else {
  1434. /*
  1435. * Whack the status register, just in case
  1436. * we have a leftover pending IRQ.
  1437. */
  1438. (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1439. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1440. }
  1441. spin_unlock_irqrestore(&ide_lock, flags);
  1442. return IRQ_NONE;
  1443. }
  1444. drive = hwgroup->drive;
  1445. if (!drive) {
  1446. /*
  1447. * This should NEVER happen, and there isn't much
  1448. * we could do about it here.
  1449. *
  1450. * [Note - this can occur if the drive is hot unplugged]
  1451. */
  1452. spin_unlock_irqrestore(&ide_lock, flags);
  1453. return IRQ_HANDLED;
  1454. }
  1455. if (!drive_is_ready(drive)) {
  1456. /*
  1457. * This happens regularly when we share a PCI IRQ with
  1458. * another device. Unfortunately, it can also happen
  1459. * with some buggy drives that trigger the IRQ before
  1460. * their status register is up to date. Hopefully we have
  1461. * enough advance overhead that the latter isn't a problem.
  1462. */
  1463. spin_unlock_irqrestore(&ide_lock, flags);
  1464. return IRQ_NONE;
  1465. }
  1466. if (!hwgroup->busy) {
  1467. hwgroup->busy = 1; /* paranoia */
  1468. printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
  1469. }
  1470. hwgroup->handler = NULL;
  1471. hwgroup->req_gen++;
  1472. del_timer(&hwgroup->timer);
  1473. spin_unlock(&ide_lock);
  1474. /* Some controllers might set DMA INTR no matter DMA or PIO;
  1475. * bmdma status might need to be cleared even for
  1476. * PIO interrupts to prevent spurious/lost irq.
  1477. */
  1478. if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
  1479. /* ide_dma_end() needs bmdma status for error checking.
  1480. * So, skip clearing bmdma status here and leave it
  1481. * to ide_dma_end() if this is dma interrupt.
  1482. */
  1483. hwif->ide_dma_clear_irq(drive);
  1484. if (drive->unmask)
  1485. local_irq_enable_in_hardirq();
  1486. /* service this interrupt, may set handler for next interrupt */
  1487. startstop = handler(drive);
  1488. spin_lock_irq(&ide_lock);
  1489. /*
  1490. * Note that handler() may have set things up for another
  1491. * interrupt to occur soon, but it cannot happen until
  1492. * we exit from this routine, because it will be the
  1493. * same irq as is currently being serviced here, and Linux
  1494. * won't allow another of the same (on any CPU) until we return.
  1495. */
  1496. drive->service_time = jiffies - drive->service_start;
  1497. if (startstop == ide_stopped) {
  1498. if (hwgroup->handler == NULL) { /* paranoia */
  1499. hwgroup->busy = 0;
  1500. ide_do_request(hwgroup, hwif->irq);
  1501. } else {
  1502. printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
  1503. "on exit\n", drive->name);
  1504. }
  1505. }
  1506. spin_unlock_irqrestore(&ide_lock, flags);
  1507. return IRQ_HANDLED;
  1508. }
  1509. /**
  1510. * ide_init_drive_cmd - initialize a drive command request
  1511. * @rq: request object
  1512. *
  1513. * Initialize a request before we fill it in and send it down to
  1514. * ide_do_drive_cmd. Commands must be set up by this function. Right
  1515. * now it doesn't do a lot, but if that changes abusers will have a
  1516. * nasty surprise.
  1517. */
  1518. void ide_init_drive_cmd (struct request *rq)
  1519. {
  1520. memset(rq, 0, sizeof(*rq));
  1521. rq->cmd_type = REQ_TYPE_ATA_CMD;
  1522. rq->ref_count = 1;
  1523. }
  1524. EXPORT_SYMBOL(ide_init_drive_cmd);
  1525. /**
  1526. * ide_do_drive_cmd - issue IDE special command
  1527. * @drive: device to issue command
  1528. * @rq: request to issue
  1529. * @action: action for processing
  1530. *
  1531. * This function issues a special IDE device request
  1532. * onto the request queue.
  1533. *
  1534. * If action is ide_wait, then the rq is queued at the end of the
  1535. * request queue, and the function sleeps until it has been processed.
  1536. * This is for use when invoked from an ioctl handler.
  1537. *
  1538. * If action is ide_preempt, then the rq is queued at the head of
  1539. * the request queue, displacing the currently-being-processed
  1540. * request and this function returns immediately without waiting
  1541. * for the new rq to be completed. This is VERY DANGEROUS, and is
  1542. * intended for careful use by the ATAPI tape/cdrom driver code.
  1543. *
  1544. * If action is ide_end, then the rq is queued at the end of the
  1545. * request queue, and the function returns immediately without waiting
  1546. * for the new rq to be completed. This is again intended for careful
  1547. * use by the ATAPI tape/cdrom driver code.
  1548. */
  1549. int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
  1550. {
  1551. unsigned long flags;
  1552. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  1553. DECLARE_COMPLETION_ONSTACK(wait);
  1554. int where = ELEVATOR_INSERT_BACK, err;
  1555. int must_wait = (action == ide_wait || action == ide_head_wait);
  1556. rq->errors = 0;
  1557. /*
  1558. * we need to hold an extra reference to request for safe inspection
  1559. * after completion
  1560. */
  1561. if (must_wait) {
  1562. rq->ref_count++;
  1563. rq->end_io_data = &wait;
  1564. rq->end_io = blk_end_sync_rq;
  1565. }
  1566. spin_lock_irqsave(&ide_lock, flags);
  1567. if (action == ide_preempt)
  1568. hwgroup->rq = NULL;
  1569. if (action == ide_preempt || action == ide_head_wait) {
  1570. where = ELEVATOR_INSERT_FRONT;
  1571. rq->cmd_flags |= REQ_PREEMPT;
  1572. }
  1573. __elv_add_request(drive->queue, rq, where, 0);
  1574. ide_do_request(hwgroup, IDE_NO_IRQ);
  1575. spin_unlock_irqrestore(&ide_lock, flags);
  1576. err = 0;
  1577. if (must_wait) {
  1578. wait_for_completion(&wait);
  1579. if (rq->errors)
  1580. err = -EIO;
  1581. blk_put_request(rq);
  1582. }
  1583. return err;
  1584. }
  1585. EXPORT_SYMBOL(ide_do_drive_cmd);